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Abstract

We show that the set L of complex-valued everywhere surjective functions
on C is algebrable. Specifically, L contains an infinitely generated algebra
every non-zero element of which is everywhere surjective. We also give a tech-
nique to construct, for every n ∈ N, n algebraically independent everywhere
surjective functions, f1, f2, . . . , fn, so that for every non-constant polynomial
P ∈ C[z1, z2, . . . , zn], P (f1, f2, . . . , fn) is also everywhere surjective.

1 Introduction and background

H. Lebesgue was perhaps the first to produce the somewhat surprising example
of a function f : R → R with the property that on every non-trivial interval
(a, b), f((a, b)) = R. ([3]; see also the more modern reference [2], where exam-
ples of other functions are indicated.) In fact, using a term that we believe was
coined by V. Gurariy, the set of such everywhere surjective functions is lineable;
that is, it contains a vector subspace of the largest possible dimension, 2c (see [1]).
One can follow a similar argument as the one shown in [2] to show that there are
everywhere surjective functions f : C → C, i.e., functions so that for every non-
empty open subset U ⊂ C, f(U) = C. From now on, we denote by L the set of
everywhere surjective functions from C to C. In this note we investigate another
concept introduced by Gurariy, namely whether it is possible to find an algebra B
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with B ⊂ L∪{0}, and we study how “big” B is. Note that “bigness” for us has one
of two possible meanings: The dimension of B as a complex vector space, or else the
cardinality of a minimal system of generators of B as an algebra. We will be talking
about L being algebrable or about the algebrability of L.

We construct here finitely and infinitely generated subalgebras of functions, every
non-zero element being in B. In order to do this, we work with rings of polynomials
in several complex variables, in particular with C[z1, z2], which contains an infinitely
generated subalgebra. We show that algebrability is related to the behavior of the
set of polynomials in several complex variables and, in fact, we prove some results
about polynomials and we generalize certain constructions of algebrability.

We denote by dim(B) the dimension of B as a complex vector subspace of the
set of functions F(C, C). Next, we give a definition that we will need in order to
state our main result:

Definition 1.1 (algebrability).
Given a set A , we say that:

1. A is algebrable if there is an algebra B ⊂ A ∪ {0} so that B has an infinite
minimal system of generators. (Here, by S = {zα} is a minimal set of genera-
tors of B, we mean that B = A(S) is the algebra generated by S, and for every
α0, zα0 /∈ A(S \ {zα0}).)

2. A is (α, β)-algebrable if there is an algebra B so that B ⊂ A∪{0}, dim(B)= α
and card (S) = β, where α and β are two cardinal numbers, and S is a minimal
system of generators of B.

Our main result in this note (theorem 2.3) is the following:

Theorem The set of complex-valued everywhere surjective functions is alge-
brable. In fact, it contains an infinite dimensional and infinitely generated algebra
every non-zero element of which is everywhere surjective.

Besides constructing infinitely generated algebras, we can start by giving some
simple constructions of finitely generated ones. These constructions are useful to
understand the nature of the “infinitely generated problem.” We begin by construct-
ing a singly generated algebra B, generated by f , any fixed everywhere surjective
function, so that every non-zero element of B is also everywhere surjective. To do
this, consider the algebra

B = A({f}).

Let us first show that S = {fn : n ∈ N} is a linear independent family, so that B
has dimension ℵ0 as a vector space. Suppose that

∑n
j=1 ajf

kj ≡ 0. Since f is every-
where surjective we have that the polynomial

∑n
j=1 ajz

kj ≡ 0. Therefore, aj = 0 for
every j, and thus the family S is linearly independent. Next, let us see that every
g ∈ B, g 6= 0, is everywhere surjective. Any such g can be written as

∑n
j=1 ajf

kj for
some k1, k2, . . . , kn ∈ N. Take now ∅ 6= U ⊂ C any open subset of C and any w ∈ C.
We need to show that there is c ∈ U so that g(c) = w. Let d ∈ C be a zero of the
polynomial

∑n
j=1 ajz

kj − w. Since f ∈ L, there is c ∈ U so that f(c) = d. Thus,
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g(c) = w, and g ∈ L. Therefore, we have constructed an algebra of everywhere
surjective functions generated by one element, and L is (ℵ0, 1)-algebrable.

We can go further, and show that L is (ℵ0, n)-algebrable for every n ∈ N. In
order to see this, for 1 < n ∈ N consider the set

Sn = {fn, fn+1, . . . , f 2n−1}.

We have that:

1. Sn has cardinality n.

2. Bn = A(Sn) is such that for every h ∈ Sn, h /∈ A(Sn \ {h}); thus Sn is a
minimal system of generators.

3. By the previous argument it is easy to see that for every n ∈ N, every non-zero
element of Bn is everywhere surjective, so Bn \ {0} ⊂ L.

4. The set {fn, f2n, f3n, f4n, . . . } ⊂ Bn, so dim(Bn)= ℵ0 and L is (ℵ0, n)-algebrable.

Moreover, we have that the following holds:

C[z] ≡ A({1, f}) ) A({f}) = B1 ) B2 ) B3 ) B4 ) B5 ) · · · ,

since Bn does not contain the non-zero constants, fn ∈ Bn \ Bn+1, and f /∈ Bn, for
n > 1, and where the symbol “≡” means “isomorphism of algebras.”

2 Algebrability of L

So far we have essentially been working with polynomials in C[z]. However, C[z] does
not contain an infinitely generated algebra ; i.e. all of its subalgebras are finitely
generated. A proof of this known result can be sketched as follows: In K[x] (K = R
or C), suppose that S is a subalgebra that contains K. Let P be a non-constant
polynomial in S and let T be the subalgebra of S generated by 1 and P . Then x is
algebraic over T , so K[x] is a finitely generated T -module. Note that T is Noetherian
and S is a T -submodule of K[x], so S is a finitely generated T -module. Hence S is
a finitely generated algebra.

Therefore the question of whether L is algebrable cannot be solved using the one
variable methods of the previous section. On the other hand, the problem we want
to solve can be reduced to answering the following question about two variables in
a positive way:

Can one find two algebraically independent surjective functions f, g :
C → C, so that the algebra generated by them, A(f, g), verifies that
every element of A(f, g) \ {0} is onto?

In other words, is it possible to find two onto functions f, g : C → C, so that

A(f, g) ≡ C[z1, z2],
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and such that every non-zero function h ∈ A(f, g) is onto?
As we saw earlier, C[z] only contains finitely generated algebras. On the other

hand, the ring of polynomials in two complex variables C[z1, z2] contains a subalgebra
whose minimal system of generators is

S = {z1, z1z2, z1z
2
2 , z1z

3
2 , z1z

4
2 , z1z

5
2 , . . . },

i.e., an infinitely generated subalgebra. Therefore, if f and g are two algebraically
independent functions, then the algebra generated by them is isomorphic to the
ring of polynomials in two complex variables C[z1, z2], i.e. A(f, g) ≡ C[z1, z2], and
therefore A(f, g) also contains an infinitely generated subalgebra. Let us see that a
positive answer to the above question suffices for our purposes. Suppose that one
can find such functions f and g verifying that A(f, g) ≡ C[z1, z2], and with every
0 6= h ∈ A(f, g) being onto. Then, consider the algebra A(S) generated by the
minimal system of generators

S = {f, fg, fg2, fg3, fg4, . . . }.

Fix an arbitrary everywhere surjective function F : C → C and define a new algebra,
F , by

F = {H ◦ F : H ∈ A(S)}.

This new algebra F is also infinitely generated, and its minimal system of generators
is the infinite set

{f ◦ F, (fg) ◦ F, (fg2) ◦ F, (fg3) ◦ F, (fg4) ◦ F, . . . }.

The following simple lemma will be needed in what follows. The proof can be found
in [1].

Lemma 2.1. Let H : C → C be an onto function, and let F : C → C be an
everywhere surjective function. Then H ◦ F is everywhere surjective.

After this, it is clear that we will be done once we show that there are two
algebraically independent onto functions f and g so that every non-zero function
h ∈ A(f, g) is onto. We construct two surjective functions f and g and we show
that given any non-constant polynomial P ∈ C[z1, z2], P (f, g) is an onto function.
In order to show this, we need another simple lemma.

Lemma 2.2. Let n ∈ N. If P ∈ C[z1, z2, . . . , zn] is a non-constant polynomial, then
there exist m1, m2, . . . ,mn ∈ N so that

Q(z) = P (zm1 , zm2 , . . . , zmn)

is onto.

Proof.
We argue by induction on n, noting that the result is the fundamental theorem of
algebra for n = 1.
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Suppose the result is true for some n ∈ N. Any non-constant polynomial P ∈
C[z1, z2, . . . , zn, zn+1] can be written as follows:

P (z1, z2, . . . , zn, zn+1) =
k∑

j=0

zj
1 · Sj(z2, . . . , zn+1)

for some k ∈ N, where Sj ∈ C[z2, ..., zn+1]. We now show that we can choose
m1, m2, . . . ,mn+1 ∈ N so that Q(z) = P (zm1 , zm2 , . . . , zmn+1) has degree one or
bigger. Denote di = deg(Si).

• If k = 0, then our assertion is true by the induction hypothesis.

• If k 6= 0 then we can choose m2 = · · · = mn+1 = 1 and m1 ∈ N such that

m1 · k + dk > max{m1(k − 1) + dk−1, m1(k − 2) + dk−2, . . . ,m1 + d1, d0}.

By choosing these values, we obtain that

deg(P (zm1 , zm2 , . . . , zmn+1)) = deg(P (zm1 , z, . . . , z)) ≥ 1,

and Q(z) is onto.

�

With this lemma, we can now construct two functions f and g as follows. For every
(p, q) ∈ N× N let φp,q be a homeomorphism between the sets

Up,q = {a + ib ∈ C : p− 1 < a < p, q − 1 < b < q} and C.

Let us define the following two functions:

f(z) =

{
(φp,q(z))p if z ∈ Up,q

0 otherwise,

and

g(z) =

{
(φp,q(z))q if z ∈ Up,q

0 otherwise.

To show that f and g are algebraically independent, let P ∈ C[z1, z2] be a non-
constant polynomial, and consider Q, m1, and m2 as in the previous lemma (for the
case n = 2.) The function h = P (f, g)|Um1,m2

verifies that

h(φ−1
m1,m2

(z)) = P (zm1 , zm2) = Q(z), for every z ∈ C.

Then,
h(Um1,m2) = h(φ−1

m1,m2
(C)) = Q(C) = C.

So h is onto and, in particular, P (f, g) cannot be 0. And we have finally shown the
main result:

Theorem 2.3. The set of complex-valued everywhere surjective functions is alge-
brable, i.e., it contains an infinite dimensional and infinitely generated algebra every
non-zero element of which is everywhere surjective.
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3 Remarks

It is interesting to notice that we can use lemma 2.2 to construct, for every n ∈ N,
n algebraically independent onto functions, f1, f2, . . . , fn : C → C, so that every
non-zero function h ∈ A(f1, f2, . . . , fn) is onto. In order to construct such functions,
consider (for every j ∈ N) the “strips” given by the following open sets:

Uj = {a + ib ∈ C : j − 1 < a < j}.

Now, consider any bijection between the countable collection {Uj : j ∈ N} and
Nn. Let us now relabel the Uj’s, calling them Um1,m2,...,mn , where the n − tuple
(m1, m2, . . . ,mn) ∈ Nn. Next, for every (m1, m2, . . . ,mn) ∈ Nn, let φm1,m2,...,mn be
any homeomorphism between the sets Um1,m2,...,mn and C. Next, define the following
functions:

fj(z) =

{
(φk1,k2,...,kn(z))kj if z ∈ Uk1,k2,...,kn ,

0 otherwise,

for every 1 ≤ j ≤ n.
We need to show that f1, f2, . . . , fn are algebraically independent and that any

0 6= h ∈ A(f1, f2, . . . , fn) is onto. For that, take any non-constant polynomial
P ∈ C[z1, z2, . . . , zn] and consider Q,m1, m2, . . . ,mn as in lemma 2.2. The function
h = P (f1, f2, . . . , fn)|Um1,m2,...,mn

verifies that

h(φ−1
m1,m2,...,mn

(z)) = P (zm1 , zm2 , . . . , zmn) = Q(z), for every z ∈ C.

Then
h(Um1,m2,...,mn) = h(φ−1

m1,m2,...,mn
(C)) = Q(C) = C.

Thus, h is onto and, in particular, P (f1, f2, . . . , fn) cannot be 0. This completes the
construction.

From this construction it is clear that for every n ∈ N, we can also construct
n algebraically independent everywhere surjective functions, g1, g2, . . . , gn, so that
for every non-constant polynomial P ∈ C[z1, z2, . . . , zn], P (g1, g2, . . . , gn) is also
everywhere surjective. For this it is enough to consider the functions gj = fj ◦ F ,
where F : C → C is any previously fixed everywhere surjective function and then
use lemma 2.1.
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Universidad Complutense de Madrid
Plaza de las Ciencias 3
28040 - Madrid. spain
jseoane@mat.ucm.es


