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Alfvén solitons in a Fermionic quantum plasma
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The propagation of Alfvén envelope solitons through a Fermionic quantum plasma is considered. Starting from
the governing equations for Hall magnetohydrodynamics including quantum corrections, coupled Zakharov-type
equations are derived for circularly polarized Alfvén waves. The equations are numerically solved for time-
independent and time-dependent cases. The time-independent case shows that variations in density take the form
of dressed density solitons in which an approximately Gaussian peak is surrounded by smaller sinusoidal variations
in the density envelope. The mathematical basis for this behavior is explained. A limited time-dependent case is
obtained which uses the numerical time-independent soliton solutions as the initial conditions. This confirms that
the soliton solutions retain the same profile as they propagate. The relevance of this work to dense astrophysical
plasmas like the interiors of white dwarf stars is discussed.
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I. INTRODUCTION

Alfvén waves play important roles in the heating of
and transport of energy in magnetoplasmas and have been
studied in a range of contexts, including the solar wind,
Earth’s magnetosphere, interstellar molecular clouds, and
coronal heating [1]. They were first derived from the ideal
magnetohydrodynamic (MHD) model, which treats the plasma
as a single fluid and provides a macroscopic description of
collective effects [2]. If the plasma is assumed to consist of an
electron fluid and an ion fluid, dispersion occurs through the
appearance of the Hall term.

Equations for the evolution of nonlinear Alfvén wave
packets in a cold plasma have been derived from Hall-MHD
using a double perturbation technique [3,4]. Considering a
weakly nonlinear and weakly dispersive medium gives the
derivative nonlinear Schrödinger (DNLS) equation describing
the evolution of the magnetic field envelope [5]. In the
Hall-MHD model, the wave frequency is comparable to the
ion cyclotron frequency and Alfvén waves may couple to
plasma oscillations via the ponderomotive force contained
in the DNLS equation. A balance between nonlinearity and
dispersion gives solutions for small-amplitude Alfvén solitons.
A single perturbation approach was applied by Ovenden et al.
to derive solutions from Hall-MHD for Alfvén solitons of
arbitrary amplitude [6].

There has been recent increasing interest in quantum
plasmas due to their application to semiconductors, metallic
nanodevices and dense astrophysical plasmas [7]. Theory has
focused on quantum counterparts to classical plasma models
and equations starting from the Schrödinger description of the
electron. An ideal MHD model including quantum diffraction
and statistical effects has been devised of relevance to the
interiors of white dwarfs [8]. A new dispersive Alfvénic
wave has also been found, with the dispersion resulting from
quantum corrections [9]. Recently, the ideal MHD model
has been extended to include spin magnetization, which is
important in highly magnetized quantum plasmas such as the
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atmospheres of neutron stars [10,11]. A new plane-polarized
bare Alfvénic soliton arises for pair plasmas produced by a
balance between nonlinearity and quantum spin [12].

Including the Hall term allows for investigation of other
nonlinear MHD waves in spin- 1

2 quantum plasmas. Two-
dimensional magnetosonic solitons have been studied in two-
and three-component plasmas [13,14]. Bare magnetosonic
solitons have been found in both one-dimensional [15] and
two-dimensional [16] quantum plasmas, with the electron
spin- 1

2 effects modifying the shape of the soliton. Alfvénic
wave envelopes have also been investigated in high-β quantum
plasmas by using a double perturbation technique which
showed that the nonlinear evolution of such waves is described
by the DNLS equation [17].

In this article, we demonstrate the existence of Alfvén
solitons in a Fermionic quantum plasma with coupling due to
the Bohm potential. The organization of the paper is as follows.
In Sec. II we present the governing equations for quantum
Hall-MHD (QMHD). In Sec. III we derive a set of nonlinear
evolution equations from the governing equations using a
single perturbation approach like that of Ovenden et al. [6].
In Sec. IV nonlinear evolution equations are converted to
the stationary frame and numerical solutions are obtained for
varying values of the quantum diffraction parameter He, the
quantum statistical parameter β, and the Alfvén Mach number
MA. In Sec. V, we approximate the velocity of the soliton by its
value at the center to obtain a limited nonstationary case which
is solved numerically to confirm soliton behavior. Finally, in
Sec. VI we summarize our results and discuss their physical
significance.

II. GOVERNING EQUATIONS

Consider an electron-ion quantum plasma with background
magnetic field in the z direction, B0 = B0ẑ. We assume
that μBB0 � kBTe, where kB is the Boltzmann constant,
Te is the thermodynamic temperature, and μB = eh̄/2mec is
the magnitude of the electron magnetic moment (the Bohr
magneton). The effects of microscopic spin are negligible.
The QMHD model may then be developed starting with the
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momentum equations for electrons and ions in a quantum
magnetoplasma [8].

Because Alfvén waves are slowly varying we neglect
electron inertia in the electron equation of motion [13]:

0 = −∇PFe

ne

− e(E + ue × B) + h̄2

2m2
e

∇
(∇2√ne√

ne

)
. (1)

Here ne is the electron fluid density, ue is the electron fluid
velocity, me is the electron mass, E is the electric field vector,
and B is the magnetic field vector. The third term in (1)
represents the quantum diffraction due to quantum tunneling,
and PFe = [(3π2me)2/3h̄ n

5/3
e ]/5 is the Fermi pressure for

degenerate electrons. In the ion equation of motion,

mi

dui

dt
= e(E + ui × B), (2)

we ignore the ion quantum effects due to the large ion inertia.
Here ni is the ion fluid density, ui is the ion fluid velocity, mi

is the ion mass, and d/dt = ∂/∂t + (ui · ∇) is the convective
derivative. The ion continuity equation is

∂ni

∂t
+ ∇ · (niui) = 0. (3)

The two relevant Maxwell’s equations are Faraday’s law,

∇ × E = −∂B
∂t

, (4)

and Ampère’s law,

∇ × B = μ0J, (5)

with J = e (niui − neue). Since we consider low-frequency
waves in a highly conductive plasma, the displacement current
is neglected. Substituting for ue in Eq. (1) from Eq. (5) and
using the quasineutrality condition ni ≈ ne ≈ n we have

E = −
(

ui − 1

enμ0
∇ × B

)
× B − ∇Pe

en
+ h̄2

2m2
e

∇
(∇2√n√

n

)
.

(6)

We introduce the following rescaling:

r → �ir
VA

, t → �it, ui → ui

VA

, B → B
B0

, n → n

n0
.

The subscript zero represents the background quantities,
VA = B0/(μ0nimi)1/2 is the Alfvén speed, and �i =
(eB0)/mi is the ion cyclotron frequency. Eliminating E from
Eq. (2) using Eq. (6) gives the normalized effective one-fluid
momentum equation:

mi

dui

dt
= 1

n
(∇ × B) × B − β∇n2/3 + H 2

e

2
∇

[∇2√n√
n

]
, (7)

where β = c2
qs/V 2

A measures the quantum statistical effects
with cqs = [(2kBTFe)/mi]1/2 being the quantum ion sound
speed and TFe = [h̄2(3π2n)2/3]/(2me) the Fermi temperature.
The parameter He = h̄ �i/

√
memiV

2
A measures the relevance

of quantum diffraction effects due to the Bohm potential. Again
eliminating E between Eqs. (2) and (4) gives the normalized
magnetic induction equation:

∂B
∂t

= ∇ × (ui × B) − ∇ ×
[

1

n
(∇ × B) × B

]
. (8)

Equations (3), (7), and (8) form the QMHD equations for a
magnetized plasma consisting of classical ions and Fermionic
electrons.

III. NONLINEAR EVOLUTION EQUATIONS

We consider waves propagating along the z axis. Taking the
time derivative of Eq. (8) using Eq. (7) gives

∂2B
∂t2

= − d

dt

[
B

∂uiz

∂z
+ uiz

∂B
∂z

]

+ ∂

∂z

[
1

n
(∇ × B) × B − β∇n2/3 + H 2

e

2
∇

(∇2√n√
n

)]

−∇ × d

dt

[
1

n
(∇ × B) × B

]
, (9)

where uiz is the velocity perturbation in the z direction.
Since we are considering circularly polarized Alfvén waves,
it is convenient to work with a complex description of the
transverse fields. The x and y components of Eq. (9) are
combined using B± = Bx ± iBy to give

∂2B±
∂t2

= ∂

∂z

(
1

n

∂B±
∂z

)
+ ∂

∂z

[
uiz

∂B±
∂t

+ d

dt
(uizB±)

]

± i
∂

∂z

[
d

dt

(
1

n

∂B±
∂z

)]
, (10)

where Bx and By are the wave magnetic field magnitudes in
the x and y directions, respectively, and the ± sign applies for
right and left circularly polarized waves, respectively. Taking
the time derivative of Eq. (3), using the x and y components of
equation (8), and writing in terms of complex fields we have

∂2n

∂t2
− β

2

∂2n

∂z2
= uiz

∂2

∂z2
(nuiz) + 1

2

∂2|B±|2
∂z2

−H 2
e

∂

∂z

[
n

∂

∂z

(
1√
n

∂2√n

∂z2

)]
. (11)

Equations (3), (10), and (11) are nonlinear equations relating
B±, n, and uiz in a Fermionic quantum plasma. To deter-
mine the changes in B±, n, and uiz representing Alfvénic
fluctuations the standard perturbation technique of defining
a new set of “stretched coordinates” (using 1/β as a small
parameter measuring the importance of dispersive terms) could
be applied [17]. However, this technique leaves a higher-order
term due to the Bohm potential, which is not included in
the resulting nonlinear evolution equations [17]. Instead we
linearize Eqs. (3), (10), and (11) by setting n = 1 + δn and
uiz = δu, giving

∂2B±
∂t2

− ∂

∂z

[
(1 − δn)

∂B±
∂z

]
+ ∂

∂z

[
δu

∂B±
∂t

+ d

dt
(δuB±)

]

± i
∂2

∂z ∂t

[
(1 − δn)

∂B±
∂z

]
= 0, (12)

(
∂2

∂t2
− β

2

∂2

∂z2
+ H 2

e

2

∂4

∂z4

)
δn = 1

2

∂2|B±|2
∂z2

, (13)

and
∂ δn

∂t
+ ∂

∂z
(δu) = 0. (14)
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Equation (13) resembles one of the quantum Zakharov
equations for Langmuir envelope solitons [18], with the term
on the right-hand side being the ponderomotive force. Based
on this analogy, we expect modulational instability when
variations in n and uiz affect the wave amplitude, which in turn
couples to the plasma via the ponderomotive force. This gives
an envelope-modulated carrier wave, which may be described
using Eqs. (12) and (13) with an ansatz of the form

B± = b(z,t) exp [i(kAz − ω±t)], (15)

such that the carrier waves have frequency ω± and wave num-
ber kA, and the envelope has real amplitude b(z,t). Assuming
ωA/�i � 1 and introducing a stretched time variable τ , where
1/τ � ω± ≈ ωA (see Ref. [6]) gives the set of equations

i

(
∂

∂t
+ Vg

∂

∂z

)
b + δnωA

2
b − kA δu b ∓ 1

2

∂2b

∂z2
= 0, (16)

(
∂2

∂t2
− β

∂2

∂z2
+ H 2

e

2

∂4

∂z4

)
δn = 1

2

∂2|b|2
∂z2

, (17)

and
∂ δn

∂t
+ ∂

∂z
(δu) = 0, (18)

where Vg � 1 ∓ kA is the normalized group velocity of the
original wave, with kA ≈ ωA for small amplitudes in the
magnetic perturbation. Equations (16)–(18) are the nonlin-
ear evolution equations describing the perturbations in the
magnetic field b(z,t), the plasma number density δn(z,t), and
velocity δu(z,t) for a nonlinear wave packet propagating in the
z direction through a dispersive quantum plasma. For the case
He = 0 and β = c2

s /V 2
A with cs = [(kBTe)/mi]1/2 representing

the ion sound speed, Eqs. (16)–(18) reduce to the nonlinear
evolution equations for a classical plasma derived by Ovenden
et al. [6].

IV. TIME-INDEPENDENT ALFVÉN SOLITONS

A. Mathematical formulation

We seek a stationary version of the coupled Eqs. (16)–(18).
Accordingly, we apply the Galilean transformation,

ε = z − MAt, (19)

replacing the dependent variables according to

b(z,t) → b(ε) exp [iζ t],

δn(z,t) → δn(ε), and (20)

δu(z,t) → δu(ε).

The new independent variable ε is the spatial coordinate of
the frame of reference moving with the soliton at the Alfvén
Mach number,

MA = u0

VA

, (21)

where u0 is the velocity of the wave packet. With these trans-
formations, Eqs. (16)–(18) reduce to the coupled nonlinear
ordinary differential equations

(1 − MA) (1 − 2MA) δn b − ζb + d2b

dε2
= 0 (22)

and

H 2
e

d2δn

dε2
+ 2

(
M2

A − β
)
δn − |b|2 = 0, (23)

with Vg = MA and kA = 1 − MA. The parameter ζ is an
arbitrary constant which scales the amplitude of the soliton
solution for the stationary case, and is set to ζ = 1 for all
calculations except where otherwise noted. equations (22) and
(23) are for the left-hand polarized wave (corresponding to ω+)
since in the classical case the right-hand wave (ω−) is always
modulationally stable [4]. We aim to find soliton solutions
for the envelope magnetic field b(ε) and density perturbation
δn(ε) for varying values of the quantum diffraction parameter
He, the quantum statistical parameter β, and the Alfvén
Mach number MA. Envelope solitons are localized [19], so
appropriate boundary conditions are

b(ε) → 0 and δn(ε) → 0 as ε → ±∞. (24)

B. Numerical solutions

Equations (22) and (23) are solved numerically using two
methods in which the boundary conditions (24) are applied at
finite but large values of ε (ε = ±10). The relaxation method
replaces the second derivatives with centered difference
approximations and solves the resulting nonlinear system of
equations using Newton’s method [20]. The shooting method
treats Eqs. (22) and (23) as an initial value problem by fixing
one boundary value and guessing another. The equations are
integrated using an adaptive fifth-order Runge-Kutta scheme
[21], updating the guessed initial value via Newton’s method
until the boundary conditions are met [20]. The results
presented in this section are those found using the relaxation
method with 1000 equidistant grid points.

In the classical case (He = 0 and β = c2
s /V 2

A) Eqs. (22) and
(23) admit the analytic solutions

b(ε) =
√

2ζ
(
M2

A − β
)

(1 − MA)(1 − 2MA)
sech (

√
ζ ε) (25)

and

δn(ε) = [b(ε)]2

2
(
M2

A − β
) . (26)

Equations (25) and (26) are used as an initial guess for both
numerical schemes and to compare results for solitons in a
quantum plasma with the classical solution.

Figure 1 shows the numerically calculated soliton solutions
for an Alfvén Mach number MA = 1.4 in a quantum plasma
with β = 1. The solid line shows the case He = 0.12 and the
dashed line shows the case He = 0.24. The solution with He =
0.12 differs only slightly from the classical case, retaining an
approximate Gaussian profile for b(ε) and δn(ε). For He =
0.24 the perturbation in b(ε) has a similar but slightly narrower
profile. However, the density perturbation δn(ε) has a new
feature: Small sinusoidal variations in density occur on either
side of the main density peak, forming a “dressed soliton” [22].
The main density peak of the solution for He = 0.24 is also
narrower and of greater amplitude than for He = 0.12 while
the dressed density oscillations have a constant amplitude and
wavelength. Additional calculations show that the wavelength
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FIG. 1. (Color online) Stationary solutions using the relaxation
method for a super-Alfvénic soliton (MA = 1.4) in a quantum plasma
with β = 1. The solid line is the solution obtained for He = 0.12 and
the dashed line is the solution obtained for He = 0.24.

and amplitude of these oscillations increases with He, but
the amplitude does not increase monotonically as a function
of He.

Figure 2 shows numerical super-Alfvénic soliton solutions
(MA > 1) for a quantum plasma with β = 1 and He = 0.12.
The solid line shows the case MA = 1.1 and the dashed line
shows the case MA = 1.7. For MA = 1.1, the perturbation in
both b(ε) and δn(ε) is wider and of greater amplitude compared
with the case MA = 1.4 (Fig. 1), and the density perturbation
is a dressed soliton. For the larger value of MA = 1.7, the
perturbations in both b(ε) and δn(ε) are narrower and of
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FIG. 2. (Color online) Stationary solutions using the relaxation
method for super-Alfvénic solitons (MA > 1) in a quantum plasma
with β = 1 and He = 0.12. The solid line is the solution obtained for
MA = 1.1 and the dashed line is the solution obtained for MA = 1.7.
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FIG. 3. (Color online) Stationary solutions using the relaxation
method for a super-Alfvénic soliton (MA = 1.4) in a quantum plasma
with He = 0.12. The solid line is the solution obtained for β = 0.1
and the solid line is the solution obtained for β = 1.8.

smaller amplitude than the case MA = 1.4. Based on additional
calculations, we find that, in common with the classical case
given by Eqs. (25) and (26), the amplitudes of b(ε) and δn(ε)
become arbitrarily large as MA → 1. However, the dressed
density oscillations also increase in amplitude, such that as
MA → 1, they begin to dominate over the central peak in
density.

Figure 3 shows the numerical solutions for a soliton with
Alfvén Mach number MA = 1.4 in a quantum plasma with
He = 0.12 for two values of β: The solid line shows the case
β = 0.1 and the dashed line shows the case β = 1.8. The
solution for β = 0.1 has a similar profile for δn(ε) to the
case β = 1 (Fig. 1) but b(ε) is of larger amplitude and width.
Conversely, the solution for β = 1.8 has a b(ε) peak of smaller
amplitude and width by comparison with the case β = 1. In
this case a dressed density soliton occurs with a non-Gaussian
peak and the dressed oscillations have greater amplitude
than the case β = 1. Additional calculations confirm that as
β → M2

A, the amplitude and wavelength of the dressed density
oscillations increase until they dominate over the central peak,
although the amplitude does not increase monotonically as
a function of β. However, dressed soliton solutions are only
found when He > 0. For β � M2

A no soliton solutions are
found [this applies also for the classical case since Eq. (25)
has a negative root when β � M2

A and MA > 1].
Figure 4 shows the numerical sub-Alfvénic soliton solu-

tions (MA = 0.65) for a quantum plasma with β = 1. The
solid line shows the case He = 0 and the dashed line shows
the case He = 2.0. With He = 0, there is a bright soliton for
b(ε), but a dark soliton for δn(ε), that is, a central rarefaction in
the background density. With He = 2.0, the solution for δn(ε)
is of greater amplitude and width compared with He = 0.
The density perturbation δn(ε) is again a dark soliton, but
is wider and of smaller amplitude compared with He = 0.
Dressed density oscillations do not appear. Further calculations
show that dark soliton solutions only occur if M2

A � β and
0.5 < MA < 1, which is also the case for classical plasmas as
seen with Eqs. (25) and (26). Note that the scaling parameter
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FIG. 4. (Color online) Stationary solutions using the relaxation
method for a sub-Alfvénic soliton (MA = 0.65) in a quantum plasma
with β = 1. The solid line is the solution obtained for He = 0 and
the dashed line is the solution obtained for He = 2.

used for Fig. 4 is chosen to be ζ = 0.1 to obtain dark soliton
solutions with δn(ε) > −1. Below this value the solutions are
unphysical since they correspond to a negative plasma density.

Figure 5 shows numerical sub-Alfvénic soliton solutions
(MA = 0.35) in a quantum plasma with a smaller statistical
parameter β = 0.1. The solid line shows the case He = 0.02
and the dashed line shows the case He = 0.04. For He = 0.02,
the solution retains an approximately Gaussian profile in both
b(ε) and δn(ε) similar to the classical case given by Eqs. (25)
and (26). For He = 0.04, the solution for b(ε) retains a classical
profile, but a dressed soliton occurs for δn(ε). The peak of
δn(ε) is non-Gaussian and exhibits side lobes and is of greater
amplitude than for He = 0.02. Further investigations show
that for M2

A > β the dressed density oscillations dominate as
MA → β. For M2

A < β, dressed density oscillations do not
occur and the solution resembles the classical case, with the
amplitudes of b(ε) and δn(ε) approaching zero as MA → 0.

The relaxation method results may be checked by compar-
ison with the shooting method. It is found that for envelope
soliton solutions, the average discrepancy in b(ε) and δn(ε)
between the two methods is ∼10−6 to ∼10−5. The dressed
soliton solutions in Figs. 1–5 are reproduced with the shooting
method and the average discrepancy in δn(ε) is ∼10−4 to
∼10−3. The stated discrepancies indicate close agreement
between results obtained with the two methods and confirm
the accuracy of the numerical solutions.

C. Analytical insight

The observed behavior may be understood analytically.
Assuming b(ε) = 0, equations (22) and (23) reduce to

H 2
e

d2δn

dε2
= −2

(
M2

A − β
)
δn. (27)

When M2
A > β, Eq. (27) has the analytical solution

δn(ε) = A cos

(
2πε

λ

)
, (28)
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FIG. 5. (Color online) Stationary solutions using the relaxation
method for a sub-Alfvénic soliton (MA = 0.35) in a quantum plasma
with β = 0.1. The solid line is the solution obtained for He = 0.02
and the dashed line is the solution obtained for He = 0.04.

where

λ =
√

2π2H 2
e

M2
A − β

(29)

and where A is an arbitrary amplitude. Equation (27) applies
away from the soliton peak provided b(ε) = 0. Hence, it de-
scribes the equations in the absence of the soliton perturbation.
If He = 0, Eq. (27) becomes δn(ε) = 0, indicating that in
the absence of quantum diffraction, there are no sinusoidal
variations in density. As He increases, Eq. (28) superimposes
harmonic spatial variation onto the soliton solution for δn.
Equation (29) shows that for larger values of He the density
oscillations have larger wavelengths λ, in agreement with
the calculations in the previous section. Equation (29) also
shows that as M2

A → β, the density oscillations have larger
wavelengths, again in agreement with calculations.

If M2
A < β the change of sign on the right-hand side of

Eq. (27) results in the analytical solution

δn(ε) = A cosh

[
ε

He

√
2
(
M2

A − β
)]

, (30)

where A is an arbitrary amplitude. Hyperbolic functions are not
periodic and hence there are no dressed density perturbations in
the sub-Alfvénic case, which explains why no dressed density
solitons are seen in Fig. 4 or for the case M2

A < β discussed in
relation to Fig. 5.

V. TIME-DEPENDENT ALFVÉN SOLITONS

The nonlinear evolution Eqs. (16)–(18) may be solved for
nonstationary soliton solutions for a quantum plasma. We
consider a limited case. The velocity perturbation δu may be
approximated by its value at the center of the envelope

δu(z,t) = Vg δn(z,t), (31)
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which is accurate provided z ≈ MAt [6]. Assuming Vg = MA

gives

i

(
∂

∂t
+ MA

∂

∂z

)
b + 1

2
(1 − MA)(1 − 2MA) b δn

+ 1

2

∂2b

∂z2
= 0 (32)

and (
∂2

∂t2
− β

∂2

∂z2
+ H 2

e

2

∂4

∂z4

)
δn = 1

2

∂ |b|2
∂z2

. (33)

Equations (32) and (33) represent a limited nonstationary case
for testing the results. To implement the numerical method,
the periodic boundary conditions

b(−zmax) = b(zmax) and δn(−zmax) = δn(zmax) (34)

are used in a computational domain with −zmax � z � zmax.
The solutions subject to (34) “wrap around” the domain and so
can propagate for any length of time. The stationary solutions
obtained in Sec. IV B. using the relaxation method are used
as initial conditions for the time-dependent calculation. The
initial condition is propagated in time by solving Eqs. (32) and
(33) numerically.

A naive numerical method uses a forward derivative
approximation to the time derivatives of each equation and
a centered derivative approximation to the spatial derivatives
of each equation [20]. For Eq. (33), the difference scheme is

δnk+1
j − 2δnk

j + δnk−1
j

(�t)2

= β

(�z)2

(
δnk

j+1 − 2δnk
j + δnk

j−1

)

− H 2
e

2(�z)4

(
δnk

j+2 − 4δnk
j+1 + 6δnk

j − 4δnk
j−1 + δnk

j−2

)

+ 1

2(�z)2

(∣∣bk
j+1

∣∣2 − 2
∣∣bk

j

∣∣2 + ∣∣bk
j−1

∣∣2)
, (35)

where bk
j = b(xj ,t

k) and δnk
j = δn(xj ,t

k), with spatial
step j and time step k. However, for Eq. (32) this method is
inappropriate, since for complex Schrödinger-like equations
the naive method is unconditionally unstable [23]. Hence,
we apply a Crank-Nicolson scheme to Eq. (32), in which
the spatial derivatives are approximated at the average of two
time steps [20]. To simplify calculations, the nonlinear term
δn(z,t) is linearized by only evaluating it at one time step [24].
For Eq. (32), the difference scheme is

i

(
bk+1

j − bk
j

�t

)
= i MA

�z

(
1

2

[
bk+1

j+1 − bk+1
j−1

] + 1

2

[
bk

j+1 − bk
j−1

])

− 1

2
(1 − MA)(1 − 2MA)

1

2

(
bk+1

j + bk
j

)
δnk

j

− 1

2(�z)2

(
1

2

[
bk+1

j+1 − 2bk+1
j + bk+1

j−1

]
+ 1

2

[
bk

j+1 − 2bk
j + bk

j−1

])
. (36)
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FIG. 6. (Color online) Nonstationary solutions for the magnetic
envelope b(z,t) for a super-Alfvénic soliton (MA = 1.25) in a
quantum plasma with β = 1 and He = 0.4. The solid lines show the
numerical solution and the crosses the stationary solution translated
in time. The solution is shown at times t = 0 (top), t = 8 (middle),
and t = 16 (bottom).

The numerical scheme updates Eqs. (35) and (36)
simultaneously.

Figures 6 and 7 show the numerical solutions for b(z,t) and
δn(z,t), respectively, for a super-Alfvénic soliton (MA = 1.25)
in a quantum plasma with β = 1 and He = 0.4 at times t = 0
(top panel), t = 8 (middle panel), and t = 16 (bottom panel).
The solid lines represent the numerical solutions, and the
superimposed crosses are the stationary solutions used as the
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FIG. 7. (Color online) Nonstationary solutions for the dressed
density perturbation δn(z,t) for a super-Alfvénic soliton (MA = 1.25)
in a quantum plasma with β = 1 and He = 0.4. The solid lines
show the numerical solution and the crosses the stationary solution
translated in time. The solution is shown at times t = 0 (top),
t = 8 (middle), and t = 16 (bottom).
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initial conditions, translated in space by z = MAt . The results
show that the shape of the numerical solutions is unchanged
during propagation. This is the defining characteristic of a
soliton and confirms the stationary solutions computed in
Sec. IV.

Due to its explicit formulation, the numerical scheme (35)
for the wave equation (33) is only stable for sufficiently small
time steps. When He = 0 the appropriate stability condition
is the Courant-Friedrichs-Lewy condition [20]. As He is
increased, the stability criterion is found to be more stringent
than the Courant-Friedrich-Lewy condition, leading to long
computation times. This could be avoided by using the method
of lines [25], which discretizes spatial derivatives but does not
discretize the time derivatives, and then solves the resulting
system of equations simultaneously. The advantage of such
a scheme is that it is fully implicit and so unconditionally
stable. A method which solves the system of equations
simultaneously could also be applied to the original nonlinear
equations given by (16)–(18). These equations are not solvable
using a scheme like that of Eqs. (35) and (36) because the
system of equations is coupled via the time derivative of
δn(z,t).

VI. DISCUSSION AND CONCLUSION

In this paper we use the QMHD model to derive non-
linear evolution equations for Alfvén waves with magnetic
field b, density perturbation δn, and velocity δu in a quantum
plasma. We find soliton solutions for the stationary case by
assuming localized boundary conditions and using two numer-
ical schemes, namely the shooting method and the relaxation
method. The solutions obtained with the two schemes agree
and confirm the existence of soliton solutions. An interesting
feature is the appearance of “dressed density” soliton solutions,
that is, solutions with oscillatory density perturbations on
either side of the soliton peak. These solutions appear for
values He � 10−2 of the quantum diffraction parameter. The
size and wavelength of the dressed density solitons is found to
increase with He, but the solutions are also affected by the value
of the quantum statistical parameter β and the Alfvén Mach
number MA. In particular, as β → M2

A the size and wavelength
of the dressed density solitons increases, provided He > 0. For
0.5 < MA < 1 dark density solitons may occur when β > 0.5
but without density oscillations. By approximating the velocity
perturbation δu by its value in the center of the wave envelope,
a set of equations is derived for a limited nonstationary
case. The stationary solutions obtained with the relaxation
method are used as initial conditions for the nonstationary
equations, which are solved using a finite difference scheme
with periodic boundary conditions. The solutions are found
to retain their shape as they propagate, as expected for a
soliton.

Dressed envelope soliton solutions have previously been
found in classical plasma regimes such as when quasineu-
trality is not assumed for Langmuir envelope solitons [26].
The dressed density solitons found here may result from
the competition between the higher-order dispersive term
(H 2

e /2) ∂4δn/∂z4 in Eq. (13) associated with quantum

diffraction, and the nonlinear ponderomotive force. The He

term has been included in calculations for Langmuir envelope
solitons in a quantum plasma where it was found to result
in dressed envelope solitons [27]. However, the earlier study
showed that when He was increased, the oscillatory tails
of Langmuir solitons were smoothed out. Section IV shows
that the dressed Alfvén solitons have oscillatory tails which
increase in amplitude as He is increased.

The envelope solitons and dressed envelope solitons found
here are distinct solutions and the switch between the two is
found to occur over a small increase in the quantum parameter
of order �He ∼ 10−2. The dressed density solitons are not
localized in the sense that there is a localized envelope-soliton-
like profile for the density perturbation but the surrounding
sinusoidal variations take nontrivial values of δn and ∂δn/∂z

near the boundaries. For small-amplitude oscillations, the
solution may be considered “nearly localized” but it should
be noted that the boundary conditions given by (24) fix the
sinusoidal solutions to δn = 0 at the boundaries.

Figures 1 and 4 show that for both sub- and super-Alfvénic
solitons, the solution for the main density peak increases
in amplitude and narrows as He is increased, while Fig. 5
shows that the dark density soliton decreases in amplitude
and becomes wider. Since He represents quantum diffraction,
the electrons are able to tunnel into the region of perturbed
density associated with the central peak such that the average
value of δn is greater over the central peak. The quantum
tunneling directly affects the electron density, so this could
explain why the solutions for δn are significantly different
from the classical case when the Bohm term is included, in
contrast to the solutions for b.

The solutions obtained here may apply in certain astro-
physical scenarios, specifically dense plasmas in the atmo-
sphere of neutron stars and the interior of massive white
dwarfs. In these locations, the plasma parameters may be
n0 ≈ 1029 − 1034 m−3, TFe ≈ 105 − 107 K , and B0 ≈ 109

− 1014 G. Using SI units, the quantum diffraction parameter
is He ∼ 10−30 (n0/B0) and the quantum statistical parame-
ter is β ∼ 10−28 (TFe n0/B

2
0 ) [13]. The stated astrophysical

parameters give He � 10−1 and β also has a finite value,
which may be of order unity. The appearance of dressed
density solitons coincides with the upper limit of n0 and the
lower limit of B0. Hence, these solutions may apply in this
astrophysical scenario. However, for the range of magnetic
field strengths specified above, spin magnetization is likely to
be important. Further studies could incorporate the spin force
Fs = −2ne tanh[(μBB)/Te]μB ∇B [10] (with Te being the
thermodynamic temperature of an electron) for fluid models
to derive evolution equations for nonlinear Alfvén waves of
arbitrary amplitude in a spin- 1

2 quantum plasma.
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