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ALGEBRA COCHAINS AND CYCLIC COHOMOLOGY

by DANIEL QUILLEN

Dedicated to Rent Thorn.

INTRODUCTION

Historically cyclic cohomology was approached from two directions. In one,

Connes developed cyclic cohomology as a noncommutative analogue of de Rham

cohomology, which was suggested by the K-theory and index theory in his noncommu-

tative geometry [Cl], In the other, cyclic homology appeared as a Lie analogue of

algebraic K-theory defined using the Lie algebra homology of matrices [LQ,, T],

In both of these approaches to the subject one first encounters the complex of
cyclic cochains, or equivalently by duality, the cyclic complex of the algebra under

consideration. However, in order to establish the fundamental properties of cyclic

cohomology, one brings in a remarkable resolution of the cyclic complex, the cyclic

bicomplex. This double complex is periodic of period two, where the periodicity is

closely related to the cohomology of cyclic groups. Using it, one establishes the long

exact sequence relating cyclic cohomology and Hochschild cohomology in which the

basic S-operation on cyclic cohomology appears.

The first goal of the present article is to offer an explanation of this cyclic formalism.

Our starting point is the bar construction of the augmented algebra obtained by adjoining

an identity to the algebra being studied. The bar construction is a differential graded

coalgebra, and we show how the cyclic complex and cyclic bicomplex can be defined

naturally in terms of this structure. For example, just as an algebra R has a commutator

quotient space R/[R, R], a coalgebra has a cocommutator subspace. We prove that

the cocommutator subspace of the bar construction can be identified with the cyclic

complex up to a dimension shift.

The second goal is to show how this coalgebra structure can be used to construct

cyclic cohomology classes. The point is that the coalgebra structure gives rise to a

differential graded algebra structure on cochains, and the familiar connection and
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curvature calculations of Chern-Weil theory can be used to produce cyclic cocycles.

The moral appears to be that all interesting cyclic classes, especially those related to

K-theory, are Chern character forms or variants of these when suitably interpreted.

For example, we show that the odd cyclic classes of Gonnes, which are associated to

an algebra extension together with a trace defined on the power of the ideal, can be

viewed as Chern character forms. The even analogues of these cyclic classes studied

in [Q2] turn out to be Ghern-Simons forms.

The contents of the paper are as follows. In the first two sections we use the coalgebra

structure on the bar construction to set up the DG algebra of cochains and the trace on

this algebra with values in the complex of cyclic cochains. We then show how to construct

the odd cyclic cohomology classes of Connes and the even Chern-Simons classes by the

standard connection-curvature methods.

The next three sections are devoted to developing the formalism needed to prove

the result of Connes that his odd cyclic classes are all related by the S-operation, as

well as to extend this result to the even classes. In § 3 we study the bimodule of non-

commutative differentials Q^ over an algebra R and the periodic complex

-^R ^Q^ -^R ^Q^ ^ ^ = Q^/[R,ay.

The point is to construct these objects in such a way that the corresponding constructions

for coalgebras are clear by formal duality, that is, just reversing the arrows. The coalgebra

version is developed in § 4 and applied to the bar construction in § 5, where we identify

the cyclic bicomplex with the analogue of the above periodic complex for the bar

construction. In addition we describe the cochain formalism corresponding to this result

which is then applied to the study of cyclic cohomology in the remaining sections.

The sixth section contains the proof that the cyclic classes constructed in § 2 are

related by the S-operation. In § 7 we consider a vector bundle with connection and

construct periodic cyclic cocycles on its algebra of endomorphisms. In the last section

we interpret the Ghern character ofjaffe, Lesniewski, and Osterwalder [JLO] as the

analogue of superconnection character forms in our cochain theory.

The last section on the JLO construction is an elaboration of key ideas I learned

from Ezra Getzler, and I am very grateful to him for sharing his insights.

1. The bar construction and cyclic cocycles

1.1. The cyclic bicomplex

In this paper we work over a field k of characteristic zero. Algebras are

assumed to be unital unless specified otherwise. We write ( y i , . . . , y j for the

element z/i ® ̂  0 ... ® ̂  e V®".

Let A be nonunital algebra. In the study of cyclic cohomology an important role

is played by the remarkable double complex [LQJ
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i« l-&' \b

^ ^®3 ^-T ^®3 ^ N ^®3 ^-T

^ N ^®2 ^-T A ® 2 ^ N A ® 2 ^-T

^L A ^ A <^ A 4-i1
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where the operators b, b ' , T, N on A®" are given by the formulas

»—i
b\a^, ...,aJ == S (—l)'"1^!, •••^ai+i, ••• ,a«),

î, • •., aj = ̂ (<»i» • • • > <»«) + (— l)"-l (a» "n ^2, ..., a»_i),

T(ai, ..., aj = (- I)"-1 (a,, fli, ..., a._J,

n—1

N = s r.
»=0

This double complex is periodic of period two in the horizontal direction, and

its rows are exact. The column with the differential b is the standard complex for com-
puting the Hochschild homology H.(A, A) when A is unital. The column with the

differential &' is the bar construction of the augmented algebra A = k @ A except for

removing the field in degree zero and shifting degrees by one. When A is unital, the

A'-complex is exact.

The cokernel of the map 1 — T from the b '-complex to the A-complex is by defi-

nition the cyclic complex GG(A), whose homology is the cyclic homology HG.(A) of A.

By exactness of the rows the cyclic complex is also isomorphic to the kernel of 1 — T,

and we have an exact sequence of complexes

0 -> CC(A) ->{ 6' - ex} ̂  { b - ex} -> GC(A) -> 0.

From this follows the Gonnes long exact sequence

-^H,(A,A) ^HG,(A)^HG»_,(A) ->H,_i(A,A) ^

when A is unital, and in general one obtains a similar long exact sequence with the

Hochschild homology replaced by the reduced Hochschild homology of A [LQ, 4.2].
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1.2. Coalgebra structure and the algebra of cochains

The starting point for the present paper is the fact that the bar construction

B == B(A) is a DG coalgebra. As a coalgebra it is the tensor coalgebra T(A[1]) of the

underlying vector space of A located in degree one. Thus B^ == A0 n for n ̂  0, the
coproduct is

n

A(ai, . . ., aj == Z; (fli, . . ., a,) ® (fl̂ , . .., aj• • • ? ^n/ — ^ ^15 • • • 3 ^ij ^ \^i +1 ? • • • 3 M-n;

and the counit T] is the projection onto A00 = k. Its differential is &', which is to be

interpreted as zero for n == 0, 1. The coproduct and counit maps A : B - > B ® B , Y ] : B - ^ A

are morphisms of complexes, making it a DG coalgebra. The homology of the bar
construction is the coalgebra ^or^kyk).

By an n-cochain or cochain of degree n on A we will mean a multilinear function

f{a^ ..., a^) with values in some vector space V, or equivalently a linear map from

B^ = A0" to V. These cochains form a complex Hom(B, V), where the differential is

8(/) == - (- 1)W /e Hom^B, V) == Hom(B^ V).

If L is an algebra, then the complex of cochains Hom(B, L) has a product defined by

fg=m{f®g)^

where m: L ® L -> L is the multiplication in L. Iff, g have degrees p, y, we have

{fg) ̂ i, ' • . . ^+.) = (- 1)^/^1, ..., ̂ ) ̂ p+i, ..., ^+,),

where the sign is due to the way^® g is defined for complexes. As B is a DG coalgebra,

it follows that Hom(B, L) is a DG algebra.

As an example of these formulas which will be important in the sequel, let p be

a 1 •cochain, that is, a linear map from A to L. We can view p as a " connection " form

and construct its < c curvature " co = 8p + P2? which is a 2-cochain. Then

00(^1, ^2) == (SP + P2) ( î, ̂ ) == p(^i ^2) — P(^i) P(^

showing that p is a ring homomorphism if and only if the curvature is zero.

One has the Bianchi identity

So == — pco + cop == — [p, co],

which up to sign is

(1.1) <o(<?i ^2, a^) — <o(^, ̂  ^3) == P(^i) ^{a^ ^3) — ̂ n ^2) P(^3)-

Since 8 and a \-> [p, a] are derivations, this implies

8^ = - [p, ̂ j.
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1.3. Traces

To proceed further as in the Chern-Weil theory we need to have a trace on cochains.

Let T : L -> V be a trace on the algebra L with values in the vector space V, that is,
a linear map satisfying

^J]) = <xy) - r(jw) = 0.

It is equivalent to say that T vanishes on the commutator subspace [L, L], which is

the image of the map m — ma : L ® L -> L, where cr denotes the canonical automorphism

permuting the factors in the tensor product. Thus a trace is really a linear map defined
on the commutator quotient space:

L^ ̂  L/[L, L] == Coker{w(T -w :L®L-^L} .

Formulated in this way as a linear map defined on the commutator quotient

space, it is clear how to extend the notion of trace to superalgebras and DG algebras.

In these contexts an extra sign occurs in the trace identity when both elements are odd

(and hence a trace is what is usually called a supertrace), because the permutation

isomorphism a involves signs. It is also clear how to define the dual notions of cotrace

and cocommutator subspace for coalgebras, supercoalgebras, and DG coalgebras.

Thus naturally associated to the bar construction B is its cocommutator subspace

B^ ^ K e r { A ~ C T A : B - - > B ® B } .

This is a subcomplex of B as A, (T are morphisms of complexes. We let lq : B11 -> B denote

the inclusion map; it is the universal cotrace in the sense that a cotrace V -^B is the
same as a linear map with values in B11.

Next we combine the trace T with the universal cotrace Iq to define a morphism
of complexes

^ : Hom(B, L) -> Hom(B^, V), ^(/) = T/^,

which is a trace on the DG algebra of cochains because

^(fg) = wi{f®g) Alq = ̂ ma(f®g) a Alq

= (^ 1 ) 1 / 1 I.I rm^®/) Atq = (- l)^11171^/).

We need later a slight generalization of this discussion. The concept of trace makes

sense for a bimodule M over the algebra L; it is a linear map T : M ->V vanishing

on [L, M], In this situation the cochains with values in M form a DG bimodule over

the DG algebra of L-valued cochains, and

^ : Hom(B, M) -> Hom(B^, V), ^(g) = T^,

is a trace on this bimodule which is closed in the sense that it commutes with the dif-
ferentials.
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Applying the trace T^ on the algebra of cochains to co" yields

8{ T^)} = T^{ S(^)} = T^{ - [p, <|} = 0.

This is the usual proof that Chern character forms are closed.

Thus we obtain a closed element of degree 2n in the complex Hom(B^, V). We

are now going to show that we have in effect constructed a cyclic {2n — l)-cocycle on A.

We begin by relating J^ to the cyclic complex GG(A).

Lemma 1.2. — The space B^ is the kernel of (1 — T) acting on A®".

Proof. — Let p^{x) denote the component of x e B ® B of bidegree i, j. Then

A^-^A(^, .. .,0 = (- l)^1 (^_^, ..., <zJ ® (^ ..., ^_,)
-^.n-iAT^, ...,aJ,

hence p,^_, (A — o A) x ==A^,A(1 — T1) x for all ^ eA^. Thus

x == T^ => AA: == CT AA: => A* e B^.

The converse is also true because A n-i ^ : ̂ @ro -^A®A0 n '~ l is an isomorphism, so
the lemma follows.

From properties of the cyclic bicomplex we know that the cyclic sum map N from

the A-complex to the A'-complex is a morphism of complexes (i.e. b' N = N&), and that
it induces an isomorphism

CC(A) = Coker(l - T) -^ Ker(l - T).

Therefore the lemma shows that the cocommutator subspace of the bar construction
is essentially the same as the cyclic complex, the difference being that the former has

the field in degree zero, and the degrees are shifted by one.

Thus we see that T^CO'*) eHom(B^V) can be identified with a certain cyclic

cocycle of degree 2n — 1. We have

(1.3) co^, ..., a^) == co(fli, a^) .. . co(^_i, ^n)

and to obtain the cyclic cocycle we apply T to the values and N to the arguments:

(1.4) T^) (^, .. ., ̂ J - \' (- I)1 r { co"^, . . ., a^ a,, .. ., a,)}.
< = o

Because T is a trace, co" is fixed under cyclic shifts by an even number of steps, so this

becomes

(1.5) ^((0-)^,.. . ,^)=

Ur{ (O(^i, ̂ ) ... 0)(^n-15 ^n) — ^2n? l̂) • • • ^(^n-^ ^2n-l)}-

Remark 1.6. — The fact that this formula gives a cyclic cocycle is due to Gonnes

[Gl, Th. 5]. What we have done in effect is to interpret his calculations as the usual

proof that Ghern character forms are closed.



ALGEBRA COCHAINS AND CYCLIC COHOMOLOGY 145

2. Cyclic classes associated to extensions

In this section we consider a (unital) algebra L, an ideal I in L, and a homo-

morphism u: A -> L/I from the nonunital algebra A to the quotient algebra. We can

then construct cyclic cohomology classes on A in two ways starting from a suitable

trace T. In the first, we suppose T is a trace on the ideal I"1 considered as a bimodule

over L, and we obtain the Gonnes odd degree cyclic cohomology classes as Chern

character classes. In the second, we suppose T is a trace on the quotient algebra L/I"1^1,,

and we obtain even degree cyclic classes, which are given by Ghern-Simons forms.

2.1. The odd cyclic classes of Connes

Let p : A -> L be a linear map reducing modulo I to M, and let T : I1" -> V be

a trace on the L-bimodule I"1, that is, T is a linear map vanishing on [L, I"1]. Since the

constructions to follow are natural in the vector space V, one might as well take T to
be the canonical surjection onto I"V[L, I"1].

Because p is a homomorphism modulo I, its curvature o is a 2-cochain with values

in I, and co" is a 2^-cochain with values in I". Now as remarked in the preceding section

the I^-valued cochains form a DG ideal in the DG algebra of L-valued cochains, and

^ : Hom(B, P) -> Hom(B^, V)

is a closed trace on this DG ideal. Hence T^ ((»)") for n ̂  m is a well-defined element of

Hom^B^, V), which is closed by the standard argument showing the Chern character

forms are closed. Thus we have defined a cyclic (2n — l)-cocycle for n^ m. It is given

by the formula (1.4), and by (1.5) when r[I, I"] = 0, which is certainly the case when

n > m.

The next step in Chern-Weil theory is the treatment of a homotopy between

connections, and a nice way to do this is to utilize the product of the given manifold

with the line. In order to carry this out in the context of cochains, we need to extend

our cochain formalism in the standard way so that the cochains have values in complexes.

Let V == { -> V" -> V" +1 -^ } be a complex, and suppose to simplify the discussion

that it is bounded below in the sense that V" = 0 for n < 0. Then the usual Horn-

complex Hom(B, V) has the structure of a double complex Hom(Bg, V^) with the anti-

commuting differentials

rf(/)=^/. SC/)^-!)1^1/^

where |/| denotes the total degree p + q of/eHon^B^V^). The total differential

is d^ == d + 8. Similarly if L is a DG algebra bounded below, then Hom(B, L) is a

bigraded DG algebra with product^ = m{f®g) A:

{fg) ( î, ...,^) =S (- \)^f{a^ ...,a,)g{a^ ...,aJ.
»-o

19
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By a trace T : L -> V or, more generally, T : M -> V where M is a DG bimodule
over L, we mean a linear map between complexes, not necessarily compatible with

differentials, which vanishes on [L, M], When it commutes with differentials, we say
that it is closed. Then T^(/) = r/Tq defines a trace on Hom(B, M) with values in

Hom(B^ V) in this generalized setting, which is closed when T is.
This terminology established we discuss homotopy.

Let k[t] be the polynomial ring over k in the indeterminate t, and write
Vf[t] == k[t] ® W when W is a vector space. We consider a one-parameter family of

linear maps from A to L or, more precisely, a linear map p, from A to the algebra L[^].

We suppose that this is a family of homomorphisms modulo I, which means that the
2-cochain co, = Sp^ + p^ has values in I[t]. Let

n

P-n. ( = ̂  (•4~l P< ̂ "S P< = ̂  P< •

This is a (2n — l)-cochain with values in P""1^], and it even has values in P^] when
p has values in I, that is, when the family of algebra homomorphisms from A to L/I

is constant in t. We extend the trace T given on I"* to a k\f\ -linear map

^I-M^VM.

We then have the following infinitesimal homotopy formula.

Proposition 2.1. — Assume that either n> w, or that n = m and the family of homo-

morphisms from A to L/I induced by P( is constant. Then ^((JL^ ,) eHom^'^B^ V[^]) is

a cyclic (2n — 2)-cochain such that

^(<)=8{rV^)}.

Proof. — Let W[>, df\ denote k[t, dt\ ® W, where

k\t, df\ = k[t] C dtk[t], d = dt B( ,

is the ordinary de Rham complex of k[t]. Then L[^, <ft] with d = A 8< is a DG algebra
containing I[^, A] as a DG ideal, and because k[t, dt] is a commutative DG algebra,
one sees easily that the k[t, dt] -linear extension of T

T:!^,^] ^V[t,dt]

is a closed trace on this DG ideal. Consequently Hom(B, L[ ,̂ dt]) with differential
dt St + S is a DG algebra containing the DG ideal Hom(B, 1̂ , dt]), and

T^ : Hom(B, P»|>, <ft]) -^ Hom(B^, V[^, dt])

is a closed trace.

We let

S = (A8< + 8) p< + p? = (o< + AP(
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be the total curvature of the family. We have
n

^n = ̂  + s or1 ^P( ^"^ = ̂ r + ̂ nc

Under our hypotheses co^, (A^ belong to Hom(B, ̂ [t]) so

T^) = ̂ (0 + AA(XJ e Hom(B^ V^ A])

is defined. But this is closed by the standard argument:

(A 8, + 8) ^(S") = ^{(A ̂  + 8) 2^ } == - A[p^ S-]) = 0

and taking the coefficient of dt yields the proposition.

Remark 2.2. — When r[I, I""1] = 0, the homotopy formula simplifies to

^T^)=8{^(p<cor-1)}.
We now apply this homotopy formula to prove the following theorem of Connes

[Gl, 1.7, Th. 5].

Theorem 1. — Given the homomorphism u: A ->• L/I and the trace T : I"
1 -> V, let p : A -> L

be a linear lifting of u and let <o be its curvature. Then for n ̂  m, the cochain T^CO") given by I A,

or by 1 .5 when r[I, I"""1] == 0, is a cyclic (2n — l)-cocycle whose class in cyclic cohomology

depends only on u and T. Furthermore for n > m this class is a homotopy invariant of u.

Proof. — Given two linear liftings po and pi of u into L, then we join them by the

family P( = (1 — t) po + ^Pr We then apply the above homotopy formula which is
valid for n = m, because the family is constant modulo I. Integrating this formula

between 0 and 1 shows the two cyclic cocycles differ by a coboundary. The last assertion

follows by the same argument once one notes that any one parameter family of homo-

morphisms u^: A -> (L/I) [t] can be lifted to a linear map P( : A ->• Lp],

2.2. Chem-Simons classes

We consider a homomorphism u: A -> L/I as before, but now we suppose given

a trace on the quotient algebra

^L/P14-1 -^V.

Let p : A -> L be a linear lifting of u and let co be its curvature. We consider the one

parameter family

p< = ̂  (o, = ^8p + t
2 p2 == to + {t2 - t) p2,

and note that the curvature has values in I when t = 0, 1. Hence the homotopy formula

gives

Sj^\v.^dt=^+l)^0
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for n ̂  m. Here

^n+l,() == ̂ (^^ P^"1) = (^ + 1) ^(pCoD.

Thus

J, l^{^+l.J^+l)!}A=^^{p(^p+^2P2)n^!}eHom2n+l(B^V)

is a cyclic 2n-cocycle for n^ m. It is the analogue for cochains of the Chern-Simons

transgression form associated to the {n + l)-st Chern character form.

Theorem 2. — The cyclic cohomology class of the above Chern-Simons cocycle is independent

of the choice of the linear lifting p, and for n > m this class is a homotopy invariant of the homo-

morphism u.

Proof. — We first derive a higher homotopy formula for a two-parameter family
p': A -> L[.y, t]. We work in the DG algebra

Hom(B, k[s, ds] ® k[t, df\ ® L), <,, = ds B, + dt ̂  + 8,
and let

S == (ds a, + dt 9t + 8) y + ?2 = <o + ds a, y + dt ̂  ̂

be the total curvature of the family. We have

S"+i = co^ + Av + Api +dsdt\

^here |JL = S co* B, po^-1, v = S ̂  0, 'pco*1-1.
i^O i—O

Now

^(S^1) == T^co"4-1) + A^(v) + ̂ ^(pi) + dsdt^W

is killed by A ̂  + A ̂  + 8 by the usual argument that the Ghern character forms

are closed. The coefficient of ds dt gives the relation

^T^)-a^(v) +8Ax)=o.

Integrating we obtain the formula

aJ^Qx) dt = T^) ̂ - 8j^(X) A.

Now suppose we have a one-parameter family of homomorphisms and linear
liftings

^ :A->(L/ I )M, p,:A->L[>],

and let (x>, = 8p, + P^ be the family of curvatures. Applying the preceding formula

to the two-parameter family p'== ^p,, we obtain

3ĵ ( î.J dt = {n + 1) T ,̂ p, <o?) ~ 8^^(X) A.

As T vanishes on I"1'1'1, the first term on the right vanishes when n> m, showing that

the derivative of the Ghern-Simons cocycle is a coboundary. The same conclusion holds
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when m= n provided 8, p has values in I, that is, when the family of homomorphisms u,
is constant.

The rest of the proof is the same as for Theorem 1.

Remark 2.3. — Simple functorial considerations show that the cyclic (2n — 1)-

cohomology class constructed in Theorem 1 is induced from a universal cyclic class

on L/I with values in I"V[L, I"1]. Such a class may be interpreted as a canonical map

HC^.^L/I)^!-/^,!"1].

Similarly from Theorem 2 we obtain a canonical map

HG^L/I) -^ (L/I-4-1)^ = L^1 + [L, L]).

These maps are studied in [Q2].

3. Differentials over algebras

In the preceding sections a cochain formalism based on the coalgebra structure

of the bar construction was developed and used to construct certain families of cyclic

cohomology classes. We next want to show that the members of a family are related

by the S-operation on cyclic cohomology. In order to do this, we need to extend the

formalism to the whole cyclic bicomplex. This extension involves the analogue for coal-

gebras of the bimodule of noncommutative differentials Q^ over an algebra R. In this

section we study this bimodule, and we give a simple example of the calculation which

will be used later to establish the S-relations between cyclic cocycles. The arguments
will be dualized to coalgebras and applied to the bar construction in succeeding sections.

3.1. On ^B and Q^

Let R be an algebra, and let

w : R ® R — R , s : y f e ^ R ,

be its product and unit maps. We describe our constructions in terms of these maps

in order to make it obvious how to extend them to DG algebras and coalgebras. We

write 1 for the identity map, and 1̂  for the identity element of R. If Vi, ..., V^ are

vector spaces, we denote by

<j :Vi®V2® . . .®V^V^®Vi® ... (^V^i

the canonical isomorphism corresponding to the forward shift cyclic permutation.

Let M be an R-bimodule, that is, a vector space with left and right product maps

ryif: R ® M -> M, m^: M ® R -> M,

defining left and right module structures which commute. We consider R ® V ® R,

where V is a vector space, as a bimodule with m^ = w® 1 ® 1, m^ = 1 ® 1 ® m. It is

the free bimodule generated by V in the following sense.
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Proposition 3.1. — There is a one-one correspondence between linear maps h: V -> M

and bimodule morphisms ^ : R ® V ® R - > M given by

Ji=m,{mf®\) ( I ® A ® 1), A = A ( s ® l ® £ ) .

Remark 3.2. — The proof of this proposition is a routine verification. Usually it

is done using elements of R and M, however, we note that it can be carried out entirely

m terms of the product and unit maps m, e, m^ m^ and the various associativity and

unity identities satisfied by these maps, e.g. m^l ®w,) = m,(m^® 1). The same is true

for all of the results in this section. An example is given below in 3.6, and one may

supply similarly opaque demonstrations of the other assertions. This observation has

the consequence that the whole discussion extends immediately to related contexts such

as superalgebras and DG algebras. Also by reversing the arrows there are analogues

for coalgebras and DG coalgebras, which will be needed later.

We now consider the A'-complex in the cyclic bicomplex of § 1 for R, which in
low degrees has the form

-> R®4 -S. R®3 m01-10m R®2 -̂  R -> 0,

where D == w ® 1 ® 1 — 1 ® w ® 1 + 1 ® 1 0 m. This is a sequence of R-bimodule
morphisms. It is exact because of the contracting homotopy e^l^^R^-^R^+i.

The bimodule Q^ of (noncommutative) differentials over R is defined to be the
kernel ofm. By exactness, it is also the cokernel of D, so we have bimodule exact sequences

O^f l^ -^R^-^R^O

R 0 4 ^ p ® 3 _ ^ ^ ^ o

such that IJ == m ® 1 — 1 ® m.

By the above proposition the map J is the bimodule morphism ^ extending the
linear map

a:R-^, a = J ( s ® l ® e ) or bx =J(1^, x, 1^).

Proposition 3.3. — The map c) is a derivation with values in the bimodule ̂ . It is a universal

derivation in the sense that any derivation D : R -> M with values in a bimodule is induced from 8

by a unique bimodule morphism from Q^ to M.

Proof. — Given a linear map D : R -> M, where M is a bimodule, the corresponding
bimodule morphism D : R03 —^ M satisfies

DD(1^ ̂ , 4) = D(^, 1^) - D(l^, xy, I,,) + D(4, x^)

= xDy — ~D{xy) + (Dx)jy

and as DD is a bimodule morphism, this shows that D is a derivation if and only if

DD = 0. As Hi =J satisfies JD == 0, it follows that 8 is a derivation, and the universal

property results from the fact that (QB,J) is the cokernel of D.

The following proposition gives a convenient characterization of ̂ .
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Proposition 3.4. — Up to isomorphism there is a unique triple (Q^, I, ff) consisting of a

TsL-bimodule ^, a bimodule morphism I: ̂  -> R® R, and a linear map ^ : R -> Q^, such

that 8 is a derivation^ "B is surjective^ and such that 18= 1 ® e — s® 1.

Proof. — Clearly the triple defined above has these properties. Let (Q', I', 8') be

another triple with these properties. Because ff is a derivation, we have ̂ ' D = 0, hence

we have a unique map u\G^-^Q! carrying ^ to ?\ which is surjective as ̂ ' is assumed

surjective. On the other hand, we have I ' ^ ' = m ® l — l ® w , because both are bimodule

morphisms extending I' 8' == 1 ® s — e® 1. It then follows from the exactness of the

A'-sequence that u is also injective, proving the proposition.

If M is an R-bimodule, we let

M^ ̂  M/[R, M] = Goker{ m^ - m, CT : R® M -> M}

be its commutator quotient space, and we let Iq : M ->- M^ denote the canonical surjection.

In the case of a free bimodule we have the following identification.

Proposition 3.5. — There is a canonical isomorphism (R®V®R)^ ^ V®R relative

to which the canonical surjection becomes

^ = (1 ® m) a~1: R ® V 0 R -> V ® R.

Proof. — It suffices to show that the following sequence is exact

R ® R ® V ® R - ^ R ® V ® R - ^ V ® R - ^ 0

p = m^ — m^a~1 == m® I ® 1 — ( I ® l®w) o~1, q = ( l ® m ) o-1.

Putting r = l ® e ® l ® l , ^ = s ® l ® l , one verifies that qp = 0, ̂  = 1, and rj& + ̂  = 1,
and the exactness follows.

We now apply the commutator quotient space functor to ^ and the canonical

bimodule maps I, ?, using this proposition to identify the commutator quotient space
for free bimodules. This gives a commutative diagram

R®2 _JL Q^ JL R®3

wo fcl (l®w)o-1

R <^- Q^ <^- R®2

where the vertical arrows are the canonical surjections Iq onto the commutator quo-

tient space with respect to the identification of the above proposition, and a, p are

the unique maps such that the diagram is commutative. We now derive formulas
for a, p.
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Lemma 3.6. — One has a = Iqrn^^® 1), ̂  ̂ , a(A;®^) = tq(ft^).

Proof. — This is a straightforward verification, which we write out in terms of

the product and unit maps of the algebra in order to illustrate how the generalization

to DG algebras and coalgebras proceeds. There are six steps:

cx.(x®jy) = a ( l®m) a""1^® x®y) a = a( l®m) a'^e® I ® 1)

= \\H(\^®x®y) = l q ^ ( s ® l ® l )

== ^(IR®A:®I^) = 1^(101®^) ( s ® l ® s ® l )

== ^{( IB®^®!^)^} == f c | ^ ( (e®l®e)®l )

== ^{(^(IE^^IE))^} = \\m,(Q® 1) ((s® l®s) 01)

= ^(^) == biw/a®l)

which use respectively the right identity property of s, the definition of a, the left identity

property of s, the definition of right multiplication for R03, the fact that 8 is a right

R-module map, and the relation of 8 and 8.

Lemma 3.7. — One has pa = ma — w, ^Aa^ is, (3a(A;0j^) =jw — ̂  = — [^^].

This follows from the computation

pa(;c®j/) = ̂ {8xy) = mal{8xy) == ma{I{8x)jy} == ma{(x@ 1^ — 1^ ® ;v)^ }

== W(T(A: ®j^ -— 1^ 0 ̂ y) == w(j ® A: — ̂  ® 1^ =^ — ^y.

We define 8: R -> t2^ h to be the composition tq 0.

Proposition 3.8. — 0^ A^y P ^ == ^(3 == 0, A^nr^ a complex of period two

8 oi JL R JL ni A-> ̂  ̂  -> K -> ̂  ̂  ->

pyooy. — ^8x = P^^l^) = pa(A:0 IE = — [̂ , IEJ == 0. Also

8^{x®y) == 8{yx - xy) == [8y, x] + [̂  8 ]̂

is killed by fcl, so ^pa = 0. However a is surJective, since the maps fci, ? are surjective,

so we see that 8(B = 0.

Remark 3.9. — It can be shown that the chain complex of length one

^R
is the quotient of the Hochschild complex having the same homology in degrees 0 and 1.

By Hochschild complex we mean the ^-complex in the cyclic bicomplex. Furthermore

^ agrees with the map induced by the B operator of Gonnes on the Hochschild complex.

Thus the periodic complex above can be viewed as a first order approximation to the

cyclic theory for the algebra R in the following way. Consider the b, B bicomplex of

Connes. The zero-th order approximation is the bottom edge consisting of copies of
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R/[R, R] viewed as a quotient of the Hochschild complex. The first order approximation

is the strip of height one along the bottom edge, and this is the periodic complex. This

approximation is exact when the Hochschild homology vanishes in degrees ^ 2.

Example 3.10. — In the case where R is the tensor algebra T(V) == © > V0'1

we have a canonical isomorphism of Q^ with the free bimodule R ® V ® R. One way

to see this is to explicitly check that any linear map from V to an R-bimodule extends

uniquely to a derivation, and to use 3.3. A closely related method is to use 3.4 as follows.

We consider the linear map 3 : R - > R ® V ® R given by
n

^1. ...^n) = ̂ ^ •••^i-l)0^®^!, ...^J

and the bimodule morphism I = (wOO 1 — 1 ® m) (1 ® i® I):

I{(^ •••^- l)®^®(^+i, ...^n)}=

(^1, . . ., ̂ ) ® (^+1. • • •. 0 - (^1. . . ., V^-i) ® (^, . . ., ̂ ),

where i: V -> R is the inclusion. One can verify that 8 is a derivation, that ̂  is surjective

because it has the section 1 ® i ® 1, and that I^= 1 ® e — e ® 1. Thus by 3.4 we have

an isomorphism of ̂  with R ® V ® R such that the canonical maps are given by the
above formulas.

Combining this isomorphism with 3.5, we can identify i2^ ^ with V ® R in such
a way that the canonical maps 3, (B are given by the formulas

n

î. •••^n) =^S^®(y^,, ...,^,yi, ...,y,),

P{ ^i® (^ .. .^J} = - hi, (^ .. .^J]

= (^ •••^n. l̂) - (^1» •••^J-

These maps are essentially S^ ̂  and cy-1 — 1 on V®", so the periodic complex is exact

provided one replaces R by R = R/A. (See [K, § 3] for a closely related discussion.)

3.2. DG algebras

Let R = = { - > R n - ^ R n + l - > } b e a DG algebra. As remarked above the various

constructions we have given for algebras extend immediately to DG algebras. In this

case, because the product and unit maps are morphisms of complexes, the bimodule

of differentials Q^ and its commutator quotient D^ ^ are complexes in a natural way,

and the various canonical maps between them are morphisms of complexes. Thus the

periodic complex 3.8 for R is a double complex.

There are some additional signs due to the fact that the permutation isomorphism a

for complexes involves signs when odd degree elements are interchanged. Thus we
have

Wxy) == (ma - m) {x®y) = (~ l)!̂ ^ - xy == - \x,y\.

20
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The following theorem is a simple illustration of the method we will use later to

prove the S-relations among the family of cyclic cocycles obtained by connection-curvature

methods as in § 2.

Let p e R1, and let G) = 8p + p2 e R2 be its cc curvature ", where 8 is the differential

in R. We also use 8 to denote the differential in the associated complexes Q^ ^E h -

Theorem 3. — The elements co" e R2", ^(Bp^) e (O^)2*14-1 for n^ 0 satisfy the

relations

8(<^/n!) = (B^pco^!)}, S{^8^1n\)} == ^(co^1/^ + l)t).

Proof. — We have 8(<on) = — [p, co"] = ( B { ^(Bpco")}, proving the first formula.

Because a: {x®jy) \-> ^{Sxy) is a morphism of complexes, one has

8{fc^(apcon)} = b|{a(8p) co" - 8p 8(0^)} == lq{3(8p) ^n + ̂ (p^ ~ (̂  p)}

== Iq {(a 8p + app + p 3p) G)" } == |q { 0(0(0**}.

On the other hand

0(^+1) = fc,a((o'*+i) = ̂ {S^a^"-*}^ (n+ i) fci^^),
0

proving the second formula.

4. Differentials over coalgebras

In this section we describe the analogue for coalgebras of the bimodule of diffe-

rentials and the periodic complex discussed for algebras in the previous section. The

theory is formally dual to that for algebras in the sense that the arrows are reversed.

We study carefully the case of a tensor coalgebra, and derive formulas for the canonical

maps, since these will be needed for the bar construction.

4.1. General properties of OF

Let C be a coalgebra with coproduct A : C -> C ® G and counit T] : G -> k. By

a bicomodule M over C we mean a vector space equipped with left and right coproducts

A^: M -> G ® M, A y : M -> M ® G defining left and right comodule structures which

commute: (A^® 1) Ay = (1 ® Ay) A^. Its cocommutator subspace is

M^ ^Ker{A^- CTA, :M-^C®M}

and we let Iq : M^ —> M denote the inclusion map.

A free bicomodule is one of the form C ® V ® G, with A^ == A ® 1 ® 1, and

Ay = 1 ® 1 ® A. The following two propositions are dual to 3.1 and 3.5.

Proposition 4.1. — There is a one-one correspondence between linear maps h\ M->V

and bicomodule morphisms A : M - ^ G ® V ® G given by

Ti == ( 1 ® A ® 1 ) (A^®1) A,, A = = (T)®!®^)^ .
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Proposition 4.2. — There is a canonical isomorphism V ® C ^ (G®V®G) 1 1 relative

to which the canonical injection b| becomes

\\ = (T(I ® A) : V ® G - > C ® V ® G .

The dual of the ^'-sequence

o ->c4. c^^z^ G®3 ̂  c®4 ̂

where D == A ® 1 ® 1 — 1 ® A (x) 1 + 1 ® 1 ® A, is a sequence of bicomodule morphisms,

which is exact because G has a counit. We let Q0'\ or simply ii°, denote the bicomodule

Goker A. One has exact sequences

O^G-tG02-^0-^

O^^-^C^^G®^

where I, J are bicomodule maps such that JI = A 0 1 — I ® A.

By 4.1 we have J = 1), where B == (T]® 1 ®T])J : Q° -> G. The dual of 3.3 shows

that 8 is a universal coderivation, where a coderivation D : M -> G, with M a bicomodule,

is a linear map satisfying A D = (1 ® D) A^ + (D ® 1) Ay.

We now apply the cocommutator subspace functor to Q° and the canonical

bicomodule maps I, ^ using 4.2 to identify the cocommutator subspaces for free bico-

modules. This gives the commutative diagram

G®2 —!-> QC -JL> G®8

o A I [fcl ]o(l ® A)

G -̂ -» Q0^ -a^ C02

where the vertical arrows are the inclusions Iq up to the identification 4.2, and a, (3 are

the unique maps such that the diagram is commutative. Dualizing 3.6-3.8 we obtain

the formulas
a = (B ® 1) Ay b|, ap = cr A — A

and the complex of period two

-ic-l^Uc-i,

where B is the composition 8^.

4.2. 0° for a free coalgebra

Let G now be the tensor coalgebra T(V) = ©^o^" with

A(^i, ..., yj = 2; (^i, ..., v,) ® (^+1, ..., yj
O^i^n

and T] equal the projection onto V00 = ^. We consider the free bicomodule C® V® C

and let 8: G 0 V ® G -> G be the linear map given by

(4.3) ^ = (.1, .. .,^) if ^ == ( î, ..., ̂ -i) ® v,® (̂ ,, ..., ̂ ).



156 DANIEL QJJILLEN

We claim 8 is a coderivation. In effect, one has

( l ® a ) A , s = ( i ® a ) s (^, . . .^<)®^4-i . . . .^p-i)®^®(^^, . . . ,^)
0^i<p

^o^/01 ' - --^®^1 ' - -^-

Similarly

( a ® i ) A ^ = = S (^...^)®(^,,. ..,.„)
3)^»^ n

and these add up to A 9^.

The bicomodule morphism extending 6 is

a ' = ( l ® a ® l ) ( A ® l ® A ) : C ® V ® G -^G08

and is given by the formula

(4.4) ^=^/^.•••.^®^+l,...,^®^^,...,^)

»^*^n

with S as above. It is injective, because it has the left inverse 1 ® n ® 1 where n : C -> V
is the projection onto the tensors of degree one.

Let I be the bicomodule morphism

I = ( l ® 7 r ® l ) ( A ® l - l ® A ) : C ® G - ^ C ® V ® G .

We have

(4.5) I{(^, ...,^)®(^, . . .^j}=(^^ . . . ,^_J®^®(^, ...,^)

-(^1, •••^p) ( x )^+l®(^+2, ...^n)

where the symbol (^, ..., v,) = v, ® ... ® .̂ is to be interpreted as zero when i >j + 1.
Hence we have

(^ •••^n) 0<p=n

^{(^1, • • • , ^ ) ® ( ^ 4 - 1 . •••^n)}== -(^1, ...^J 0==^<^

0 0 < p < n o r 0 = p = n

showing that ^ I = I ® T ] — T ] ® I .

Summarizing, we have shown that the bicomodule C ® V ® G together with the
maps S, I satisfy the conditions dual to those of Proposition 3.4, namely, B is a coderi-

vation such that ̂ is injective, and I is a bimodule morphism such that BI = 1 ® T) — ^ ® 1.
Thus from the dual of this proposition we obtain the following.

Proposition 4.6. — There is a canonical isomorphism of a° with the free bicomodule

C ® V ® G such that the canonical maps 9, ?, I are given by the formulas 4.3-4.5.
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Combining this isomorphism with 4.2 we obtain an induced isomorphism of 0°^
with V ® C such that

QG ^ C ® V ® C

^ 4*
t; o(l®A)

a0^ ^ v®c
commutes.

Proposition 4.7. — With respect to this isomorphism H^^VOG, the inclusion

fc| : O01 ̂  -> Q° fl^rf ̂  TT^J 5, p <?/' ̂  periodic complex are given by the formulas

tl{^0(^ ...^n)}== S (^4-1. •••^n)^l®(^ ...^),
l^i^n

0{^® (^2. • • •. ^n)} == 2 (y,+i, . . ., V^ V^ . . ., V,),
l^Kn

P{^1® (^2. • • .. Vn)} == ^® (^1, . • ., ̂ n-i) - ̂  ® (^ • • • > ^)-

Pro<?/'. — The first formula results from

(T(1®A){^®(^ . . . , ^ ) }=(T S yi®(y2,. . . ,^)®(^+i, . . . ,^)
l^i^ n

= S (^+1, ...^n)®^®^. ..-^<)
1^«»

and the fact that \\ == o r ( l®A) with respect to our identifications. The formula for

^ == ̂  follows by combining the formulas for ^ and Iq. Finally we have

î. •••^n) =I^A(yi, ...,yj

= S I{(^+i, .. . ,yj®(^, . . . ,y<)}
1 ̂ i^ n

= S (y,+i, ...^n-i)®^®^!, ...,^)
0^i<ro

- S (^+1, ...^J®^®^.---^,)
0<«n

=^{^0(yl. •••^n-l) -^®(V^ ...,OJ}

which proves the formula for (3 and completes the proof.

We leave to the interested reader to check the following formula for a

a{^®(^...,0}= S (^+1, ...^n^i, ...,^)®(»,+i. -••^).
1 ̂  '̂ ̂  k ̂  n

5. Applications to the bar construction

In this section we return to the bar construction B of the augmented algebra A.

Associated to its coalgebra structure are the bicomodule ^B and its cocommutator

subspace ^B'11, and these are complexes with differentials induced by the differential V

of the bar construction. From these complexes we obtain two new kinds of cochains

related to the cochains and cyclic cochains which were discussed in § 1.
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We begin by discussing the general behavior of these complexes and cochains.

Using the fact that the bar construction is a tensor coalgebra, we identify these complexes

and the various canonical maps between them. We show that up to a dimension shift tl3^

is the Hochschild complex, that is, the ^-complex in the cyclic bicomplex. We also show

that the cyclic bicomplex is essentially the periodic complex for coalgebras, when the

coalgebra is the bar construction. Finally we derive various cochain formulas.

5.1. General discussion

We recall from the previous section that ^B is defined to be the cokernel of the
coproduct map A for the bar construction, and that

I : B ® B -^0°, 8:0^ -^B

are respectively the canonical surjection onto this cokernel and the linear map such
that 81 == 1 ® Y] — T] ® 1. On 0s there is a bicomodule structure A^, Ay such that I is

a bicomodule morphism, and such that 8 is a coderivation. We have a commutative
diagram

B®2 _J^ QB _J^ g®3

oA] [|q [ o(l® A)

B -0-> Q^ -"-> B
02

where H= (1 ® 0® 1) (A^® 1) Ay is the bicomodule morphism extending 0, and where

a == (0® 1) Ay fc|, a(B == a A — A. We also have the periodic complex

^B-IQB.^B-I,

where 0 == 0lq.

Moreover because B is a DG coalgebra, Q° and Q3^ are naturally complexes

with differential induced from the differential in B, and the above canonical maps are
morphisms of complexes.

We next turn to cochains. We have four complexes in play: B, B11, Q®, Q®'t1, hence

four kinds of cochains when we consider linear maps from one of them to another com-

plex V. It is convenient to introduce some terminology to distinguish these cochains.

We will usually refer to elements of Hom(B, V) simply as cochains, but as bar cochains

if we want to be precise. Elements of Hon^B^, V) will be called cyclic cochains, since

b|B is essentially the cyclic complex as we saw in § 1. We call elements of Hom^®^, V)

Hochschild cochains, since we will show below that Q3111 is essentially the 6-complex which

gives the Hochschild homology when the algebra is unital. Finally elements of Hom^, V)
will be called Q.-cochains.

Each of these Horn-complexes is bigraded, and a homogeneous element ^ has
three degrees, a V-degree, an A-degree which is its degree as a multilinear functional
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on A, and a total degree | ^ | which is their sum. The total differential is the sum of two

partial differentials d and 8 defined as in § 2.1.
We now describe various operations on cochains induced by the canonical maps

associated to 0s.

Let L be a DG algebra. The bicomodule structure on Q3 over B gives rise to a

bimodule structure on Hom^®, L) over the algebra Hon^Q3, L). If/, y are bar and

Q-cochains respectively, then left multiplication is given by fy = w(/®y) ^? where
m is the product in L, and similarly for right multiplication. Because A^, m are maps
of complexes one has

8(/Y) == S/Y + (- l^l/Sy
( * ) d{fy) = dfy + (~ l)^l/rfY

and similar derivation formulas hold for right multiplication.

The canonical map 8 induces a map 8{f) ==f8 from bar cochains to ^-cochains

which is compatible with 8 and d. As 8 is a coderivation, the induced map is a derivation:

8{fg)==fg8==m{f0g)^8

== rn{f®g) ((B® 1) A, + (1 ® 8) A^)

== m{f8®g) A, + m{f<^g8)^

=8(f)g+f8{g).

The effect of 8 on cochains combines this derivation with multiplication:

f8gh==mf(f®8g(S)h) (A^®1) A,

(5.2) = = w ' ( / ® ^ ® A ) ( l ® a ® l ) ( A ^ ® l ) A ^

=mf{f®g^h)^

where m' = m{m® 1) is the triple product map for L.

The canonical injection tq : Q®' ^ -> Q® induces a map from bar cochains to Hoch-

schild cochains. If we combine it with a trace T : L -> V, we obtain a map

^ : Hom "̂, L) -> Horn^ ,̂ V), ^(y) == Tytl,

which is compatible with 8, and also compatible with d when T is a closed trace. This

map is a trace on the bimodule of £2-cochains:

rVy) =T</®Y)A^

= TW(7(/® y) <^ A,^

= (- l)^'^ Tm(Y®/) A,bi

=(-l)miTl^(^).

The effect of a is to associate to a pair of bar cochains/, g the Hochschild

cochain (B/^) Iq. The maps c?, ? of the periodic complex induce maps 8{f) ==/^,
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P(v) == T? fr0311 bar cochains to Hochschild cochains and the other way round. All
of these maps are compatible with 8 and d. We have

(5.4) a{T(/)}=T/a^==^(a/).

Using a(B = a A — A we deduce

P{ ̂ Wg)} = ̂ m{fc)®g) \ h(B = Tm(/®,?) (B® 1) A, ̂  = w{f®g) ap

(5.5) =^m{f®g) (crA ~A) = (- l)^' H wia(g®f) A-T(/^)

--^L/^]).

5.2. Identification of the complexes a^ 0^

Because B == T(A[1]) is a free coalgebra, we know from § 4.2 that Q® can be

identified with the free bicomodule B ® A[l] ® B in such a way that the canonical
morphisms 8, ?, I are given by the formulas

(5.6) B{(^, ...,S-l)0f lP0( f lp+^. •••^n)}==^l. •••^n).

(5.7) ^{(^, ..., ̂ _,) ® a,® (a,^, ..., <zJ}

= S (^, ..., a^) ® (a^i, ..., a^) ® (a^, ..., aj,
o ̂  s < p
p^&^n

(5.8) I{(a,, ...^^^^p+i, ...,aJ}=(^, ..., ̂ -i) ® flp® (^4-1. • • •^n)

- (fli, ...,s)®S+l0(<^p+2. •••^J-

We also know that Q®^ can be identified with A[l] ® B in such a way that the

canonical morphisms Iq : Q^ -^ a3, 3 : Q3^ -^ B, p : B -> n3111 are given by the formulas

(5.9) H{^®(^ . . . , aJ}= 2 (-l^-^^+i,. . . ,^)®^®^,.. .^,),
K«n

(5.10) a{^®(f l , , . . . , f l j }= S (-i)*'"-1 '^^^...,^,^,...,^),
l ^ l^CT

(5.11) p(a,, ..., ̂ ) = (- I)-1 a^ ̂  ..., a^) - a, ® (^, ..., <zJ.

The new signs not appearing in § 4.2 are due to the fact that the permutations iso-

morphism CT for complexes involves signs when odd elements are moved past each other,

and the elements of A[l] are of odd degree.

The following propositions give formulas for the differentials in Q®, Q®' ^ induced

by the differential V of the bar construction.

Let A" denote the induced differential in Q^.

Proposition 5.12. — With respect to the identification Q° = B0A[1] ®B, we have

r{(a,,...,^_,)®^(x)(a^,,...,^)}

=b^a^ ...^^-^^fl^^+i^ •••^n)

+ (- l)^2 (^, ..., a^ ® a,_, s® (S+i> • • - ̂ n)

+ (- ir-1 ̂  ..., a^) 0 ̂  fl̂ i ® (0^2, ..., flj

+ (- 1)^ ( î, ..., flp^i) ® ̂  ® *'(^+i, • • •^J-
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Proof. — The differential b" on B®A[1]®B corresponding to the differential

on Q.^ has the property that the map 1) given by 5.7 is a morphism of complexes. Thus
if ^ = (^i, • . . , ̂ -i) ® ^ ® (^+i, ..., flj, we have

^v> s = oJ</ bt{a1' • • - ̂  @ (^1- • • - ̂  0 (^4-1. . •.. ̂ )
p^k^n

+ (- I) 3 (^, . . ., a,) 0 b'^^ . . ., ^) ® (a,^, . . ., ̂ )

+(- 1) ,̂ . . . ,^)®(a,^, ...,^)®^(^, ...,aJ}.

To find i" ̂  we apply the left inverse to I given by 1 ® n ® 1 : B03 -^ B ® A[l] ® B,
where w is the projection ofB onto A[l]. The only terms in the sum on the right contri-

buting to &" ^ are when j = p — 1, k == p in the upper term, when j = p — 2, k = p

andj == /» — 1, ^ = p + 1 in the middle term, and whenj = p — 1, A == p in the lower
term. These give the four terms in the formula for 6".

Let b denote the induced differential in Q®^.

Proposition 5.13. — With respect to the identification A[l] ® B = Q3^, we have

^l®(^ ...,flJ}==.(- l)"^^®^ •••^n-l)

+^^1® (^2. •••^n) -^^l, •••^n).

Proo/l — Since the map \\ given by 5.9 is a morphism of complexes, we have,
on setting ^=^®(a , , . . . , f lJ ,

^=6"^= S (-l)^-^^^,...^.)®^® (.„...,.,)
0 ̂  % ̂  »»

+ (- ^)n''i~l (^+1. • • .^n-i) ® ̂  ̂  {^ . . ., a,)

+ (- l)""1^!, . . . ,^)®^^ ( x )(^ . •••^i)

+ (- I)—4-1 (^^,, ..., 0 (g) a, 00 ̂ , . . ., ^)}.

We next apply the left inverse 73 ® 1 ® 1 : B ® A[l] ® B -> A[l] ® B to ^ There are

contributions only when the first factor in the triple tensor product is of degree zero.

Of the four terms in the sum on the right, the first gives nothing since b' is zero in degree

one, and the other three contribute the three terms in the formula for T, concluding
the proof.

If we^now make the identification a^® (a^ . . . , f lJ == {a^ . . . , f lJ , then the

differential b becomes the Hochschild differential b in the cyclic bicomplex o f § l . Also

from 5.10 and 5.11 we see that B and p become the operators N and T — 1 of the cyclic
bicomplex. Thus we have proved the following.

Theorem 4. — The complex £1^ is canonically isomorphic to the b-complex in the cyclic

bicomplex with degrees shifted by one. Relative to this isomorphism one has p = T — 1, a = N.

21
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Remark 5.14. — This result shows that the cyclic bicomplex can essentially be
identified with the periodic sequence of complexes

^ ^ ID -^ QB, \\ 8 T? -P

where B = Ker{ T] : B -> k}.

5.3. Cochain formulas

Let us call an ti-cochain of A-degree n simply an Q-w-cochain. It is a linear map y
defined on

n^ == (B®A[1]®B)^ = © A^-^A^A0^-^
Ki<$»

and hence it can be viewed as a family of multilinear maps y(fli, ..., a,-11 fl< | a^ i, ..., oj
for 1 < i ̂  72.

If/is a bar n-cochain, then af=/a is an Q-w-cochain. Using 5.6, we see it is
given by

(5.15) Qf(a^ ...,^-iK|^+i, ...^J =/(ai, ...,fln).

Let/, ̂ , h be cochains ofA-degrees^, y, r, respectively, with values in L. Using 5.2,

5.7, one has, with n = p + ^ + y,

(A ̂ ) (fl!? • • - . ^-1 | ̂  | ^+1» • • • ^ ^n)

=m'(A®/®^)^{(^,...,^_i)®^®fl^i,...,^}

== S ^'(A®/®^){(^,...,^)®(fl^i,...,^)®(fl^i,...,aJ}.
1 ̂  3 •< i

i^Jfc^n

All the terms in this sum are zero except when j == r, k == r + P, in which case we have
r < i ̂  r + j&, and the term is

m(h®f®g) {{a^ ..., 0 ® (o^i, .. .,o^) ® (^+^1, ..., <zJ}

= (̂ ) (^ •••^n).

where A/? is the product in Hom(B, L):

Wg) (^.-••^J
=(^l)l.|(r+p)+|/|r^^^^^^^^^^^^^^^^^^^^

Thus we have

(5.16) {h8fg) (^, ...,^_i|^|^+i, ...,^)

^ (^)^i,.-.^n) i f r + l ^ ^ r + ^ ,

0 otherwise.

Given an Q-yz-cochain Y) we compose it with the map ^: 0®' ^ -> Q® and obtain

a Hochschild cochain of A-degree n. From 5.9 we have the formula

(5.17) Y^i,...^n)= S (-l^-^Y^+n.-.^nl^l^...,^).
l^i^n
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For example, let /, g have A-degrees p, n — p respectively. Taking h to be the

identity cochain in 5.165 i.e. the 0-cochain ^1^, we obtain the formula

(5.18) {Sfg) ̂  ...,aJ = S (~ l)^-^) (^, ...^a,, ...,a,),
n—p <i^ n

that is

(5.i9) w fci = ̂  (/^ r.
<=0

This gives the effect of the canonical map a on cochains. In particular when p == 1, 2

we have

(5.20) (B^) ̂ , . . .,^) = (- l)!^) ̂ , . . . , ^),

(5.21) (0/5) fci(^, ..., <zJ =/(^ ̂ ) 5(^ • . .̂ n)

+(^l)n-iy(^,^)^^...,^_^).

Finally we note that the effect of the canonical maps (3 and 8 on the cochain level

is given explicitly by applying the operators T — 1 and N respectively to the arguments.

6. S-relations

In this section we show that the cyclic cohomology classes constructed in § 2 are

related by the S-operation on cyclic cohomology.

6.1. The cyclic classes of Connes

We return to the situation of § 2.1, where p : A -> L is a linear lifting of a homo-

morphism u: A -> L/I and T : I"1 -> V is linear map vanishing on [L, I*"]. We regard p

as an element of degree one in the DG algebra Hom(B, L) of cochains. Its curvature
(o == 8p + p2 lies in Hom^B, I), and co" eHom^B, I") satisfies Sco" = - [p, o"].

We consider also the complex Hom^^^L) of 0-cochains discussed in § 5.1.

It is a DG bimodule over the DG algebra of cochains, and we have a derivation 0 from

the algebra to this bimodule, which is compatible with the differentials 8 in these

complexes.

For n ̂  m both co" and ^pco" = w(p ® co") Ay have values in I"1, so we can apply

the trace T and define a cochain and Hochschild cochain

T^) = TCO^ e Hom(B, V), T^po^) == r^po") \\ e Hom^ ,̂ V).

Proposition 6.1. — We have

8{ T^!)} == (^(apco^!)}, S{T^po)^!)} = ̂ ((o^1/^ + 1)!)}.

Proof. — Using 5.5 one has

s^co")} = ̂ s^)) = T(- [p, O) = p{^(ap(on)},
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whence the first formula. Also

8{Ti'(ap(d»)}=Tl'{8(ap) (d"—apS((o")}
= T''{ a(Sp) to" - ap(p<A» - <o» p)} == Ti{(a(8p) + app + p ap) (A-}
= ̂ { a(8p + p2) <o»} = T^oxo"),

where we have used the trace property 5.3 of f11 and the fact that p, 3p are both odd.

On the other hand by 5.4 and the fact that 8 is a derivation, we have

a{r((o»+1)} = Tl'(a(o)»+l)) == S A^ acoo)"-') =(«+!) T^O)")
<«0

completing the proof.

Remark 6.2. — Since 8 is dL V or 6, and a = N, (B == T -- 1, on cochains and Hoch-

schild cochains, where the sign is opposite to the parity, we see that this proposition

is equivalent to the identities

V T^/yi!) == (1 - T) ^(apco^!),

^(Bpco^!) = N^o/14-1/^ + 1)!).

It is not hard and rather instructive to check these identities directly using the following

formulas which result from 1.3 and 5.20:

T^") (fli, . . ., flgn) == ^{ ̂ l? ^2) • • • ^(^n-n ̂ n) h

T^apG)") (flo, . . ., ^2n) == T{ P^o) ^(^1. ^2) • • • ^2n-l. ^2n) }•

We observe that the first identity of 6.1 implies immediately that

T^O)"/^!) = N^co"/^!) is a cyclic cocycle. Thus this proposition can be viewed as a

refinement of the fact that Ghern character forms are closed. We are next going to see

that the extra information it contains is just what is needed to prove the result of Connes

that the classes of these cyclic cocycles for different n are related by the S-operation.

6.2. The S-operation and periodic cyclic cocycles

The S-operation on cyclic cohomology is most easily understood from the periodicity

of the cyclic bicomplex. However this approach leaves the sign of the S-operation subject

to certain choices, e.g whether to use 1 — T or T — 1 in the cyclic bicomplex. We

now fix our sign conventions to be consistent with Gonnes paper [Cl], where the

S-operation is defined by an explicit formula.

Let 9, eHom^B, V), ^, e Hom^Q3^, V) denote bar and Hochschild cochains

of A-degree j. We observe that the formulas

(6.3) ^^{(-l)^^}, SK-irk+i}^?^,

of the type encountered in the above proposition are the same as the formulas

(6.4) V 9n = (1 - T) ̂ i, H^ = N9,^

using the operators on cochains which are the transposes of the operators in the cyclic

bicomplex of § 1.
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We consider the bicomplex of cochains obtained by applying Hom(?, V) to the

cyclic bicomplex and making the following choice of signs for the arrows:

t-1 t1-
Jl> c0'2 T^ G112 -N^

t-6 T6' h
JL, c0-1 T^ c1-1 ̂  c2-1 T^

(6-5) A A A

I-6 r I-6

_1> c0'0 'sz-^ G1'0 -N^ C2'0 T—^

t t t
0 0 0

Here C^ = Hon^A034'1, V), and the — b ensures that the squares anticommute, so

that the sum of the horizontal and vertical arrows has square zero. This bicomplex

has been arranged so that a string of cochains

...^eC2^1--1, ^eC2^ y^eC2^1^1...

satisfies the identities 6.4 if and only if it is killed by the total differential except for

contributions at the ends of the string.

Let C^. be the subcomplex where the columns with p < 0 have been made zero.

The homology of G^ in the horizontal direction is zero except on the line p == 0, where
it is the complex CC*(A, V) of cyclic cochains with values in V. By standard arguments

the inclusion of the cyclic cochains into the total complex of C+ is a quasi-isomorphism.

On the other hand, there is the obvious embedding S : G^ ^> C3^4"2 of degree two

of the total complex into itself, and this induces the S-operation on the cyclic cohomology.

With this definition of S we have

Lemma 6.6. — Assume that <?„, 4'n+i? 9n+2 satisfy the formulas 6.3-6.4. Then N<p^

and N<p^2 ar€ 9^ cocycles, and S[N<pJ = [y^+g].

Proof. — The point is that if we apply the total differential to 9^ + ^n +1 sitting

in C1'""1®^", we obtain N<p^ — N9,,+2 e G2'""1® G0'^1, so the latter two terms
represent the same cyclic cohomology class. But the first term represents the transform

by S of the class of N(p^ e C01n~l, so the lemma follows.

From this discussion we see that the following result of Gonnes is an immediate

consequence of 6.1.

Theorem 5. — The odd cyclic cohomology classes of Theorem 1 satisfy

8^(0)^!)] = [^(co"4-1/^ +1)!)].
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Before taking up the corresponding result for the Ghern-Simons classes, we add

a few comments about the bicomplex 6.5 and periodic cyclic cohomology which will
be needed later.

There are two ways of making a total complex G from 6.5, depending on whether

we let C" be the direct sum or the direct product of G^'q for p + q = n. If we use the

direct product, then because the rows are exact the resulting total complex has trivial

homology. If we use the direct sum, then the resulting complex of <( finite " cochains

gives the periodic cyclic cohomology S~1 HG'(A). This is Z-graded, but because of the

periodicity, there are only two different periodic cyclic cohomology groups, even and

odd. We can compute these by taking the quotient of the total complex by the action
of the periodicity S. This gives the following Z/2-graded complex.

Definition 6.7. — The complex of periodic cochains is the Z/2-graded complex

whose even elements are alternating sequences (+1, 92, +3, • • •) of bar and Hochschild
cochains with only finitely many nonzero terms, and whose odd elements are similar
sequences of the form (91, ^2, 93, ...). The differential is

r f ( • • • 5 < P n > + n + l 5 ( P n + 2 5 • • • )

=(.. . ,- ^n-1 + N9,, b- 9n + (T - 1) ̂ ,, - b^, + N9^, . . .)•

Thus a periodic cocycle is just a sequence satisfying 6.3 or 6.4.

Remarks 6.8. — Suppose now that A is a unital algebra and that we are given
a periodic cocycle as above satisfying

^n+i^o? • • • ? ^n) == 0 if ^ = 1 for some i^ 1,

9n(^ • . .5 ^J = k+l(1? a
^ ' • • ? ^)-

The first condition means that ^n+i ls a normalized Hochschild cochain. Then for the
B-operator of Gonnes we have

B^^ = ?(1 - T) ̂  == N9^ = 6^_,,

where s denotes the contracting homotopy of the V complex which inserts 1 in the first

argument. Thus a periodic cocycle satisfying these conditions gives rise to a cocycle
in the Gonnes b, B bicomplex.

6.9. — The periodic cocycle described in Proposition 6.1 satisfies these conditions

provided that the lifting p is chosen to preserve the units, as one easily sees from the
formulas of 6.2.

6.10. — The cochain theory developed in this paper can be viewed as pertaining

to the reduced cyclic theory of the augmented unital algebra A. It is an interesting

problem to find a good generalization to arbitrary unital algebras, which for example

would explain the Connes 6, B bicomplex made from the reduced Hochschild complex.
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6.3. Homotopy

We discuss next the homotopy behavior of the cochains in proposition 6.1. We

consider the situation of 2.1, where P( is a one-parameter family of linear maps from A
to L which are homomorphisms modulo I.

Proposition 6.11. — With the notations and hypotheses of 2.1 we have

8,{^ln\)}== 8{T(^!)}- p{T^p, (x>!)},

MA^ <o^!)}= - 8{Aap, ̂ Jnl)}+ 8{T(^,^ + 1)!)}.

Proof. — As in the proof of 2.1, we work with cochains having values in the DG

algebra Lp, dt]. If S == (8 + dt 8^) P( + pf = G)( + Ap, is the total curvature of the

family, we have

T^) = T« + A(lJ = T((^) + ̂ T((XJ,

^(ap, s") = ̂ (ap, <) - AT^R^ ̂ ).

An obvious extension of the proof of 6.1 gives

{S+dt8,)^) ==(^(8?^),

(„ + l) (8 + dt 8^) ^(8p< S") = ^(S^1).

The desired formulas then result by comparing coefficients of dt,

6.4. Chem-Simons classes

We next consider the even dimensional cyclic cohomology classes constructed

in § 2.2.

We recall that p, co have the same meaning as above, but now T : 'L|Im+l ->V

is a trace defined on this quotient algebra, where m ̂  0. We consider as in § 2.2 the

one parameter family P( = ^p with
n

GO( = t 8p + t
2 p2 = t(^ + {t2 — t) p2, ^ == S (o^1 pco^-1.

1

We define cochains and Hochschild cochains

?2n-i = J^(^^!) dt eHom^-^B.V),

^n = J^ ̂ (8p^!) ^ ̂  e Hom2^^* \ V).

Since the trace T is defined on all of L, we can use the homotopy formula above in the

case of the family <p, where the ideal is taken to be the whole algebra L. Integrating

this formula from 0 to 1 gives

^n-l - i^^^O ̂

-^+8^^^{8^)t1
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Since co has values in I and T vanishes on P^1, the right sides are zero for n> m, so
we obtain the relations

S^n-l-P^n. ^n-^n+l

for n > m.

We have seen that these relations imply that we have a family of cyclic cohomology

classes which are linked by the S-operation. However N9^+1 is just the Chern-Simons
cyclic 2^-cocycle of § 2, so we have proved the following.

Theorem 6. — The Chern-Simons cyclic cohomology classes c^ == [Ny^^J of Theorem 2

satisfy Sc^ = c^^^for n^ m.

7. Vector bundles with connection

Let E be a vector bundle over the smooth manifold M, and let A be the algebra

of its endomorphisms. We suppose given a connection on E and a closed current on M.
To this data we are going to associate a periodic cocycle on A.

Let jQ(M) be the de Rham complex of M, and let Q(M, E) be the space of dif-

ferential forms with values in E. We can view the connection as an operator V on Q(M, E)

of degree one satisfying a derivation formula with respect to multiplication by diffe-

rential forms. Let L = i2(M, End E) be the graded algebra of forms with values in the

endomorphism bundle. It operates on Q(M, E) by multiplication, and we can identify
the curvature V2 with an element of degree two in Q(M, End E).

The induced connection in the endomorphism bundle is the degree one derivation

V = ad V on Q(M, End E) such that Vw = [V, w], where the bracket means the com-

mutator (with the appropriate signs) of operators on Q(M, E). One has V(Vw) == [V2, w\.

We now consider the space Hom(B, L) of cochains on A with values in L.

This is a bigraded algebra having the anticommuting derivations 8 and V, where

y= — (— l)^'/^ and where V/is V applied to the values of/. Let 6 eHom(Bi, L°)
be the obvious inclusion of A as the endomorphism valued forms of degree zero. As
this is a homomorphism, we have 86 + 62 = 0. We set

K = V2 + V6 e Hom(Bo, L2) C Hom(Bi, L1)

and define the cochain e^ using the exponential series. It is a finite sum, since K" = 0

for n above the dimension of the manifold. We write ad 6 for the derivation f\-> [6,/].

Lemma 7.1. — One has (8 + ad 6 + V) K = (8 + ad 6 + V) ̂  = 0.

Proof. — We have the general differentiation formula

(7.2) D^) = J^-^DOEC) e^ds
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where D is a derivation. Taking D to be 8 + ad 6 + V, we see that it suffices to prove

D(K) = 0. We note that V(V2) = [V, V2] = 0 and that 8 V2 == 0, because 8 vanishes.
on 0-cochains. Hence

/"^ /v ^/ /^/ /^/ /^/
D(K) == (8 + ad 6 + V) (V2 + V6) = 8 V6 + [6, V6] + [6, V2] + V(V6)

= V(62) + 6 V6 - (V6) 6 + [6, V2] + [V2, 6] = 0,
completing the proof.

Remark 7.3. — This lemma can be proved in a more conceptual way by introducing

the " connection " 8 + 6 + V acting on Hom(B, i2(M, E)). Its curvature is K, and

the identity D(K) == 0 is the associated Bianchi identity.

In addition to the bigraded algebra of bar cochains, we also consider the bigraded

module Hom^Q^ L) of Q-cochains, which also has anticommuting operators 8, V.

Given bar cochains f, g, we can form the ^-cochain Sfg as in § 5.1 $ this operation is.

compatible with 8 as before and with V:

v(a^) =v^( /®,?)(a®i)A,
= = m ( V ® l + 1®V) (/€),?) (B®1) A,

=W)g+{- i)"1^.
The trace map from endomorphisms to functions extends to a trace

tr^ : L == a(M, End E) -> Q(M)
i^/

such that d tr == tr V. Applying this trace to the values of cochains we define

tr^) = tr^ e^ e Hom(B, ^(M)),

tr^(ae^) = tr^SQe^ \\ eHom(Q
Bl

^ Q(M)).

Proposition 7.4. — One has

(8+rf)tr^) =p{tr^6^)},

(8+rf)tr^6^) =a{tr^)}.

Proof. — Setting T == tr^, we have, using the lemma,

(8 + d) r(^) - r((8 + V) ^) = - r([6, ̂ ]) = p{ ̂ (ae^)},

whence the first formula. We also have

s-r^ae^) = T" {8(36^)} = T" {a(86) <F — ae 8^)},

^(ae^) = ̂ {7(^6^)} = ̂ { a(ve) ̂  - ae v^)},

0 = ̂ ([9, 89^]) = ̂ {(9 89 + 899) ̂  - 89[9, eK]}.

Adding these gives, using 89 = — 92,

(8 + d) T"(a9) == ^(^(Ve) ̂ ) = ̂ (aK^).

22
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On the other hand we have

ar(^) == T^) = fl^{e{l-8):E:c)Ke8K}ds

== J'T^K^) ds = ^(BK^),

which completes the proof.

Now let z be a closed current on M of dimension r, and let e = (— \y be its parity.
Integrating over z we obtain cochains

y^tr^eHom^C),

^ = J^tr^O^) e Hom-^Q ,̂ C),

where Horn8 is the space of maps of parity e. Using the expansion for the exponential

,K ̂  ^ ^ V^V, 6] V21! ... [V, 6] ̂ l{n + i, + ... + zj!
w^O io, ...,in^°

and 5.20, we see that 9, ^ have the components

9n(^ .. .,0 ̂ Str^V^V^] V2^... [V^JV21")/^ + zo + ... + ij!,

k 4-1(^ •••^J

= J^S tr^o V^EV, ̂ ] V21!... [V, <zJ V2i»)/(^ + zo + • • • + in)!,

where the sum is over z'o, ..., i^ 0 such that n + S2z, = r. Hence <?„, ^^^.^ vanish
unless n < r and %, r have the same parity.

We now apply the integral over z map to the formulas of 7.4. Using the fact that

z is a closed current and that the map has degree — r, we obtain

S^-PK-l)^}, 8{(- l )^}==a9.

Thus we have proved the following.

Theorem 7. — The pair (9, <p) is a periodic cocycle of parity (— 1) r in the sense of 6.7.

Remarks 7.5. — In the case of the trivial bundle with V == d this periodic cocycle
reduces to the single cyclic r-cocycle

^r+1(^05 • • - 3 ^r) == f ^0 da
! ' • • ^r/^

J z

and all the other components of 9, ^ vanish.

7.6. — The periodic cyclic cohomology class represented by the cocycle in the

theorem is independent of the connection and it depends only on the de Rham class

of the current z, as the reader may easily verify. The class can be described as follows

using the Morita invariance of cyclic cohomology [Cl, II, Cor. 24]. The algebra A is

Morita equivalent to the algebra of smooth functions on the manifold. With respect

to this equivalence the periodic class in question corresponds to the class described by

the cyclic cocycle on functions described in the previous remark.
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7.7. — The above periodic cocycle is closely related to the entire cyclic cocycle

attached to Dirac operators, as we shall indicate in the next section.

8. The JLO cocycle

Our aim. in this section is to interpret the Chern character ofjaffe, Lesniewski,

Osterwalder [JLO] in terms of our cochain theory. We show how their construction

appears naturally in our framework when connections are replaced by superconnections.

Let H be a Hilbert space, let L be the ring of bounded operators on it, and let X

be an unbounded skew-adjoint operator such that the c< heat" operator ^<x2 is of trace

class for t > 0. Let A be an algebra acting on H, and assume that [X, a] is densely-

defined and bounded for any a e A.

We will be working with inhomogeneous cochains on A with values in L which

have infinitely many homogeneous components, that is, which lie in

Hom(B,L) = I! Hom(B^L).
w^O

Actually, in order to obtain an interesting theory, one has to consider cochains satisfying

a certain growth condition on their homogeneous components; these are the entire

cochains of Gonnes [G2]. In the following we discuss only formal aspects of the theory,

and the reader interested in the real story should look at papers on entire cyclic coho-
mology [C2, JLO, GS].

The action of A on H gives us a homomorphism A -> L, which can be viewed

as a 1-cochain 6 such that 86 + 62 = 0. We now propose to combine the " connection ?>

8 + 9 with X in analogy with the theory of superconnections. We follow the method

of [Ql, § I], since it enables us to simultaneously handle the two cases corresponding

to even and odd K-theory.

We extend our algebra of cochains by adjoining an element a

Hom(B, L) [o] = Hom(B, L) ® a Hom(B, L)

such that a2 == 1 and/a = (-— l)1^1 q/. This is naturally a superalgebra where a is odd

and Hom(B, L) has its usual even-odd grading. We extend the differential by setting
8(r==0.

Next we treat 6 + oX as a " superconnection form " and consider its curvature

R = 8(6 + oX) + (6 + <^X)2 = X2 + (T[X, 6].

The exponential of the curvature is given by the perturbation series

(8.1) ^ = S f ^<ox2 a[X, 6] ̂ x2 ... <X, 6] ^"x2 AI ... dt^
n^OJA(n)

where A {n) is the n-simplex {(^o, ..., ^) 11^ 0, 2 ,̂ == 1 }. Because X is unbounded,

neither the superconnection form nor the curvature are in the extended cochain algebra.
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However ^x2 and (i[X, 6] belong to this algebra, since [X, 6] is the map a ̂  [X, a],

which by our assumption has values in L. Thus e^ belongs to Hom(B, L) [a].

Lemma 8.2. — One has 8(<?) + [aX + 6, ̂ ] = 0.

Proof. — The Bianchi identity for 6 + oX and its curvature R is D(R) = 0, where

D is the derivation 8 + ad 6 + ad(oX). So the lemma follows from the derivation

formula 7.2.

We next need a trace to apply to ^B. Before taking this up however, it will be useful

to give another interpretation of the extended algebra of cochains, and to discuss the
graded case.

Up to now we have been considering B and Q®'^ as Z-graded complexes, but

in the present context it is natural to retain only their odd-even grading. So for example

B is naturally a supercoalgebra and the space of maps from B to a superalgebra is a
superalgebra.

Let C[a] == C@ <jC be the Clifford algebra of degree one, where o2 == 1. It is a

superalgebra where or is odd, so the tensor product L[o-] = C[or] ® L = L ® oL is naturally

a superalgebra with L even and o- odd. Then Hom(B, L[or]) is a superalgebra with

product given by the usual formula ^T) = m(^ ® T)) A, but where this tensor product

is defined in the manner appropriate to the super category:

(S®7])(^®J/) ={-l)^^W®^y).

Here | | denotes the total degree modulo two. It is clear that a- commutes with

"even L-valued cochains in this algebra and anticommutes with the odd ones. Hence

Hom(B, L[(j]) can be identified with the extended cochain algebra considered above.

So far we have been discussing the situation where the Hilbert space is ungraded,

and this case is appropriate for handling odd K-classes of A. In the graded case needed

for even K-classes, one supposes given a (Z/2) -grading H = H'^QH" such that X is

odd and the operators from A are even. Then L has a superalgebra structure with the

grading L = L4' @ L~ into even and odd operators. We need to distinguish the algebra L

from the superalgebra L and a convenient way to do this is identify the latter with the

super subalgebra

t ^L-^-CoL-CLM.

Thus we obtain a super subalgebra

Hom(B, £) C Hom(B, L[>]).

We note that although Hom(B, L) and Hom(B, "L) are essentially the same as vector spaces,

their products are different. We observe that e^ belongs to the subalgebra Hom(B, tl)

in the graded case, since CT[X, 6] {a) = (r[X, a] has values in crL" by our assumptions.

We now consider traces, by which we mean traces in the super context, i.e. what

are usually called supertraces. Let I be the ideal in L consisting of trace class operators,
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and let tr : I -> C denote the ordinary honest operator trace. In the even (graded)

case we let T be the ordinary operator supertrace

T : T == I4- ® al- — C, T(A:4- + ax-) = tr(e^+),

where e denotes the involution which is ± 1 on H^ This is a trace on I considered as

a bimodule over L. In the odd (ungraded) case we combine the canonical trace on

the Clifford algebra C[a] -> C[or]^ aC ^ C with the operator trace to obtain a trace
of odd degree

T : IM -> oC, T(^ + qy) = tr(j/),

defined on the ideal I[<r] = C[a] ® I in L[(r].

Applying T to the values of cochains we define cochains

<p == r(^) e Hom^B, C), ^ = ̂ (ae^) e Horn- ̂ fl̂  ̂  C),

where Horn8 denotes the space of cochains of parity s, and s = + in the even case and —

in the odd case. Using the expansion of the exponential 8.1, the fact that <r[X, 6] is

even and 5.20, we obtain the following formula in the even case

(S3)
 k+l(fl05 ••-^)=JA(n)tr^^ox2[x^fll]^lx2••^x5^'<"x^^••^

9n(^ •••^J = ̂ (1^!. •••^n)-

Here n is even and the components for odd n are zero. In the odd case 4^+i and <?„ are

zero for n even, and for n odd they are given by the same formulas with the e deleted.

Theorem 8. — One has

s {r(^)} = (B {± T^(ae^)}, s {± T^(ae^)} = a {r(^)},

z^A + ̂  ̂  ^ZCT ̂ ^ flwrf — in the odd. Hence the cochains 9^, ^»+i satisfy the formulas 6.4.

Proo/'. — The difference in sign in the two cases is due to the degree of T, which

leads to 8r = ± T 8. Hence it suffices to prove the even case. We note that T([<rX, ^K]) =0

because T is a trace on L[(r], and the operations T, ad(GX) on cochains are defined by

applying these operators to the values of a cochain. So

8{ T(^)} = r(8^) = T{ 8^ + [oX, .E]} = - r([6, ̂ ]) = (3{ ̂ (ae^)}

proving the first formula. Similarly using the fact that ^ is a morphism of complexes

with the trace property we have

8{ ̂ (a6^)} = T^{ a(- e2) ^E - ao 8^},

o = ̂ ([6, ao]) = ̂ {(6 ae + ̂ e) ̂  - ae[6, ̂ E]},

o = T^[oX, ao^]) == T^{ a[(rX, o] ^R - ae[(jX, ̂ ]}.

Adding these and using the above lemma we obtain

8 { ̂ (ae^)} = ^(a[aX, 6] ̂ ) = ^(BR^).
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On the other hand

ar(^) == T^) = J'TV^R^) A = T^BR^),
concluding the proof.

Remarks 8.4. — The ^n+i are normalized Hochschild cochains so that as remarked
in § 6.2, one has B^ = b^. This is the cocycle condition proved in [JLO], but written
using a skew-adjoint operator.

8.5. — The relation between the JLO cocycle and the periodic cocycle discussed

in the previous section can be briefly described as follows. Let X be the twisted Dirac

operator on a compact Riemannian spin manifold of dimension 2m with twisting given

by the vector bundle E and connection V, and let A to be the algebra of endomorphisms

of E. We form the JLO cocycle using the operator AX with h > 0 and let h go to zero.

Then the heat kernel method, e.g. in the form ofGetzler's symbolic calculus [G], [CM, § 3],
gives

Hn^T^ae^2^0^83}^ (1/27^ J A(M)tr^{^v2+[v•e]}.
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