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This paper is an attempt at developing a theory of algebraic systems that
would correspond in a natural fashion to the N0-valued prepositional cal-
culus^). For want of a better name, we shall call these algebraic systems
MV-algebras where MV is supposed to suggest many-valued logics. It is
known that the classical two-valued logic gives rise to the study of Boolean
algebras and, as can be expected, every Boolean algebra will be an MV-
algebra whereas the converse does not hold. However, many results for
Boolean algebras can be appropriately carried over to MV-algebras, although
in some cases the proofs become more subtle and delicate. The motivation
behind the present study is to find a proof of the completeness of the No-
valued logic by using some algebraic results concerning MV-algebras; more
specifically, it is known that the completeness of the two-valued logic is a
consequence of the Boolean prime ideal theorem and we wish to exploit
just some such corresponding result for MV-algebras(3). It will be seen that
our effort in duplicating this result is only partially successful. In the first
four sections of this paper we present various theorems concerning both the
arithmetic in MV-algebras and the structure of these algebras. In the last
section we give some applications of our results to the study of completeness
of No-valued logic and some related topics. We point out here that the treat-
ment of MV-algebras as given here is not meant to be complete and exhaus-
tive.

1. Axioms of MV-algebras and some elementary consequences. An MV-
algebra is a system (A, +, •, ~, 0, 1) where A is a nonempty set of elements,
0 and 1 are distinct constant elements of A, + and • are binary operations
on elements of A, and - is a unary operation on elements of A obeying the
following axioms. (We assume here, of course, that A is closed under the
operations +, -, and ~.)
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(2) We have in mind specifically the fco-valued prepositional calculus developed in [3]
and [5]; the axioms for this calculus are known as the Lukasiewicz axioms.

(3) It is of course known that the completeness of the Lukasiewicz axioms for K0-valued
logic has been proved in [5 ]. This result was also stated on p. 240 in [8]; however, it was never
published.
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Ax. 1. x+y=y+x. Ax. 1'. x-y=yx.
Ax. 2. x + (y+z) = (x+y)+z. Ax. 2'. x-(y-z) = (x-y)-z.
Ax. 3. x + x=l. Ax. 3'. x-x = 0.
Ax.4. x + l = l. Ax.4'. x-0 = 0.
Ax. 5. x+0=x. Ax. 5'. xl=x.
Ax. 6.   [x+y]~ = x-y. Ax. 6'.   [x-y]~ = x + y.
Ax. 7. x= [*]-. Ax. 8.   0=1.

In order to write the remaining axioms in a compact form we introduce the
following definition.

Definition 1.1. x\Zy = (x-y)+y.
xAy = (x+y)-y.

Ax.   9. x\/y=y\/x. Ax.   9'. xAy=yAx.
Ax. 10. x\J(y\/z) = (x\/y)\/z. Ax. 10'. xA(yAz) = (xAy) Az.
Ax. 11. x + (yAz) = (x+y) A(x+z).     Ax. 11'. x- (y\/z) = (x■ y)y(x■ z).
It is clear that this axiom system is not the most economical one; they are

given in the above form for their intuitive contents. It is also clear that, just
as in the case of Boolean algebras, there is a duality involving the elements
0 and 1, the operations + and -, and the operations V and A- Thus any
theorem stated will have as an easy consequence from the axioms its dual.
We make the convention, as in the case of ordinary arithmetic, that • shall
be more binding than +, and, by the associative laws, we shall omit the
usual parentheses in expressions of the form x + (y+z) etc. Since the mean-
ings of the axioms are clear we shall usually use them without mentioning
them specifically; this is especially true for the first ten axioms. In the follow-
ing theorems whenever the variables x, y, z, ■ ■ ■ occur they are assumed
to be the elements of some fixed MV-algebra A.

Theorem 1.2. (i) x\/0=x=xAl, xA0 = 0, and xVl = l.
(ii) x\/x = x = xA^-
(iii)   [x\Jy]~ = xAy and [xAyY~ = x\Jy.
(iv) xA(xVy)=x = xV(xAy).
(v) 7/x+y = 0, then x=y = 0.
(vi) If xy = l, then x = y = l.
(vii) 7/xVy = 0, then x = y = 0.
(viii) 7/xAy = 1. then x = y= 1.

Proof, (i)-(iii) are obvious from 1.1 and the axioms. By the same token
xA(x\/y) = (y\/x) Ax = (y ■ x+x) Ax = (y ■ x+xArx) -x= (y-x + l)-x = l-x = x.
The other equality of (iv) follows from duality. If x+y = 0, then 0 = xA0
= xA(x+y) = (x+0)A(x+y)=x+(OAy)=x+0 = x. Thus, also y = 0.
(vi) follows from (v) by duality. If xVy = 0, then by 1.1, (x-y)+y = 0 hence
by (v) y = 0 and also x = 0. (viii) again follows from (vii) by duality.

We introduce an inclusion relation ^ among the elements of an MV-
algebra :
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Definition 1.3. x^y ii, and only if, x\/y=y. As usual the notation
x<y shall mean xgy and x^y.

Theorem 1.4.
(i) O^xgl.
(ii) x^x.
(iii) If x^y and y^z, then x^z.
(iv) If x^jjy and y^x, then x—y.
(v) x^y if and only if x Ay = x.
(vi) x^y if and only if y g x.

Proof, (i)-(iv) are obvious by 1.1-1.3 and the axioms, (v) follows im-
mediately from 1.2 (iv), and (vi) follows from (v).

Theorem 1.5 (Monotony of V and A)- 7/x^y, then xVz^yVz and
xAz=yAz.

Proof. If x^y, then by 1.1 and 1.4(v), xAy=x and x\/y = y. Thus
(xV2)V(yVz)=xVyVzV2=yVz and (xAz)A(yAz)=xAyAzAz=xAz-
This implies x\/z^y\/z and xAz=yAz by 1.1 and 1.4(v).

Theorem 1.6. xAy^x^xVy.

Proof. By 1.2(i), 1.4(i), and 1.5.

Theorem 1.7. 7/x^y ared x'^y', then xVx'^yVy' and xf\x' f!=y/\y'.

Proof. By 1.5, xVx'gxVy'^y Vy'. Similarly xAx'gxAy'^yAy'.

Theorem 1.8 (Monotony of + and •). If x^y, then x+z^y+z and
x-z^y-z.

Proof. We note again that if x^y then x/\y = x and x\/y=y. By Ax. 11,
(x+z)A(y+z) = (xAy)+z = x+z. Hence x-\-zfky-\-z. Similarly, by Ax. 11',
x-z^y-z.

Theorem 1.9. x-ygx^x+y.
Proof. By Ax. 5, Ax. 5', 1.4(i), and 1.8.
Theorem 1.10. If x^y and x'gy', then x+x'^y+y' and x-x'rSy-y'.

Proof. By 1.8.

Theorem 1.11. The relation ^ is a partial ordering relation among the
elements of A. The elements x\Jy and x/\y are respectively the l.u.b. and the
g.l.b. of the elements x and y with respect to the ordering ^.

Proof. By 1.4, 1.6, and 1.7.
Putting 1.6, 1.9, and 1.11 together, we obtain
Theorem 1.12. x-y^xAy = * = #Vy^#+y.
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The next theorem will be very useful.

Theorem 1.13. The following conditions are equivalent:

(i) x^y, (ii) y+x=l, and (iii) x-y = 0.

Proof. Clearly (ii) and (iii) are equivalent. If x-y = 0, then by 1.1, x\/y
= x-y+y = 0+y=y and hence x^y. If x=^y, by 1.10, l=x + xgy + x. But
y + x^l, hence y + x=l.

We have the following interesting cancellation law.

Theorem 1.14. 7/x+z=y+z, x^s, and y = z, then x = y.

Proof. By Ax. 9', x = x-1 =x- (x+z) = z- (x+z) =z- (y-\-z) =y ■ (y+z) =y-1
=y.

The following theorem is motivated by 1.4(v) and 1.13.

Theorem 1.15. The following four conditions are equivalent:
(i) x+y = y.
(ii) x-y = x.
(iii) y\/x = l.
(iv) xAy = 0.

Proof. We shall prove the equivalence of (ii) and (iii). Then by duality
the equivalence of (i) and (iv) will follow. Clearly (iii) is equivalent with (iv).
If x-y = x,  then  x\Jy = x+(x-y) =x+x = 1.   If  x\/y = l,  then  by Ax.   11',
x = x-1 =x- (xVy) = x-x\jx-y = 0\/x-y = x-y.

Theorem 1.16. The following conditions are equivalent:
(i) x+x = x.
(ii) x-x = x.
(iii)  x + x = x.
(iv)  x-x = x.
(v) x\/x=l.
(vi) xAx = 0.

Proof. By 1.15.
1.16 points out the interesting fact that in an MV-algebra the set of

elements B which are idempotent with respect to the operations + or ■ are
precisely those elements which satisfy the law of the excluded middle with
respect to the operations V or A- Furthermore, 1.16 leads to the following

Theorem 1.17. Let B be the set of elements x of A such that x+x = x. Then
B is closed under the operations +, ■, and ~ and where xAry=x\/y and x-y
= xAy for x, yEB. Furthermore, the system (B, +, •, ~, 0, 1) is not only a sub-
algebra of A but is also the largest subalgebra of A which is at the same time a
Boolean algebra with respect to the same operations +, •, and ~.

Proof. The fact that B is closed under the three operations follows im-
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mediately from 1.16. Clearly B is also closed under the operations V and A-
Now, in order to prove that B is a Boolean algebra we notice that if x, yEB
then, since x^x\/yEB and y^x\/yEB, x+y ^ (xVy) + (xVy) =xVy-
But by 1.12 x\/y^x-\-y. Therefore x-\-y = x\/y and, similarly, x-y = xAy.
Hence the elements of B satisfy Ax. 11 and Ax. 11' with V and A replaced
by + and ■ respectively and, as it is known, B thus becomes a Boolean
algebra. If C is a subalgebra of A which is also a Boolean algebra with respect
to the operations +, -, and ~, then every element of C must satisfy the
identity x+x = x. Hence CCB and the theorem is proved.

From 1.16 and 1.17 it is seen that with respect to the operations +, •, and
~~ the distinguishing feature between an MV-algebra (A, +, -, ~ 0, 1) and a
Boolean algebra is the lack of the idempotent law x+x = x, whereas with
respect to the operations V, A, and ~ the difference between the system
{A, V» Ai ~, 0, 1) and a Boolean algebra is the lack of the law of the ex-
cluded middle x\/x = l. We might mention here that, while various general-
izations of the Boolean algebra which do not satisfy the law of the excluded
middle are known (e.g., all kind of lattices), there are very few generalizations
of the Boolean algebra where the idempotent law does not hold. It is also
known that the study of Boolean algebras can be subsumed under the general
theory of rings, i.e., the study of the so-called Boolean rings. This transforma-
tion is due to certain nice properties of the symmetric difference operator in
Boolean algebras. We shall see from the later sections that there will be, in
general, no such results for MV-algebras.

To conclude this section we introduce some general procedures to obtain
new MV-algebras from those already known(4).

Given an MV-algebra (A, +, -, ~, 0, 1), we say that B is a subalgebra
of A if BQA, 0, 1EB, B is closed under the operations of +, -, and ~. A
system (B, +, ■, _, 0, 1) is a homomorphic image of A (or A is homomorphic to
B) if there is a mapping/of A onto B such that/(0) =0, /(l) = 1, and/ pre-
serves the three operations +, -, and ~. We say that the function / is a
homomorphism of A onto B. Ii the function / is one-to-one, then / if an iso-
morphism of A onto B. In this case we say that the systems (A, +, •, ~, 0, 1)
and (B, +, •, ~, 0, 1) are isomorphic. Given a collection of MV-algebras At,
iEI, we denote by P,-e/^4,- the cartesian (or direct) product of the sets Ai.
We denote by (PieiAi, +, -, ~, 0, 1) the cartesian (or direct) product of the
algebras Ai, iEI, where the element 0 is the function/ such that f(i) =0 for
each iEI, the element 1 is the function/such that/(i) = 1 for each iEI, the
addition of two functions / and g shall be the function h such that h(i) =f(i)
+g(i) for each iEI, and the product and converse of functions are defined
analogously. Due to the form of the axioms Ax. 1-Ax. 11, we see at once that
the following is true.

(4) The notions we are about to introduce can be found in their most general form in [7].
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Theorem 1.18. A subalgebra of an MV-algebra is an MV-algebra, a homo-
morphic image of an MV-algebra is an MV-algebra, and the direct product of
MV-algebras is an MV-algebra.

2. Examples of MV-algebras. The first and most important example of an
MV-algebra is the algebra L obtained by considering the ft0-valued preposi-
tional calculus. We use here extensively the results and notation in the first
three sections of [5]; the formulas and theorems of [5] are referred to by
their numbers in parentheses. Let us recall that the formulas in this par-
ticular logic are built up of denumerably many statement variables
Xi, Xi, ■ ■ ■ , Xn, • ■ • with the two operations C and N in the following
manner:

(i) Every statement variable is a formula.
(ii) If P is a formula then NP is a formula.
(iii) If P and Q are formulas then CPQ is a formula.

The particular four axiom schemas are listed below(6):
A.l. CPCQP.
A.2. CCPQCCQRCPR.
A.3. CCCPQQCCQPP.
A.4. CCNPNQCQP.

The symbol f-P is introduced to mean that the formula P is provable from
A.1-A.4 using only modus ponens, i.e., if P and CPQ then Q. The elements
of our MV-algebra L shall be equivalence classes of formulas determined by
the equivalence relation =; we let P/ = denote the equivalence class one of
whose representatives is the formula P. It is clear that [P/=l]= [Q/=] if
and only if \-P = Q. The operations +,-,"" and the elements 0, 1 are defined
as follows:

[P/^]+ [Q/ = ] = [BPQ/ = \.
[P/=].[Q/«]= [LPQ/m].
[77=.]- =  [NP/m],
[P/=] = 1 if and only if \-P.
[P/ = ] = 0 if and only if \-NP.

It can be proved without difficulty that these operations on equivalence
classes of formulas are independent of the representatives and, hence, are
well-defined. In order to see that the system (L, +, •, ~, 0, 1) is an MV-alge-
bra, we note that Ax. 1 and Ax. 2 are given by the commutativity and asso-
ciativity of B, Ax. 3 by (3.1) and (1.8), Ax. 4 by (3.32), Ax. 5 by (3.45), Ax. 6
by (3.8) and (3.4), and Ax. 7 and Ax. 8 by (3.4). We note also that by (3.4),
(1.6), and (1.9), the definitions of the operations A and V are such that

(') The proof that A.5 is derivable from A.1-A.4 can be found in [2]. This fact was also
noticed independently by C. A. Meredith a few years ago, and was published in [4].
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[P/-]Vfe/-]= [APQ/=]
and

[*/-] A [6/-] = [*W].
Thus Ax. 9, Ax. 10, and Ax. 11 are given by the commutativity of A, the
associativity of A, and the distributive law (3.44) respectively. This takes
care of the unprimed axioms; as for the primed axioms, they follow easily
from the duality. Hence L is an MV-algebra. In particular, we see that Ax. 1—
Ax. 11 follow from A. 1-A. 4 upon a proper substitution of the operations C
and N by the operations +, •, and ~. On the other hand, making these same
substitutions, we see that A. 1-A. 4 can be transformed equivalently into the
following (subject to the condition that [x]~ = x, i.e., Ax. 7):

A. 1'. x + (y+x) = l.
A. 2'. (x+y)-+[(y+z)- + (x+z)] = l.
A. 3'. (xVy)- + (yVx) = l.
A. 4'. (x+y)~+(y+x) = l.

Clearly A. 1' and A. 3' are derivable from Ax. 1-Ax. 11. A. 2' is simply, after
a transformation using the axioms and 1.1, (xVy) + (yVz) = 1, which is de-
rivable from 1.6 and 1.8. A. 4' can be transformed into (xVy)+y = l which
is again derivable from 1.6 and 1.8. Hence we conclude that the two sets of
axioms A. 1—A. 4 and Ax. 1-Ax. 11 are equivalent under an appropriate rela-
tionship between C and N and +, •, and ~.

Another class of examples of MV-algebras is obtained by considering any
set S of real numbers between 0 and 1 where S satisfies the following:

(i) OGSand 1ES.
(ii) If x, yES then min (1, x-\-y)ES.
(iii) If x, yES then max (0, x+y — l)ES.
(iv)  If xGSthen 1-xES.

Ii  we   now  define   for  the  elements  x, yES,  x+y = min (1,   x+y), x-y
= max (0, x+y —1), and x=l—x, then there will be no difficulty in checking
that the system (5, +, -, ~, 0, 1) is an MV-algebra. We point out here that
the operations V and A on 5 are simply

x V y = max (x, y) and x A y = min (x, y),

and the relation ^ is simply the natural ordering of real numbers.
Various special sets 5 may be taken which satisfy conditions (i)-(iv),

e.g., S= {0, 1}, 5 = the interval [0, l], 5 = the set of all rational numbers be-
tween 0 and 1, and 5 = the set of all rationals of the form n/m ior some fixed
positive integer m and O^n^m. For each positive integer m we let S(m)
denote this last set of numbers and we notice that the operations +, •,
and ~ in the system (S(m), +, -, ~, 0, 1) are respectively
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[p/m] + [q/m] = min (1, [(p + q)/m\),

[p/m]   ■   [q/m] = max (0, [(p + q — m)/m]),

and

[p/m]- = [(m - p)/m].

Finally, a somewhat special model of MV-algebras is obtained by con-
sidering the following set C of formal symbols:

0, c, c + c, c + c + c, ■ ■ • ,

1, 1 — c, 1 — c — c, 1 — c — c — c, ••••

For abbreviation, we define 0c = 0 and n-c = cArC-\- ■ • ■ +c M-times and
1 — 0c= 1 and l—nc=l—c — c— ■ • ■ —c w-times. In terms of this conven-
tion the rules of addition, multiplication, and complementation are written
down as follows:

(i) ll x = nc and y = m-c then xAry = (mArn) c;ilx = nc and y = l —m-c,
then x+y = l if m^n and x+y= 1 — (tn — n) c if n<m; if x = l— m-c and
y = nc, then x+y= 1 if m^n and x+y = 1 — (m — n) ■ c il n <m; if x= 1 — n-c
and y = l—m-c, then x+y = l.

(ii)  If x = n-c then x = l — n-c; if x= 1 — n-c then x = n-c.
(iii) x-y = [x + y]_.

One can check easily that the system (C, +, •, _, 0, 1) thus defined is an
MV-algebra by showing that each of the axioms Ax. 1—Ax. 11 is satisfied.
We can see this fact more simply if we realize that any finite subset of C
can be embedded isomorphically into some MV-algebra S(m) for a suffi-
ciently large tn. The inclusion relation ^ in the algebra C can be described
as follows: x^y if, and only if, one of the conditions below is satisfied:
(i) x = n■ c and y = 1 — m■ c. (ii) x = n-c and y = m-c where n^m. (iii) x = 1 — n■ c
and y = 1 — m-c where m^n. It will be seen in the following sections that this
MV-algebra C will provide a crucial counter example.

As has already been mentioned at the end of §1, any subalgebra, homo-
morphic image, or direct product of the above given examples will again be
an MV-algebra.

3. Some deeper arithmetical consequences of the axioms.
In this section we continue the investigation started in §1. It turned out

that the identity x-y+y=y-xArx, i.e., Ax. 9, will be used quite frequently
in the following theorems and we shall not cite Ax. 9 every time it is used.

Theorem 3.1. y-(x+z)^xAry-z.

Proof.  [y-(x +z)]~ + x + y-z = y + x-z + x + y-z =  (y + y-z)
+ (x + x ■ z) = (z + y-z) + (z + z ■ x) = (z + z) + y ■ z + z • x = 1.
Hence by 1.13 the theorem follows.
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Theorem 3.2(6). If x/\y = 0, then x+y-z = y- (x+z).

Proof. Letting w = x-(y+z)+y-(x+z), we see that by 3.1 it is sufficient
to prove that w = 1. Now,

x + w = (x + x-(y + z)) + y- (x + z)

= y-\-z-\-x-y-z-\-y-(x-\-z)

= z + x-y-z + (y + y-(x + z))

= z + x-y-z + x + z + y-x-z
= 1

and
■v + w = (y + y- (x + z)) + x- (y + z)

= x + z + y-x-z + x • (y + z)

(2) = z + y-x-z + (x + x-(y + z))

= z + y-x-z + y + z + x-y-z
= 1.

From (1) and (2) we obtain

(3) (x + w) A (y + i») = 1.

By Ax. 11, (3), and the hypothesis

l = (x/\y)-\-w=w

and the proof is complete.

Theorem 3.3(7). (x+y)V(y+x) = l.

Proof.
(x + y) V (y + x) = (x + y) • [(y + *)h + y + x

= i(x + y)-y-x + x] + y

= (x + y) ■ y + x- [(x + y) • y]~ + y

= ((x + y) • y + y) + a; • (* ■ y + y)

= x+y + y-(x + y)_ + x-(x-y + y)

= y + y-x-y + (x + x • (x • y + y))

= y + y-x-y + x-y + y + x-(x-y+y)~
= 1.

(6) This is simply Theorem 3.2 of [5].
(7) This is an algebraic version of the proof of A.5 in [2 ]. We point out here that most of

the results of [5] can be given algebraic proofs as in Theorems 3.2 and 3.3. Similarly, most of
our results here can be translated into the notation and language of [5].
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Theorem 3.4. If x\fy = l, then x-x\/y-y = l.

Proof.
(1) x-x V y-y = x-x + (x + x) yy.

By using the hypothesis xAy = 0 and 3.2 twice,

(2) (x + x) • y • y = (x + x • y) • y = x + x ■ y ■ y.

(1) and (2) yield

x• x V y-y = (x• x + x) + x■ y• y = (x• x + x) + x■ y■ y

= x • x + (x + x • y • y) = x • x + y ■ y + x • (y + y).

Again by the hypothesis and 3.2, x- (y + y) =x-yAry. Hence (3) leads to

x- x\J y-y = x-x + yy + x-y + y

= x • x + x • y + (y-y + y)

= x-x+x-y + y-y + y

= x • x + y • y + (x • y + y)

= x • x + y • y + (x V y)
= 1,

which is the desired conclusion.
We introduce the following definitions:
Definition 3.5. (i) 0x = 0 and (« + l)-x = w-x+x.
(ii) x° = l and x"+I = (x") -x.
Definition 3.6. The order of an element x, in symbols ord(x), is the

least integer m such that m-x= 1. If no such integer m exists then ord(x) = oo .
We obtain easily from 3.5 by induction that

[n • x}~ = xn, [xn]~ = nx, m-(n-x) = (m ■ n) ■ x,

x(m+n)   =   rxmy^xn^   an(J   x(m-n)   =   (£»>.)»_

Theorem 3.7. If xVy = 1, then x"Vyn = 1 for each n.

Proof. By an easy induction from 3.4, we see that the hypothesis leads
to x^Vy'2"1' = 1 for each m. Since for each n there exists an m such that
w = 2m, we see that by 1.9, x2™^xn and y2™^yn. Using this and 1.8 we obtain
immediately xnVyn = l-

Theorem 3.8. 7/ord(xy) < co , then x+y = 1.

Proof. By the hypothesis, for some n=T, n(xy) = l. Hence (x+y)" = 0.
By 3.3

(x + y) V (x + y) = 1
and by 3.7
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(x + y)n V (x + y)n = 1.

Thus (x+y)" = l. By an easy induction using 1.2 (vi) we see that this last
leads to x+y = l.

Theorem 3.9. If ord(x) >2, then ord(xx) = oo.

Proof. By 3.8.
Definition 3.10. An MV-algebra A is locally finite if, and only if, every

element of A different from 0 has a finite order.
Definition 3.11. An MV-algebra A is linearly ordered if, and only if,

for every x, yG-<4, either x^y or y^x.

Theorem 3.12. Every locally finite MV-algebra is linearly ordered.

Proof. Let A he locally finite and let x, yG-<4- We wish to show that
either x+y = l or x+y = l. If x+y=^l, then x-y^0. Hence, by the assump-
tion on A, ord(x-y)< oo. Now it follows from 3.8 that x+y = l.

The example C given in §2 furnishes a counterexample to the converse
of 3.12. Clearly C is linearly ordered but ord(c) = oo. It is also easily seen that
the only Boolean algebra which is linearly ordered is the two-element Boolean
algebra consisting of 0 and 1 alone.

Theorem 3.13. // A is linearly ordered, then x-\-z = y-\-z and x+z^l
implies x=y.

Proof. Since x+z^l and y+z?^l, we see that z^x and z%y. Since A is
linearly ordered, this means x^z and y^z. We obtain the conclusion im-
mediately from 1.14.

In the remaining part of this section we shall study intensively some
properties of linearly ordered MV-algebras. We shall first introduce the
function d(x, y) which plays the role of a distance function. The function d
is defined as follows:

d(x, y) = x-y -\- y-x.

The reader will recognize that in Boolean algebras the element d(x, y) is
simply the familiar symmetric difference of x and y. We note here that in
Boolean algebras there is another way of defining the symmetric difference
of x and y, namely, d'(x, y) = (x+y) • (x + y). However, the operation d' thus
defined for MV-algebras would not have the desired property that d'(x, x) =0.
For in the algebra 5(2) we easily see that d'(l/2, 1/2)^0.

Theorem 3.14. (i) d(x, x)=0, d(x, y)=d(y, x), d(x, y)=d(x, y), d(x, 0)
= x, and d(x, 1) =x.

(ii)  If d(x, y) =0, then x=y.
(iii) d(x, z) gd(x, y)-\-d(y, z).
(iv) d(x-\-u, y-\-v) ^d(x, y)-\-d(u, v).
(v) d(x-u, y-v) ^d(x, y)+d(w, v).
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Proof, (i) is obvious from the definition, (ii) follows from 1.2 (v). In order
to prove (iii), we have to show that

(1) x-z + x-z ^ x-y + x-y + y-z + z-y.

Now
[z-x]~ + x-y + y-z = z + x + x-y + y-z

= (x + x • y) + (z + y ■ z) = y+x-y + y + y-z = 1,

hence

(2) z-x ^ x-y + y-z.

In an entirely similar fashion,

(3) x-z =■ x-y + y-z.

(2) and (3) yield (1) and (iii). Condition (iv) is essentially

(4) (x + u)--(y + v) + (x + w) • (y + v)- gx-y+y-x+w-D + ii-M

Now
(x + w + y-i>)+x-y + M-j;=(x + x-y) + y-iJ + (m + «<•»)

= (y + x-y) + y-ii+(w + M-i)) = x-y + M-5 + !)+(y + y'ji)

= x-y + M-ii + j) + ii + y-D= 1

which implies

(5) (x + u)~ ■ (y + zi) :£ x • y + u • v.

Similarly, we derive

(6) (x + u) ■ (y + v)~ = y ■ x + v-u.

(5) and (6) give (4) and (iv). As for condition (v), we note that

d(x-u, y-v) = d([x + u]-, [y + ?i]_) = d(x + u, y + v)

:S d(x, y) + d(u, v) = d(x, y) + d(u, v).

The theorem is proved.
3.14 tells us that many of the properties of the symmetric difference opera-

tion in Boolean algebras can be carried over to MV-algebras. However, two
of the most important properties of symmetric difference, i.e., associativity
and the distribution of multiplication over symmetric difference, fail. This
can be seen, for instance, in the MV-algebra S(3), where d(l/3, d(2/3, 1))
y^d(d(l/3, 2/3), 1), and in the MV-algebra 5(2), where (1/2)-c7(l/2, 1)
?^d(l/2-1/2, 1/2-1). This is the main reason why we pointed out in §1 that
the study of MV-algebras cannot be subsumed under the theory of rings with
the operation d interpreted as the ring addition. However, this does not pre-
clude the possibility that some other definition of ring addition may work.
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In this connection, we easily see that the operation d' introduced earlier is
also such that d'(l/3, d'(2/3, l))^d'(d'(l/3, 2/3), 1) in S(3) and (1/2)
•d'(l/2, l)^d'(l/2-l/2, 1/2-1) in S(2).

Theorem 3.15. If x^y, then d(x, y)=x-y and x+d(x, y) =y.

Proof. If x^y then xy = 0. Thus d(x, y)=x-y. Also, if xgy, then y = x\/y
= x + £-y = x+d(x, y).

Theorem 3.16. (i) 7/ n-y g x ^ (re+l)-y, then d(x, n-y) ^ y and
d(x, («+l)-y) ^y.

(ii) If n-y^x<(n + l) -y, then d(x, n-y) <y.
(iii) J/re-y<x^(« + l) y, then d(x, (w + l)-y)<y.

Proof. If rey^x^(re + l) y, then (re-y)-x = 0 and x-(y(n+1)) =0. Also
d(x, «-y)=x-yn and d(x, (re + l)-y) =x-((w + l)-y). From x-(y(n+1>) =0, we
obtain (x-yn)-y = 0, thus d(x, n-y)^y. From x(«y)=0 and 3.1, we see
that d(x, (re + 1)-y) =x-(y+re-y) gy+x-(re-y) =y. Hence (i) is proved. If
d(x, n-y)=y, then x-yn=y and x = x+0=x + (re-y) •x = «-y+y"-x = re-y+y
= (w + l) -y. This proves (ii). If d(x, (« + l) -y) =y, then x- ((re + 1) -y) =y and
x = x + 0 = x + x-y(n+1) = y(»+n + x■ ((re + 1) • y) = yn+1 + y = y"■ y + y
= yn+y-(re-y)2;y\ By 1.4(vi), this means x^re-y. This proves (iii). The
proof is complete.

Theorem 3.17. 7/ A is linearly ordered and ord(y) = m < oo, //sere
d([re-y]~", (m —n)-y) <y for each n^m.

Proof. The theorem is clearly true if re = m. Therefore let us assume
n<m. In this case (m — re) -y+wy= 1, hence [re-y]~^(?re —re)-y. On the
other hand, if [ny]~^ (m — n — 1) -y, then 1 = (rez — re — l)-y+w-y = (rez — l)-y
which contradicts ord(y) =m. Thus we have (m — n — l) y < [rey]~±= (w —re)
•y. The conclusion now follows from 3.16.

Definition 3.18. An element x of an MV-algebra A is an atom if, and
only if, x ^0 and whenever 0 ^y ^ x, then either y = 0 or y = x.

The following theorem describes completely those MV-algebras which are
locally finite and which contain an atom.

Theorem 3.19. If A is linearly ordered and contains an atom of order m,
then A is isomorphic to S(m).

Proof. Let y be an atom of A of order m and we see by 3.13 that

0 < y < 2-y < ■ ■ ■ < (m — l)-y < m-y = 1.

Since A is linearly ordered it follows that any element x^1 is such that
rey^x<(w + l)y for some rehire —1. From 3.16(h) we have that d(x, n-y) <y
and, since y is an atom, d(x, rey)=0. This, by 3.14(h), implies x — n-y. We
have now proved that any element must be a multiple of y. By 3.17, d((n-y)~,
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(m — n)-y)<y and, again since y is an atom, [n-y]~=(m — n) y. Clearly
n-y+l-y = (n+l)-y. It is now evident that the function / defined by f(n-y)
= n/m will map A isomorphically onto S(m) and the theorem is proved.

There now remains the more difficult situation of MV-algebras containing
no atoms.

Theorem 3.20. 7/^4 is linearly ordered and contains no atoms, then for any
Xt^Q and for any n there exists a y^O for which n-y^x.

Proof. We shall first prove the following

Lemma. If A is linearly ordered and xgy, then either x+x^y or d(x, y)
+d(x, y) gy.

Assume that not x+xgy. Since A is linearly ordered, y^x+x and
1 =y+x+x= [y-x]~+x. Thus d(x, y) =x-y='x. By 3.15 we see that d(x, y)
+d(x, y) ^x-\-d(x, y) =y. The lemma is proved.

Now the theorem will be proved by induction on n. Clearly it holds for
» = 1. Assume that the theorem holds for n and x, y are such that y?^0 and
M-y^Sx. Since A contains no atoms, there exists a z such that 0<z<y. By
letting w = z or w = d(z, y), we see from our lemma that ws^O and w+w^y.
It is now easy to see that (n + 1) -w^(2-n) -w^n-y^x and w is the desired
element.

Theorem 3.21. Let A be locally finite and contain no atoms. Then for any
two elements x, yEA for which x<y, there exists an element zEA such that
x<z<y.

Proof. Suppose that x<y, then, by 3.15, x+d(x, y) =y where d(x, y)^0.
If d(x, y) = 1, then, again by 3.15, x-y = 1 and, by 1.2(vi), x = 0 and y = 1. In
this case by our hypothesis, clearly there will exist an element z such that
x<z<y. Thus, let us assume that 0^d(x, y) and l^c7(x, y). By 3.12 and
3.20 we see that there exists an element w such that O^w, w^d(x, y), and
wArw^d(x, y). Since A is locally finite, w<d(x, y). For otherwise d(x, y)
= d(x, y)+c7(x, y) and ord(d(x, y))= °°. Thus we have that 0<w<d(x, y).
Consider now the element z = x+w. Clearly x^z^y. Now, if z = y, then
x+wfgx+w+w;gx+<£(x, y)=y^xArw. Hence, xArw = xArwArw. If y = l,
then c7(x, y)=x, wSx, w-\-w^x, and, by 1.14, w = wArw. This, of course is a
contradiction to the fact that ord(w)< °°. If y?*l, then, by 3.12 and 3.13,
again we arrive at the contradiction w = w+w. Thus we see that z<y. Now,
if x = z, then x = x+w. Since we already know that z<y and z^l, by 3.13,
we obtain the contradiction w = 0. Thus x<z. The theorem has been proved.

From 3.21 we see that if A is locally finite and contains no atoms, then
A is densely ordered. Now a theorem which would correspond to 3.19 for
this case might go somewhat like this: If A is denumerable, locally finite,
and contains no atoms, then A is isomorphic to a subalgebra of the MV-
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algebra of all real numbers between 0 and 1. So far we have been unable to
prove or disprove this conjecture. It seems to be a difficult question. In this
connection the following example suggested by J. B. Rosser is of some inter-
est. It is essentially an MV-algebra which is a generalization of the algebra
C discussed in §2 and which is densely ordered but not locally finite. Let D
he the set of all formal symbols of the form

re-co, 1 — re-Co,
re-ci, 1 — re-ci,

n-cp, 1 — ncp,

with the stipulation that for O^p^q, we have the relation cp = 2("~p) c„.
Now, given any two elements x and y of D, we first reduce these elements by
the above given relations to forms where they both involve a common cp
and then we imitate the definition of +, •, and ~ as for the case of the algebra
C. It is again easily checked that D under these definitions of +, •, and ~ is
an MV-algebra. Furthermore, D is obviously densely ordered. However, the
element Co has infinite order. This example, of course, shows that our conjec-
ture stated above would be false if the phrase "locally finite" is replaced by
"densely ordered."

The following is simply an attempt to throw the whole situation of MV-
algebras which are locally finite and atomless back into the finite cases S(m).

For the subsequent discussion, we introduce the notion of a polynomial
function of s variables vi, v2, ■ ■ ■ , v,. Since, by the duality, the operation is
definable in terms of + and ~, we shall restrict our discussion to polynomials
built up from + and ~ only. We point out here that in the following definition
two polynomial functions are equal if and only if they are identical.

Definition 3.22. (i) P(vlt •••,»,) is a polynomial function of rank 1 if
P(vi, •■-,»«) =Vj for some j, 1 ̂ j^s.

(ii) P(»i, • • ■ , vs) is a polynomial function of rank (m + l) ii either
P = Q where Q is a polynomial function of rank m, or else P = Q+R where Q
and R are polynomial functions of rank ^m and at least one of the poly-
nomials Q or R is of rank m.

(iii) P is a polynomial function if, and only if, for some m P is a poly-
nomial function of rank m.

It is quite clear that if Xi, • • • , x, are elements of A, then P(xi, ■ ■ ■ , xa)
is also an element of A.

Theorem 3.23. Let Xi, • • • , x, be elements of A, let tti, • • • , n, be an arbi-
trary sequence of integers, and let yi = nvy for some fixed y and l^i^s. Suppose
further that d(x,, yi) ^y for 1 ^i^s, then, for whatever polynomial function P
of s variables and rank g (m + l), d(P(xt, ■ ■ ■ , x„), P(yi, • • • , y3)) g2m-y.
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Proof. By induction on m. The theorem is clearly true for m = 0. Assume
now that the theorem holds for m. Yet P he a polynomial function of rank
;=m + 2 and we have two cases:

Case 1. P = Q where Q is of rank g w + 1. By the inductive hypothesis
d(Q(xi, ■ ■ ■ , x,), Q(yu • • • , ys))^2-»_-y. By 3.14(i), d(P(xu ■ ■ • , *.),
P(yi, ■ ■ ■ , ys))=d(Q(xu ■ ■ ■ , xs), Q(yi, • • • , ys))=d(Q(xu ■ • • , x,),
Q(yu ■ ■ ■ , ys))=2"*-y=~2<"*+»-y.

Case 2. P = Q-\-R where Q and 7? are of ranksgrez + 1. By the inductive
hypothesis and 3.14(iv),

d(P(xh • • • , xs), P(yi, • • • ,ys)) = d(Q(xh ■ ■ ■ , xs) + R(xh ■ • ■ , xs),

Q(yi, • ■ ■ ,y>) + R(yi, • ■ ■ ,y.)) = d(Q(xh ■ ■ ■, *,), Q(yi, • • •, y,))
+ d(R(xu ■ ■ ■ , xs), R(yu ■ ■ ■ , y.)) = 2m-y + 2m-y = 2^+^-y.

The induction is complete and the theorem is proved.
From 3.12, 3.16, 3.20, and 3.23 we see readily that:

Theorem 3.24. Let A be locally finite and contain no atoms. Then, for every
polynomial function P of s variables, for any elements Xi, • • • , xsG^4, and for
any element x of A different from 0, there exists an element y of A and a sequence
of integers »i, ■ ■ ■ , «, such that

d(P(xu ■ ■ ■ , x,), P(nvy, ■ • • , n.-y)) g x.

Consider an element y of finite order m and the set of multiples of y,
ny, for 0 = « = m. We define the operation-' for this set of elements as fol-
lows :

(n-y)-' = (m — n) -y.

Now, for any polynomial function P we let P' be the resulting polynomial
function built up of + and ~' where we replace each ~ in P by ~'. If »i, ■ • • , ns
is a sequence of integers, then clearly P'(«i-y, ■ • • , n,-y) will again be an
element of the form n-y lor some n. Also, it follows readily that ((7+P)'
= Q'+R'and (Q)' = [Q']-'. Notice that we are essentially trying to pretend that
the element y in some way behaves like the generator 1/m in the algebra
S(m). We have the following approximation theorem:

Theorem 3.25. 7/.4 is linearly ordered and ord(y) =m, then for any poly-
nomial P of s variables and rank^(n + l) and for any sequence of integers
«i, • • • i ns,

d(P(ni-y, ■ • • , n,-y), P'(nvy, ■ ■ ■ , ns-y)) g 2"-y.

Proof. By induction on n. We shall let yi = ni-y for l^i^s. Clearly the
theorem holds for n = 0. Assume that the theorem holds for n and letP be a
polynomial function of rank g re+ 2.
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Case 1. P = Q where Q has rank^re + 1. In this case by 3.14(i) and (iii)

d(P(yu- ■ ■ ,y*),P'(yi, • • -,y.))
= d(Q(yu- ••,*), [Q'Myi, •••,%))
^d(Q(yh- ■ -,y.)AQ']-(yi, •■■,y.))
+ d([Q']~(yi,- ■■,ys),[Q']-'(yi,---,y.)).

By 3.14(i) and the inductive hypothesis,

d(Q(yi, ■■-, y.), [Q'Y(yi, ■■■, y.))
= d(Q(yi,---,ys),Q'(yi,-- ■ y.)) g 2-y.

On the other hand, by 3.17,

(3) d([Q']-(yi, ■■■, y.), [Q']-'(yh ■■■, y.)) ^ y.
Hence, it follows from (1), (2), and (3) that

d(P(yi, ■■-, y.), P'(yi, ■ • ■ , y.)) = 2»-y + y g 2<»+1>-y.

Case 2. P = Q+R where () and i? have ranks^(w + 1). By a straight-
forward calculation using 3.14(iv) and the inductive hypothesis,

d(P(yi, ■ ■ ■ , y.), P'(yi, • • • , y.))
= d(Q(yh ■ ■ ■ , y.) + R(yh ■■■, ys), Q'(yh ■ ■ ■ , y.) + R'(yh • • • , ys))
= d(G(yi, • • • , y.), 0'(yi, • • • , y.)) + d(R(yh ■ ■ ■ , y.), R'(yh ■■-, y.)))
^ 2"-y + 2"-y = 2(n+I)-y.

Thus the induction is complete and the theorem is proved.
Combining 3.24 and 3.25 and with the use of 3.14(iii), we obtain

Theorem 3.26. Let A be locally finite and contain no atoms. Then, for every
polynomial P of s variables, for any elements xi, ■ ■ ■ , xs of A, and for any ele-
ment x of A different from 0, there exists an element y of A and a sequence of
integers nu • ■ • , ns such that d(Pxu • ■ • , xs), P'(m-y, • • • , ns-y)) ^ x.

At first sight these approximation theorems seem very crude and in-
elegant. However, without a proof of the conjecture mentioned after 3.21
we see at present no other way of obtaining our results 5.3 and 5.4 in §5.

4. Ideals, congruence relations, and the problem of representation.
Definition 4.1. A subset I of A is an ideal of A if, and only if, (i) OEI,

(ii) if x, yEI, then x+y EI, and (iii) if xEI and y^x, then yEL
An ideal I is said to be proper if It^A. Clearly an ideal I is proper if,

and only if, 1G7.
Definition 4.2. R is a congruence relation over A if, and only if (i) R is

an equivalence relation over A and (ii) if x R y and uRv, then X R y,
x+u Ry+v, and x-u Ry-v.

The definition of a congruence relation R is such that R automatically
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preserves the operations V and A- As usual we ler x/R denote the coset
of the equivalence relation R determined by x; we let A/R denote the
set of all cosets of R. It may also be pointed out here that, just as in the case
of Boolean algebras, 4.1 (iii) may be replaced by 4.1(iii'): If xEI and yG-<4,
then xyEI- It is clear that 4.1(iii) implies 4.1(iii'). On the other hand,
4.1(iii) follows from 4.1(iii') because if ygx, then y = xAy = x-(xAry), The
following is a theorem that we would expect concerning the connection be-
tween ideals, homomorphisms, and congruence relations.

Theorem 4.3. (i) If f is a homomorphism of A onto another MV-algebra,
then the set of elements xEA such that f(x) =0 is an ideal and the relation R
defined by x R y if and only if f(x) =f(y) is a congruence relation.

(ii) If R is a congruence relation, then the set of elements of 0/R is an ideal
and the set of all cosets of R forms an MV-algebra (A/R, +, -, -, 0/R, \/R)
under the definitions (x/R) + (y/R) = (x+y)/P, (x/R)-(y/R) = (x-y)/R, and
[(x/R)]~ = x/R, where A/R is an homomorphic image of A under the mapping

f(x) =x/R.
(iii) If R is a congruence relation, then x Ry if and only if d(x, y) R 0.
(iv) If R and S are congruence relations, then R = S if and only if 0/R

= 0/S.
(v) If I is an ideal, then the relation R defined by x Ry if and only if

d(x, y) EI is a congruence relation.

Proof, (i) and (ii) are obvious, (iii) is obtained as follows. Assume that
xRy, then since xRx and y P y, we obtain x-yPO, x-yPO, and
(x-y+y-x) R 0. Hence d(x, y) R0. Assume now d(x, y) R 0. Since (x-y+0)
P (x-y+0),

[(x-y + 0) A {x-y + yx)] R [(x-y + 0) A 0]

and, by Ax. 11,
[xy+(0A(yx))]P0.

This implies x-y R 0. Similarly y-x R 0. Now, (y+0) R (y+x-y), (x+y-x) R
(x+0), y+x-y = xAry-x, and xRy. (iv) follows directly from (iii). As for
(v), it is simply a consequence of 3.14.

4.3 tells us that there is a one-to-one correspondence between the ideals
of A and the congruence relations over A. Thus in our discussion we can use
either notion interchangeably. In particular, given an ideal 7 we write x/7
= x/R and A/1 = A/R where R is the unique congruence relation associated
with 7.

The familiar theorem on principal ideals in Boolean algebra reduces to
the following:

Theorem 4.4. There exists a proper ideal I such that xEI if, and only if,
ord(x) = oo.
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Proof. Clearly if x belongs to a proper ideal, then ord(x) = oo. On the
other hand, if ord(x) = co, then we take 7 to be the set of all elements y such
that y ="m-x for some m. It then is obvious that 7 is a proper ideal.

Thus we see that, in general, not every element xt^I can be a member of
a proper ideal.

Definition 4.5. (i) M is a maximal ideal of A if, and only if, M is a proper
ideal and whenever 7 is an ideal such that MQICLA, then either M=I or
I = A.

(ii) P is a maximal congruence relation of A if, and only if, P is not the
trivial congruence relation over A (i.e., R^A2) and whenever 5 is a congru-
ence relation such that RQSC.A2, then either R = S or S = A2.

It can easily be seen that the previously mentioned one-to-one cor-
respondence between ideals and congruence relations is such that maximal
ideals correspond to maximal congruence relations and vice-versa.

Theorem 4.6. Every proper ideal can be extended to a maximal ideal.

Proof. Usual proof using the Axiom of Choice and the fact that the ele-
ment 1 never belongs to a proper ideal.

Theorem 4.7. Let M be an ideal of A, then the following conditions are
equivalent:

(i) M is a maximal ideal.
(ii)  For every element xElM, xnEM for some re.
(iii) A/M is locally finite.
Proof. Assume (i) and let x be such that xEM. Let 7 be defined as the set

of all t's such that for some yEM and for some re, /^y+re-x. Clearly 7 is
an ideal and MC.I. Since xEI and x(£M, we see that 7 = ^4 and 1GP This
means that for some yEM and some re, 1 =y+rex. This last leads to [re-x]-
iky, x"gy, and xnEM. Assume (ii) and let x/MEA/M be such that 0/17
y^x/M, i.e., xEM. Thus, for some re, xnEM and (0/717) = (x"/M) = (x/M)n
= ([x/M]~)n. This last implies that n-(x/M) = l/M. Assume (iii) and let 7
be any ideal for which 17C7 and there exists an element x such that xG7
and xEM. Thus, for some re, n-(x/M) = l/M. Since xEI, rex/7 = 0/7, and
since MQI, re-x/7=l/7. This gives 0/7=1/7 and 7 = ^4.

Due to 4.7 we see that the class of locally-finite MV-algebras which we
introduced in §3 corresponds to precisely the class of so-called simple MV-
algebras, i.e., those MV-algebras A in which the only ideals are the sets {o}
and A. Also this fact can be seen easily and directly from the definitions. It
is known that Boolean algebras can always be represented as algebras of sets,
i.e., where the operations +, •, and ~ can always be interpreted as the union
of set, the intersection of sets, and the complementation of sets with respect
to a given unit(8). Here for MV-algebras we are at a loss to see what, if any-

(8) Cf, [6].
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thing, a natural representation means. However, algebraically the Boolean
representation theorem can be equivalently stated in the following:

(*) Every Boolean algebra is isomorphic to a subalgebra of a direct
product of simple Boolean algebras (i.e., the two-element Boolean algebra).

Taking our cue from (*) we now define representable MV-algebras as
follows:

Definition 4.8. An MV-algebra is representable if, and only if, it is iso-
morphic to a subalgebra of a direct product of locally finite MV-algebras.

It easily follows from our discussion of ideals and congruence relations
and from [l, Theorem 9, p. 92], adapted to our special case of MV-algebras
that the class of representable MV-algebras can be characterized as follows:

Theorem 4.9. .4re MV-algebra A is representable if, and only if, the inter-
section of all maximal ideals of A is the set {0}.

The question now remaining is whether every MV-algebra is representa-
ble. The answer is no. Take very simply the MV-algebra C discussed in §2. It
is easily seen that C has only one maximal ideal which is the set of all elements
of the form nc for some re; thus it follows from 4.9 that Cis not representable
in the sense of 4.8. It should be mentioned here that the characterization
given in 4.9 is the same as the statement for every X5^0, there is a maximal
ideal M such that xEM. This latter condition is of course satisfied in every
Boolean algebra.

If we now let K denote the class of representable MV-algebras, then by
the example C mentioned above we see that the class if is a proper subclass
of the class of all MV-algebras. The natural question to ask here is whether
the class K is an equational class, i.e., whether K can be characterized by a set
of equations in addition to those already given by the axioms. The answer
is again no. Using the terminology of [7], we state and prove the following
which is a stronger statement than the fact that K is not equational.

Theorem 4.10. The class K is not a universal class.

Proof. It has already been remarked that the MV-algebra C is not
representable. Also, every finite subset of C can be isomorphically embedded
in some representable MV-algebra S(m) for some m. Thus it follows from the
characterization given in [7] that K is not a universal class.

5. Applications to the MV-algebra L and some related results. Let us
now return to the algebra L introduced in §2. For the sake of uniformity of
notation, we now let x, y, z, • • ■ denote the elements of L. The generators of
L shall be denoted by capital letters Xi, • ■ • , Xn, ■ ■ ■ . We understand that
any set of capital letters like { Yi, • • • ,Y,\,\Zi, ■ ■ ■ , Zp}, or { Wi, • • • , Wq}
shall denote a subset of the set of generators of L.

For the discussion in the succeeding paragraphs, we let the symbol S(°°)
denote  the  set  of  rational   numbers  between  0   and   1,   and   the  system
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(5(oo), +, -,~,0, 1) shall denote the MV-algebra formed from the set S(oo).
Given the generators Yi, - • • , Y, of L, an assignment h of Y\, ■ ■ • , Fs into
5(oo) is simply a mapping h such that h(Yi)ES(<*>) for 1 ̂ i^s. An element
x = P(Fi, • • • , F8) of L is valid in case P(h(Yi), • • • , h(Ys)) = l for every
assignment h. In terms of these notions, the completeness of the ^o-valued
logic can then be stated in the following

Theorem 5.1. Let { Yu ■ • • , Ys} be any finite subset of the generators of L.
Then for any polynomial function P(vi, ■ ■ ■ , vs), P(Y\, • • • , F„) = l if and
only if P is valid.

Since L is generated by the generators Xi, • ■ • , Xn, • • • , we see without
difficulty that every element x of L can be represented as x =P( Fi, • • • , Ys)
for some polynomial P and some set of generators { Fi, ■ • • , Fs}. The next
theorem expresses a uniqueness property of this representation.

Theorem 5.2. If an element xEL can be represented as x = P(Yu • • • , F„)
and x = Q(Yi, ■ ■ • , Yg), then for every assignment h, P(h(Yi), • • • , h(Ys))
= Q(h(Y1), ■ ■ ■ ,h(YA).

Proof. By the hypothesis, we see that

[(P + Q)(Yh ■■■, F8)]-[(P + f2)(F,, •••, F.)J = 1.
Let h be any assignment, then by 5.1 we see that

[(P + Q)(h(Yi), ■■■, h(Ys))]-[(P + Q)(h(Yi), ■■■, h(Y,))\ = 1.

By 1.2(vi), this means that

(1) (PArQ)(h(Yi),---,h(Y,)) = l

and

(2) (P+Q)(h(Yi),-- -,h(Ys)) = 1.

(1) and (2) lead to

P(h(Yi), ■ ■■ , h(Y.)) = Q(h(Yi), ■ ■ ■ , k(Y,))

and

Q(h(Y,), ■■■ , h(Ys)) = P(h(Yi), ■■■ , h(Ys)),

which give the desired conclusion.
We now give an interesting theorem which connects algebra with logic.

Theorem 5.3. 7w order that the ^-valued logic be complete it is necessary
and sufficient that the MV-algebra L be representable.

Proof. (Necessity). By 4.9 it is sufficient to prove that every element
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xs^O in L is not included in some maximal ideal. Let an element x be given
with a representation x = P(Yt, • • • , YB). Since X5^0, by 5.1 (i.e., our as-
sumption) there exists an assignment h for which

(1) P(A(Fi), ■ • • , *(F.)) * 0.
We now extend the assignment h to the set of all generators by arbitrarily
assigning the value 0 to every generator not among the set { Yi, • • • , Ys].
We define a set M of elements of L as follows: M is the set of all elements y
of L such that with respect to some representation y = Q(Zi, • • • , Zp),
Q(h(Zi), • • • , h(Zp))=0. It is evident that M is an ideal of L. Let zEM,
this means that in some representation z = R(Wi, ■ ■ ■ , Wq) where
R(h(Wi), ■ ■ ■ , h(W„))^0. Since the algebra S(°o) is locally finite, there
exists an re for which

n-R(h(Wi), ■ ■ ■ ,h(Wq)) = 1
and

[R]"(h(Wi), • • • , h(Wq)) = 0.

Thus the element z" with the representation z"= [/Z]"(Wi, • • • , Wg) belongs
to M. By 4.7, ¥ is a maximal ideal. By 5.2, (1), and the definition of 717,
xEM. Hence the necessity has been proved.

(Sufficiency.) First of all, by the definition of L, there is no difficulty
in showing that if P(YU ■ ■ ■ , Y,) = l, then P(YX, ■ ■ ■ , Ys) is valid. Let us
now assume that an element x = P(Fi, • ■ • , Ys) of L is valid. We prove that
x = 1 by contradiction. Assume that x^l, then, by 4.9, there exists a maximal
ideal M such that xEM. This means that x/Mj&l/M. Let us now consider
the algebra L/M which, by 4.7, is locally finite. There are two cases:

Case 1. L/M contains an atom. In this case, by 3.19, L/M is isomorphic
to S(m) for some m. Let the isomorphism be g. Clearly the mapping h(x)
= g(x/M) is an assignment of Fi, • • • , Fs, and, furthermore, h is a homo-
morphism of L onto S(m). Since x/M^l/M, we see that

1 * h(x) = h(P(Yh • • • , F.)) = P(KYi), • • • , h(Y,)).

This is a contradiction.
Case 2. L/M contains no atoms. In this case, since x/M

= P( Yi/M, • • ■ , Y,/M) ?*1, we see by 3.26 that, for a suitable choice of the
element x (of 3.26), there exists an element yEL/M, an integer m such that
ord(y) =m, and a sequence of integers »i, • • • , w« such that

(2) P'(nvy, •■■, n.-y) * 1.

On considering the definition of the polynomial P', we see that the formula
in (2) simply means that, in the algebra S(m),

(3) P(nx/m, • • • , njm) t^ 1.
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It now follows from (3) that the mapping h defined by h(Yi)=ni/m for
l=2=-s is an assignment for which P(h(Yi), • ■ • , h(Ys))^l. This is also a
contradiction.

Since we have arrived at a contradiction in both cases, we see that the
sufficiency is proved.

5.3 provides the algebraic method of which we spoke and by which we
hoped to find an algebraic proof of the completeness of No-valued logic. Un-
fortunately, we see at present no simple and direct proof that L is representa-
ble. The essential difference then between the two-valued case and the No-
valued case is that not every MV-algebra is automatically representable
while every Boolean algebra is representable. We offer an algebraic proof of
the following theorem which states, in the notation of [5], that if P is valid
then \-BPP. This, of course, is a much weaker result than the completeness;
however, the proof we offer is very different in spirit from the proof in [5].

Theorem 5.4. Ifx = P(Yu ■ • ■ , Y,)EL andP(Yu • • • , F„) is valid, then
x+x = l.

Proof. By contradiction. Suppose that x+x?*l, then by 3.9, 4.4, and
4.6 there exists a maximal ideal M such that x-xEM. This clearly means
that xEM. Now the argument follows exactly as in the proof of the suffi-
ciency of 5.3.

We conclude this section by considering some consequences when the
axiom

Ax. 12(m). m-x = (m-\-l)-x

(where m is some fixed positive integer) is added to our original axioms
Ax. 1-Ax. 11. If we now let A.S(m) be the natural translation of Ax. 12(m)
into the notation of [5] and define the algebra L(m) accordingly, then we
obtain the following theorem:

Theorem 5.5. For every ?re= 1 and for every element x = P(Fi, ■ • • , Y„) of
L(m), (i) x=l, if, and only if, (ii) for every re, l^» = m, and for every assign-
ment hof Yu • • • , Y, into S(n), P(h(Yi), ■    ■ , h(Y,))=l.

Proof. Again, there is no difficulty in proving (ii) from (i). Let us now
assume (ii) and, as usual, assume that (i) does not hold, i.e., x^l. This
implies that xm^l. From our axiom Ax. 12(m), we see that tw-x+w-x
= m-ic. By 1.16, we see that xm+xm = xm and ord(xm)= oo. By 4.4 and 4.6,
there exists a maximal ideal M such that xmEM. Clearly, xElM. This means
that the element x/M^l/M. Let us now consider the algebra L(m)/M. If
yEM, then by 4.7 ynEM for some re. Due to Ax. 12(w), it is not difficult to
see that the integer re can always be taken so that re^rez. Thus, not only
L(m)/M is locally finite, but every element of L(m)/M must have order ^tn.
By 3.20, we see that L(m)/M must contain an atom which is of order ^m.
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Now, 3.19 tells us that L(m)/M is isomorphic to S(n) for some re^rez. Let
the isomorphism be g, and let h(x) —g(x/M) for xEL(m). Then h is an assign-
ment of the elements Yi, • • • , Y, into S(n) and, furthermore, h is a homo-
morphism of L(m) onto S(n). Since x/M^l/M, we see that

1 ^ *(*) = h(P(Yh • • • , F.)) = P^Fj), ■ • ■ , k(Y.))

which is a contradiction. Thus, the theorem is proved.
In terms of many-valued logics, 5.5 asserts that a formula P is provable

from the Axioms A. 1-A. 4 and A. S(m) if, and only if, P is valid in every
re-valued logic for n^(m + l). By an easy analysis on the notions of validity
for No-valued and w-valued logics, we see that the following is true which we
shall simply state without proof.

Theorem 5.6. The completeness of the Ro-valued logic is also equivalent to
the following: If P(vu • • • , vs) is a polynomial function, then P(Fi, • • • , F8)
= 1 in L if and only if P( F]( • • • , F„) = 1 in each L(m) with lf^m.
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