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Abstract. The generation of a high-m Alfvén wave by sub-

storm injected energetic particles in the magnetosphere is

studied. The wave is supposed to be emitted by an alternating

current created by the drifting particle cloud or ring current

inhomogeneity. It is shown that the wave appears in some

azimuthal location simultaneously with the particle cloud ar-

rival at the same spot. The value of the azimuthal wave

number is determined as m∼ω/ωd , where ω is the eigen-

frequency of the standing Alfvén wave and ωd is the particle

drift frequency. The wave propagates westward, in the di-

rection of the proton drift. Under the reasonable assumption

about the density of the energetic particles, the amplitude of

the generated wave is close to the observed amplitudes of

poloidal ULF pulsations.

Keywords. Magnetospheric physics (MHD waves and in-

stabilities) – Space plasma physics (Kinetic and MHD the-

ory)

1 Introduction

Alfvén waves in the range of Pc3–5 can be categorized into

the waves with large and small azimuthal wave numbers m.

Recently, the high-m waves were observed with CLUSTER

(Eriksson et al., 2005, 2006; Schäfer et al., 2007) and radars

(Fenrich et al., 1995; Yeoman et al., 2000; Wright et al.,

2001; Baddeley et al., 2002). The low-m waves are generated

by the resonant interaction with the fast mode, propagating

from the outer boundary of the magnetosphere. This gen-

eration mechanism is ineffective for pulsations with m≫1

(azimuthally small scale waves), because in this case only

an exponentially small part of the fast mode energy pen-

etrates into the magnetosphere (Glassmeier, 1995). Thus,

other sources of the wave energy must be found. Substorm
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injected protons, drifting in the magnetosphere, appear to be

good candidates. It is usually assumed that high-m waves are

excited by unstable proton populations with energies from 10

to 150 keV by means of the drift-bounce instability (Karp-

man et al., 1977). An example of this unstable distribution

function is the bump-on-tail distribution.

There are a number of arguments to support this sugges-

tion. One of them is the coincidence of the directions of

the azimuthal phase velocity of the high-m pulsations and

the proton drift velocity (Fenrich et al., 1995; Yeoman et

al., 2000; Baddeley et al., 2005b; Glassmeier, 1980). Be-

sides, both velocities depend on the radial coordinate almost

in the same way (Allan et al., 1982, 1983). There is some ev-

idence of statistical relations between the high-m pulsations

and ring current intensifications (Anderson, 1993; Yeoman et

al., 2000). Association of the high-m waves with nonmono-

tonic particle distributions have been observed by Hughes et

al. (1978), Glassmeier et al. (1999), Wright et al. (2001) and

statistically studied by Baddeley et al. (2002, 2004, 2005a,b).

The bump-on-tail distribution is usually supposed to be a

result of a substorm injection: faster protons reach a given

point on the azimuthal coordinate earlier than lower en-

ergy ones, so high-energy particles are added to the local

background plasma at a higher rate than low-energy parti-

cles (Karpman et al., 1977; Glassmeier et al., 1999). In-

deed, several cases were observed when the wave appeared

in some azimuthal location simultaneously with the cloud of

the particle injected during substorm arrival in the same spot

(Chisham et al., 1992; Wright et al., 2001).

This mechanism of formation of the unstable distribu-

tion presupposes that the bump-on-tail is the natural conse-

quence of the nonstationarity of the injection process. But

the azimuthally drifting injected cloud (which can also be

considered as a moving inhomogeneity of the ring current)

represents an alternating current, which is able to emit the

Alfvén wave itself (Akhiezer et al., 1967, 1975). In a mag-

netospheric context, this generation mechanism was first
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considered by Zolotukhina (1974) and Guglielmi and Zolo-

tukhina (1980). A similar problem has been considered for

the magnetosphere of Jupiter, where its moon Io acts as the

moving wave emitter (Neubauer, 1980). This mechanism re-

sembles the generation of waves on the water surface by a

moving ship (the analogy of whistlers and a ship wave has

been considered by Gurnett, 1995).

Then, the drift-bounce instability does not explain some

essential features of the high-m waves. Thus, observed

waves have definite m numbers, although the weekly growth

rate depends on this value (Mager and Klimushkin, 2005).

Consequently, this instability cannot select a narrow range of

the m numbers, contrary to observations. Even the direction

of the azimuthal phase velocity of the observed waves cannot

be explained: the instability can generate the waves propa-

gating in both azimuthal directions (Mager and Klimushkin,

2005). Finally, owing to transformation of poloidal Alfvén

waves into toroidal ones, the instability will be favorable

for amplification of toroidal rather than poloidal oscillations

(Klimushkin, 2000, 2007; Klimushkin and Mager, 2004).

Additional hints that some of the observed high-m pulsa-

tions have been generated by nonstationary current are also

reported by Pilipenko et al. (2001).

Our paper studies this generation mechanism in the Earth’s

magnetosphere. In contrast to the previous efforts in

this direction (Akhiezer et al., 1967, 1975; Zolotukhina,

1974; Guglielmi and Zolotukhina, 1980; Neubauer, 1980;

Pilipenko et al., 2001), where only a uniform background

was considered, we explore a two-dimensionally inhomoge-

neous model of the magnetosphere with plasma and mag-

netic field non-uniformity along and across with field lines

taken into account. Besides, as opposed to some earlier pa-

pers (Zolotukhina, 1974; Neubauer, 1980), the field lines

are considered to intersect the highly conductive ionospheric

plasma, which results in the emergence of a standing wave

structure along the field lines. In contrast to our previous pa-

per (Mager and Klimushkin, 2007), here we incorporated the

dependence of the drift velocity on the radial coordinate: this

velocity is supposed to grow with the L-shell.

2 Formulation of the problem

The method for setting up a problem is as follows. At some

initial time instant t=0 a cloud of particles is injected into the

magnetosphere. The particles are drifting in the azimuthal

direction. It is required to obtain an expression for the wave

amplitude and to find the spatio-temporal structure and po-

larization of the wave field.

The magnetosphere is considered as axially-symmetric

and bounded by the highly conductive ionosphere of the

Southern and Northern Hemispheres. The cloud of the in-

jected particles is assumed to be narrowly localized in az-

imuth but distributed over the entire range of L-shells, i.e. in

the radial direction. The source is also distributed along field

lines between conjugated points of the ionosphere. Zolo-

tukhina (1974) and Neubauer (1980) considered the source

compact (localized) in all directions.

The drift angular velocity ωd is assumed to be much less

than the characteristic Alfvén eigenfrequency. In particular,

it means that the velocity of the source is much less than the

Alfvén speed. It corresponds to the energies of the order of

several tens of keV.

Besides, we assumed the drift angular velocity ωd to in-

crease with the radial coordinate (L-shell). For simplicity,

we even put ωd to be proportional to the radial coordinate,

but we suppose that our results are generally valid for any

increasing functions ωd(L). The most common instance is

probably the case when the angular drift speed decreases

with the L-shell, because in this case the injected protons

conserve the first adiabatic invariant. But, as we will show

in the last section, the case considered in the present paper

happens to be more interesting, since it shows a rather un-

expected feature of the wave field temporal evolution, which

can be used for the verification of our model. On the other

hand, this case can also be realized in the magnetosphere un-

der some conditions (e.g. Southwood, 1980), when there is

loss of injected protons. The case when injected protons have

a drift velocity constant with radius has been considered in

our earlier paper (Mager and Klimushkin, 2007).

Our approach is based on the theory of eigenoscillations

of the axisymmetric magnetosphere developed by Leonovich

and Mazur (1997) and Klimushkin et al. (2004) and uses the

general approach by Akhiezer et al. (1967) and Akhiezer et

al. (1975). A time-dependent external current (formed by the

moving charged particle cloud) is assumed to be the source

term of the wave equation. The particle density of the cloud

is considered to be small compared to the background den-

sity, which allows us to consider the waves in the linear ap-

proximation. The current (wave generator) is considered to

be given, that is we neglect the feedback of the generated

wave on the current. This assumption is probably valid at

the earlier stages of the wave field evolution (Akhiezer et al.,

1967). On the other hand, we do not consider the evolution

within the first few bounce periods, when the cloud is contin-

uing to spread along the field lines and the parallel structure

of the wave has not been settled yet. This time is very short

because the drift velocity is much less than the thermal par-

ticle velocity, so this limitation is not too severe.

3 Main equations

Let us introduce a curvilinear coordinate system {x1, x2, x3},
in which the field lines play the role of the coordinate lines

x3, i.e. such lines, along which the other two coordinates are

invariable (recall that the superscripts and subscripts denote

contravariant and covariant coordinates, respectively). In this

coordinate system the stream lines are the coordinate lines

x2, and the surfaces of constant pressure (magnetic shells)
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are the coordinate surfaces x1=const (Fig. 1). The coordi-

nates x1 and x2 have the role of the radial and azimuthal co-

ordinates, and to represent them we shall use the McIlwain

parameter L and the azimuthal angle ϕ, respectively. It is

convenient to choose a direction of the azimuthal coordinate

coinciding with the proton drift direction. In order for the co-

ordinate system to remain right-handed, the x3 axis must be

directed opposite to the ambient magnetic field. The physical

length along a field line is expressed in terms of an increase

of the corresponding coordinate as dl3=
√

g3dx3, where g3

is the component of the metric tensor, and
√

g3 is the Lamé

coefficient. Similarly, dl1=
√

g1dx1, and dl2=
√

g2dx2. The

determinant of the metric tensor is g=g1g2g3. The equilib-

rium values of the magnetic field and plasma density are des-

ignated as B and ρ; ξ is the displacement of plasma from the

equilibrium position, E, b and j are the electric field, mag-

netic field, and current of the wave. The source of the oscil-

lations is a nonstationary external (azimuthal) current j ext,

formed by drifting substorm injected particles. The station-

ary current is absent in the cold plasma approximation.

In this approximation, the linearized equation of small os-

cillations takes the form

ρ
∂2ξ

∂t2
− 1

c
j × B = 0. (1)

The electrodynamic values are interconnected by the equa-

tions

∇ × b = 4π

c
j + 4π

c
j ext (2)

(Ampère law),

∇ × E = −1

c

∂b

∂t
(3)

(Maxwell equation),

E = 1

c

∂ξ

∂t
× B (4)

(frozen-in condition). It is worth noting that the outer cur-

rent appeared only in Eq. (2) (Akhiezer et al., 1975). Using

Eqs. (1–4), we obtain the equation for the wave electric field

E:

1

A2

∂2E

∂t2
− ∇ × ∇ × E = −4π

c2

∂j ext

∂t
, (5)

where A=B/
√

4πρ is the Alfvén speed. Due to infinite

plasma conductivity, the parallel electric field is absent, thus

the wave’s electric field lies on surfaces orthogonal to field

lines. The electric field of the Alfvén mode can be repre-

sented in the form

E = −∇⊥8, (6)

where 8 is a scalar function (“potential”), and ∇⊥ is the

transverse nabla operator. Let us substitute Eq. (6) into

Fig. 1. The coordinate system.

Eq. (5) and act on the obtained expression by the operator

∇⊥. As a result, we obtain the equation

LA8 = −4π

c2

√
g

∂

∂x2

∂

∂t
j2

ext. (7)

Here j2
ext=jext/

√
g2 is the contra-variant azimuthal projec-

tion of the vector j ext, and

LA = ∂

∂x1

[
−

√
g

g1

1

A2

∂2

∂t2
+ ∂

∂x3

g2√
g

∂

∂x3

]
∂

∂x1

+ ∂

∂x2

[
−

√
g

g2

1

A2

∂2

∂t2
+ ∂

∂x3

g1√
g

∂

∂x3

]
∂

∂x2

is an Alfvén differential operator. Thus, we have an inho-

mogeneous differential equation which describes Alfvén os-

cillations generated by the external current. The boundary

conditions are chosen as

8|x1,x2→±∞ = 0, 8|
x3
±

= 0. (8)

Here the second condition corresponds to the full wave re-

flection from the ionosphere (x3
± denotes the points of the

intersection of the field line with the ionosphere).

The cloud of drifting particles comprising the external cur-

rent is assumed to be narrowly localized in azimuth, that is

the contra-variant azimuthal projection of the external cur-

rent

j2
ext = e n0 ωd δ(ϕ − ωd t) 2(t), (9)

where ωd(x1) is the bounce-averaged angular drift velocity,

e and n0 are the electric charge and number density of the

particles, 2(t) is the Heaviside theta-function, denoting the

instant when the source is “switched on” (injection of parti-

cles into the magnetosphere), ϕ is the azimuthal angle, which

can be used as the x2 coordinate. The physical component of

the current can be obtained by using the linear drift velocity

www.ann-geophys.net/26/1653/2008/ Ann. Geophys., 26, 1653–1663, 2008



1656 P. N. Mager and D. Yu. Klimushkin: Alfvén ship waves

Fig. 2. The model of the source.

V =√
g2 ωd instead of the angular velocity in Eq. (9). The in-

jection takes place at the instant t=0. For simplicity, we put

the drift velocity to be proportional to the radial coordinate,

ωd(x1)=�d x1, where �d does not depend on x1. As is easy

to see that in the course of time the cloud will be stretched

into a spiral (Fig. 2).

In order to solve the wave Eq. (7), we perform the Fourier-

transform of this equation over ϕ and t (see Appendix A). As

a result, we obtain a differential equation only with respect

to two variables, x1 and x3:

L̂A8mω = q̃mω, (10)

where ω and m are the parameters of the Fourier transform

over time (frequency) and azimuthal angle (azimuthal wave

number), and

q̃mω = −2mω
√

g
en0ωd

c2

× 1

2π

+∞∫

−∞

2(t ′) exp (iωt ′ − imωd t ′) dt ′.

In Eq. (10), L̂A is the Fourier-image of the Alfvénic opera-

tor LA analogous to the Alfvénic operator for the monochro-

matic wave with frequency ω and azimuthal wave number m,

defined as

L̂A ≡ ∂

∂x1
L̂T (ω)

∂

∂x1
− m2L̂P (ω),

where

L̂T (ω) = ∂

∂x3

g2√
g

∂

∂x3
+

√
g

g1

ω2

A2

is the toroidal mode operator, and

L̂P (ω) = ∂

∂x3

g1√
g

∂

∂x3
+

√
g

g2

ω2

A2
,

is the poloidal mode operator. The eigenvalues of these oper-

ators with the boundary condition on the ionosphere (8) are

denoted �T N and �PN , respectively. They are called the

toroidal and poloidal eigenfrequencies since they character-

ize the purely azimuthal (toroidal) and radial (poloidal) oscil-

lations of field lines (e.g. Klimushkin et al., 2004; Leonovich

and Mazur, 1997).

4 The structure of a single Fourier harmonic

The method of the solution of Eq. (10) has been developed by

Klimushkin et al. (2004). As was shown there, the function

8mω can be represented as

8mω ≈ RN (x1)TN (x1, x3), (11)

where TN (x1, x3) is an eigenfunction of the toroidal operator

L̂T , defining a longitudinal structure of the N -th harmonic

standing between ionospheres. The normalization condition

is
〈√

g

g1

T 2
N

A2

〉
= 1. (12)

(here the angle brackets designate integration along the field

line between the ionospheres, 〈...〉=
∫ x3

+
x3
−

(...)dx3). The func-

tion RN (x1) describes the structure of this harmonic across

the magnetic shells.

Let us introduce some definitions. The toroidal and

poloidal eigenfrequencies are functions of the radial coor-

dinate x1. If the wave frequency ω is fixed, we can introduce

the notions of toroidal x1
T N and poloidal x1

PN magnetic shells

determined as solutions of the equations

ω = �T N (x1) (13)

and

ω = �PN (x1), (14)

respectively. The distance between these shells is designated

as 1N=x1
T N−x1

PN (in a cold plasma, 1N>0). In the ma-

jor part of the magnetosphere, the functions �PN (x1) and

�T N (x1) are monotonically decreasing with the characteris-

tic scale l, which has the same order of magnitude as the size

of the magnetosphere. For the sake of simplicity, we can then

avail ourselves of the linear expansions

�T N (x1) = �0(1 − x1

l
) (15)

and

�PN (x1) = �0(1 − x1 + 1N

l
). (16)
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After substitution of expressions (13) and (14) into Eqs. (15)

and (16), we obtain

x1
T N (ω) = l(1 − ω

�0
),

x1
PN (ω) = x1

T N − 1N .

Further, if we substitute the function 8mω(x1, x3) from

Eq. (11) into Eq. (10), we obtain the ordinary differential

equation defining the radial structure of the wave field:

∂

∂x1
(x1 − x1

T N (ω))
∂

∂x1
RN − m2

L2
(x1 − x1

PN (ω))RN

= mq(x1, ω,m). (17)

See Klimushkin et al. (2004), Leonovich and Mazur (1997)

for more detail. Here

q(x1, ω,m) = q0

2π

+∞∫

−∞

2(t ′) exp (iωt ′ − im�dx1t ′) dt ′,

q0 = − el

c2

ωd

�0
〈n0

√
gTN 〉. (18)

The solution of the Eq. (17) satisfying the boundary condi-

tion (8) is

RN (x1, ω,m)

= iq0L

+∞∫

−∞

dκ

+∞∫

−∞

dt ′
2(κ + m�t ′) 2(t ′)√

(κ2 + m2 l2

L2 )(L2

l2
�2t ′2 + 1)

× exp

[
iω(t ′ + m�

�0
t ′ + κ

�0
) − im�t ′ + iκ(ξ − 1)

+ imδN

l

L
(arctan

κL

ml
+ arctan �t ′

L

l
)

]
(19)

(see Appendix B). The notations are:

ξ = x1/l, δN = 1N/l, � = �d l.

5 The structure and evolution of the wave field

With the solution (10), we can solve the wave equation (7)

by means of the reverse Fourier transform:

8(x1, x2, x3, t) =
+∞∫

−∞

dω

+∞∫

−∞

dm 8mω eimϕ−iωt . (20)

Thus, according to Eqs. (20, 11), the solution of the wave

equation (7) is

8(x1, x2, x3, t) = RN (x1, x2, t) TN (x1, x3), (21)

where the function

RN (x1, x2, t) =
+∞∫

−∞

dω

+∞∫

−∞

dm RN (m, ω) eimϕ−iωt (22)

defines both the transverse structure of the wave and its evo-

lution. The expression for RN can be reduced to the form

(see Appendix C):

RN (x1, x2, t) = iq0Lµ

×
+∞∫

−∞

dm

+∞∫

−∞

dκ 2(κ + m�t)2(�0t − κ) ei9(m,κ)

×
[
(κ2 + m2l2

L2
)(

L2(�0t − κ)2

l2
+ (µ + m)2)

]−1/2

(23)

where

9 (m, κ) = mϕ − m
�0t − κ

µ + m
+ κ (ξ − 1)

+ mδN

l

L

(
arctan

κL

ml
+ arctan

L

l

�0t − κ

µ + m

)
. (24)

Since the drift angular velocity ωd is assumed to be much less

than the Alfvénic eigenfrequencies �T N and �PN , the large

parameter µ=�0/� appears. In this case the double inte-

gral (23) can be evaluated by means of the stationary phase

method (see Appendix D). Having done this calculation, we

finally obtain the approximate expression for RN :

RN = A0 ei90 (25)

where the wave phase is

90 ≡ 9(κ0, m0) = m0(x
1)ϕ − �T N (x1)t

+ ka(x
1)1N

[
arctan

kr(x
1, ϕ, t)

ka(x1)
+ arctan

Lϕ

x1

]
, (26)

and the amplitude is

A0 = i2πq0Lµ 2(ϕ)2(ωd(x1)t − ϕ)

[kr(x1, ϕ, t)2 + ka(x1)2]1/2[x12 + L2ϕ2]1/2
. (27)

The factor 2(ωd t−ϕ) in Eq. (27) shows that the wave field

is absent before the source in this approximation. Also, the

following designations are introduced here: the radial com-

ponent of the wave vector

kr(x
1, ϕ, t) = µ

l

(
�t − ϕ l2

x12

)
, (28)

the azimuthal component of the wave vector and the az-

imuthal wave number

ka(x
1) = µ

L

l − x1

x1
= m0(x

1)

L
, m0(x

1) = �T N (x1)

ωd(x1)
. (29)

www.ann-geophys.net/26/1653/2008/ Ann. Geophys., 26, 1653–1663, 2008



1658 P. N. Mager and D. Yu. Klimushkin: Alfvén ship waves

Fig. 3. The lines of the constant phase for different time instants.

6 Discussion

Let us discuss the main features of the solution obtained. The

angular frequency of the wave is defined as

ω = ∂9

∂t
= �T N − 1N

l
�0

(
1 + kr

ka

)−1

≈ �T N .

Hence, the frequency depends on the radial coordinate x1.

Moreover, in the course of time ω is changed from �PN

to �T N . If we define the projection of the wave vector by

means of a similar procedure, that is as partial derivatives

of the phase (26) as kr=∂9/∂r , ka=∂9/∂ϕ, then their ex-

pression will differ from Eqs. (28, 29) only by small values,

proportional to the parameter δN=1N/l≪1. That means

that Eqs. (28, 29) can be safely used for needs of the qual-

itative discussion. As is seen from those expressions, the

azimuthal wave number m also depends on time, changing

from mP =�PN/ωd to mT =�T N/ωd . But this dependence

is rather weak due to a small difference between toroidal and

poloidal eigenfrequencies in cold plasma.

Much more important is a strong time dependence

of the wave vector radial component. Near the line

�t−ϕ(l/x1)2=0, this value is very small, kr≪ka . As the

source is moving away from the points on this curve, the ra-

dial component increases (Fig. 3). But according to Eqs. (6)

and (25), the ratio between kr and ka defines the wave polar-

ization: |Ea/Er |=ka/kr . Thus, just after the generation the

wave has a mixed polarization, and as the wave moves far-

ther and farther away from the source, it becomes poloidally-

polarized (Er≪Ea). Further, the wave finally transforms

Fig. 4. The wave electric field radial and azimuthal components at

fixed x1 and ϕ coordinates.

into a toroidally-polarized one (Er≫Ea). The characteris-

tic transformation time is

τ = 2
m0l

�0L
. (30)

It is during this time span that the wave remained poloidally-

polarized. An analogous transformation takes place also in

the case of impulsive excitation (see, e.g. Klimushkin and

Mager (2004)) with a similar transformation time τ∼m/ω.

Such a double change of polarization was absent in the

model where the drift velocity does not depend on the radial

coordinate (Mager and Klimushkin, 2007). In the model con-

sidered in the present paper the particle drift velocity grows

with distance from the Earth. Consequently, the source

stretches into strips at an acute angle to the surface x1=const

(as usual, the angle is measured counter-clockwise). Directly

near the source the lines of the constant phase are parallel to

the source (see Fig. 3). This means the presence of both ra-

dial azimuthal components of the wave vector, that is, mixed

wave polarization. Further evolution is accompanied by turn-

ing of the lines of the constant phase counter-clockwise. At

some time instant, there appears a point on a line of the con-

stant phase where this line is tangent to the x2=const axis.

At this point, the wave vector radial component equals zero,

that is, the mode is poloidally polarized. Thus, the mode is

poloidally polarized on the line passing through these points.

Further, at a given point the constant phase line becomes in-

clined at an obtuse angle to the x1=const surface, that is, the

wave vector radial component appears again. In the course of

time, the angle is increasing, i.e. the ratio |kr/ka| is increas-

ing too and the wave becomes more and more toroidal. The

above mentioned features are illustrated in Fig. 4, where the

temporal evolution of the radial and azimuthal components
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Fig. 5. The radial component of the electric field.

of electric field is shown, and also in Figs. 5–7, where the

full wave structure is depicted. To compute these figures,

wave attenuation due to finite ionospheric conductivity was

taken into account.

With damping taken into account, Eq. (17) is written as

∂

∂x1
(x1 − x1

T N (ω) + i
lγ

�0
)

∂

∂x1
RN − (31)

−m2

L2
(x1 − x1

PN (ω) + i
lγ

�0
)RN = mq(ω, m),

where γ is a decrement of ionospheric damping. Having per-

formed the manipulations described above, we obtain that in

this case the expression (25) obtains one additional factor,

namely

RN = A0 e
− γ

ωd
(ωd t−ϕ)

ei90 . (32)

Based upon this expression, we evaluate the width of the lo-

calization region across magnetic shells. It is evident that

the amplitude will be highest just near the source, i.e. in the

vicinity of the curve ωd(x1)t−ϕ=0. Thus, at γ t>1 the width

of the localization region will be

1L = L

γ t − 1
.

As is seen from this expression, the wave becomes more

localized with time. For example, for the shell L=6, at

γ=0.1ω and t=10 T (where T is wave period), the width

of the localization region is 1L≈1RE . As observations

show, high-m Alfvén waves often have a localization width

of ∼1 RE .

Let us evaluate the wave amplitude. On the basis of the

Eqs. (18, 21, and 25), we obtain

8 ∼ 2πeL2

c2µ
〈n0

√
gTN 〉TN ∼ 2πen0L

2A2

c2µ
.

Fig. 6. The azimuthal component of the electric field.

Fig. 7. The full electric field of the wave.

For this ordering, we used the normalization condition (12)

for the eigenfunction TN , which implies that TN∼A/L and

〈n0
√

gTN 〉∼n0AL. Further, from Eq. (6) we find the wave

electric and magnetic fields:

E ∼ µ

L
8 ∼ 2πen0LA2

c2
, (33)

b ∼ c

A
E ∼ 2πen0LA

c
. (34)

Now, using Eq. (34), we can find which proton number den-

sity n0 in the drifting cloud is necessary for the generation of

Alfvén waves with observed magnetic field amplitudes b:

n0 ∼ bc

2πeLA
.

The amplitude of azimuthally-small scale Alfvén waves in

the magnetosphere can reach values of b∼40×10−5 Gs, their
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periods are of the order of 100 s, azimuthal wave numbers

m∼20−100, they are frequently observed in the vicinity of

L∼6 magnetic shell (Chisham et al., 1992). The characteris-

tic value of the Alfvén speed is A∼1000 km/s. To generate

Alfvén waves with such properties the number density must

be n0∼10−2 sm−3, which is much less than the background

(cold) plasma density; the particle energy ǫ determining the

velocity of proton drift in an inhomogeneous magnetic field

(the source speed �) must be about 50 keV (the azimuthal

wave number of the generated wave m∼ω/�). The particles

with such energies are often observed simultaneously with

high-m oscillations.

7 Conclusions

Let us outline the general picture of the Alfvén wave gen-

eration by the moving plasma inhomogeneity. At a given

point in the azimuthal coordinate, the wave appears just af-

ter the source arrival. Under the realistic assumptions of the

particle energy and density in the moving source, the ampli-

tudes of the generated oscillations are close to those really

observed. The direction of the wave propagation coincides

with the direction of the source movement, the wave polar-

ization is intermediate between poloidal and toroidal. As the

source moves off the given point, the wave transforms first

into a poloidal and then into toroidal wave. Note the oscil-

latory structure of the wave field behind the source, which is

a consequence of the finite size of the cloud along the field

line (as we assumed the source to be distributed between the

conjugated points of the ionosphere). Earlier, Zolotukhina

(1974) and Neubauer (1980) showed that the Alfvén wave

excited by a compact moving cloud (that is, by a source much

shorter than the field line) constituted current (Alfvén) wings,

spreading from the source. Since a finite source can be repre-

sented as a superposition of many compact sources, the oscil-

latory structure obtained in this paper can be viewed as a re-

sult of the interference of such wings. Just after the injection

of the cloud, when the cloud is continuing to spread along

the field line (within few first bounce periods), the wave field

probably resembles pure Alfvén wings. However, the evo-

lution just after the injection has not been considered in this

paper.

The mechanism considered in the paper provides a way

for explaining the features of the observed azimuthally small

scale waves mentioned in the Introduction:

1. The azimuthal wave number m is fully determined by

the eigenfrequency of the wave standing between iono-

spheres, ω∼�T N (x1), and the drift velocity of the

source, ωd : m∼ω/ωd . This explains why observed

waves have well-defined m values.

2. In accordance with the observations, the phase velocity

of the poloidal Alfvén waves coincides with the direc-

tion of the proton drift.

3. Despite its transformation from poloidal to toroidal, at

a given point in azimuth the wave remains poloidal dur-

ing a rather large time span τ∼m/ω∼ω−1
d , which cor-

responds to a sufficiently large angular distance from

the source φ=�τ∼1. Besides, in some sense the wave

is always poloidal, because the source continues its az-

imuthal movement, generating the poloidal wave at new

points.

4. If the wave attenuation is taken into account (for ex-

ample, due to finite conductivity of the ionosphere or

wave-particle interaction), then the wave does not have

enough time to transform into toroidal, and the maxi-

mum wave amplitude will correspond to a mixed polar-

ization, depending on the observation point.

5. Besides, the wave damping leads to a localization across

the magnetic shells, which corresponds to observational

data for the high-m waves. If the azimuthal coordinate

is fixed, in the course of time the localization region will

shift toward the Earth.

As was mentioned in the Introduction, some of these fea-

tures of the high-m waves cannot be explained by the theory

of drift-bounce instability. It must be noted, however, that

the wave-particle energy exchange can lead to a further am-

plification or attenuation of the wave. Besides, a ponderomo-

tive force can appear, which governs feedback of the gener-

ated field upon the generating particles, which can result in

the formation of the stationary ring current. However, these

questions are far beyond the topic of the present paper.

The most intriguing feature of the wave evolution is the

double change of the wave polarization, resulting from the

supposed growth of the drift velocity with the radial coordi-

nate; in this case the source is stretched into strips at an acute

angle to the magnetic shells. This feature can be used for

the verification of the generation of the wave by a moving

source as it represents a trademark signature of this mech-

anism. Certainly, the opposite case, when the drift velocity

decreases with the L-shell, seems to be more common. But

in this case the evolution is not so interesting, because the

angle of the source to the magnetic shells is obtuse now, and

the wave polarization is toroidal from the very beginning and

remains toroidal till the wave disappears, as in the simplest

case of the impulse-generated waves (see, e.g. Klimushkin

and Mager, 2004). Thus, in this case we do not have a sim-

ple key to distinguish our mechanism from the drift-bounce

instability.
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Appendix A

The derivation of Eq. (7)

Fourier-transformation of Eq. (7):

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ
LA8 =

= − 1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ 4π

c2

√
g

∂

∂x2

∂

∂t
j2

ext.

We replace x2 by ϕ in LA and the right side of this equation.

Since g1,2 and g are independent of ϕ and t then for the left

side of this equation we have

− ∂

∂x1

√
g

g1

1

A2

∂

∂x1

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ ∂2

∂t2
8

+ ∂

∂x1

∂

∂x3

g2√
g

∂

∂x3

∂

∂x1

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ8

−
√

g

g2

1

A2

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ ∂2

∂t2

∂2

∂ϕ2
8

+ ∂

∂x3

g1√
g

∂

∂x3

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ ∂2

∂ϕ2
8.

After integrating by parts we obtain:

∂

∂x1

√
g

g1

ω2

A2

∂

∂x1

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ8

+ ∂

∂x1

∂

∂x3

g2√
g

∂

∂x3

∂

∂x1

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ8

− m2

√
g

g2

ω2

A2

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ8

− m2 ∂

∂x3

g1√
g

∂

∂x3

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ8.

Here 1/(2π)2
+∞∫
−∞

dϕ
+∞∫
−∞

d t eiωt−imϕ8 ≡ 8mω.

For the right side, after substituting j2
ext in the explicit form

(9) we have

− 4π

c2

√
ge n0 ωd

1

(2π)2

+∞∫

−∞

dϕ

+∞∫

−∞

d t eiωt−imϕ

× ∂

∂ϕ

∂

∂t
δ(ϕ − ωd t) 2(t)

= −mω
4π

c2

√
ge n0 ωd

1

(2π)2

+∞∫

−∞

d t 2(t)eiωt−imωd t ≡ q̃mω.

Appendix B

The derivation of Eq. (19)

We solve Eq. (17) by means of the Fourier transform. Let us

put

RN (x1) =
+∞∫

−∞

eikx1

RN (k) dk, (B1)

then

RN (k) = im

k∫

−∞

dk′ iq(k′)√
(k′2 + k2

y)(k
′2 + k2

y)

× exp[i(k − k′)x1
T N + iky1N (arctan

k

ky

− arctan
k′

ky

)],

where ky=m/L,

q(k′) = 1

2π

+∞∫

−∞

e−ikx1

q(x1) dx1 =

= q0

(2π)2

+∞∫

−∞

dt ′eiωt ′2(t ′)

+∞∫

−∞

dx1e−ik′x1−im�dxt ′ =

= q0

2π

+∞∫

−∞

dt ′eiωt ′2(t ′)δ(k′ + m�d t ′).

Then we integrate over k′, substitute the expression obtained

into Eq. (B1) and introduce new variables x1=lξ , k=κ/l. As

a result we obtain Eq. (19).

Appendix C

The derivation of Eq. (23)

After substitution of Eq. (19) into Eq. (22) we obtain the ex-

pression for RN as the integral

RN = iq0L

+∞∫

−∞

dκ

+∞∫

−∞

dm

+∞∫

−∞

dt ′
+∞∫

−∞

dω
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× 2(κ + m�t ′) 2(t ′)√
(κ2 + m2 l2

L2 )(L2

l2
�2t ′2 + 1)

× exp

[
iω(t ′ + m�

�0
t ′ + κ

�0
) − im�t ′ + iκ(ξ − 1)

+imδN

l

L
(arctan

κL

ml
+ arctan �t ′

L

l
)

]
. (C1)

First we integrate over ω, which gives us δ(t ′+m�
�0

t ′+ κ
�0

)

in the subintegral function, then we integrate the expression

obtained over t ′. As a result, Eq. (C1) reduces to the simpler

form (23) with only two integrations.

Appendix D

The stationary phase method

Let us introduce the large parameters µ=�0/�≫1 (Since

the drift angular velocity is assumed to be much less than the

toroidal and poloidal eigenfrequencies), and small parame-

ter δN=1N/l≪1 (since the distance between toroidal and

poloidal surfaces 1N is much less that the scale of the mag-

netosphere). Let us find the point of the stationary phase

(m0, κ0) through the conditions

∂9

∂κ

∣∣∣∣
m0,κ0

= 0,
∂9

∂m

∣∣∣∣
m0,κ0

= 0.

After we neglect the terms proportional to the small param-

eter δN , we obtain two equations, which determine the posi-

tion of this point:

ξ − 1 + m0

m0 + µ
= 0, (D1)

ϕ − µ
�0t − κ0

(m0 + µ)2
= 0. (D2)

We find from these equations that

m0 = µ
1 − ξ

ξ
,

κ0 = µ(�t − ϕξ−2).

Thus, we find the wave phase: Eq. (26). Further, following

the stationary phase method, we find the expression deter-

mining the wave amplitude:

A0 = Ã0

+∞∫

−∞

dκ

+∞∫

−∞

dm exp[i 1

2
A(κ − κ0)

2

+i
1

2
B(m − m0)

2 + iC(κ − κ0)(m − m0)],

where

Ã0 = iq0Lµ2(κ0 + m0�t)2(�0t − κ0)√(
L2

l2
(�0t − κ0)2 + (µ + m0)

2
) (

κ0 + m0
l2

L2

) ,

A = ∂29

∂κ2

∣∣∣∣∣
m0,κ0

∼ δN

µ
,

B = ∂29

∂m2

∣∣∣∣∣
m0,κ0

≈ 2
ξ

µ
,

C = ∂29

∂κ∂m

∣∣∣∣∣
m0,κ0

≈ ξ2

µ
ϕ.

It is seen that A≪C, B. Thus, we have

A0 = Ã0

+∞∫

−∞

dm e
i

ξ
µ

(m−m0)
2

+∞∫

−∞

dκ e
i

ξ2

µ
ϕ(κ−κ0)(m−m0) =

= Ã0

+∞∫

−∞

dme
i

ξ
µ

(m−m0)
2

2π
µ

ξ2
δ(m − m0) = Ã02π

µ

ξ2
.

As a result, after some algebra, we obtain the expression (27)

for the wave amplitude.
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