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ALGEBRAIC ALGORITHMS FOR SAMPLING
FROM CONDITIONAL DISTRIBUTIONS

BY PERSI DIACONIS1 AND BERND STURMFELS2

Cornell University and University of California, Berkeley

We construct Markov chain algorithms for sampling from discrete
exponential families conditional on a sufficient statistic. Examples include
contingency tables, logistic regression, and spectral analysis of permuta-
tion data. The algorithms involve computations in polynomial rings using
Grobner bases.¨

1. Introduction. This paper describes new algorithms for sampling from
the conditional distribution, given a sufficient statistic, for discrete exponen-
tial families. Such distributions arise in carrying out versions of Fisher’s
exact test for independence and goodness of fit. They also arise in construct-
ing uniformly most powerful tests and accurate confidence intervals via
Rao�Blackwellization. These and other applications are described in Section
2. As shown below, the new algorithms are a useful supplement to traditional
asymptotic theory, which is useful for large data sets, and exact enumeration,
which is useful for very small data sets.

The following example should motivate the general construction. Table 1
shows data gathered to test the hypothesis of association between birthday

� Ž . �and deathday Andrews and Herzberg 1985 , page 429 . The table records
the month of birth and death for 82 descendants of Queen Victoria. A widely
stated claim is that birthday�deathday pairs are associated. The usual � 2

test for independence is 115.6 on 121 degrees of freedom, suggesting no
association. The classical rules of thumb for validity of the chi-square approx-

Ž .imation minimum 5 per cell are badly violated here, and there are too many
tables with these margins to permit exact enumeration. Figure 1 shows a
probability�probability plot of the permutation distribution of the chi-square

Ž 2 .statistic versus the chi-square approximation � . The approximation is121
not particularly accurate. Indeed, the permutation probability of � 2 � 115.6
is 0.3208 versus 0.3775 for the approximation.

To illustrate the present approach, consider generating a random contin-
gency table with fixed row and column sums. Thus, fix positive integers I and
J and a set of row sums r , r , . . . , r and column sums c , c , . . . , c . Let1 2 I 1 2 J
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TABLE 1
Relationships between birthday and deathday

Month
Month of deathof

birth Jan Feb March April May June July Aug Sept Oct Nov Dec Total

Jan 1 0 0 0 1 2 0 0 1 0 1 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5
March 1 0 0 0 2 1 0 0 0 0 0 1 5
April 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
June 2 0 0 0 1 0 0 0 0 0 0 0 3
July 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sept 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0 0 1 1 0 7
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3

Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Ž . Ž .FF r, c be the set of I � J arrays x of nonnegative integers with the giveni j
row sums and column sums. Let

I Jcj NH � , N � c � r ,Ł Ý Ýi jr r ��� rž /x ��� xž / 1 2 I1 j I jj i�1 j�1

Ž .be the hypergeometric distribution on FF r, c . This is the conditional distribu-
Ž .tion of the data, given the sufficient statistics row�column sums for the

classical model of independence.
A Monte Carlo method for generating from H proceeds as follows. Let x be

a table which satisfies the constraints. Modify x by choosing a pair of rows
and a pair of columns at random. These intersect in four entries and x is
modified as

1� � � �or with probability each.2� � � �
The modification adds or subtracts 1 from each of the four entries as
indicated. This does not change the row or column sums. If the modification
forces negative entries, discard it and continue by choosing a new pair of rows

Ž .and columns. This describes a Markov chain on FF r, c . By the usual Metropo-
Ž .lis procedure see Lemma 2.1 the chain is modified to give a connected,

aperiodic, reversible Markov chain with stationary distribution H.
Figure 2 shows a histogram of the chi-square statistic for Table 1. Figure 1

and the counts reported above were derived from this chain. The 106 steps of
the Markov chain took about three minutes to run on a p.c. As explained in
Section 2, there are more direct methods for sampling from H for two-way
tables but for three- and higher way tables the present approach seems to be
the only one.
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FIG. 1. Probability�probability plot of the permutation distribution of the chi-square statistic
Ž .versus chi-square 121 .

More generally, let XX be a finite set. Consider the exponential family

1.1 P x � Z � e��T Ž x . , � � � d ,Ž . Ž . Ž .�

Ž . d � 4 Ž � 4.Z � a normalizing constant with T : XX � � � 0 here � � 0, 1, 2, . . . . If
Ž .X , X , . . . , X are independent and identically distributed from 1.1 , the1 2 N

Ž . Ž .statistic t � T X � ��� �T X is sufficient for � . Let1 N

1.2 YY � x , . . . , x � XX N : T x � ��� �T x � t .Ž . Ž . Ž . Ž .� 4t 1 N 1 N

Ž .Under 1.1 the law of X , . . . , X given t is uniformly distributed over YY . In1 N t
natural problems it is difficult to enumerate YY effectively or sample from thet
uniform distribution on YY .t

It is usual to recast this problem in terms of the hypergeometric distribu-
tion as follows. Write

N

� 4t � T X � G x T x with G x � � i : X � x .Ž . Ž . Ž . Ž .Ý Ýi i
xi�1

Ž .The counts G x form a sufficient statistic for any independent identically
distributed data. Define the set of all data sets with the given sufficient
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FIG. 2. Histogram of the chi-square statistic for Table 1.

statistic as

1.3 FF � f : XX � �: f x T x � t .Ž . Ž . Ž .Ýt ½ 5
x

Ž .Since T x is nonzero for all x and one always begins with one data set with
sufficient t, FF is finite and nonempty. This is assumed throughout. Thet
image of the uniform distribution on YY under the map from YY to FF ist t t
called the hypergeometric distribution

N ! �11.4 H f � f x ! .Ž . Ž . Ž .Ž .Łt � �YY xt

The problem is thus reduced to sampling from H on FF , given t.t t
�Ž . 4For contingency tables, we have XX � i, j , 1 � i � I, 1 � j � J . The

Ž . I�Jusual model for independence has T i, j � � a vector of length I � J
Ž .with two entries equal to one and the rest equal to zero. The ones in T i, j

are in position i in the first I coordinates and position j in the last J
coordinates. The sufficient statistic t contains the row and column sums of
the contingency table associated to N observations. The set FF is all I � Jt
tables with these row and column sums. The hypergeometric distribution
Ž . Ž .1.4 becomes the classical distribution at 1.1 .
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� �This paper gives methods for finding the analog of moves for general� �
exponential families.

DEFINITION. A Markov basis is a set of functions f , f , . . . , f : XX � �1 2 L
Ž .here � � 0, � 1, � 2, . . . such that

1.5 a f x T x � 0, 1 � i � L,Ž . Ž . Ž . Ž .Ý i
x

For any t and f , f � � FF there are � , f , . . . , � , f with � �Ž . Ž .t 1 i A i i1 A1.5 bŽ . Ž .
�1,

A a
�f � f � � f and f � � f 	 0 for 1 � a � A.Ý Ýi i j ij j

j�1 j�1

A Markov basis allows construction of a Markov chain on FF . From f � FF ,t t
� 4choose I uniformly in 1, 2, . . . , L and � � �1. Form f � � f . If f � � f isI I

nonnegative, the chain moves there. In other cases the chain stays at f.
Ž .Ž . Ž .Ž .Condition 1.5 a says f � � f is in FF . Condition 1.5 b says the chain isI t

connected. The chain is modified to have stationary distribution H via ant
extra Metropolis coin-flip. Lemma 2.1 shows this gives an irreducible, aperi-
odic Markov chain with H as stationary distribution.t

Section 2.1 lays out the stochastic underpinnings showing a variety of
Ž .ways that the moves 1.5 can be used. In this paper we have used chi-square

tests for goodness-of-fit but the conditional algorithms can be used to cali-
brate any test statistic. Section 2.2 contains a literature review along with a
description of natural statistical problems where conditional calculations are
useful. Section 2.3 gives pointers to rates of convergence literature. For

Ž 2 .example, the chain for tables described above requires N steps to reach
stationarity while some of the speedups in Section 2.1 converge much more
rapidly.

Our main contribution is a method for finding and understanding basic
moves using tools from computational algebra. Section 3 shows how finding
� 4 Ž .f , . . . , f in 1.5 is equivalent to finding generators for an ideal in a ring of1 L
polynomials. This allows us to use the rapidly expanding Grobner basis¨
technology.

Sections 4, 5 and 6 contain detailed treatments of special cases: con-
tingency tables, logistic regression, and ranked data are treated. These il-
lustrate the application to problems of testing, estimation and confidence
intervals. They are more or less self-contained and may be read now for
further motivation.

2. Basic stochastics. This section describes the stochastic and statisti-
cal background. In Section 2.1 we show how a variety of Markov chains can

Ž .be constructed using the basic moves 1.5 . In Section 2.2 we review the
statistical literature on conditional inference and the various approaches that
have been used to approximate the conditional distribution. In Section 2.3 we
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give an overview of available results on the rate of convergence of the chains
to their stationary distribution.

2.1. Markov chains. We first show how to set up a Markov chain for a
general distribution on FF .t

Ž . Ž .LEMMA 2.1. Let � g be a positive function on FF of 1.3 . Given functionst
Ž .f , . . . , f satisfying 1.5 , generate a Markov chain on FF by choosing I1 L t

1� 4uniformly in 1, 2, . . . , L and � � �1 with probability independent of I. If2
Žthe chain is currently at g � FF , it moves to g � � f provided this is nonnega-t I

.tive with probability

� g � � fŽ .I
min , 1 .½ 5� gŽ .

In all other cases the chain stays at g. This is a connected, reversible,
aperiodic Markov chain on FF with stationary distribution proportional tot
Ž .� g .

Ž .PROOF. Call the chain described K g, g . It is easy to check that˜
Ž . Ž . Ž . Ž . Ž .Ž .� g K g, g � � g K g, g . Condition 1.5 b shows that the chain is con-˜ ˜ ˜

Žnected. Since there is some holding probability iterate g � g � f suffi-1
.ciently often to get a negative coordinate , we are done. �

REMARKS. A useful class of measures on FF is specified by choosing at
� Ž . Ž Ž ..function � : � � � for each x � XX . For g � FF , define � g � Ł � g x .x t x x
Ž . aFor example, if � a � � �a! with 0 � � � 1, then � becomes the multiplex x x

hypergeometric distribution which arises when carrying out power calcula-
tions or generating confidence regions. Taking � � 1 gives they hypergeo-x

Ž . Ž . Ž .metric distribution of 1.4 . For this class of measures, the ratio � g �� g˜
involves only a few terms in the product if g and g differ in only a few terms.˜
This always seems to happen, and we have found this method effective in the
examples of Sections 4�6.

�As a nonstandard example, Table 2 gives a 4 � 4 contingency table data
Ž .� 2of Snee 1974 . The chi-square statistic for this table is � � 138.29 on

TABLE 2
A 4 � 4 contingency table

Hair color

Eye color Black Brunette Red Blonde Total

Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592
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Ž .9 degrees of freedom. Diaconis and Efron 1985 were interested in the
2 � Ž . �distribution of � under the uniform distribution on FF thus � g � 1 .t

They labored long and hard to determine the proportion of tables with the
same row and column sums as Table 2 having � 2 � 138.29. Their best
estimate using a combination of asymptotics and Monte Carlo was ‘‘about
10%.’’ Figure 3 shows a histogram from a Monte Carlo run using Lemma 2.1
with � � 1. In the run, 18.31% of all tables had � 2 � 138.29.

� �The algorithm needs no Metropolis step and simply involves the � �
moves described in the Introduction. As an indication of the sizes of the
state spaces involved, we note that Des Jardins has shown there are exactly
1,225,914,276,276,768,514 tables with the same row and column sums as

Ž .Table 2. See Diaconis and Gangolli 1995 for more on this. Holmes and Jones
Ž .1995 have introduced a quite different method for uniform generation which
gives similar results for this example.

Ž .Lemma 2.2 shows how to use the moves 1.5 as directions in FF to maket
longer steps.

Ž .LEMMA 2.2. Give f , . . . , f satisfying 1.5 on FF , generate a Markov chain1 L t
� 4on FF , by choosing I uniformly in 1, 2, . . . , L . If the chain is currently att

g � FF , determine the set of j � � such that g � jf � FF . Choose j in this sett I t

FIG. 3. Histogram from a Monte Carlo run using Lemma 2.1 with � � 1.
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with probability proportional to

1
2.1Ž . Ł g x � jf x !Ž . Ž .x�C II

� Ž . 4with C � x: f x � 0 . This is a connected, reversible, aperiodic MarkovI I
Ž .chain on FF with stationary distribution H of 1.4 .t t

PROOF. The chain described is a modification of the popular Gibbs sam-
Ž .pler or hit and run algorithm. It is easy to see that the product 2.1 is

� 4proportional to the stationary distribution constrained to the line g � jfI j� �

Ž .Ž .
 FF . Hence the chain is reversible with respect to H . From 1.5 b , thet t
chain is connected and again has some holding states and so is aperiodic.
This completes the proof. �

REMARKS. For contingency tables, the algorithm of Lemma 2.2 becomes:
pick a pair of rows and a pair of columns at random. This delineates a 2 � 2
subtable. Replace it by a 2 � 2 table with the same margins, chosen from the
hypergeometric distribution. This is easy to do; such a 2 � 2 table being

Ž .determined by its 1, 1 entry.
Ž .Lemma 2.2 works as well for a general measure � ; just replace 2.1 by

Ž Ž . Ž ..Ł � g x � jf x . For example, in a contingency table, if � � 1, thex � C II

2 � 2 table is replaced by a uniformly chosen 2 � 2 table with the same
margins.

Ž .Sampling from 2.1 can itself be done by running a Markov chain in j. We
recommend the directed Metropolis chains of Diaconis, Holmes and Neale
Ž .1997 .

Ž . Ž .FINAL REMARKS. i Diaconis, Eisenbud and Holmes 1997 have used
� 4Lf to run a walk directly on the data space YY . This seems useful fori i�1 t
sparse problems.

Ž . � 4Lii There is a completely different use of the moves f to appliedi i�1
probability problems. For example, consider FF as the set of all I � I tablest

Ž .with all row and column sums equal to m magic squares . A variety of
applied probability questions can be asked. Pick a table in FF at random;t

Ž .what is the distribution of the number of 2’s or m’s or . . . ? Stein’s method
� Ž .�see Stein 1986 , is an effective tool to deal with such nonstandard problems.

Ž �.A basic ingredient of Stein’s method is an exchangeable pair X, X which is
marginally uniform on FF . This is exactly what the Markov chain of Lemmat
2.1 provides: choose X uniformly in FF and let X � be one step in the chaint
Ž . Ž .with � � 1 . Holmes 1995 has used this approach to prove that for I large

Ž .and m � 2, the number of twos in a random table is approximately Poisson 1 .
Ž .iii All the algorithms in this paper are for discrete exponential families.

The basic ideas can be adapted to more general spaces. For example, in
testing goodness-of-fit to a gamma family with unknown location and scale,
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�Ž .one needs to generate from the uniform distribution on x , . . . , x ; x � � ,1 N i �
4Ýx � m, Ł x � p for fixed m and p. Given x satisfying the constraints,i i

choose three coordinates at random, change one of them by a small amount
� Ž .�say, uniformly chosen in �a, a and then solve for the unique value of the
other two coordinates to satisfy the constraints.

Ž .iv It is worth recording why one ‘‘obvious’’ approach, using a lattice basis
to move around on FF , doesn’t work. Given a statistic T : XX � �d, define at

� � Ž . � 4d � XX matrix A with columns T x . Then FF � g: XX � N: Ag � t . It ist
Žeasy to find a basis of integer vectors V , . . . , V for ker A using, e.g., the1 b

� Ž . �Hermite normal form of A Schrijver 1986 , page 45 . Then, for every
g, g� � FF , g� � g � Ýb a V , for some integers a . This suggests a simplet j�1 j j j
Markov chain: from g, choose A , A , . . . , A independently from some fixed1 2 b

� Ž .� � bmeasure on � e.g., Poisson � . Try to move to g � g � Ý � A V withj�1 j j j
� � �1 symmetric and independent of A . If g� � FF the walk moves there.j j t

If not, the walk stays at g.
We have tried this idea in half a dozen problems and found it does not

work well. For example, take 10 � 10 tables with all row and column sums
� �equal to 2. A lattice basis as above can be taken as moves for all sets of� �

four adjacent squares. In repeated runs, the lattice basis walk required
millions of steps to converge while the walk described in the Introduction
converged after a few hundred steps. Further, finding a choice of the Poisson
parameter � so that the chain moved at all was a remarkably delicate
operation.

Ž .v The ideas above can be used to solve large problems by working on
� 4Lsmaller pieces through a procedure we call a fiber walk. Let f be ai i�1

� � 4 � � 4 � �Markov basis. Write f � max f , 0 , f � max �f , 0 so f � f � f . Leti i i i i i i
� �Ž . �Ž .4 � 4deg f � max Ý f x , Ý f x . Let D � max deg f . For contingencyi x i x i i i

� �tables, the basic moves have degree 2 so D � 2. As will emerge, we can� �
� 4get bounds on the degree without knowing f . Let D� be the minimumi

degree over all generating sets. Just known an upper bound D� � d� allows
Ž .a walk to be constructed on YY , the big fiber of 1.2 . The walk is simple: fromt

Ž .y � TT , choose d� coordinates at random. Calculate t�, the sum of T x overt
the chosen coordinates. Now, choose uniformly at random from the set of d�
tuples with the given value of t� and replace the d� tuples chosen with the
freshly chosen set. It is easy to see that this walk gives a symmetric,
connected, aperiodic Markov chain on YY . It follows that the image walk on FFt t
has the hypergeometric distribution.

As an example, Section 6 describes some statistical problems involving
ranked data. For five ranked items, there are too many variables to easily
find a Markov basis. On the other hand, in Section 6.2 we are able to show
that d� � 5. We may run a walk by choosing 5-tuples of permutations,
computing their 5 � 5 permutation matrices and choosing a fresh 5-table by
direct enumeration. The required calculations are quite feasible.

A crucial ingredient for this version of the algorithm is a bound on D�. We
describe general bounds in Section 3.3 and specific bounds in Sections 4�6.
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2.2. Literature review for conditional and exact analysis. The work pre-
sented here has numerous links to inferential and algorithmic problems. In
this section we give pointers to closely related literature.

As with so many topics of inferential interest, conditioning was first
studied by R. A. Fisher. He systematically used the conditional distribution of
the data given a sufficient statistic as a basis for tests of a model in

Ž .Statistical Methods for Research Workers 1925 . Even earlier, Fisher, Thorn-
Ž .ton and Mackenzie 1922 based a test on the fact that if X , . . . , X are1 n

independent Poisson variates then the distribution of X , . . . , X given X �1 n 1
��� �X � h is like the box counts of h balls dropped at random into n boxes.n

Ž .He returned to this in Fisher 1950 , showing how the exact count of
partitions gives a useful supplement to the asymptotic chi-square approxima-
tion. Fisher suggested and defended the use of conditional tests in regression,

Ž .contingency tables and elsewhere. Savage 1976 contains an overview and
Ž .Yates 1984 gives a careful history of the controversy over conditional testing

for 2 � 2 tables.
Ž .In independent work, Neyman 1937 introduced conditioning as a way of

deriving optimal tests and confidence intervals for exponential families.
Roughly, to test if one component of a vector of parameters is zero, one uses
the conditional distribution of the corresponding component of the sufficient
statistic given the rest of the statistic. This has evolved into a unified theory

Ž .described in Chapters 3 and 4 of Lehmann 1986 . Here conditioning is used
as a device for getting rid of nuisance parameters. The overall tests are
unconditional. An example where the present techniques are used in this way
is in Section 5. This decision theoretic use of conditioning has a healthy

� Ž .development see, e.g., Farrell 1971 or Cohen, Kemperman and Sakrowitz
Ž . �1994 .

There is far more to the conditional controversy than the above applica-
Ž .tions. Fortunately, there are good surveys available. Cox 1958, 1988 , Kiefer

Ž . Ž . Ž .1977 , Efron and Hinkley 1978 and Brown 1990 have been influential
Ž .papers which have extensive literature reviews. Lehmann 1986 , Chapter 10

Ž .gives a splendid overview of the inferential issues. Agresti 1992 surveys
Ž .contingency tables and Reid 1995 surveys the approximation problem.

On the computational side, there has become a growing awareness that the
usual asymptotic approximation of mathematical statistics can be poor for
moderate sample sizes. Clear examples in a contingency table setting are

Ž . Ž . Ž .given by Yarnold 1970 , Odoroff 1970 , Larntz 1978 and many later
writers. This has led recent investigators to pursue an intensive program of
exact computation or better approximation. The Monte Carlo approach de-
scribed here seems to be ‘‘in the air’’ currently. Versions for two-way tables

Ž . Ž . Ž .are explicitly described in Aldous 1987 , Gangolli 1991 and Glonek 1987 .
Apparently Darroch suggested the idea in the late 1970’s. It is easy to
generate an I � J table with fixed margins from the hypergeometric distri-
bution: generate a random permutation of n items. Look at the first r1
places; the number of entries between c � ��� �c � 1 and c � ��� �c is1 j�1 1 j

n , 1 � j � J. The number of such entries in the next r places is r , and so1 2 2 jj
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on. We have compared the output of this exact Monte Carlo procedure with
the random walk procedure for a variety of tables and found they produce
virtually identical results for two-way tables.

Closely related is a combinatorial method for carrying out an exact test for
Ž .Hardy�Weinberg equilibrium. Guo and Thompson 1992 give a random walk

approach which can be seen as a special case of the general algorithm. See
Ž .Section 4.3. Lange and Lazzeroni 1997 give a different random walk, which

Ž .comes with a guarantee. Besag and Clifford 1989 discuss a similar method
for testing the Rasch model with binary matrices.

Pagano, working with a variety of co-authors, has suggested methods for
exact computations using the fast Fourier transform. Papers by Baglivio,

Ž .Olivier, and Pagano 1988, 1992, 1993 contain refined versions of these ideas
and pointers to earlier literature. Exact computational procedures are given
for contingency tables, logistic regression and a variety of standard discrete
data problems.

Ž .Mehta and Patel 1983 proposed a novel network approach, which achieves
exact enumeration by using dynamic programming ideas. This has been
refined and extended into the program STATXACT, which carries out tests
for contingency tables and other problems.

A third approach uses the representation of the hypergeometric distribu-
Ž .tion as the conditional distribution for an exponential family 2.3 given t.

˜ŽChoosing an appropriate value of � e.g., � the maximum likelihood estima-
. Ž .tor , Edgeworth or saddle point approximations to the probability P t and�̃

Ž .P x, t are computed. Their ratio gives an approximation to H . These seem�̃ t
quite accurate for a variety of applications with moderate sample sizes. Levin
Ž .1983, 1992 sets out the general theme which is developed in Kong and Levin
Ž . Ž . Ž .1993 and Kong 1993 . McCullogh 1985, 1986 , Diaconis and Freedman
Ž . Ž . Ž .1987 , Jensen 1991 and Skovgaard 1987 give further relevant results for

Ž .such conditional approximations. Kolassa and Tanner 1994, 1996 are a
recent contribution in this direction.

2.3. Rates of convergence. The Markov chains described in Section 2.1
require some running time to reach their stationary distribution. There has
been active work in computing sharp rates of convergence for such discrete
chains. Roughly, for a variety of chains, theory shows that order � 2 steps are
necessary and suffice for convergence in total variation. Here � is the
diameter of the underlying graph, which has as vertices the points of the

ˆ ˆŽ .state space FF in our examples and an edge from f to f if f can be reachedt
in one step from f.

The theory has been most carefully worked out for contingency tables with
� � � �uniform stationary distribution and steps or as described in the� � � �

Introduction. Here is a typical result.

� Ž .�THEOREM Diaconis and Saloff-Coste 1995a . Fix I, J and positive inte-
Ž . Ž . Ž .ger r � r , . . . , r , c � c , . . . , c with Ýc � Ýr � N. Let FF r, c be the set1 I 1 J j i
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of all I � J tables with row�column sums r, c. Let U be the uniform distribu-
� �Ž . Ž .tion on FF r, c . Let K x, y be the walk described in the Intro-� �

duction. Then,

	 k 	 �A 2 c 2K � U � A e for k � c� , c 
 0.T Vx 1

Ž .Here x � FF r, c is any starting state and A , A are explicit constants which1 2
depend on I, J but not otherwise on r, c. Further � , the diameter of the graph,
satisfies � � N�2.

Ž .Conversely, there is x � FF r, c and constants A , A as above such that3 4

	 k 	 �A 4 c 2K � U 	 A e for k � c� .T Vx 3

The theorem shows that order � 2 steps are necessary and sufficient to
achieve stationarity. The constants A grow exponentially in D � I � J beingi

Ž .D �4 Ž .roughly D�4 . For small tables e.g., 4 � 4 this gives reasonable rates.
� �For example, for Table 2, it suggests 100,000 steps are necessary and� �

suffice for convergence.
For large size tables, there is an alternative result due to Chung, Graham

Ž . Ž .2and Yau 1996 which has similar conclusions	order diam steps necessary
and sufficient	but constants which do not depend badly on dimension. Their
result does require restrictions on the row�column sums being sufficiently
large. A similar result, proved by different methods, is due to Dyer, Kannan

Ž .and Mount 1995 . Presumably the technical difficulties blocking a unified
Ž .2result will soon be overcome. For the present, order diameter with diame-

ter � N�2 is a useful heuristic with quite a bit of technical back-up.
� �The analysis above is all for the local algorithm based on moves. The� �

algorithm described in Lemma 2.2 obviously gets random much more rapidly,
Žat least for non sparse tables, such as Table 2. For sparse tables it is not

.possible to move very far. It is one of the challenging open problems of the
theory to prove this. The algorithms of Lemma 2.2 are very similar to the

Ž .continuous hit and run algorithms of Belisle, Romeijn and Smith 1993 .
There, Doeblin’s condition gives reasonable results. It should be possible to
modify the proofs there for the discrete case.

The discussion above has all been for tables. There is much to be done in
adapting the available machinery, such as the Poincare, Nash and log´

Ž .Sobolev inequalities used by Diaconis and Saloff-Coste 1995b, 1996a, b , to
Ž .handle more general problems. Virag 1997 is a useful contribution to this

program.
The approaches above use eigenvalues to bound the rate of convergence.

Ž .There is every hope of using coupling as in Hernek 1997 or stopping times
Ž .as in Propp and Wilson 1996 to get useful bounds.

3. Some algebra. In this section we show how to compute a Markov
basis using tools from computational algebra. This is not familiar in statisti-
cal work but we can assure the reader that all we need is long division of
polynomials. The first two chapters of the marvelous undergraduate book by

Ž .Cox, Little and O’Shea 1992 is more than enough background. In Section 3.1
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we show how finding a Markov basis is equivalent to finding a set of
generators of an ideal in a polynomial ring. In Section 3.2 we show how to
represent this ideal in a way suitable for computation in MATHEMATICA or
MAPLE.

3.1. Markov bases and ideals. Throughout, XX is a finite set and T :
d � 4XX � � � 0 is given. For each x � XX introduce an indeterminate also

� �denoted x. Consider the ring of polynomials k XX in these indeterminates
Ž .where k is any field e.g., the real field � on � , the field of two elements . A2

function g: XX � � will be represented as a monomial Ł x g Ž x .. Thisx � XX

monomial is denoted XX g. The function T : XX � �d is represented by the
homomorphism

� � � �
 : k XX � k t , . . . , tT 1 d

x � tT Ž x .1 tT Ž x .2 ��� tT Ž x .d .1 2 d

Ž . Ž . dHere T x denotes the ith coordinate of T x � � and the map 
 isi T

� Ž 2 .defined on products and sums by multiplicativity and linearity so 
 x �T
Ž Ž ..2 Ž . Ž . Ž . �
 x , 
 x � y � 
 x � 
 y , etc. . Our basic object of study is II �T T T T T
� � � Ž . .p � k XX : 
 p � 0 , the kernel of 
 .T T

ŽIn Theorem 3.1 we will show that a set of generators for II that is, a setT
� �.of polynomials in II that generate II as an ideal in k XX corresponds to aT T

Markov basis. To state this correspondence we need the following notation.
Any function f : XX � � can be written as the difference between two functions

� � �Ž . Ž Ž . . �Ž .f and f , XX � � having disjoint support: f x � max f x , 0 , f x �
Ž Ž . . Ž . Ž .max �f x , 0 . Observe that Ý f x T x � 0 if and only if the monomial

difference XX f�� XX f� is in II . A basic result is the following theorem.T

THEOREM 3.1. A collection of functions f , f , . . . , f is a Markov basis1 2 L
Ž .1.5 if and only if the set

XX f �
i � XX f �

i , 1 � i � L
generates the ideal II .T

PROOF. The proof proceeds in two stages. Let II
� be the ideal generated

by the monomial differences

3.1 XX f �� XX f �
; f x T x � 0.Ž . Ž . Ž .Ý

� � ŽWe first show that II � II . It is clear that II � II since each generator is inT T
.II . To prove the converse, fix a total order of the set of all monomials byT

linearly ordering the variables and declaring one monomial larger than a
second if either the degree of the first is larger or the degrees are equal and
on the first variable where they disagree, the first has a higher power.

Suppose II
� � II . Let p � II � II

� have its largest monomial XX � a min-T T
Ž . �imum. Since 
 p � 0, there must be a second monomial XX in p suchT

Ž � . Ž � . � �that 
 XX � 
 x . Factor out common variables writing XX � XX �T T
� Ž �

�
�

�. � � Ž �
�.XX XX � XX with � and � having disjoint support. Clearly 
 XX �T
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Ž �
�. Ž . �Ž . �Ž . Ž . Ž . �
 XX . Setting h x � � x � � x , we have Ýh x T x � 0 and so XX �T

� � Ž h� h�. � � �XX � XX XX � XX � II . Subtracting a multiple of XX � XX from p, we get
a polynomial in II � II

� with a smaller leading monomial. This providesT
II � II

�.T
� f �

i f �
i 4 Ž .Ž .To prove the theorem, Let BB � XX � XX ; 1 � i � L . Property 1.5 a is

Ž .Ž .equivalent to BB � II . Thus it must be shown that 1.5 b holds if and only ifT
Ž .Ž .BB generates II . Assume 1.5 b holds. By what was proved above it isT

Ž . Ž .enough to show that for any f : XX � � with Ý f x T x � 0, the monomialx
f � f � Ž .Ž . �difference XX � XX is in the ideal generated by BB. Use 1.5 b with g � f

and g� � f �. We have

A a
�g � � f � g with g � � f 	 0, 1 � a � A.Ý Ýj i j ij j

j�1 j�1

If A � 1 and, say � � 1, then f �� f �� f or f �� f �� f � � f �. This1 i i i1 1 1
� � � � f � f � Ž f �

i f �
i .1 1implies f � f , f � f so XX � XX � � XX � XX � II . A similar argu-i i T1 1

ment works if A � 1 and � � �1. In the general case A 
 1. By induction1
on A, the monomial differences XX f �� XX f ��� 1 f i1 and XX f ��� 1 f �

i1 � XX f �
lie in

the ideal generated by BB. So does their sum.
In the other direction, suppose that BB generates II . For g, g�: XX � �T

Ž Ž . �Ž .. Ž .such that Ý g x � g x T x � 0, there is a representationx

L
� � �g g h f fj i ij j � 4XX � XX � � XX XX � XX , � � �1 .Ž .Ý j j

j�1

Here h : XX � � and the polynomial on the right has coefficients plus orj
minus 1 since the proof that II

� � II above works over � so any integerT
Ž .polynomial with 
 p � 0 can be written as an integer polynomial combina-T

f � f � Ž . Ž .tion of XX � XX with Ý f x T x � 0. If A � 1, the identity above trans-
Ž .Ž .lates directly into 1.5 b . For A 
 1, proceed by induction. From the identity,

XX g � XX hr XX f �
i r for some r, say, XX g � XX hr XX f �

i r . Then g � f � is nonnegative andi r
hrŽ f �

i f �
i .r rso g � f is nonnegative. Subtracting XX XX � XX from both sides andi r

using h � f � � g � f , we get an expression for XX g� f ir � XX g �

having lengthr i ir r

A � 1. By induction, g � f can be connected to g� by allowable steps soi r
Ž .Ž . �1.5 b holds for all g, g . �

Ž .REMARKS. i The Hilbert basis theorem says that any ideal in a polyno-
mial ring has a finite generating set. Applying this to the ideal II we seeT
that Markov bases exist for any statistic T. We show how to compute such a
basis explicitly in Section 3.2.

Ž . dii We have chosen to work with T taking values in � . Essentially the
Ž . d � � �same arguments work if T x � � ; just map from k XX into k t , . . . , t ,1 d

�1 �1 �t , . . . , t .1 d

3.2. Algorithms for computing a Markov basis with examples. Theorem
� �3.1 reduces the problem to computing a generating set for the ideal II � k XX .T
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We show how to give a finite description of II which can then be read intoT
computer algebra systems such as AXIOM, MAPLE, MACSYMA, MATHE-
MATICA. All the examples in this paper were computed using the program

Ž .MACAULAY of Bayer and Stillman 1989 . An updated version MACAULAYII
Ždue to Grayson and Stillman is fast and avaialble at no cost http:��math.

.uiuc.edu�Macaulay2 .
A crucial ingredient here is an ordering on monomials. We use grevlex

order; consider � , � � �n. Declare XX � 
 XX � if either Ý� 
 Ý� or Ý� � Ý�i i i i
and the first nonvanshing difference, working from the right, has � � � � 0.i i

Ž . Ž .Thus 1, 0, 1 
 0, 2, 0 in grevlex order. Of course, implicit in this order is an
ordering on the basic variables x � XX . This will be made explicit in examples

Ž .below. See Cox, Little and O’Shea 1992 , Chapter 2, for background. This
Ž .ordering allows us to define the initial term init p of a polynomial.

� �Let II be an ideal in k XX with an ordering on monomials as above. A
� 4Grobner basis for II is a set of polynomials p , p , . . . , p � II such that the¨ 1 2 L

� Ž . Ž .4ideal generated by init p , . . . , init p equals the ideal generated by1 L
� Ž . 4init p ; p � II . A Grobner basis generates II and there is a computationally¨
feasible algorithm for finding Grobner bases in the computer systems above.¨
A Grobner basis is minimal if no polynomial can be deleted. It is reduced if¨
for a each pair i, j, no term of p is divisible by init p . Fixing a term order,i j
there is a unique reduced Grobner basis. The following algorithm is an¨
easy-to-implement way of finding this basis.

THEOREM 3.2. Let XX be a finite set. Let T : XX � �d be given. Let TT �
� 4t , t , . . . , t . Given an ordering for XX , extend it to an elimination ordering1 2 d

� � � T Ž x .for XX � TT with t � x for all x � XX , t � TT in k XX , TT . Define II � x � TT ,T
4 � �x � XX . Then II � TT 
 k XX and the reduced Grobner basis for II can be¨T T T

found by computing a reduced Grobner basis for II and taking those output¨ T
polynomials which only involve XX .

The proof is a straightforward application of the elimination theorem from
Ž .Cox, Little, and O’Shea 1992 , pages 114, 128. The method is a special case of

the implicitization algorithm.

EXAMPLE 3.3. Consider finding a basis for the case of 3 � 3 contingency
tables. Using the computer system Maple, the following commands will do the
job:

Ž .
 with Grobner :
�
 ideal � x11 � y1� z1, x12 � y1� z2, x13 � y1� z3, x21 � y2� z1,

x22,� y2� z2, x23 � y2� z3, x31 � y3� z1, x32 � y3� z3, x33 �
�y3� z3 ;

�
 varlist � y1, y2, y3, z1, z2, z3, x11, x12, x13, x21, x22, x23, x31,
�x32, x33 ;

Ž .
 G � gbasis ideal, varlist, plex ;
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After about one minute we see the output of 36 monomial differences on
the screen. Deleting all expressions which contain y1, y2, y3, z1, z2, z3, we

� �are left with nine basic moves of the type .� �

� �REMARK 3.4. For I � J contingency tables, k XX is the ring of polynomial
functions on a generic I � J matrix. The ideal II is the ideal generated byT
the 2 � 2 minors. Using row major order on the variables x 
 x 
 ��� 
11 12

� �x 
 x 
 ��� 
 x , the algorithm of Theorem 3.2 produces the moves1 J 21 IJ � �
Ž .of the Introduction. See Sturmfels 1991 , page 260. These determinantal

ideals have been the object of intense study by algebraists and geometers.
Ž .Sturmfels 1996 gives further discussion and references.

Two other sets of moves are worth mentioning for this example. Let KIJ
be the complete bipartite graph on I and J nodes. So K appears as shown23
in Figure 4. Any cycle in K gives a possible move for the contingency tableIJ
problem in an obvious way by adding and subtracting alternately along the
cell entries determined by the edges in the cycle. These moves, algebraically
interpreted, are a Grobner basis for any ordering of the variables. These¨

Ž .universal Grobner bases are discussed in Sturmfels 1996 , Chapter 7.¨
Here is an interesting statistical application. Contingency tables some-

times have forced zero entries: one of the categories may be pregnant males
or counts along the diagonal of a square table may be forced to be zero. See

Ž . Ž .Bishop, Fienberg and Holland 1975 or Haberman 1978 Chapter 7 for
discussion and example. To do a random walk on tables with restricted
positions, just delete the edges of K corresponding to the restrictions andIJ
use the cycles in the remaining graph. An amusing consequence of the
connectedness of this algorithm is that if there are no circuits, the remaining
table is uniquely determined by its margins. The use of universal Grobner¨
bases to handle forced zeros extends to the general set-up.

Ž .A second set of moves consists of using only the 1, 1 entry coupled with
Ž . Ž . Ž .the i, j , 1, i , j, 1 entries, 2 � i � I, 2 � j � J. These moves fail to connect

Ž .for all tables but Gloneck 1987 shows they connect if all the row and column
sums are at least 2. Extensions and variants of Gloneck’s result using the
primary decomposition of one ideal in a second are in Diaconis, Eisenbud and

Ž .Sturmfels 1996 . Curiously, these same nonconnecting moves are used by
Ž .Kolassa and Tanner 1994 , who failed to worry about connectedness. It is not

FIG. 4.
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serious for I � J tables, but they make the same error for three- and higher
tables where things are much more serious. Their error consists in assuming
that a lattice basis connects staying positive. This is simply false.

REMARK. Theorem 3.2 is a useful way of finding reduced Grobner bases. It¨
may need many new variables. There are several alternatives. See Sturmfels
Ž .1996 , Section 12.A for details.

4. Contingency tables. Two-way tables have been used as a running
example in previous sections. In this section we treat three- and higher way
tables. Apparently the random walks presented here are the only way of
generating from the hypergeometric distribution for most cases. Section 4.1
treats an example of ‘‘no three-way interaction.’’ Section 4.2 briefly discusses
hierarchial, graphical, and decomposable models. Section 4.3 treats Hardy�
Weinberg equilibrium. There is a vast modern literature on contingency

Ž . Ž .tables. Argesti 1990 , Bishop, Fienberg and Holland 1975 , Christensen
Ž . Ž .1990 and Haberman 1978 give surveys of the literature.

4.1. No three-factor interactions. Let N objects be classified into three
categories with I, J, K levels, respectively. The chance of an object falling

Ž .into category i, j, k is p . The ‘‘no three-factor interaction’’ model specifiesi jk
constant log odds:

p p p p111 i j1 11k i jk
4.1 � 2 � i � I , 2 � j � J , 2 � k � K .Ž .

p p p pi11 1 j1 i1k 1 jk

Sufficient statistics for this model are all ‘‘line sums.’’ If the table entries are
N , the line sums are N , N , N , where, for example, N � Ý N .i jk � jk i � k i j � � jk i i jk

Ž .Tests for this model are described by Birch 1963 or Bishop, Fienberg and
Ž .Holland 1975 . We first treat an example and then return to the general

case.

Ž .EXAMPLE. Haberman 1978 reports data drawn from the 1972 national
opinion research center on attitudes toward abortions among white Christian
subjects. The part of the data to be analyzed here is a 3 � 3 � 3 array shown
as Table 3 below.

ŽThe first variable is type of Christian Northern Protestant, Southern
. ŽProtestant, Catholic . The second variable is education: low less than 9

TABLE 3
Attitudes toward abortions among white Christian subjects

Northern Southern
Protestant Protestant Catholic

P M N
L 9 16 41 8 8 46 11 14 38
M 85 52 105 35 29 54 47 35 115
H 77 30 38 37 15 22 25 21 42
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. Ž . Ž .years , medium 9 through 12 years , high more than 12 years . The third
Ž .variable is attitude to nontherapeutic abortion positive, mixed, negative .

The data are treated as a simple random sample of size 1,055 from the U.S.
population in 1972.

Ž .The maximum likelihood estimates of the cell entries under the model 4.1
are found by iterative proportional fitting to be

12.01 14.43 39.58 9.44 12.25 40.27 6.55 11.32 45.13
85.75 52.51 103.8 36.55 24.17 57.27 44.68 39.32 113.0
73.24 31.06 40.66 34.01 15.58 24.45 31.77 19.36 36.87

The chi-square statistic for goodness-of-fit is 13.37. The usual asymptotics
Ž .Ž .Ž .refer this to a chi-square distribution with I � 1 J � 1 K � 1 � 8 degrees

of freedom. To calibrate the asymptotics, we ran the random walk in Lemma
2.1 to get a hypergeometric sample with the same line sums. The walk was
based on 110 moves described below. After 50,000 burn-in steps, the walk
was run for 100,000 steps sampling every 50 steps for a total of 2,000 values.

We conclude that the algorithm works easily and well, that the chi-square
Žapproximation seems good there is a small systematic bias upward in Figure

.2 , and that the no three-way interaction model fits these data. Haberman

Ž .FIG. 5. A p � p plot of random walk values of chi-square versus chi-square 8 .
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Ž .1978 , Section 4.2 presents further analysis with data from subsequent
years.

We turn next to the moves needed to perform a random walk on a
3 � 3 � 3 table with fixed line sums. It is natural to consider basic 2 � 2 � 2
moves such as

0 0 0 0 0 0 0 0 0
4.2Ž . 0 0 0 0 � � 0 � �

0 0 0 0 � � 0 � �.
There are 27 such moves; alas, the chain they generate is not connected.
Using the program MACAULAY, we ran the basic algorithm of Theorem 3.2.

ŽThis involved computations in a polynomial ring with 54 variables 27
variables x for the table entries and 27 variables y1 , y2 , y3 for the linei jk i j ik jk

.sums . We found that a minimal set of generators consists of the 27 moves as
Ž .in 4.2 and 54 moves of degree 6 like

0 0 0 0 � � 0 � �
4.3Ž . 0 0 0 � 0 � � 0 �

0 0 0 � � 0 � � 0.
The pattern in the last two layers can be permuted in six ways and the two
layers placed in nine ways. This gives 54 moves.

Ž .In carrying out the computation, the cells i, j, k were ordered lexico-
graphically and grevlex was used for a term order on the monomnials in the
x . The reduced Grobner basis for this order contains 110 basic moves: the¨i jk
27 � 54 minimal generators plus

28 relations of 0 0 0 � 0 � � 0 �
degree 7 like4.4Ž . 0 � � � � 0 � 0 �

0 � � 0 � � 0 0 0

1 relation of �2 � � � 0 � � � 0
degree 94.5Ž . � 0 � 0 0 0 � 0 �

� � 0 � 0 � 0 � �
We conclude by reporting what we know for larger tables with fixed line

sums N , N , N . There is a neat description of the moves for 2 � J � K� jk i � k i j �

tables. For a 2 � n � n table, consider the move

� � 0 0 ��� 0 � � 0 0 ��� 0
0 � � 0 ��� 0 0 � � 0 ��� 0
0 0 � � ��� 0 0 0 � � ��� 0
. .4.6Ž . . .. .
0 0 ��� 0 � � 0 0 ��� 0 � �
� ��� 0 0 � � 0 ��� 0 �

The product of the symmetric groups S � S acts on the rows andn n
Ž . Ž .columns. This gives n � 1 !n!�2 distinct permutations of 4.6 . Call these

basic moves of degree 2n. For n � J � K, any of these basic moves can be
J Kplaced in a 2 � J � K array. There are distinct ways to do this. Al-ž / ž /n n



P. DIACONIS AND B. STURMFELS382

J J Ktogether this gives Ý n � 1 !n!�2 moves. We have shown thatŽ .Ž . ž / ž /n�2 n n

these moves form a minimal generating set which is at the same time a
universal Grobner basis.¨

Ž .Call the ideal associated to the fixed line sum problem II I, J, K . A
Ž .binomial in II I, J, K is critical if it cannot be written as a polynomial

linear combination of binomials of lower degree. Thus the moves correspond-
ing to critical binomials are needed to get a connected walk. The type of a
critical binomial is the size of the smallest three-way table which supports it.
We give two nontrivial examples of critical binomials. These show that basic

Ž .moves for 2 � J � K tables do not generate II I, J, K for large I, J, K.
A critical relation of type 4 � 4 � 6 is

x x x x x x x x x x x x131 241 142 322 123 433 214 344 235 415 316 426

� x x x x x x x x x x x x .141 231 122 342 133 423 244 314 215 435 416 326
4.7Ž .

A critical relation of type 3 � 6 � 9 is

x x x x x x x x x x111 361 132 342 153 323 124 214 225 335

� x x x x x x x x356 266 147 257 318 248 169 239

� x x x x x x x x x x161 311 142 332 123 353 114 224 325 235
4.8Ž .

� x x x x x x x x .256 366 157 247 218 348 139 269

Ž . Ž .We briefly explain the derivation of 4.7 and 4.8 . First note that we get zero
after deleting the third subscript. This amounts to a nontrivial identity

Ž . Žamong six resp., nine carefully chosen 2 � 2 minors of a 4 � 4 matrix resp.,
.3 � 6 matrix. Identities of this type are called biquadratic final polynomials

�in oriented matroid theory see, e.g., Bjorner, Las Vergnas, Sturmfels, White¨
Ž . �and Ziegler 1993 , Section 8.5 . They encode projective incidence theorems or

Ž .nonrealizability proofs of oriented matroids. The relation 4.8 encodes the
�biquadratic final polynomial for the Vamos matroid Bokowski and Richter

Ž .� Ž .1990 . The relation 4.7 encodes the biquadratic final polynomial for the
� Ž .�Non-Pappus matroid Bokowski and Richter-Gebert 1991 .

Ž .The following result is shown in Sturmfels 1996 , 14.14.

PROPOSITION 4.1. Given any triple of integers K 	 J 	 I 	 2 there exists a
critical relation of type K � � J � � I � for some integers K � 	 K, J � 	 J, I � 	 I.

None of this says that it is impossible to find some ‘‘nice’’ set of generators
Ž .for II I, J, K ; it only says that the simple moves we found so far do not

suffice. Of course, in any specific case, one can always ask the computer to
find moves.

As a final topic, we give the best bounds we have on the degree of
Ž .binomials needed to generate II I, J, K . Let T represent the linear mapIJK

which takes a three-way table to the set of line sums. It is easy to see that the
Ž .Ž .Ž .kernel of T has rank I � 1 J � 1 K � 1 . Therefore, the rank of TIJK IJK

Ž .equals r � IJ � IK � JK � I � J � K � 1. Let D I, J, K denote the largest
absolute value of any r � r minor of the matrix T .IJK
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4.2. For 3 � I � J � K, we have the following.

Ž . Ž .a A universal Grobner basis for II I, J, K is given by all binomials¨
m� m� Ž . Ž . Ž . Ž .XX � XX , m � ker T , of degree at most I I � 1 J J � 1 K K � 1 �IJK
Ž .D I, J, K .
Ž . Ž . Ž . r�2b D satifies min I, J, K � 1 � D I, J, K � 3 .

Ž . Ž .PROOF. Part a is proved in Sturmfels 1991 . To prove the upper bound
Ž . Ž .in b , note that D I, J, K is the determinant of an r � r matrix which has

at most three ones and otherwise zeros in each column. Hadamard’s inequal-
Ž .ity now gives the result. For the lower bound in b , use the fact that

Ž .D I, J, K is an upper bound for the degree of any variable in a circuit of
Ž . Ž . �II I, J, K ; a circuit of II I, J, K is a binomial with minimal support Sturm-

Ž .�fels 1996 . The following binomial is a circuit for the I � I � I table:
I I�1 I

x x � x x xŽ . Ž .Ł Ł Łi i i j11 j j j�1 I1k Ik1
i�1 j�2 k�2

4.9Ž .
I�1 I�1 I

I�1� x x x x x x .Ž .Ł Ł ŁI11 1 I1 1 I i�1 j1 j�1 j j1 Ik k
i�1 j�2 k�2

Ž .The variable x appears with degree I � 1 in the circuit 4.9 . So we areI11
done.

�

4.2. Log-linear models. These are models for multiway contingency ta-
bles. The index set is XX � Ł I with 
 indexing the various categories and� � 
 �

Ž .I the set of values in a category. Let p x be the probability of falling into�

cell x � XX . A log-linear model can be specified by writing

log p x � 
 x .Ž . Ž .Ý a
a�


Ž .The sum ranges over subsets a � T and the notation 
 x means thea
function 
 only depends on x through coordinates in a. Thus 
 is aa �

constant and 
 is a completely general function. Specifying 
 � 0 for somer a
class of sets determines a model.

� Ž . Ž .Goodman’s hierarchical models Goodman 1970 , Haberman 1978 , Dar-
Ž .�roch, Lauritzen and Speed 1980 begin with a class CC of subsets c � 
 withi

the assumption that no c contains another c . A hierarchical model is definedi j
by specifying 
 � 0 unless a � c for some c � CC. For example, with 
 �a
� 4 �Ž . Ž . Ž .4a, b, c , the class CC � a, b , a, c , b, c defines the no three-way interac-
tion model of Section 4.1.

� Ž .4The sufficient statistics for a hierarchical model are N i with c rangingc
Ž .over CC, i � Ł I and N i the sum over all x that agree with i in thec � � c � c c

coordinates determined by c. This falls into the class of problems covered by
the basic set-up of this paper.

Hierarchical models have unique maximal likelihood estimates which can
be effectively computed using Newton�Raphson or the iterated proportional



P. DIACONIS AND B. STURMFELS384

Ž .fitting method. This leads to estimates p x . If CC � DD are two generatingˆCC

classes, an exact test for adequacy of model CC within DD may be based on the
Ž .conditional distribution under CC of the chi-square statistic.

2Np x � Np xŽ . Ž .Ž .ˆ ˆCC DD
.Ý Np̂CCx

� Ž .�Graphical models see Lauritzen 1996 are a subclass of hierarchical
models obtained from a graph with vertex set 
 and edge set E. The

Ž .generating class CC is the cliques of the graph maximal complete subgraphs .
These models are characterized by conditional independence properties: for
a,b, c � 
, variables a and b are conditionally independent given c if and
only if any path in the graph from a point in a to a point in b must pass
through c. For example, on three points, the following models are graphical:

complete one-variable conditional
independence independent independence

3
�

� � � � � � � �

1 2 1 2 3 1 3 2
model p p p p p p p p �pi jk i �� � j � �� k i �� � jk i � k � jk �� k

sufficient N , N , N N , N N , Ni �� � j � �� k i �� � jk i � k � jk
statistics

The no three-way interaction model is the simplest hierarchical model that
is not graphical. A particularly nice subclass of graphical models are the
decomposable models. These arise from graphs for which any cycle of length 4
contains a chord. Decomposable models allow closed form maximum likeli-
hood estimates and simple algorithms for generating from the hypergeomet-
ric distribution. The three models pictured above are decomposable. We
briefly describe the moves for a random walk for these models.

Complete independence. There are two classes of moves which are depicted
as

class 1 class 2
� � � � .
� � � �and

The moves are described algebraically, up to permutation of indices, as

x x � x x and x x � x x .111 122 112 121 111 222 112 221

These generate an irreducible Markov chain. The ring map 
 of Section 2T
sends x to u v w . The associated ideal II is studied in algebraic geometryi jk i j k T

as the Segre embedding of the product of three projective spaces of dimension
Ž .I � 1, J � 1, K � 1. See Harris 1992 .
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One-variable independent. There are three choices possible. For definite-
Ž .ness, say that the variable i is independent of j, k . The sufficient statistics

are N and N , 1 � i � I, 1 � j � J, 1 � k � K. An easy-to-implementi �� � jk
Ž .Markov chain identifies the pairs j, k with a new variable l, 1 � l � L � JK.

� �Now consider the table as an I by L array and use the two-dimensional � �
moves of the Introduction.

Conditional independence. Again there are three choices. For definiteness,
say variables i and j are conditionally independent given k. Then the
sufficient statistics are N and N . Here, for each fixed value of k, one hasi � k � jk
a two-dimensional face with k fixed. The walk proceeds as k independent
walks in each of these k tables.

4.3. Hardy�Weinberg equilibrium. In common genetics problems N or-
�Ž . 4dered pairs with values in i, j , 1 � i � j � n are observed. These give rise

Ž .to counts N : the number of times i, j appears. The Hardy�Weinberg modeli j
assumes there are parameters p , 1 � i � n, p � ��� �p � 1 such that thei 1 n

Ž . 2chance of the pair i, j is 2 p p if i � j and p if i � j. This model can bei j i

derived as the equilibrium distribution for a large population of alleles with
� 4no mutation or migration. The chance of observing N is proportional toi j

n n
Ni �p , N � N � N .Ł Ýi � i i in

i�1 j�1

A test of the model can be based on the conditional distribution of N giveni j
N , N , . . . , N .1 � 2 � n �

Ž .Guo and Thompson 1992 describe the background and give examples to
show that asymptotic approximations can perform poorly for sparse tables.

� �They develop a Monte Carlo approach using moves akin to the moves of� �
the Introduction. We show below that their moves arise from a well-known
Grobner basis for the ideal generated by the 2 � 2 minors of a symmetric¨

�matrix. We further show how to generalize these to larger subsets e.g.,
Ž .�i, j, k with restrictions on the number of types.

˜ � Ž . 4 Ž .Let XX � i � i , i , . . . , i , 1 � i � ��� � i � n . Let w i be the number1 2 r 1 r i
of times i appears in i. Fix nonnegative integers s , s , . . . , s . Let1 2 n

XX � i: w i � s , 1 � i � n .� 4Ž .i i

In the original Hardy�Weinberg example, r � s � s � 2. Taking s � s � 11 2 1 2
� 4amounts to excluding i, i observations. Larger r examples arise in observa-

tions on haploid populations having, for example, four sets of genes.
� 4Data with values in XX give rise to counts N . In analogy withi i� XX

r n w iŽi.Ž .random mating, suppose that the chance of observing i is Ł p .1 ii ��� i1 r

Now, the sufficient statistics are

N � w i N .Ž .Ýi i i
i
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The following algorithm gives a connected symmetric Markov chain on the
� 4N with fixed values of N .i i� XX i

Ž . Ž .ALGORITHM. Fix r, s , s , . . . , s . For i � i , . . . , i with w i � s , 1 �1 2 n 1 r i i
Ž .i � n, let N be nonnegative integers with N � Ý w i N .i i i i i

Ž . �i Choose indices i, i � XX at random.
Ž . � � �ii Form j, j from i, i by transposing randomly chosen elements of i, i

Ž . � Ž . Ž .and sorting if needed . If j, j � XX , go to 3 ; else go to 1 .
1Ž .iii Choose � � �1 with probability . Form new counts2

N � � , N � � � , N � � , N � � � .i i j j

If these are all nonnegative the chain moves to the new counts. If not, the
chain stays at the old counts.

PROPOSITION 4.3. The algorithm gives a symmetric, connected, aperiodic
� 4Markov chain on the set of nonnegative N with fixed values of N .i i� XX i

Ž .PROOF. Theorem 14.2 of Sturmfels 1996 considers the toric ideal in
� 4variables x generated by binomialsi i� XX

² � � �
� � � :II � x x ��� x � x x ��� x : sort u , v , . . . , w � sort u , v , . . . , wŽ . Ž .u v w u v w

with ‘‘sort’’ denoting the sorting operator for strings over the alphabet
� 4 � �1, 2, . . . , n . The theorem shows that there is a term order in k XX such that
a Grobner basis for the ideal II is¨

x x � x x :� u � � � u v � � � v w w � � � w w w � � � w1 r 1 r 1 3 2 r�1 2 4 2 r

w w w ��� w � sort u v u v ��� u v .Ž . 41 2 2 2 r 1 1 2 2 r r

The moves of the algorithm are a translation of these generators. Now,
Theorem 3.1 proves the assertion. �

Ž .REMARKS. i For the Hardy�Weinberg case r � s � s � 2, the algo-1 2
Ž .rithm reduces to the moves of Guo and Thompson 1992 . In this case, there

is also available a straightforward method for sampling from the exact
conditional distribution which would be the method of routine choice. Lange

Ž .and Lazzeroni 1997 have found a different Monte Carlo Markov chain which
seems to perform faster than the straightforward algorithm and comes with a
guaranteed stopping time to say how long it should run. In all cases, the
chain above would usually be modified to have a hypergeometric distribution
using the Metropolis algorithm as in Lemma 2.2.

Ž . Ž .ii The algorithm 4.2 can equivalently be used to sample randomly from
the set of vector partitions of a fixed integer r with parts bounded by
s , . . . , s :1 n

XX � x , x , . . . , x � �n : x � ��� �x � r , 0 � x � s , . . . , 0 � r � s .� 4Ž .1 2 n 1 1 1 n n
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Ž .By using the bijection mapping x , x , . . . , x into the weakly increasing1 2 nx x1 2 xn� � �� � �� � �
Ž .string 1 1 ��� 1 2 2 ��� 2 n n ��� n .

5. Logistic regression. Logistic regression is a standard technique for
Ž .dealing with discrete data regression problems. Christensen 1990 or Haber-

Ž .man 1978 give background and details.
For each of N subjects a binary indicator Y and a vector of covariates z is

observed. We assume that the covariates z are taken from a fixed finite
subset AA of �d. A logistic model specifies a log-linear relation of form

e z�� 1
� �P Y � 1 z � , P Y � 0 z � ,Ž . Ž .z�� z��1 � e 1 � e

where the parameter vector � � � d is to be estimated. With N subjects the
likelihood function is

N
Y Ž z �� . z ��i i ie � 1 � e ,Ž .Ł

i�1

Ž . � 4 Ž .Let n z be the number of indices i � 1, . . . , N with z � z, and let n zi 1
� 4be the number of i � 1, . . . , N with z � z and Y � 1. The collectioni i

� Ž .4 Ž .n z and the vector sum Ý n z z together are sufficient statisticsz � AA z � A 1
Ž .they determine the likelihood function . Our objective is to give random walk
algorithms for generating data sets with these sufficient statistics.

To put the problem into the notation of the previous sections, let XX �
�Ž . Ž . 4 d� � AA �0, z , 1, z , z � AA , and let T : XX � � be defined by

T 0, z � 0; 0, . . . , 0, 1, 0, . . . , 0 ,Ž . Ž .
5.1Ž .

T 1, z � z ; 0, . . . , 0, 1, 0, . . . , 0 ,Ž . Ž .
� �where there is a single 1 in the last AA coordinates at the zth position. Then

Ž . Ž .for given data f : XX � �, the sum t � Ý f x T x fixes the sufficientx � XX

statistics. This general problem can now be solved using the techniques of
Ž .Section 3. The ideals arising are called of Lawrence type in Sturmfels 1996 ,

Chapter 7, which contains further discussion.

Ž .EXAMPLE. Haberman 1978 , Chapter 7, gives data from the 1974 social
science survey on men’s response to the statement ‘‘Women should run their
homes and leave men to run the country.’’ Let Y � 1 if the respondent
‘‘approves’’ and Y � 0 otherwise. For each respondent the number i of years

Ž .in school is reported, 0 � i � 12. The data are given in Table 4. Here n i is1
Ž .the number of ‘‘approving’’ and n i is the total number in the sample with i

Ž . Ž . Ž .years of education. Also shown are p i � n i �n i , the proportion approv-1
ing. These proportions seem to decrease with years of education. It is natural
to fit a logistic model of form

e��i�

�5.2 P Y � 1 i � .Ž . Ž . ��i�1 � e
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TABLE 4
Ž .1Men’s response to ‘‘Women should run their homes and leave men to run the country’’ 1974�75

i 0 1 2 3 4 5 6 7 8 9 10 11 12
Ž .n i 4 2 4 6 5 13 25 27 75 29 32 36 1151
Ž .n i 6 2 4 9 10 20 34 42 124 58 77 95 360
Ž .p i 0.66 1 1 0.66 0.5 0.65 0.74 0.64 0.60 0.50 0.42 0.38 0.32

1 With years of education i

�Ž . Ž . Ž .4This falls into the framework above with d � 2, AA � 1, 0 , 1, 1 , . . . , 1, 12 .
The sufficient statistics to be preserved are

12 12
125.3 n i , n i , n i i .� 4Ž . Ž . Ž . Ž .Ý Ýi�0 1 1

i�0 i�1

A randomization test with these statistics fixed would be appropriate in
Ž .testing the linear logistic model 5.2 against the nonparametric alternative

Ž � .where P Y � 1 i is allowed to take arbitrary values.
For the data of Table 4, the maximum likelihood estimates of � and � in

ˆŽ .the model 5.2 are � � 2.0545, � � �0.2305. The chi-squared statistic forˆ
12 Ž Ž . Ž . Ž ..2 Ž . Ž .goodness-of-fit is Ý n i p i � n i �n i p i � 11.951. The classicalˆ ˆi�1 1

Ž .asymptotics calibrate this value with the chi-square 11 distribution. The
uneven nature of the counts, with some counts small, gives cause for worry
about the classical approximation. We ran the basic random walk to check
this approximation. A minimal ideal basis for this problem involves 16, 968
basis elements. The walk was run, titled to the hypergeometric distribution
as in Lemma 2.1. Following 50,000 burn-in steps, a chi-square value was
computed every 50 steps for the next 100,000 steps. The observed value falls

Ž .essentially at the median of the recorded values their mean is 10.3 . The
Ž .values show good agreement with a chi-squared 11 distribution as shown in

Figure 6.
We conclude that the chi-square approximation is in good agreement with

Ž .the conditional distribution and that the model 5.2 fits the data in Table 4.

Ž .REMARKS. i The random walk was used above as a goodness-of-fit test.
Ž .In Diaconis and Rabinowitz 1997 it is used to set confidence intervals and

compute UMVU estimates. Briefly, the walk can be used to set confidence
intervals for � in the model

� 2 2� 4P Y � 1 i � exp � � i� � i � � 1 � exp � � i� � i � .Ž . Ž .Ž .
2 Ž .by using the distribution of Ýi n i under the walk.1

� � 4The UMVU estimate of P Y � 1 i is

n iŽ .1
E n j , 1 � j � n , jn j .Ž . Ž .Ý 1½ 5n iŽ . j

The expectation can be carried out using the walk.
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2 Ž .FIG. 6. Histogram of random walk values of � versus a chi-square 11 .

Ž .ii A detailed algebraic study of the class of ideals arising from logistic
Ž .regression is carried out in Diaconis, Graham and Sturmfels 1996 . We give

a combinatorial description of the basic moves and show that each minimal
generating set is automatically a universal Grobner basis. It is also shown¨

Ž .that for the model 5.2 with 1 � i � n, the maximum degree of a move is
n � 1.

Ž .iii Very similar developments can be made for vector-valued covariates
and outcome variables taking more than two values. All these problems fit
into the general class of Section 1.

6. Spectral analysis. A version of spectral analysis suitable for permu-
Ž .tation data was introduced in Diaconis 1989 . This generalizes the usual

discrete Fourier transform analysis of time series. An introduction by exam-
ple is given in Section 6.1. In Section 6.2 we prove that appropriate Markov
chains can be found with Grobner bases having small degree. This uses¨

Ž .a result of Stanley 1980 and also the connection between Grobner bases¨
� Ž . 4and triangulations of the convex polytope conv T x : x � XX developed in

� Ž .�Sturmfels 1991 .
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6.1. Spectral analysis of permutation data. Let S denote the group ofn
permutations of n items. A data set consists of a function f : S � �, wheren
Ž .f � is the number of people choosing the permutation � . One natural

Ž .summary of f is the n � n-matrix t � t , where t is the number of peoplei j i j
ranking item i in postion j. This is only a partial summary, since n! numbers
are compressed into n2 numbers. A sequence of further summaries was

Ž .described in Diaconis 1989 . These arise from a decomposition

L S � V � V � V � ��� � V .Ž .n 0 1 2 k

Ž .On the left is L S , the vector space of all real-valued functions on S . Onn n
the right is an orthogonal direct sum of subspaces of functions. The summary
t amounts to the projection onto V � V . It is natural to look at the squared0 1
length of the projection of the original data set f into the other pieces to help
decide if further projections need to be considered.

Ž .As an example, Croon 1989 reports responses of 2,262 German citizens
who were asked to rank order the desirability of four political goals:

1. Maintain order;
2. Give people more say in government;
3. Fight rising prices;
4. Protect freedom of speech.

The data appear as

1234 137 2134 48 3124 330 4123 21
1243 29 2143 23 3142 294 4132 30
1324 309 2314 61 3214 117 4213 29
1342 255 2341 55 3241 69 4231 52
1423 52 2413 33 3412 70 4312 35
1432 93 2431 39 3421 34 4321 27

875 279 914 194 2262

Ž . Ž . Ž . Ž .Thus 137 people ranked 1 first, 2 second, 3 third and 4 fourth. The
Ž . Ž .marginal totals show people thought item 3 most important 914 ranked it

. Ž .first . The first order summary t � t is the 4 � 4 matrix:i j

item
875 279 914 194
746 433 742 341position
345 773 419 725
296 777 187 1002

The first row shows the number of people ranking a given item first. The last
row shows the number of people ranking a given item last. Here we see what

Ž . Ž .appears to be some ‘‘hate vote’’ for items 2 and 4 , an indication that people
vote against these items.

The data was collected in part to study if the population could be usefully
Ž . Ž .broken into ‘‘liberals’’ who might favor items 2 and 4 , and ‘‘conservatives’’
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Ž . Ž .who might favor items 1 and 3 . To investigate further, we give the
Ž .decomposition of the space of all functions L S into an orthogonal direct4

sum:

Ž .L S � V � V � V � V � V4 0 1 2 3 4
dim 24 1 9 4 9 1
length 657 462 381 268 48 4

Here V is the one-dimensional space of constant functions. V is a nine-0 1
dimensional space of ‘‘first-order functions’’ spanned by � � � and or-i� Ž j.
thogonal to V . The projection of f onto V � V is equivalent to the first-order0 0 1
summary given above. The space V is a space of ‘‘unordered second-order2
functions’’ spanned by � � � � � and orthogonal to V � V . The�i, i 4,�� Ž j., � Ž j .4 0 1

space V contains ‘‘ordered second order functions’’ and V is a one-dimen-3 4
sional space recording the differences between even and odd permutations.

Ž . Ž .Further details are in Diaconis 1988, 1989 or Marden 1995 .
Below each subspace is shown the length of the projection of the original

data f. The first two subspaces V and V pick up much of the total length.0 1
The projection onto V has norm 268, which seems moderately large. To2
investigate if this 268 is forced by the first-order statistics or an indication of
interesting structure, we performed the following experiment: using a ran-
dom walk detailed below, 100 independent data sets f : S � �4 with the4

Ž .same first order summary t � t were chosen from the uniform distribu-i j
tion. For each data set, the squared length of its projection onto V was2
calculated. The median length was 244 with upper and lower quantiles 268
and 214. We see that the moderately large value 268 is typical of data sets
with first-order statistics t and nothing to get excited about. For further

Ž .analysis of this data, see Bokenholt 1993 .¨
The random walk was based on a Grobner basis formed in the following¨

Ž . Ž .way: Let XX � S , and let T � be the 4 � 4 permutation matrix with i, j -4
entry � ; this is one if item j is ranked in position i and zero otherwise.i� Ž j.
Given a function f : XX � �, then the 4 � 4 matrix

t � f � T �Ž . Ž .Ý
��Sn

is the first-order summary reported above. We identify f with the monomial
f Ž� . � �Ł x in the variables x � � � � � , � � XX . The permutation group� � � 1 2 2 4

Ž .was ordered using lex order 1234 
 1243 
 ��� 
 4321 . Then grevlex order
� �was used on monomials in k XX . The computer program MACAULAY found

a Grobner basis containing 199 binomials. There were 18 quadratic rela-¨
Ž � �� � � �� �. Žtions example 3421 4312 � 3412 4321 ; 176 cubic relations example

� �� �� � � �� �� �. Ž4123 4231 4312 � 4132 4213 4321 and five quadratic relations example
� �� �� �� � � �� �2� �.1342 2314 2431 3241 � 1234 2341 3412 . The walk was performed by
repeatedly choosing a relation at random and adding and subtracting from
the current function according to the relation or its negative. The walk was
sampled every thousand steps until 100 functions had accumulated.



P. DIACONIS AND B. STURMFELS392

It is worth recording that a similar undertaking for S led to a huge5
Žnumbre of Grobner basis elements 1,050 relations of degree 2 and 56,860 of¨

. Ž .degree 3 . Remark v of Section 2.1 shows how to use the degree bound
developed below to carry out a walk on larger permutation groups.

6.2. Toric ideals for permutation data. We write x for the indeterminate�

asociated with � � XX � S and t for the indeterminate associated with then i, j
entries in the permutation matrix. The ring homomorphism 
 of Section 3T
here becomes

� �
 : k XX � k t , 1 � i , j � n ,i j

n

x � t .Ł� i , � Ž i.
i�1

6.1Ž .

Ž . Ž .We are interested in Grobner bases for the ideal II � ker 
 . The main¨
result is the following.

Ž .THEOREM 6.1. Let � be any of the n! ! graded reverse lexicographic term
� �orders on k XX . The reduced Grobner bases consists of homogeneous monomial¨

differences of degree � n.

Ž .PROOF. We fix one of the n! ! linear orders on S and let � denote then
resulting graded reverse lexicograhic term order. Let � be the convex poly-

Ž .tope of n � n doubly stochastic matrices the Birkhoff polytope . This is the
Ž . n2

convex hull of the vectors T � in � . There is a close relation between
triangulations of convex polytopes and Grobner bases. This is developed by¨

Ž . Ž .Sturmfels 1991 . It allows us to use results of Stanley 1980 on triangula-
tions of �. The first step is to show that

6.2 the initial ideal init II is generated by square-free monomials.Ž . Ž .

Ž . Ž .Stanely 1980 , Example 2.11 b , has shown that the Birkhoff polytope � is
compressed. This means that the pulling triangulation of �, which is deter-
mined by sequentially removing vertices of � in the specified linear order,

Ž .results in a decomposition into simplices of unit volume. Sturmfels 1991 ,
Corollary 5.2, has shown that pulling triangulations correspond to grevlex
initial ideals. Under this correspondence, triangulations into unit simplices

Ž .are identified with square-free initial ideals. This completes the proof of 6.2 .
To prove the theorem, let XX f � Ł x f Ž� . be one of the minimal square-free� �

Ž .generators of the initial monomial ideal init II . Such a monomial is called
� Ž .minimally nonstandard. A monomial is standard if it does not lie in init II ;

it is nonstandard otherwise and minimally nonstandard if no proper divisor
Ž . � f g flies in init II . Let XX � XX � II be a relation having leading monomial XX .

The monomials XX f and XX g must be relatively prime; If x were a common�

Ž f g . Ž .factor then XX � XX �x � II, because II � ker 
 is a prime ideal, and then�
f Ž .XX �x � init II , which contradicts our choice.�
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Let x be the smallest variable which divides the trailing term XX g. Then�

x does not divide the leading term XX f. On the other hand,�

n n
g f f Ž� .
 x � t divides 
 XX � 
 XX � t .Ž . Ž . Ž .Ł Ł Ł� i , � Ž i. i , � Ž i.

i�1 ��S i�1n

� 4 Ž . Ž .Hence, for each i � 1, . . . , n there exists a permutation � with � i � � i
Ž . f � Ž .and f � 	 1. Let XX denote the product without repetitions of the corre-

sponding n variables x . By construction, XX f �

is a monomial of degree less�

than or equal to n which divides XX f. Moreover, in the chosen ordering, the
variable x is smaller than any of the variables appearing in XX f �

.�
f � Ž f � . Ž .We claim that XX is not standard. Consider the monomial 
 XX �
 x�

in the variables t . Its exponent matrix is nonnegative with all row andi j

column sums equal. Birkhoff’s theorem implies it is a nonnegative integer
Ž f �. Ž .linear combination of permutation matrices. Hence, 
 XX �
 x is a mono-�

mial which lies in the image of the ring map 
. Let XX h be any preimage.
Then XX f �

� x � XX h lies in II. Here XX f �

is the grevlex leading term since all of�

its variables are higher than x .�

We conclude that XX f �

is standard and is a factor of the minimally nonstan-
dard monomial XX f. Therefore XX f � XX f �

is a monomial of degree less than or
Ž .equal to n. This shows that init II is generated by square-free monomials of

degree less than or equal to n. The reduced Grobner basis for II is given by¨
f i g i f i Ž . g iXX � XX , where the XX are the minimal generators of init II and the XX

� Ž . �are standard cf. Cox, Little, O’Shea 1992 , Section 2.5 . �

Ž . Ž .REMARKS. i The conclusion of Theorem 6.1 and fact 6.2 only hold for
graded reverse lexicographic order. Other term orders can require much
larger Grobner bases.¨

Ž . Ž .ii Stanley’s result, used to prove 6.2 , has the following direct combinato-
rial interpretation: let t be any n � n matrix with nonnegative integer
entries and constant row and column sums. Order the permutation group Sn
and repeatedly subtract the associated permutation matrices until this leads
to negative entries. Any order will end in the zero matrix without getting
stuck. In fact, this combinatorial process is equivalent to the normal form

� f i g i4reduction with respect to the above reduced Grobner basis XX � XX .¨

FINAL REMARK. The random walk was used above to quantify a small part
of the data analysis. A similar walk would be used to give an indication of the
variability of the second-order effects determined by the projection onto V2
� Ž . �see the example in Diaconis 1989 , Section 2 . Similar analysis could be
carried out for analyses conditional on the projection on other pieces. Finally,
there are other settings where these ideas can be used: homogeneous spaces
Ž . Ž dsuch as partially ranked data and other groups such as � used for panel2

. Ž .studies or item analysis ; see Diaconis 1988 , Chapter 7.
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