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Alfven Wave Resonances in a Realistic 

Magnetospheric Magnetic Field Geometry 

H. J. SINGER 1'2'4, D. J. SOUTHWOOD 3, R. J. WALKER i, AND M. G. KIVELSON !a 

The notion of magnetic field line resonance has been very effective in explaining many features of 
long-period geomagnetic pulsations. To date the decoupled transverse wave equations have been solved 
in a magnetic dipole field, whereas only WKB approximate solutions have been used in more general 
geometries. We have developed a solution of the decoupled equations that includes both a general mag- 
netic field geometry and the effects of density and mass composition. The aim of this paper is to isolate 
and examine the effect on eigenfrequencies of only the field geometry by keeping density constant along 
all field lines. We review the diurnal variations in wave period predicted on the ground and in space by 
using the recent Olson-Pfitzer magnetospheric magnetic field model in our solution. For example, on the 
ground at 67 ø magnetic latitude the diurnal variation in period caused by field geometry is larger than a 
factor of 2. At 6.6 Re, where the dipole field line from 67 ø crosses the magnetospheric equator, there is 
negligible diurnal variation in period. Significant diurnal variations in period (•>10%) at fixed radial dis- 
tance in the equatorial plane in space occur only at distances •> 10 Re. Knowledge of the field geometry is 
shown to be important for the determination of mass density in space from ground pulsation observa- 
tions. We discuss the impact of our results in interpretation of experimental data. 

INTRODUCTION AND THEORY 

In this paper we present a calculation of long-period, ultra- 
low-frequency (ULF) magnetospheric pulsations that uses a 
realistic earth's magnetic field geometry rather than a simple 
dipole field. The calculation pertains to transverse standing 
wave oscillations, whether they are Pc 3, 4, or 5 continuous 
pulsations with periods from 10 to 600 s or the irregular Pi 
pulsations in the same period range. The presence of standing 
Alfven wave resonances of the earth's magnetic field lines has 
been clearly demonstrated by conjugate point and spacecraft 
observations [see, e.g., Nagata et al., 1963; $ugiura and Wil- 
son, 1964; Van Chi et al., 1968; Lanzerotti et al., 1972, Lanze- 
rotti and Fukunishi, 1974; Kokubun et al., 1976; Singer and Ki- 
velson, 1979]. Several mechanisms have been suggested to 
generate these waves, but regardless of the method of genera- 
tion, intrinsic interest in this fundamental magnetohydro- 
dynamic plasma process and the possibility of using the waves 
to diagnose magnetospheric properties make it worthwhile to 
model these standing wave oscillations. 

In the following presentation the basic MHD equations are 
used to derive an equation for the period and amplitude of 
low-frequency transverse waves in an arbitrary field geometry. 
Next, the equation is numerically solved by using a field 
model that takes into consideration external current systems 
established because of the earth's interaction with the solar 

wind. Finally, the model results are compared to those calcu- 
lated for oscillations in a dipole magnetic field. 

In hydromagnetics, the wave equation for low-frequency 
waves in an infinitely conducting, stationary, magnetized 
plasma with zero pressure can be derived from the following 
linearized equations: 
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Faraday's law: 

V x E = Oh/at (1) 

Ohm's law with infinite conductivity (or the frozen in flux 
condition): 

E = x Bo (2) 
at 

Arepete's law: 

V x b = goj (3) 

and the momentum equation: 

p(a21i/at 2) = j x Bo (4) 

where Bo is the unperturbed background magnetic field; E 
and b are the wave perturbation electric and magnetic fields, 
respectively; • is the plasma (or field) displacement; j is the 
current; and p is the plasma mass density. Equation (4) is an 
approximate equation. It does ignore several effects of there 
being a background current in the plasma. The appendix dis- 
cusses the validity of (4). The wave equation satisfied by the 
field displacement • is 

[0:(Bo x li)/at •1 = v^ x v^ x (V x V x (Box •)) (5) 

where v^ = Bo/(,/Zop) I/2. This equation, or one equivalent to it 
for the wave electric or magnetic field, has been used by nu- 
merous authors as a starting point for examining long-period 
ULF waves in the earth's magnetic field [Westphal and Ja- 
cobs, 1962; Dungey, 1963; Radoski and Carovillano, 1966; 
Cummings et al., 1969; Orr and Matthew, 1971; Radoski, 1974]. 

In a uniform plasma and magnetic field, (1)-(4) can be used 
to describe two magnetohydrodynamic wave modes, called 
the shear Alfven or transverse mode, and the fast mode. An 
important feature distinguishing these two wave modes is 
that the perturbation magnetic field is strictly transverse to the 
ambient field for the transverse mode, while the fast mode has 
a component along the ambient field. In other words the fast 
mode can compress the field, whereas the transverse mode 
only bends the field. Derivations are given, and further char- 
acteristics of the wave modes are discussed in detail in Dungey 
[1967, 1968]. In particular, in the transverse mode wave, en- 
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ergy is guided along B, whereas in the fast mode, energy 
moves in the direction of the wave vector k, which can make 

any angle with B. 
The introduction of a nonuniform magnetic field, such as a 

dipole field, makes it much more difficult to find solutions to 
the wave equation (5). Additional terms involving the spatial 
derivatives of B appear in the equations. The result is that the 
fast and transverse modes are coupled. The coupled equations 
have not been solved, even in a dipole background field [Lan- 
zerotti and Southwood, 1979]. 

Since it has not been possible to solve the coupled equa- 
tions, approximations have been made to find the eigenfre- 
quencies for the waves in special situations that decoupled the 
equations [Radoski and Carovillano, 1966; Dungey, 1967, 1968; 
Cummings et al., 1969; err and Matthew, 1971; err, 1973, Lan- 
zerotti and Fukunishi, 1974]. Three of the cases for a dipole 
background field have been summarized by Orr [1973], who 
considers hydromagnetic waves with a longitudinal variation 
given by e •me, where q• is longitude and m is the azimuthal 
wave number. Assuming an axisymmetric disturbance (put- 
ting m = 0), one finds the equations decouple to give signals 
with strictly toroidal and poloidal magnetic perturbations. 
The axially symmetric toroidal case is a transverse Alfven 
mode with torsional oscillations (be) of an entire magnetic 
shell. The Poynting flux is aligned with Bo, so this case is like a 
pure shear Alfven mode. The wave equation depends only on 
how the signal varies along Bo, and as a result, eigenmodes 
with wavelengths comparable to flux tube length have ei- 
genfrequencies that are different for different shells. The ax- 
ially symmetric poloidal case corresponds to the fast mode 
with magnetic oscillations in a meridian plane (br and bs) and 
represents alternate symmetric compressions and expansions 
of the entire magnetosphere. The Poynting flux is directed 
across field lines. The third case where decoupling is possible 
is the highly asymmetric poloidal mode. If m is taken to be 
very large (m --• oo), one again finds that magnetic oscillations 
confined to the meridian are possible. This case has also been 
called the guided poloidal mode [Radoski, 1967], because the 
Poynting flux is field aligned and again, this is like a pure 
shear Alfven mode. 

Using a dipole magnetic field and an orthogonal dipole 
coordinate system, Cummings et al. [1969] wrote (5) in com- 
ponent form and decoupled the resulting equations for to- 
roidal and poloidal fields by assuming that the wave magnetic 
field was strictly transverse (Bo. b = 0). The equations they 
solved were precisely those for the 'symmetric toroidal mode' 
and the 'highly asymmetric poloidal mode' we referred to ear- 
lier. Cummings et al. also assumed that the earth is a perfect 
conductor and that the wave electric field had a node at the 

earth. A more accurate statement is that the electric field (and 
so the plasma displacement •[) should be very small at the top 
of the ionosphere [see, e.g., Hughes, 1974; Hughes and South- 
wood, 1976]. The net result is that standing wave solutions are 
obtained along the field direction. 

Cummings et al. [1969] numerically determined the ei- 
genfrequencies for the uncoupled toroidal and poloidal modes 
on a field line extending to 6.6 RE at the equator for the fun- 
damental through sixth harmonic of the oscillation and for a 
plasma distribution along the field line given by n = no(ro/r) •, 
where the density index ¾ varies from 0 to 6, no is the proton 
number density at ro, the geocentric distance to the equatorial 
crossing point of the field line considered, and r is the geocen- 
tric distance to the position of interest on the field line. err 
and Matthew [1971] also numerically solved the equations for 

toroidal and poloidal oscillations. Unlike Cummings et al., 
they presented the eigenfrequency solutions in a form that 
could be used at L values other than L -- 6.6. 

The assumption of Bo. b = 0 requires some discussion. If 
Bo. b is zero, magnetic tension is the only stress in the wave, 
and local field line oscillations cannot couple to adjacent flux 
tubes. This decoupling means solutions along isolated flux 
tubes or magnetic shells are obtained as we have already men- 
tioned. Cummings et al.'s assumptions can be justified as a 
reasonable starting point on observational grounds; in their 
paper they also report on purely transverse waves seen in syn- 
chronous orbit. There are also theoretical reasons given in 
works such as Southwood [1974] or Chen and Hasegawa [1974] 
for believing such an approach is reasonable. Both South- 
wood and Chen and Hasegawa, using simple models of field 
inhomogeneity with particular assumptions as to the energy 
source, showed, in the fully coupled situation, that the wave 
displacement •[ became very large when Bo. b = 0. These re- 
gions where Bo. b = 0 are called field line resonance regions. 
This feature, along with success of the experimental tests of 
the theories of Southwood, and Chen and Hasegawa, and the 
regular observation of quasitransverse signals, argue that the 
decoupling procedure adopted by Cummings et al. [1969] and 
err and Matthew [ 1971] is a worthwhile, if only approximate, 
means of estimating wave properties expected at particular 
points in space. 

The earth's field is distorted from a dipole field geometry 
because of its strong interaction with the solar wind. In partic- 
ular, on high-latitude magnetic field lines, any model of the 
earth's magnetic field must allow for the field induced by the 
interaction with the solar wind. In an early attempt to con- 
sider the effect of solar wind compression of the earth's dipole 
field, Westphal and Jacobs [1962] solved the toroidal mode 
wave equation in a cylindrical geometry by using a com- 
pressed dipole field. Their model predicted that wave periods 
observed from a fixed geomagnetic latitude would decrease as 
the dipole was compressed. Of course, the solar wind does not 
simply compress the earth's field uniformly at all local times, 
and recently, more accurate representations of the earth's 
magnetic field have become available. Warner and err [1979] 
used the Mead and Fairfield [1975] magnetic field model and 
solved for wave periods by using the WKB approximation to 
the toroidal wave equation. Their results included local time 
variations, but the WKB approximation is not valid when the 
wavelength of the oscillation is comparable to the scale size of 
the system, and is particularly poor for the fundamental mode 
oscillation of a field line. 

Rather than use an approximate WKB solution or the un- 
coupled toroidal and poloidal mode wave equations, we de- 
rived a single exact linear wave equation which can be solved 
in a dipole field for both toroidal and poloidal mode oscilla- 
tions. In addition, unlike the Cummings et al. [1969] and err 
and Matthew [ 1971] equations, which were for a strictly dipo- 
laf field geometry, our wave equation can also be solved in a 
nondipolar field geometry. Again, we have the constraint that 
the waves must be strictly transverse, without any per- 
turbation along the ambient field direction. However, in our 
formulation the solution to the wave equation can be found 
for any linear polarization direction perpendicular to the am- 
bient field. It is also worth noting that none of the models we 
have been discussing, including ours, solves the self-consistent 
problem which includes the effect of a field line perturbation 
on all field lines in its vicinity. 

To examine the oscillation of isolated field lines in a more 
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general field, first consider two adjacent field lines separated 
at some point along the normal to one by distance/•,. At any 
other point along the field line, we can define h, by requiring 
the normal separation to be 

If we then write the normal unit vector between the field lines 

as ti, we can put 

Now consider a small displacement in the ti direction, •. 
From (1) and (2) the displacement produces a magnetic per- 
turbation 

Now 

b -- V x (•,,c• x Be) 

b' Va = Va' V x (•ah,Va X Be) 

_- • ß (Lh•l•l•ao) 

because •a has been de•ed as pe•endicular to Be. Now also 

I%1•= h• -2 

and so 

b' Va = (b•/h•) = Be ' V(•/h•) (6) 

Now • the same manner as Cummings et al. [1969], assume 
that the displacement is made with negligible field compres- 
sion. The magnetic perturbation b•, us•g (3) and (4), pro- 
duces a force • the momentum equation 

•o•(•La/0•) = • x •a) x Bo 

=• x b•h•Va) x Be 

= (Vb•h• x Va) x Be 

= (Be' Vb•h•)Va 

•op(•L/ot •) = ( • /h3(Bo ' V•h•) (7) 

Tak•g this with (6) gives a wave equation 

o:(L/h3 • 
= hao. (8) 

To solve (8) numerically, we assume a true dependence of the 
form •'. Writ•g ds for the •crement of length along the 
magnetic field dkection at any po•t, we can rewrite (8) as a 
second-order differential equation 

+ + = 0 (9) Be 2 

Once • is determ•ed, we can •d b• from (6), which we re- 
wdte as 

The wave electric field is given by 

where 

Ea = -ioo•Be 

Be 

B = ]-•o] X & (11) 
and the plasma velocity by 

u. = ioo•. (12) 

Any initial polarization or perturbation direction •i per- 
pendicular to Be can be chosen. In practice the geometrical 
factors h• are determined by first taking a perturbation direc- 
tion at a particular point, e.g., the equator, and then by field 
line tracing in whatever field model is being used. The factor 
h, is proportional to field line separation and varies along Be 
(i.e., varies with s). 

ANALYSIS 

With the formulation developed above, we can solve for A1- 
fven eigenfrequencies in an arbitrary field geometry, and in 
particular in one that accurately represents the earth's mag- 
netic field. First, we can compare (9) with the decoupled equa- 
tions used by Cummings et al. [1969] if we solve (9) in a dipole 
field and use the same assumptions outlined by Cummings et 
al. The initial step in applying our method is to calculate the 
scale factors h•. In Cummings et al. the scale factors are 
uniquely specified by the dipole field, whereas in our method 
the h•'s must be determined and depend on the field geometry 
used. In a dipole field the separation between two field lines in 
a meridian is proportional to (rB sin •)-•, and the separation 
between two lines on the same magnetic shell is proportional 
to r sin 0, where 0 is colatitude and r is radial distance from 
the dipole. Thus with h• -- (rB sin •)-i in (9) we obtain the 
guided poloidal mode equation (b, •, in the meridian), and 
with h• -- r sin 0 we obtain the toroidal equation (b, •, out of 
the meridian). Using these forms, we tested our numerical 
procedure and rederived the solutions for a dipole field, ob- 
taining agreement with Cummings et al.'s results. 

With confidence established in the application of wave 
equation (9) we introduced a more realistic magnetic field 
model in place of the dipole. The field from magnetospheric 
sources was calculated by using the Olson-Pfitzer model [W. 
P. Olson and K. A. Pfitzer, unpublished manuscript (pre- 
print), 1977; Walker, 1979]. A dipole was used to model the 
earth's intrinsic field. 

The procedure to calculate the standing wave periods is 
identical to that outlined above, except that through any point 
in space the field line in the Olson-Pfitzer model is substituted 
for the dipole field line. It is important to point out that the 
procedure used here for calculating the h,'s limits us to exam- 
ining transverse waves polarized in the direction radially out- 
ward from the earth and perpendicular to that direction. In 
the case of a dipole field these directions are considered po- 
loidal and toroidal, respectively. Another way of looking at it 
is that surrounding the Olson-Pfitzer field line we consider a 
flux tube that intersects the equatorial plane in a rectangle 
with sides parallel and perpendicular to the radial direction. 
The h•'s are then calculated by keeping flux constant in the 
.tube as we progress up the field line in the calculation. There 
is a further implicit assumption in our method. Namely that 
locally all field lines are swept back out of the meridian to the 
same degree. If this is not so, the direction of polarization of 
the signal might be expected to vary as one moved along the 
field. We are currently developing procedures to probe this ef- 
fect. 

The Olson-Pfitzer model includes magnetic field contribu- 
tions from the distributed quiet-time ting current, magneto- 
pause current, and tail current systems. The model is designed 
to represent the observations of Sugiura and Poros [1973] and 
is limited to field lines that cross the equator inside of 15 Re. 
Although the Olson-Pfitzer model can be used for all dipole 
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Fig. 1. Fundamental toroidal mode period for geomagnetic lati- 
tudes from 60 ø to 74 ø, using the model of W. P. Olson and K. A. Pfit- 
zer (unpublished manuscript, 1977). Periods are given for several lo- 
cal times from midnight to noon and compared to dipole model 
periods. The results are symmetric about the noon-midnight meri- 
dian, and the mass density is I amu/cm a along the entire field line. 

tilt angles, we consider only zero tilt in the present analysis. 
As a result, the field lines are symmetric about the magnetic 
equatorial plane. We have tested the field line tracing proce- 
dures in our calculation by comparing our results with plots 
given in Olson and Pfitzer (unpublished manuscript, 1977) of 
AB (B model-B dipole) in the noon-midnight meridian• IBI in 
the equatorial plane, the equatorial intercept of field lines 
from various magnetic latitudes on the earth's surface, and the 
earth surface field line intercepts from synchronous orbit as a 
function of local time. In all cases, agreement with the calcu- 
lations given by Olson and Pfitzer was excellent. 

We formulated our solution to (9), using either a dipole 
field or the Olson-Pfitzer model, to allow for variation of sev- 
eral input parameters. These parameters include the position 
of the field line, which can be specified by a single point, ei- 
ther on the ground or in space; the mass density at the equa- 
torial crossing point of the field line; and the density index. In 
addition, one may choose to solve for any harmonic for polar- 
izations in the equatorial plane either parallel or per- 
pendicular to the radial direction, which we continue to refer 
to as poloidal and toroidal, respectively. 

RESULTS 

In this section the effect of magnetic field geometry on ei- 
genperiods of standing Alfven waves is illustrated for the fun- 
damental mode toroidal oscillation with a density no equal to 
1 proton/cm 3 everywhere along the field line. Periods for 
other mass densities can be determined by multiplying the re- 
sult by ,?r•, where n is the mass density of the plasma in ainu/ 
cm 3. The terms toroidal and poloidal in this model indicate 
signals polarized east-west and radially at the equator, respec- 
tively. As a boundary condition we take the field displacement 
to be zero at the ionosphere, which is equivalent to assuming 
the ionosphere has infinite conductivity. 

Figure 1 shows the period expected as a function of mag- 

netic latitude for several local times at the ground position of 
the field line. The dipole model periods, for which there is no 
local time variation, are shown for purposes of comparison. 
Since the chosen nondipolar magnetic field model is symme- 
tric about the noon-midnight meridian, only local times from 
midnight to noon are used. There are substantial deviations 
between the model and dipole periods at high latitudes, and 
periods can be larger or smaller than the dipole value, de- 
pending on latitude and local time. At any particular latitude 
the model period increases from noon to midnight. The steep- 
est increase in period with latitude occurs at midnight. 

Figure 2 illustrates these same results in a format that em- 
phasizes the model period deviations from the dipole period. 
The ordinate of this figure is the percent increase (or decrease) 
of the model period from the dipole period. For example, at 
67 ø, the magnetic latitude that corresponds to L -- 6.6 and 
maps out to synchronous orbit in a dipole, the model funda- 
mental period is • 130% larger than the dipole period at mid- 
night. On the other hand, at noon, at high latitudes, the model 
period can be more than 50% less than the dipole period. 

The previous two figures demonstrated local time effects on 
period expected for selected observation positions on the 
ground. In Figure 3 we examine the situation in space. The 
percentage deviation of the model periods from dipole values 
is shown for different local times and different radial distances 

in the equatorial plane. The table provides the resonant peri- 
ods calculated for different L values by using a dipole field. 
The results here contrast strongly with those given for observ- 
ing locations on the ground. Inside of •9 RE, deviations from 
the dipole periods are less than 10%, and more importantly, 
there is little local time variation of period. Whereas on the 
ground at 67 ø magnetic latitude the diurnal variation in pe- 
riod caused by field geometry is larger than a factor of 2; at 6.6 
RE, where the dipole field line from 67 ø crosses the magneto- 
spheric equator, the computations that use the Olson-Pfitzer 
model show little period dependence on local time. 

Another effect of a nondipolar magnetic field model is that 
field lines do not necessarily remain in meridian planes. The 
local time at which field lines leave the earth's surface can be 

different from the local time where the field lines intersect the 
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Fig. 2. Same as Figure I except the percent deviation from the di- 
pole model results is shown. 
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equatorial plane, especially at high latitudes near dawn and 
dusk, where the field lines are swept tailward. Figure 4 shows 
the location in the equatorial plane of field lines that leave the 
earth at 1.5-hour steps from midnight to noon. From each of 
those local times the intercepts are given in 1 o steps, starting 
with 64 ø geomagnetic latitude. The highest latitude positions 
vary as a function of local time and were selected to remain 
inside the region of validity of the Olson-Pfitzer model. The 
equatorial crossing point of a field line leaving the earth at a 
given latitude extends to larger radial distances as one pro- 
ceeds from noon to midnight. The equatorial crossing point of 
a field line leaving the earth at a given local time intersects the 
equatorial plane at progressively earlier local times as the lati- 
tude increases, except for midnight and noon local time. The 
variations of field line intercept coordinates from those ex- 
pected in a dipole field are important for the interpretation of 
space-ground conjugate studies. 

DISCUSSION 

The development of the model in this paper was partially 
prompted by the need to account for the effect on resonant pe- 
riods of the difference in field line length between a dipole 
and a more realistic magnetic field model [Singer and Kivel- 
son, 1979]. Nevertheless, it is clear from the approximate solu- 
tion for the period of standing Alfven wave resonances given 
by the WKB method (T ~ õ dS/VA) that period depends on 
both the length of the field line and the Alfven velocity along 
the field line. For any reasonable density model the greatest 
contribution to the integral for the period comes from the re- 
gion of smallest magnetic field strength along the field line, 
and differences in field line length from a dipole are often not 
as important as the magnitude of the field near the geomag- 
netic equator. For this reason we can qualitatively explain our 
results, as seen for example in Figure 2, by examining the field 
model in the equatorial region. 

Figure 5 shows the AB contours in the noon-midnight meri- 
dian, using the Olson-Pfitzer magnetospheric model. (The fig- 
ure is from Olson and Pfitzer (unpublished manuscript, 1977) 
and is also shown in Walker [1979]). The high-latitude field 
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Fig. 4. Location in the equatorial plane of field lines leaving the 
earth at 1.5-hour steps from midnight to noon from the Olson-Pfitzer 
model. From each local time the intercepts are given in 1 o steps, start- 
ing with 64 ø geomagnetic latitude. 

lines at noon that cross the magnetospheric equator near the 
magnetopause have equatorial field strength larger than the 
dipole value because of magnetopause currents; therefore, as 
is clear from the WKB expression, the resonant period should 
be less than the dipole period. This effect was observed in Fig- 
ure 2 as the decrease in the period from the dipole period at 
high latitudes at noon local time. Figure 5 shows that closer to 
the earth at noon there is a depression of the equatorial field 
strength as a result of the ring current. Consequently, the pe- 
riod should be larger than the dipole period, and this effect is 
also seen in Figure 2. At midnight the depression in the field 
strength near the equatorial plane because of the ring and tail 
currents increases the period from the dipole value. The ef- 
fects at other local times can be qualitatively accounted for in 
a similar manner. 

The insignificant variation of period with local time from 
constant radial distances in space less than ~9 R e can be ex- 
plained by examining Figure 6 (also from Olson •d Pfitzer), 
which shows contours of constant field magnitude IBI in the 
equatorial plane. The local time variation in the field magni- 
tude (the field strength at the equator becomes larger as one 
moves at a constant radial distance from midnight to noon) is 
only beginning to become significant at the ~ 100-¾ contour 
shown in the figure. However, the field line length is also be- 
coming larger as one moves at a constant radial distance from 
midnight to noon, and the two effects tend to counteract one 
another in determining the resonant period. 

To determine the effect of the magnetic field model on the 
periods of standing Alfven waves, a constant plasma mass 
density of 1 amu/cm 3 has been used everywhere in the mag- 
netosphere. There are, of course, spatial, temporal, and com- 
positional variations in the magnetospheric plasma that could 
substantially alter the local time and radial or latitudinal pat- 
terns that were shown to develop as a result of the realistic 
magnetic field model. In fact, using typical ion density obser- 
vations from the OGO 5 satellite, for different magnetospheric 
regions, Warner and Orr [1979] have considered the effect of 
density on local time and latitudinal variations of standing 
wave periods. Their results point up the importance of consid- 
ering density as well as field line configuration for determin- 
ing standing wave periods. In our calculations, periods scale 
as the square root of equatorial mass density, and our plots 
can easily be recalibrated for different densities. We did not 
allow for density variation along the field. 

Figures 1, 2, and 3 compare toroidal mode (azimuthally po- 
larized) wave periods that are derived by using the Olson-Pfit- 



4594 SINGER ET AL.: ALFVEN WAVES IN A REALISTIC MAGNETIC FIELD MODEL 

•B IN THE NOON MID-NIGHT 

MERIDIAN PLANE (TILT:O ø) 

Z(R E) 

10 

lO O 6 4 2 0 -2 -4 -U -U -10 12 -14 

x(• E ) 

Fig. 5. AB contours (B Olson-Pfitzer--B dipole) in the noon-mid- 
night meridian plane for the Olson-Pfitzer model with zero tilt. AB is 
given in gamma. (Figure is from Olson and Pfitzer, unpublished man- 
uscript, 1977; and Walker, [1979]). 

zer model field lines with periods that are derived by using di- 
pole field lines. In a dipole field in the equatorial plane the 
azimuthal direction corresponds to the direction toward field 
lines with the same equatorial field magnitude. As can be seen 
in Figures 4 and 6 in the Olson-Pfitzer model, in the equa- 
torial plane close to the earth the azimuthal direction and the 
direction of constant B are nearly identical. The two direc- 
tions are identical at all radial distances at noon and mid- 

night. However, at other local times, for example at dawn, at 
large radial distances the azimuthal direction and the direc- 
tion of constant field magnitude do not coincide. Con- 
sequently, although consistent in our selection of polarization 
with respect to an Earth-based coordinate (azimuthal), the di- 
rection of polarization chosen does not align with any particu- 
lar field parameter contour at the equator. For example, an al- 
ternative would be to compare periods at different radial 
distances for waves polarized in the direction of constant field 
magnitude. We are at present modifying our calculations to 
allow for the examination of perturbations in any direction. 

The determination of magnetospheric plasma density from 
ground-based observations would be extremely useful as com- 
parable coverage, using in situ measurements by spacecraft, is 
unlikely. In the past, ¾LF measurements from ground sta- 
tions have been used to determine electron number densities 

in the magnetosphere [Helliwell, 1965; Carpenter and Smith, 
1964]. More recently, using the notion of standing wave oscil- 
lations, densities have been determined by ULF techniques 
[e.g., Lanzerotti et al., 1975; Cummings et al., 1978] and com- 
pared to ¾LF density measurements [Webb et al., 1977]. For 
ULF pulsations, usually the period and location of the pulsa- 
tion can be well established, but assumptions have to be made 
about the field geometry and density distribution along the 
field line in order to infer equatorial plasma densities. Webb et 
al. [1977] assumed a dipole field geometry. Such an assump- 
tion is good at •60 ø magnetic latitude during quiet geomag- 
netic conditions; however, as we have shown at higher mag- 
netic latitudes, the earth's field is often substantially distorted 
from the dipole geometry. Walker et al. [1979], using the 
STARE (Scandinavian Twin Auroral Radar Experiment) ra- 
dar system at high magnetic latitudes (-•70ø), have estimated 

magnetospheric plasma density in the vicinity of pulsations by 
assuming fundamental, toroidal mode oscillations in a dipole 
field. They suggest the need for a more realistic field model 
for more accurate determination of the densities. The model 

developed in this paper would be useful for this purpose, as 
can be seen in Figure 7. Figure 7 shows the percentage devia- 
tion of inferred plasma mass density from what would be de- 
termined through the use of a dipole model as a function of 
magnetic latitude for several local times. The toroidal funda- 
mental mode has been used here. Predictions from the more 

realistic magnetic field geometry show that there could be 
substantial error in the mass density determination at high lat- 
itudes ff a dipole model is used. 

To the best of our knowledge, the only other model of 
standing Alfven waves that uses a realistic magnetic field 
model for the earth is that of Warner and Orr [1979]. Using 
the WKB approximation and the Mead and Fairfield [1975] 
magnetic field model, they clearly demonstrate the impor- 
tance of considering field model and density variations for 
calculating eigenperiods on field lines. As was discussed ear- 
lier, the WKB approximation is particularly poor for the fun- 
damental period, which is the most probable mode, as re- 
ported by many observers [Lanzerotti et al., 1972; Cummings 
et al., 1975; Singer and Kivelson, 1979]. We preferred to use 
the Olson-Pfitzer model since it has been shown to fit the 

magnetic field strength at the equator in the noon-midnight 
meridian much better than the Mead-Fairfield model 

[Walker, 1976; W. P. Olson and A. Pfitzer, unpublished man- 
uscript, 1977]. We have shown the effect of the field model on 
the local time variation of periods from ground observations 
as did Warner and Orr. We are unable to make direct com- 

parisons with Warner and Orr's results because, in the pub- 
lished results, tilt, Kp, and density are varied simultaneously. 
We have isolated the effects of the magnetic field model and 
also have demonstrated the local time variation in period 
from a vantage point in space. Unlike the WKB approxima- 
tion, the solution to the wave equation developed in this paper 
permits accurate determination of not only the period but also 
the perturbation fields along a field line. 

A worthwhile direction for the further investigation of 
standing wave models is to combine the model which uses re- 

z 

Fig. 6. Calculated from the model of Olson and Pfitzer (as de- 
scribed in W. P. Olsen and A. Pfitzer, unpublished manuscript, 1977) 
Contours of constant field magnitude [B[ in the equatorial plane. B is 
given in gamma. 
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Fig. 7. Using the same model as described in Figure 1, the per- 
centage deviation of the inferred plasma mass density from that which 
would be determined by using a dipole model is shown for different 
local times at different geomagnetic latitudes. 

alistic field geometry in this paper with different density mod- 
els in space and different ionospheric boundary conditions 
[Newton et al., 1978]. The capability to adjust the ionospheric 
boundary conditions at the two ends of the field line to ac- 
count for differing degrees of illumination should be ,included 
[Allan and Knox, 1979a, b]. The effect of a tilted magnetic 
field, such as considered by Warner and Orr [1979], should al- 
low determination of the latitude of nodes of resonant oscilla- 

tions and the amplitude structure along a field line for differ- 
ent harmonics. These results would be important for 
understanding seasonal variations of pulsation observations. 

CONCLUSIONS 

The linearized transverse wave equation for low-frequency 
propagation in a cold, collisionless, magnetized plasma has 
been solved in an arbitrary magnetic field geometry. We ob- 
tained solutions for the symmetric toroidal and highly asym- 
metric poloidal mode standing wave oscillations in both di- 
pole and Olson-Pfitzer field models. The realistic description 
of the earth's field given by the Olson-Pfitzer model leads to 
substantial differences in eigenfrequencies from those deter- 
mined by using dipole models. Therefore, our model should 
improve our ability to analyze pulsation observations. 

The use of the model described in this paper is most impor- 
tant for studying oscillations on field lines which extend to 
large radial distances where large deviations from a dipole 
configuration occur. It has been shown that from a fixed lati- 
tude on the ground, the period of oscillation varies with local 
time and can be larger or smaller than the period calculated 
by using a dipole model. Local time variations of period from 
a fixed radial distance in space differ from observations from a 
fixed magnetic latitude. Due to field geometry, the local time 
variations of period from a fixed radial distance at the magne- 
tospheric equator are not significant until large radial dis- 
tances are reached. In particular, there are insignificant varia- 
tions of period with local time at synchronous orbit. 

The model developed is important for ground-satellite con- 
jugate studies, since field lines going through a particular posi- 
tion in space can intersect the ground at a different local time 

and latitude than would be found by using a dipole. In addi- 
tion, it has been shown that the diagnostic technique that uses 
ULF waves to determine mass density in space from ground 
observations requires a realistic field model, since the use of a 
dipole model can introduce errors, especially at high latitudes. 

Finally, since the equation for standing Alfven waves de- 
rived in this paper can be used easily with any magnetic field 
model, we could replace the earth's field with that of Jupiter 
or Saturn. Prediction of pulsation periods in planetary mag- 
netospheres will be one technique for determining if observed 
magnetic perturbations are standing Alfven waves. 

APPENDIX: VALIDITY OF THE LINEARIZED MOMENTUM 

EQUATION (4). 

Equation (4) takes the form 

p(o,/ot = j x 

It explicitly ignores a force jo x b, which must be present in a 
plasma carrying a zero-order current across the background 
field. The Olson-Pfitzer field model contains such currents 

(the ring current), and the force must be present. On order of 
magnitude grounds, however, it is unlikely to be significant, as 
the current density in the Olson-Pfitzer model does not exceed 
1.5 X 10 -•ø A/m 2. Using a crude estimate, j • b/Ill, where Ill-- 
scale length parallel to B, one finds j x Bo should exceed the 
neglected term by over an order of magnitude at synchronous 
orbit. Inside this orbit the neglect seems fully justified. Out to 
12 Re, the neglected term is everywhere less than •25% of the 
term we have used. 

Some further comments can be made. The force jo x b is 
parallel to Bo if the wave perturbation is transverse and thus 
its precise effect depends on the conditions governing ion and 
electron dynamics along the field. Unless conditions were just 
such that strong coupling could be established with an acous- 
tic type of mode standing along the field line, the force only 
produces small net displacements of plasma back and forth 
along the field at the wave frequency. Equation (4) also ig- 
nores an implicit feature of the Olson-Pfitzer field. There must 
be hot plasma gradients present to provide the zero-order mo- 
mentum balance; 

VP = jo x Bo 

if the pressure is isotropic. The plasma must be displaced by 
the wave, and even if the wave motion does not compress the 
plasma, changes in pressure will be produced by the con- 
vection of gradients by the wave. Southwood [1977] pointed 
out that this could lead to compressional magnetic field 
changes in the wave, as is often seen. We have made no effort 
to examine this further, but it will need consideration if this 
line of approach is continued. 

AcknOwledgments. One of us (H. J. S.) would like to thank K. 
Quest for helpful discussions during the course of this work and com- 
ments on drafts of this paper. This work was supported by NSF under 
contracts ATM 74-23464 A01 and ATM 79-23586. 

The Editor thanks L. J. Lanzerotti and W. D. CumMings for their 
assistance in evaluating this paper. 

REFERENCES 

Allan, W., and F. B. Knox, A dipole field model for axisymmetric A1- 
fven waves with finite ionosphere conductivities, Planet. Space Sci., 
27, 79, 1979a. 

Allan, W., and F. B. Knox, The effect of finite ionosphere con- 



zt596 SINGER ET AL.: ALFVEN WAVES IN A REALISTIC MAGNETIC FIELD MODEL 

ductivities on axisymmetric toroidal Alfven wave resonances, 
Planet. Space Sci., 27, 939, 1979b. 

Carpenter, D. L., and R. L. Smith, Whistler measurements of electron 
density in the magnetosphere, Rev. Geophys. Space Phys., 2, 915, 
1964. 

Chen, L., and A. Hasegawa, A theory of long-period magnetic pulsa- 
tions, 1, Steady state excitation of field line resonance, J. Geophys. 
Res., 79, 1024, 1974. 

Cummings, W. D., R. J. O'Sullivan, and P. J. Coleman, Jr., Standing 
Alfven waves in the magnetosphere, J. Geophys. Res., 74, 778, 1969. 

Cummings, W. D., C. Countee, D. Lyons, and W. Wiley, III, The 
dominant mode of standing Alfven waves at the synchronous orbit, 
J. Geophys. Res., 80, 3705, 1975. 

Cummings, W. D., S. E. DeForest, and R. L. McPherron, Measure- 
ments of the Poynting vector of standing hydromagnetic waves at 
geosynchronous orbit, J. Geophys. Res., 83, 697, 1978. 

Dungey, J. W., The structure of the exosphere, or adventures in veloc- 
ity space, in Geophysics: The Earth's Environment, edited by C. De 
Witt, J. Hieblot, and A. Lebeau, Gordon and Breach, New York, 
1963. 

Dungey, J. W., Hydromagnetic waves, in Physics of Geomagnetic Phe- 
nomena, vol. 2, edited by S. Matsushita and W. H. Campbell, Aca- 
demic, New York, 1967. 

Dungey, J. W., Waves and particles in the magnetosphere, in Physics 
of the Magnetosphere, eidted by R. L. Carovillano, J. F. McClay, 
and H. R. Radoski, D. Reidel, Dordrecht, Holland, 1968. 

Helliwell, R. A., Whistler and Related Ionospheric Phenomena, Stan- 
ford University Press, Stanford, Calif., 1965. 

Hughes, W. J., The effect of the atmosphere and ionosphere on long- 
period magnetospheric micropulsations, Planet. Space Sci., 22, 
1157, 1974. 

Hughes, W. J., and D. J. Southwood, The screening of micropulsation 
signals by the atmosphere and ionosphere, J. Geophys. Res., 81, 
3234, 1976. 

Kokubun, S., R. L. McPherron, and C. T. Russell, Ogo 5 observations 
of Pc 5 waves: Ground-magnetosphere correlations, J. Geophys. 
Res., 81, 5141, 1976. 

Lanzerotti, L. J., and H. Fukunishi, Modes of magnetohydrodynamic 
waves in the magnetosphere, Rev. Geophys. Space Phys., 12, 724, 
1974. 

Lanzerotti, L. J., and D. J. Southwood, Hydromagnetic waves, in So- 
lar System Plasma Physics, vol. III, edited by L. J. Lanzerotti, C. F. 
Kennel, and E. N. Parker, p. 111, North-Holland, Amsterdam, 
1979. 

Lanzerotti, L. J., A. Hasegawa, and N. A. Tartaglia, Morphology and 
interpretation of magnetospheric plasma waves at conjugate points 
during December solstice, J. Geophys. Res., 77, 6731, 1972. 

Lanzerotti, L. J., C. G. McLennan, H. Fukunishi, J. K. Walker, and 
D. J. Williams, Latitude and longitude dependence of storm time 
Pc 5-type plasma wave, J. Geophys. Res., 80, 1014, 1975. 

Mead, G. D., and D. H. Fairfield, A quantitative magnetospheric 
model derived from spacecraft magnetometer data, J. Geophys. 
Res., 80, 523, 1975. 

Nagata, T., S. Kokubun, and T. Iijima, Geomagnetically conjugate 

relationships of giant pulsations at Syowa Base, Antarctica, and 
Reykjavik, Iceland, J. Geophys. Res., 68, 4621, 1963. 

Newton, R. S., D. J. Southwood, and W. J. Hughes, Damping of geo- 
magnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201, 
1978. 

Orr, D., Magnetic pulsations within the magnetosphere: A review, J. 
Atmos. Terr. Phys., 35, 1, 1973. 

Orr, D., and J. A.D. Matthew, The variation of geomagnetic micro- 
pulsation periods with latitude and the plasmapause, Planet. Space 
Sci., 19, 897, 1971. 

Radoski, H. R., Highly asymmetric MHD resonances: The guided po- 
loidal mode, J. Geophys. Res., 72, 4026, 1967. 

Radoski, H. R., A theory of latitude dependent geomagnetic micro- 
pulsations: The asymptotic fields, J. Geophys. Res., 79, 595, 1974. 

Radoski, H. R., and R. L. Carovillano, Axisymmetric plasmasphere 
resonances: Toroidal mode, Phys. Fluids, 9, 285, 1966. 

Singer, H. J., and M. G. Kivelson, The latitudinal structure of Pc 5 
waves in space: Magnetic and electric field observations, J. 
Geophys. Res., 84, 7213, 1979. 

Southwood, D. J., Some features of field line resonances in the mag- 
netosphere, Planet. Space Sci., 22, 483, 1974. 

Southwood, D. J., Localised compressional hydromagnetic waves in 
the magnetospheric ring current, Planet. Space Sci., 25, 549, 1977. 

Sugiura, M., and D. J. Poros, A magnetospheric field model incorpo- 
rating the Ogo 3 and 5 magnetic field observations, Planet. Space 
Sci., 21, 1763, 1973. 

Sugiura, M., and C. R. Wilson, Oscillation of the geomagnetic field 
lines and associated magnetic perturbations at conjugate points, J. 
Geophys. Res., 69, 1211, 1964. 

Van Chi, F., B. M. Yanovskiy, A. A. Kovtun, O M. Raspopov, V. A. 
Troitskaya, and R. Schlich, Investigation of Type Pc 3 geomagnetic 
pulsations at magnetically conjugate points, Geomagn. A eron., 3, 
94, 1968. 

Walker, A.D. M., R. A. Greenwald, W. F. Stuart, and C. A. Green, 
Stare auroral radar observations of Pc 5 geomagnetic pulsations, J. 
Geophys. Res., 84, 3373, 1979. 

Walker, R. J., An evaluation of recent quantitative magnetospheric 
magnetic field models, Rev. Geophys. Space Phys., 14, 411, 1976. 

Walker, R. J., Quantitative modeling of planetary magnetospheric 
magnetic fields, in Quantitative Modeling of Magnetospheric Proc- 
esses, Geophys. Monogr. Ser., vol. 21, edited by W. P. Olson, AGU, 
Washington, D.C. 1979. 

Warner, M. R., and D. Orr, Time of flight calculations for high-lati- 
tude geomagnetic pulsations, Planet. Space Sci., 27, 679, 1979. 

Webb, D.C., L. J. Lanzerotti, and C. G. Park, A comparison of ULF 
and VLF measurements of magnetospheric cold plasma densities, 
J. Geophys. Res., 82, 5063, 1977. 

Westphal, K. O., and J. A. Jacobs, Oscillations of the earth's outer at- 
mosphere and micropulsations, Geophys. J. R. Astron. Soc., 6, 360, 
1962. 

(Received May 9, 1980; 
revised October 22, 1980; 

accepted December 19, 1980.) 


