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Algebraic and graphic languages for OLAP manipulations 

ABSTRACT 

This paper deals with multidimensional analyses. Analysed data are 

designed according to a conceptual model as a constellation of facts 

and dimensions, which are composed of multi-hierarchies. This model 

supports a query algebra defining a minimal core of operators, which 

produce multidimensional tables for displaying analysed data. This 

user-oriented algebra supports complex analyses through advanced 

operators and binary operators. A graphical language, based on this 

algebra, is also provided to ease the specification of 

multidimensional queries. These graphical manipulations are 

expressed from a constellation schema and they produce 

multidimensional tables. 

KEYWORDS 

Multidimensional manipulations – OLAP algebra – Graphical query 

language – Constellation – Decision support systems – OLAP – Data 

warehouse 
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INTRODUCTION 

As competitiveness increases in the business world, as faster reactivity is more than ever 

required, the decision making process has become a major focus of research and is 

increasingly assisted with information technologies. OLAP (On-Line Analytical Processing) 

systems, aim to ease the decision making process with a multidimensional data presentation. 

The use of Multidimensional DataBases (MDB) provides a global view of company data, and 

enables decision-makers to gain insight into an enterprise performance through fast and 

interactive access to data (Colliat, 1996). Unfortunately, in spite of a decade of research in 

OLAP systems, concepts and systems exist without uniform theoretical basis (Niemi et al., 

2003), (Rizzi et al., 2006). 

Context and Related Works 

Without a model based on a consensus for multidimensional data, many propositions have 

been made. Multidimensional models rest upon cube or hyper-cube metaphor. Several 

surveys may be found in (Chaudhuri and Dayal, 1997), (Blaschka et al., 1998), (Vassiliadis 

and Sellis, 1999), (Pedersen et al., 2001), (Torlone, 2003) and (Abelló et al., 2006). 

The first works, based on a “cube model” that present data in the form of n-dimensional cubes 

(Agrawal et al., 1997), (Li and Wang, 1996), (Datta and Thomas, 1999), (Gyssens and 

Lakshmanan, 1997), have the following drawbacks: 

1) weakness in modelling the fact (subject of analysis) and its Key Performance Indicators 

(KPI or measures); 

2) little or no conceptual modelling of dimensions (analysis axes) with no explicit capture of 

their hierarchical structure;  

3) no separation between structure and content. 

The second category called “multidimensional model” overcomes these drawbacks and it is 

semantically richer. It allows a precise specification of each multidimensional component 
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(Lehner, 1998), (Pedersen et al., 2001), (Trujillo et al., 2003), (Abelló et al., 2003) and 

(Abelló et al., 2006). Models of this category are based on the concepts of fact and dimension. 

Dimension attributes are organised in hierarchies. A hierarchy defines a point of view (or 

analysis perspective) of an analysis axis and is composed of the different aggregation levels of 

the measures. To our knowledge, hardly any multidimensional model provides a combined 

multi-fact and multi-hierarchy representation. 

From a manipulation point of view, the first works on OLAP manipulation algebras extended 

relational algebra operators for the cube model (Gray et al., 1996), (Agrawal et al., 1997), (Li 

and Wang, 1996), (Gyssens and Lakshmanan, 1997), (Rafanelli, 2003). To counter the 

inadaptability of relational algebra for manipulating multidimensional structures in an OLAP 

context, numerous works provided operations for specifying and manipulating a cube 

(Cabibbo and Torlone, 1997, 1998), (Pedersen et al., 2001), (Abelló et al., 2003) and 

(Franconi and Kamble, 2004). These works are not user-oriented (Abelló et al., 2003) for the 

following reasons: 1) they do not define an adapted structure for displaying decisional data to 

the user; 2) they are based on partial sets of OLAP operations; and 3) the defined operations 

do not easily represent OLAP manipulations of decision-makers (Ravat et al., 2006a). 

Multidimensional OLAP analyses consist in exploring interactively multidimensional 

databases by drilling, rotating, selecting and displaying data. Although there is no consensus 

on a common core of a minimal set of operations for a multidimensional algebra, most papers 

offer a support of these operation categories: 

• Drilling: these operations allow navigating through the hierarchical structure of the 

analysis axes, in order to analyse a measure with more or less precision. Drilling upwards 

(roll-up) consists in displaying the data with a coarser level of detail; e.g. rollup allows 

changing corporate sales initially displayed by months into sales displayed by years. The 
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opposite, drilling downwards (drill-down) consists in displaying the data with a finer level 

of detail. 

• Selections: these operations allow the user to work on a subset of the available data. Slice 

specifies a restriction predicate on dimension data while Dice specifies a restriction 

predicate on fact data.  

• Rotations: these operations allow changing analysis axes (rotation of dimensions), 

changing the subject of analysis (rotation of facts or drill-across), or changing an analysis 

perspective within the same dimension (rotation of hierarchies). 

Some authors have also presented additional operations: 

• Fact modification: these operations allow decision-makers to add and to remove a 

measure (analysis indicator or KPI) in the current analysis. 

• Dimension modification: these operations enable the insertion of dimensional attributes 

into a fact (push operation) or measures into a dimension (pull operation). 

• Ordering: these operations allow decision-makers to change the order of the values of 

dimension parameters or to insert a parameter in another place in a hierarchy (nest 

operation). 

• Set operations: some authors offer to use union, difference and intersection operations. 

The following table summarizes the available operations in various propositions. It also gives 

the authors’ specific names for these operations. 
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Finer level Roll ,Cube Join
DrillDown

(2)
, 

Split
DrillDown Drill Down

Coarser level
Roll, 

Aggregation
Merge Summerization

RollUp,

Aggregation

RollUp,

Merge,

Aggregation

Aggregation RollUp RollUp

Factual values
Slice 

(Selection)
Selection

Dice,

Projection

Dimensional 

values
Restriction

Dice 

(Selection)
Selection Selection

Slice,

Multi-Slice
(3)

Fact DrillAcross FRotate

Dimension ChangeBase DRotate

Hierarchy HRotate

Adding a 

measure
Projection Projection

Derived 

measures

Suppress a 

measure
Projection Projection

Reducing 

dimensions

Cube 

Aggregation

Projection, 

Destroy- 

Dimension

Simple 

Projection
Projection Projection

Push Push Fold
(4)

Pull Pull Unfold

Ordering Classification

Nesting Transfer Nest

Union Union
(6)

Union
(6)

Union
(6)

Union
(5)

Union
(6)

Union
(6)

Intersect Intersection Intersection Intersection

Difference Difference Difference difference Difference

Join

RC-Join 

(Relation to 

dimension)

join cubes join cubes Join
(1)

Identity-

based Join,

Group

join cubes

Cube Cube 2D-Table MD (f-table) MD MD Cube Cube
2D-Table 

(MT)

Add dimension
cartesian 

product

cartesian 

product

provides 

calculus 

language

provides 

graphic 

laguage, 

query calculus

provides SQL 

translation

provides 

assertional 

language

Ordering

Fact 

Modification

MD=Multidimensional;  
(1)

=no restriction; 
(2)

=no hierarchy conservation; 
(3)

=specified on a range; 
(4)

=generalized push; 
(5)

=on dimensions; 
(6)

=identical cubes only;

Comments

                            Research

                            Works

Operations

Other Operations

Model Structure

Drilling

Selection

Set operators

Rotation

Dimension 

Modification

 

Table 1: A comparison of different multidimensional languages. 

Without a complete column, table 1 shows that current research works are incomplete with 

regard to the different operation categories. 

Expressing queries with these algebraic operators is a difficult task for decision-makers. As a 

consequence, more adapted languages have to be defined. Graphical languages used to 

specify multidimensional analyses are very present in commercial tools, but despite this, very 

little attention has been drawn on graphical languages within research on decision support 

systems. In (Cabbibo and Torlone, 1998), the authors present a graphical multidimensional 

manipulation language associated to a conceptual representation of the multidimensional 

structures. Although the authors define a manipulation algebra and calculus, the high level 

graphical language offers very limited manipulations in comparison. In (Böhnlein et al., 

2002), the authors offer an intermediate solution, with more manipulations but the system 

uses complex forms for query specifications. Neither of these two solutions provide a 
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restitution interface. (Stolte et al., 2002) and (Sifer, 2003) are advanced restitution tools. The 

first one offers an impressive pivot table that adapts its display according to the analysed data 

type, whereas the second offers an arborescent view with multiple scales and very specific 

manipulations. Neither proposition provides a formal description of the manipulation 

language. 

Microsoft Excel Pivot tables (or DynamiCube from Data Dynamics), although very 

expressive restitution interfaces, do not provide many dynamic manipulations (especially 

rotations). On the other hand, other commercial tools offer extensive manipulations (Business 

Objects
1
, Cognos BI

2
, Tableau

3
, Targit

4
…). But all these tools display the multidimensional 

structures of the MDB within an arborescent view, rendering impossible comparative analyses 

between different subjects sharing analysis axes. Moreover, the representation used mixes 

completely MDB structures and content. The user completely lacks an adapted conceptual 

view of the MBD concepts for the specification analyses (Rizzi et al., 2006). Moreover, 

commercial tools lack formal manipulation languages and these languages are not complete 

with regard to the different operation categories previously described. 

Nowadays, decision-makers whish to perform their own analyses, but they lack the 

knowledge to manipulate multidimensional structures with the use of multidimensional query 

algebras or with adapted procedural query languages. On the other hand, commercial tools 

provide adapted manipulation languages but lack: 1) rigorous reference to multidimensional 

operations, 2) a uniform theoretical basis (Niemi et al., 2003) as well as 3) an adapted 

conceptual view of the multidimensional elements of the underlying MDB (Rizzi et al., 2006). 

Moreover, these tools sacrifice analysis coherence for analysis flexibility. 

Motivation 

In this context, in order to ensure access to multidimensional OLAP analyses of company data 

we intend to define a user-oriented query language composed of a formalised algebra and a 
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graphic language. The query language has to be based upon: 1) data structures of the MDB 

close to the user’s point of view and an adapted display structure for multidimensional data; 

2) algebraic operators allowing the expression of multidimensional OLAP analyses and 3) an 

incremental graphic query specification. These requirements are detailed in the following: 

1) Being user-oriented (Abelló et al., 2003), this language has to be based on a model 

disregarding implementation issues. We intend to define a multidimensional conceptual 

model, semantically richer than cube models. In order to facilitate correlations between 

analysis subjects and to analyse measures through different aggregation levels, the model 

will support multi-fact and multi-hierarchy representations. Contrary to previous works, 

our objective is also to offer an adapted structure to return analysis data to decision-

makers. A n-dimensional cube (n>2) is hardly workable by decision-makers (Gyssens and 

Lakshmanan, 1997) (Maniatis et al., 2005) and disregards the dimension’s hierarchical 

structure. 

2) The algebra should provide a set of operators expressing all operations that an analyst may 

perform. In order to ensure complex OLAP analyses, the algebra must also support 

operator combinations. 

3) The use of graphic query languages ease query specifications for the end-user compared 

with algebraic expressions. Contrary to commercial software that provide an arborescent 

view of the multidimensional elements, the graphic language should operate on an explicit 

graphic view of the multidimensional conceptual schema. In the same way, OLAP 

analysis queries should be expressed directly on the graphic representation in an 

incremental way. 

Paper Contributions and Outline 

In order to fulfil our goals, we define in the next section, a conceptual multidimensional 

model used as a basis for our query language. Section 3 introduces a formal algebraic 
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language allowing the restitution of analyses in a multidimensional table (MT). In the manner 

of the relational algebra, we define a minimal core of multidimensional OLAP operators that 

may be combined together, expressing complex queries. This core is extended by the 

adjunction of second level operators and binary operators presented in sections 4 and 5. 

Finally, section 6 specifies an incremental graphic language, which is complete with regard to 

the algebra core and it operates directly on the conceptual elements of a multidimensional 

schema. 

CONCEPTUAL MODELLING 

In this section, the model we define is close to the user’s point of view and it is independent 

of implementation choices. This conceptual Multidimensional DataBase (MDB) model is 

based on facts, dimensions and hierarchies. This model facilitates correlations between 

several subjects of analysis through a constellation of facts and dimensions and it supports 

several data granularities according to which subjects may be analysed. 

Concepts 

A constellation regroups several subjects of analysis (facts), which are studied according to 

several analysis axes (dimensions) possibly shared between facts. A constellation extends star 

schemas (Kimball, 1996), which are commonly used in the multidimensional context. 

Definition. A constellation Cs is defined as (N
Cs

, F
Cs

, D
Cs

, Star
Cs

) where 

• N
Cs

 is a constellation name, 

• F
Cs

={F1,…,Fm} is a set of facts, 

• D
Cs

={D1,…,Dn} is a set of dimensions, 

• Star
Cs

 : F
Cs

 → 2
DCs

 associates each fact to its linked dimensions. 

The notation 2
X
 represents the powerset of the set X. 

A dimension models an analysis axis; e.g. it reflects information according to which subjects 

of analysis will be analysed. A dimension is composed of attributes (dimension properties). 
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Definition. A dimension, noted D∈D
Cs

, is defined as (N
D
, A

D
, H

D
, I

D
) where 

• N
D
 is a dimension name, 

• A
D
 = {a

D
1,…, a

D
u}∪{id

D
, All} is a set of attributes, 

• H
D
 = {H

D
1,…, H

D
v} is a set of hierarchies, 

• I
D
 = {i

D
1,…, i

D
p} is a set of dimension instances. 

Dimension attributes (also called parameters or levels) are organised according to one or more 

hierarchies. Hierarchies represent a particular vision (perspective) of a dimension. Each 

attribute represents one data granularity according to which measures could be analysed; for 

example, along the store dimension, a hierarchy could group individual stores into cities and 

cities into countries. Weak attributes (attributive properties) complete the parameter 

semantics, e.g. the name of an individual store. 

Definition. A hierarchy of a dimension D, noted Hi∈H
D
, is defined as (N

Hi
, Param

Hi
, Weak

Hi
) 

where 

• N
Hi

 is a hierarchy name, 

• Param
Hi

 = <id
D
, p

Hi
1,…, p

Hi
vi, All> is an ordered set of attributes, called parameters, 

which represent useful graduations along the dimension, ∀k∈[1..vi], p
Hi

k∈A
D
, 

• Weak
Hi

 : Param
Hi

 →  is a function possibly associating each parameter to one 
HiD ParamA −2

or several weak attributes. 

For a hierarchy Hi we introduce A
Hi

 = Param
Hi

 ∪ ( ) the set of the hierarchy 

attributes, A

)(
1

HjHi
vij

j

pWeakU
=

=

Hi⊆A
D
. We also define the function level: A

D
 → ℕ+

, noted level
Hi

(ai), which 

returns the order of ai in the list Param
Hi

 (note that the level of a weak attribute is the level of 

its associated parameter). 

All hierarchies in one dimension start with a same parameter, noted id
D
 called root parameter. 

All these hierarchies end with a same parameter, noted All called extremity parameter. We 

represent dimensions using a graphical formalism, which extends notations introduced in 

(Golfarelli et al., 1998). Each path starting from Id and ending by All represents a hierarchy. 
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Figure 1: Graphical formalism of dimensions and hierarchies. 

A fact reflects information that has to be analysed according to dimensions. This analysed 

information is modelled through one or several indicators, called measures; for example, a 

fact data may be sale amounts occurring in shops every day. The notation Di∈Star
Cs

(F) 

represents that the dimension Di is linked to the fact Fj. 

Definition. A fact, noted F∈F
Cs

, is defined as (N
F
, M

F
, I

F
, IStar

F
) where 

• N
F
 is a name of fact, 

• M
F
 = {f1(m

F
1),…, fw(m

F
w)} is a set of measures associated with an aggregate function, 

• I
F
 = {i

F
1,…, i

F
q} is a set of fact instances, 

• IStar
F
 : I

F
 → I

D1
x…xI

Dn
 is a function (∀k∈[1..n], Dk∈Star

Cs
(F)), which respectively 

associates fact instances to their linked dimension instances. 

Figure 2 illustrates graphical notations used to represent facts. 

 

 Figure 2: Graphical formalism of facts. 

Case study 

The case we study is taken from the meteorology domain. We define a multidimensional 

database, which allows users to analyse weather forecasts (atmospheric measures and 
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forecasted measures) according to dates, geographic locations, sensor devices and forecast 

models. 

Figure 3 shows a constellation, which supports analyses about weather forecasts. It is 

composed of two facts, named Forecast and Measures, and four dimensions, named Model, 

Dates, Geography, and Sensor. Note that the extremity parameter (All) is not displayed in the 

graphical representation as this parameter tends to confuse users (Malinowsky and Zimányi, 

2006). 

 

Figure 3: Example of constellation schema. 

The dimension named Geography, which represents geographic information, is defined by 

(N
GEO

, A
GEO

, H
GEO

, I
GEO

) where 

• N
GEO

 = ‘Geography’, 

• A
GEO

 = {Latitude, Longitude, Altitude, City, Local_Zone, Country, Continent, 

Global_Zone}∪{IdG, All}, 

• H
GEO

 = {HCOGZ, HCOCN, HLZGZ, HLZCN}, 

• I
GEO

 = {iGEO
1, i

GEO
2… iGEO

p}. 

Examples of dimension instances are presented in the next table. 
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IdG Latitude Longitude Altitude City Local_Zone Country Continent Global_Zone All 

iGEO
1 N43.36 E1.26 145M Toulouse MP France Europe North All 

iGEO
2 S34.0 E151.0 0M Sydney NSW Australia Oceania South All 

… … … … … … … … … … 

Table 2: Example of dimension instances. 

This dimension is composed of four hierarchies, noted HCOGZ = (N
HCOGZ

, Param
HCOGZ

, 

Weak
HCOGZ

); HLZCN = (N
HLZCN

, Param
HLZCN

, Weak
HLZCN

); HLZGZ = (N
HLZGZ

, Param
HLZGZ

, 

Weak
HLZGZ

); and HCOCN = (N
HCOCN

, Param
HCOCN

, Weak
COCN

). 

The hierarchy named HCOGZ is specified by: 

• N
HCOGZ

 = ‘HCOGZ’, 

• Param
HCOGZ

 = < IdG, City, Country, Global_Zone, All>, 

• Weak
HCOGZ

 = { IdG → {Latitude, Longitude, Altitude}}. 

We shall only present Param
Hx

 for the three other hierarchies: Param
HCOCN

=< IdG, City, 

Country, Continent, All>; Param
HLZCN

 = <IdG, Local_Zone, Country, Continent, All>; and 

Param
HLZGZ

=< IdG, Local_Zone, Country, Global_Zone, All>. 

Weather forecasts may be analysed thought the fact noted FORC = (N
FORC

, M
FORC

, I
FORC

, 

IStar
FORC

) where 

• N
FORC

 = ‘Forecast’, 

• M
FORC

 = {SUM(Precipitation), AVG(Temperature)}, 

• I
FORC

 = {i
FORC

1, i
FORC

2… i
FORC

q}, 

• IStar
FORC

 = {i
FORC

k → (i
MOD

rk, i
DAT

sk, i
GEO

tk) | ∀k∈[1..q], i
FORC

k∈I
FORC

 ∧ ∃i
MOD

rk∈I
MOD

 ∧ 

∃i
DAT

sk∈I
DAT

 ∧ ∃i
GEO

tk∈I
GEO

}. 

Examples of fact instances are presented in the next table. 
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Table 3: Example of fact instances. 

Multidimensional Table Structure 

Constellation schemas depict MDB structures whereas user analyses are based on tabular 

representations (Gyssens and Lakshmanan, 1997) where structures and data are displayed. 

The visualisation structure that we define is a multidimensional table (MT), which displays 

data from one fact and two of its linked dimensions. 

Definition. A multidimensional table T is defined as (S, L, C, R) where 

• S=(F
S
,M

S
) represents the analysed subject through a fact F

S∈F
Cs

 and a set of projected 

measures M
S
={f1(m1),…, fx(mx)} where ∀i∈[1..x], mi∈M

Fs
, 

• L=(DL, HL, PL) represents the horizontal analysis axis where PL=<All, p
HL

max,…p
HL

min>, 

HL∈H
DL

 and DL∈Star
Cs

(F
S
), HL is the current hierarchy of DL, 

• C=(DC, HC, PC) represents the vertical analysis axis where PC=<All, p
HC

max,…p
HC

min>, 

HC∈H
DC

 and DC∈Star
Cs

(F
S
), HC is the current hierarchy of DC,  

• R=pred1 ∧…∧ predt is a normalised conjunction of predicates (restrictions of dimension 

data and fact data). 

Figure 4 depicts an example of MT, which displays precipitation forecasts according to the 

temporal axis and the geographic axis. Note that a MT represents an excerpt of data recorded 

in a constellation. 

T1 = (S1, L1, C1, R1) with:  

• S1=(FORC, {SUM(Precipitation), AVG(Temperature)});  

• L1=(GEO, HCOCN, <All, Continent>);  

• C1=(DAT, HY, <All, Year>);  

• R1=GEOGRAPHY.All = ‘all’ ∧ DATES.All = ‘all’ ∧ MODEL.All = ‘all’ ). 
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Figure 4: Example of a MT (textual definition and graphic representation). 

A MT is built from a constellation using the operator named DISPLAY. 

Definition. DISPLAY(N
Cs

, F
S
, M

S
, DL, HL, DC, HC) = TRES where 

• N
Cs

 is the constellation name, 

• F
S∈F

Cs
 is the displayed fact, 

• M
S
={f1(M1),…, fx(Mx)}, where ∀i∈[1..x], Mi∈M

FS
 is a measure of F

S
 to be displayed in 

the MT, 

• Cs
(F

S
) and DC∈Star

Cs
(F

S
) are respectively the horizontal and vertical dimensions, DL∈Star

• HL∈H
DL

 and HC∈H
DC

 are selected hierarchies, which are used to display parameters, 

• TRES = (SRES, LRES, CRES, RRES) is the resulting multidimensional table, where: SRES = (F, 

{f1(M1),…, fx(Mx)}); LRES = (DL, HL, <All, p
HL

vL>); CRES = (DC, HC, <All, p
HC

vC>); and 

RRES = ''.
)(,

allALLDi

FStarDi SC

=∧
i∈∀

. 

Example 1. Let us consider users who whish to display precipitation forecasts according to 

s 

erature)}, 

months grouped into years and according to cities grouped into countries and continents. Thi

OLAP analysis is calculated according to the following algebraic expression: 

DISPLAY(‘Weather Constellation’, FORC, {SUM(Precipitation), AVG(Temp

GEO, HCOCN, DAT, HY) = T1. The resulting MT (T1) is displayed in Figure 4; 

MINIMAL CORE OF THE OLAP ALGEBRA 

In relational databases, the relational algebra is a procedural query language composed of 

late 

on this algebra. 

operators. Queries are specified by sequences of relational algebraic operators that manipu

relations (database components). This language is a closed set of operators. Each one operates 

on one or more relations and yields a relation. More elaborated languages (e.g. SQL) are built 
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In the same way, our objective is to provide an algebra and an associated more elaborated 

language. The OLAP algebra we define is associated to the multidimensional conceptual 

 of more 

phical query 

as output a new MT, noted TRES=(SRES, LRES, CRES, RRES). Each output 

imensional OLAP manipulation operators: 

chy 

 

• ed 

• S
, 

model described above. This algebra is a “procedural” query language that allows 

manipulation and retrieval of data from a MDB through nested expressions of 

multidimensional algebraic operators. It provides a stable basis for the specification

elaborated languages, notably languages adapted to decision-makers such a gra

language. Moreover, the algebra represents also specific algorithms corresponding to each 

elementary operator. 

Formally the algebraic operations take as input a source MT, noted TSRC=(SSRC, LSRC, CSRC, 

RSRC), and producing 

MT can further be manipulated using operations of the same algebra. This property is called 

closure. As relational algebra we specify a minimal core of operators and a set of advanced 

operators composed of combined core operators. 

The minimal core is a small set of operators that allows the analyst to manipulate MT in 

useful ways. We define three categories of multid

• modifying analysis precision: it consists in moving the analysis details along a hierar

(DRILLDOWN or ROLLUP) or selecting data of a multidimensional schema (SELECT).

• changing analysis criteria: it consists in: 1) replacing an analysis axis by another one 

(ROTATE); 2) transforming the subject of the analysis (ADDM/DELM); 3) transforming 

an analysis axis by adding or removing a dimension attribute (PUSH/PULL); and 4) 

adding attributes from external dimensions in a displayed analysis axis (NEST). 

changing MT presentation: it consists in: 1) switching parameter values of a display

dimension; 2) add totals and subtotals in a MT. 

Each operation has the following input: TSRC=(SSRC, LSRC, CSRC, RSRC) where  

SSRC=(F
S
, {f1(m1),…, fx(mx)}), ∀i, 1≤i≤x, mi∈M
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• LSRC=(DL, HL, <All, p
HL

max,…,p
HL

min>), DL∈Star(F
S
), 

• CSRC=(DC, HC, <All, p
HC

max,…, p
HC

min>), DC∈Star(F
S
), 

Modifying the analysis precision 

• RSRC=(pred1 ∧…∧ predt). 

The operation called DRILLDOWN consists in moving from coarser-granularity data to finer-

which modifies the analysis from finer-granularity granularity data. The opposite operator, 

data to a coarser granularity, is called ROLLUP. 

Definition. DRILLDOWN(TSRC, D, Lvlinf
(*)

) = TRES. 

Input: 

• D∈{DC, DL} is the dimension, on which the drilling downward operation is applied, 

• Lvlinf is a lower attribute in the current hierarchy of D. The intermediate graduation levels 

between the finer graduation of TSRC and the new graduation are not displayed. 

Output: TRES=(SSRC, LRES, CRES, RSRC) is the resulting multidimensional table such as 

• if D=DL then LRES=(DL, HL, <All, p
HL

max,…, p
HL

min, Lvlinf>) and CRES=CSRC, 

• if D=DC then LRES=LSRC and CRES=(DC, HC, <All, p
HC

max,… p
HC

min, Lvlinf>). 

(*)
 A level, noted Lvl, may represent a parameter p

D
, a parameter with a list of weak attributes 

p
D D D D D D
( , which is not displayed. a 1, a 2,…), or a list of weak attributes (a 1, a 2,…) of p

Definition. ROLLUP(TSRC, D, Lvlsup) = TRES where 

Input: 

• D∈{DC, DL} is the dimension, on which the drilling upward operation is applied,  

• Lvl  is a coarser-graduation level used in T , tsup RES he finer graduations are deleted. 

Output: TRES=(SSRC, LRES, CRES, RSRC) is the resulting multidimensional table such as 

• if D=DL then L =(DL, HL, <All, pRES max sup RES SRC
HL

,…, Lvl >) and C =C , 

• if D=DC then LRES=LSRC and CRES=(DC, HC, <All, p
HC

max,…, Lvlsup>). 

The selection, noted SELECT, operates on a MT and removes the data that do not satisfy the 

condition. This cond on m y be expressed on dimension attribute values asiti a  well as on fact 

measure values. Note that this operator realises “slicing/dicing” manipulations in a MDB 

terminology (Agrawal et al., 1997). 
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Definition. SELECT(TSRC, pred) = TRES where  

Input: pred= pred1 ∧…∧ predt is a normalized selection predicate (conjunction of 

disjunctions) on the fact F
S
 and/or its linked dimensions (Di | Di∈Star

Cs
(F

S
)). 

Output: T =(S , L , C , R ) is the resuRES SRC SRC SRC RES RESlting MT where R  = pred. 

Example 2. From ple in Figure 4, decision-makers changes the precision of 

al  T oc s o ur n cities). Three 

 the previous exam

forecast an ysis. he f us i n E opean continent (European cou tries and 

operators compose the algebraic expression (output MT in Figure 5): 

DRILLDOWN(DRILLDOWN(SELECT(T1, Geography.Continent = ‘Europ’), Geography, 

Country), Geography, City) = T2. 

 

Figure 5: Multidimensional table (T2) resulting from three algebra operators. 

T2 = ( (FORC, {SUM(Precipitation), AVG(Temperature)}), 

 (GE

ll = ‘all’ ∧ MODEL.All = ‘all’ ). 

Changing analysis criteria 

O, HCO, <All, Continent, Country, City>), 

 (DAT, HY, <All, Year>), 

 GEOGRAPHY.Continent = ‘Europ’ ∧ DATES.A

The rotation, noted ROTATE, allows changing one analysis axis by another one in a MT. It 

urrent hierarchy by another one belonging to the same also may be used to change the c

dimension. 

Definition. ROTATE(TSRC, Dold, Dnew ,H
Dnew

k) = TRES where 

Input: 

• D ∈{DC, DL} is a dimension of TSRC to be replaced, old

• D  is the dimension replacing D ∈ esulting mnew old {DC, DL} in the r ultidimensional table, 
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• H
Dnew

k is the current hierarchy of Dnew (positioned on the coarser-granularity parameter). 

Output: TRES=(SSRC, LRES, CRES, RSRC) is the resulting multidimensional table such as 

• if Dold=DL then LRES=(Dnew, H
Dnew

k, <All, p
HDnew

vl>) and CRES=CSRC,  

• if Dold=DC then LRES=LSRC and CRES=(Dnew, H
Dnew

k, <All, p
HDnew

vc>). 

The operation that adds a measure, noted ADDM and the operation that deletes a measure, 

SRC i i RES

noted DELM, allow the modification of the analysed measure set. 

Definition. ADDM(T , f (m )) = T  where 

Input: fi(mi)∉M
S
={f1(m1),…, fx(mx)} is a measure of F

S
 (fi(mi)∈M

FS
)to be added to TSRC, 

Output: TRES=(SRES, LSRC, CSRC, RSRC) is the resulting multidimensional table where 

SRES = (F
S
, {f1(m1),…, fx(mx), fi(mi)}). 

 

D nition. DELM(Tefi  where SRC, fi(mi)) = TRES

Input: fi(mi)∈M  is a measure to be suppressed from TSRC, 
S

Output: TRES=(SRES, LSRC, CSRC, RSRC) is the resulting multidimensional table where 

SRES=(F
S
, {f1(m1),…,fi-1(mi-1), fi+1(mi+1),…,fx(mx)}). No  thte at this operator may not remove 

the last me ure o  Tas f . SRC

Example 3. Now, decision-makers complete the previous analysis by changing the analysis 

criteria; e.g. they change temporal granularity by the dimension named MODEL and they 

2 3

focus their analysis by deleting unnecessary measure. The algebraic expression is 

ROTATE(DELM(T , SUM(Precipitation)), DATES, MODEL, HM) = T  and Figure 6 

displays the output MT. 

 

Figure 6: Multidimensional table resulting from OLAP algebra manipulations. 

T3 = ( (FORC, {AVG(Temperature)}), 

 (GEO, HCO, <All, Continent, Country, City>), 
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 (MOD, HM, <All, MCountry>), 

 GEOGRAPHY.Continent = ‘Europ’ ∧ DATES.All = ‘all’ ∧ MODEL.All = ‘all’ ). 

he rest  and PULL, consist in combining the dimension 

s. 

T ructuring operations, noted PUSH

attributes with the measures. The PUSH operator converts dimension attributes into measure

The PULL operator is the converse of the PUSH operator; it converts measures into 

parameters. 

Definition. PUSH(TSRC, D, p) = TRES where 

Input: 

• D∈Star
Cs

(F
S
) is a dimension,  

• p∈H
D

 is the parameter of D to be converted into a mk easure,  

Output: T =(S , L , C , RSRC) is the resulting multidimensional table where  RES RES SRC SRC

SRES f1 1 x x=(F
S
, { (m ),…, f (m ), p}). 

 

Definition. PULL(TSRC, fi(mi), D) = TRES where 

Input: 

 f (m )∈M
S
 is a measure of the current fact to be converted into a parameter of D, • i i

• D∈{DC, DL} is the dimension, which is extended with the new converted parameter. 

Output: T =(S , L , C , R ) is the resulting multidimensional table such as RES RES RES RES SRC

S =S -{f (m )}, and RES SRC i i

•  if D=DL then L =(DL, HL, <All, pRES max min i i RES SRC
HL

,…,p
HL

,f (m )>) ∧ C =C , 

• if D=DC then L =L  ∧ C =(DC, HC, <All, p
HC

,…, p
HC

, f (m )>). RES SRC RES max min i i

The nesting operator, noted NEST, allows the user to include dimension attributes of 

nal table. 

 of the 

dimensions that are not displayed in the displayed dimensions of a multidimensio

This operation enables the use of parameters from several dimensions in the 2D space

MT. 

Definition. NEST(TSRC, D, Lvl, Dnested, Lvlnested) = TRES where 

Input: 

• D∈{DC, DL} is a dimension and Lvl is its level, 

• D ∈Star
Cs

(F
S
) is the dimension from which the nested levnested el is taken, 

• Lvlnested is the nested level of Dnested. 
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Output: TRES=(SSRC, LRES, CRES, RSRC) is the resulting multidimensional table such as 

• if D=DL then LRES=(DL, HL, <All, p
HL

max,…, Lvl, Lvlnested,…, p
HL

min>) ∧ CRES=CSRC, 

• if D=DC then LRES=LSRC ∧ CRES=(DL, HD, <All, p
HC

max,…, Lvl, Lvlnested,…, p
HC

min>). 

Example 4. Decision-makers complete the previous analysis; they change the MT 

presentation by nesting year into Geography dimension. They also modify analysis precision 

3

GEOGRAPHY, Country), GEOGRAPHY, Country, DATES, Year) = T  and Figure 7 

displays the output MT. 

by rolling up to continents and countries. The algebraic expression is NEST(ROLLUP(T , 

4

 

Figure 7: Multidimensional table resulting from nest operator. 

T4 = ( (FORC, {AVG(Temperature)}), 

 (GEO, HCO, <All, Continent, Country, Year>), 

 (MOD, HM, <All, MCountry>), 

 GEOGRAPHY.Continent = ‘Europ’ ∧ DATES.All = ‘all’ ∧ MODEL.All = ‘all’ ). 

hang e presentation C ing the multidimensional tabl

The switching operation, noted SWITCH, permutes two values of a parameter from a 

dimension allowing a specific order in the displayed values. 

Definition. SWITCH(T , D, att, v , v ) = T  where SRC 1 2 RES

Input: 

• D∈{DC, DL} is a displayed dimension,  

• att∈A
D
 is an attribute of the dimension D, on which the switching of the values v1 and v2 

is applied. Note that dom(att)=<…v1,…v2,…> in TSRC. 

Output: TRES=(SSRC, LSRC, CSRC, RSRC) is the resulting multidimensional table where 
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dom(att)=<…v2,…v1,…>. 

The , allows aggregating values in line 

(Gray et al., 1996). 

 operation to calculate aggregates, noted AGGREGATE

or column of a multidimensional table. This operation realises the Cube operator defined by 

Definition. AGGREGATE(TSRC, D, f(att)) = TRES where 

Input: 

• D∈{DC, DL} is a dimension, 

• att is the attribute of D on which applies the aggregation function f (sum, avg,…) with 

dom(att)=<v1,…,vx> in TSRC. 

Output: TRES=(SSRC, LSRC, CSRC, RSRC) is the resulting multidimensional table where 

∀i [1..x], dom(att) = <v∈ 1, f(v1),…,vx, f(vx)>. Each initial value is completed by the 

aggregation value. 

Summary 

In this section we have defined a core of eleven operators, dispatched in three categories. The 

le summarises this proposal. These operators may be combined together. 

Categories Operators 

following tab

modifying analysis precision DRILLDOWN / ROLLUP 

SELECT 

changing analysis criteria ROTATE 

ELM 

PUSH / PULL 

ADDM / D

NEST 

changing MT presentation SWITCH 

AGGREGATE 

Table 4: OLAP  core. 

 

ADVANCED OPERATOR EBRA 

 Algebra

S OF THE OLAP ALG
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The minimal core of the algebra allows the expression of more or less complex analyses on 

c 

 and its translation 

constellation data. However some analyses demand numerous combinations of different basi

operators. In order to improve the processing of complex queries, we define a set of advanced 

operations (created by combinations of basic operators). The interest is twofold: the analysis 

query specification is simplified and the system processing of advanced operations may be 

optimized in relation to the equivalent combination of basic operators. 

Operator Description Syntax

FROTATE This operation consists in using a new fact 

in the MT while e 

FROTATE(T , F , 

{f x

SRC

f1(m1), 

, DC, HC))) 

 preserving th

characteristics of the current analysis axes 

(DC and DL). The new fact must share at 

least the two selected dimensions with the 

initial fact. 

SRC new

(m ),…,f (m )}) = 1 1 x

History
(*)

(T , DL, 

History(TSRC, DC, 

DISPLAY(N
CS

, Fnew, {

f2(m2),…}, DL, HL

HROTATE  The rotation of hierarchies in a MT consists

in changing the current hierarchy in line or 

column. 

HROTATE(TSRC, D, H
D

k) = 

ROTATE(T ,D,D,H
D

)  SRC k

ORDER 

ters in an ascending or 

SRC

SWITCH(…(SWITCH(T , D, 

This operation consists in ordering values 

of parame

descending order (ord∈{'asc', 'dsc'}). 

ORDER(T , D, p, ord) = 

SRC

p, v1, v2), …), D, p, va, vb) 

PLOT This operation consists in displaying data 

according to a unique parameter of a 

dimension. 

PLOT(TSRC, D, Lvl) = 

DRILLDOWN(ROLLUP 

(TSRC,D,All),D, Lvl) 

UNSELECT 

ensions and 

ing 

all' ∧ 

i

The unselecting operation consists in 

cancelling all selections on dim

facts. This operation builds a MT start

from all the characteristics of an initial MT 

but withdrawing all restrictions on the 

domain values. 

UNSELECT(TSRC) = 

SELECT(T , F
S
.All='SRC

(
)(

allAllD
FStarD SCs

i

= ''.∧
∈

)) 

Table 5: Advanced operators. 
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(*) 
History(Told, obj, Tnew)=TR represents the history of operations that were applied in Told on 

obj (dimension or fact) and that must be applied on Tnew. Note that the fact rotation operation, 

noted FROTATE, is equivalent to the Drill-Across operation (Abelló et al., 2003). 

BINARY OPERATORS OF THE OLAP ALGEBRA 

All previously defined operations are unary operators. In order to manipulate two MT, we 

provide a set of binary operators. From two MT, a binary operator builds a third MT by 

applying a union, an intersection or a difference operation. In order to be applied, these 

operations need compatible or semi-compatible MT as inputs. The following sections present 

the compatibility of input tables and the set of binary operators. 

Compatibility of input tables 

Input MT, which are noted TSRC1=(SSRC1, LSRC1, CSRC1, RSRC1) and TSRC2=(SSRC2, LSRC2, CSRC2, 

RSRC2), must be compatibles to applied binary operators. Note that ∀i∈[1..2], 

• SSRCi = (F, {m
SRCi

1,…, m
SRCi

s}), 

• LSRCi = (DL
SRCi

, HL
SRCi

, <All, p
DL/SRCi

1,…, p
DL/SRCi

cl>), 

• CSRCi = (DC
SRCi

, HC
SRCi

, <All, p
DC/SRCi

1,…, p
DC/SRCi

cc>), 

• R
SRCi

 = pred
SRCi

1 ∧…∧ pred
SRCi

t. 

Definition. Two tables TSRC1 and TSRC2 are compatible tables if and only if 

• SSRC1 and SSRC2 are compatibles; e.g. they have the same number of measures, noted 

{m
SRC1

1,…, m
SRC1

s} and {m
SRC2

1,…, m
SRC2

s}, and the type
(*)

 of corresponding measures is 

the same in both SSRC1 and SSRC2, ∀i∈[1..s], type(m
SRC1

i) = type(m
SRC2

i), 

• LSRC1 and LSRC2 are compatibles; e.g. they have same structure (same dimension 

DL
SRC1

=DL
SRC2

, same hierarchy HL
SRC1

=HL
SRC2

, same ordered set of displayed 

dimension attributes <All, p
DL SRC1

1,…, p
DL SRC1

cl>=<All, p
DL SRC2

1,…, p
DL SRC2

cl>). Notice 

that domains of dimension attributes are not necessarily equals. 

• CSRC1 and CSRC2 are compatibles; e.g. they have same structure. 
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(*)
 Note that type(att) gives the set of all possible values of the attribute whereas dom(att) 

gives the set of attribute values (dom(Att)⊆type(Att)). 

We introduce the semi-compatibility property allowing binary operations between two MT, 

which are not strictly compatibles. 

Definition. Two tables TSRC1 and TSRC2 are semi-compatible tables if and only if 

• LSRC1 and LSRC2 are compatibles, 

• CSRC1 and CSRC2 are compatibles.  

Example 5. In the following table, we display three MT noted Ta, Tb, and Tc. 

• Ta is not compatible with Tb and Tc because Ca ≠ Cb and Ca ≠ Cc while 

• Tb and Tc are compatibles because Sb = Sc, Lb = Lc and Cb = Cc. Note that dom(Continent) 

in Tb is not equal to dom(Continent) in Tc. 

 

Sa = (Forecast, {AVG(Temperature)}) 

La = (Geography, HCO, <All, Continent>) 

Ca = (Dates, HY, <All, Year>) 
 

Figure 8: MT noted Ta. 

 

Sb = (Forecast, {AVG(Temperature)}) 

Lb = (Geography, HCO, <All, Continent >) 

Cb = (Dates, HY, <All, Year, Month>) 

Figure 9: MT noted Tb. 

 

Sc = (Forecast, {AVG(Temperature)}) 

Lc = (Geography, HCO, <All, Continent >) 

Cc = (Dates, HY, <All, Year, Month>) 

Figure 10: MT noted Tc. 

Table 6: Compatibilities between MT. 
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Set operators 

Set operators can be applied between two tables, which may be compatibles or semi-

compatibles. These operations consist in combining two MT using union, intersection or 

minus operations (Gyssens and Lakshmanan, 1997), (Agrawal et al. 1997). 

Definition. SET(TSRC1, TSRC2 [, fn]) = TRES where SET∈{UNION, INTERSECT, MINUS}. 

Input TSRC1 and TSRC2 are two compatible or semi-compatible MT, and 

fn is an optional calculus function, which is applied on corresponding measures from both 

TSRC1 and TSRC2. 

Output: TRES is the resulting multidimensional table such as 

• if fn is specified, SRES = (F
SRC1

, {m
SRC1

1,…, m
SRC1

s}), else if fn is not specified, SRES = 

(F
SRC1

, {m
SRC1

1,…, m
SRC1

s1, m
SRC2

1,…, m
SRC2

s2}); e.g. measures from TSRC1 and TSRC2 are 

not regrouped into TRES. 

• LRES = (DL
SRC1

, HL
SRC1

, <All, p
DL RES

1,…, p
DL RES

cl>) where ∀i∈[1..cl],  

- if SET = UNION, dom(p
DL RES

i) = dom(p
DL SRC1

i) ∪ dom(p
DL SRC2

i), 

- if SET = INTERSECT, dom(p
DL RES

i) = dom(p
DL SRC1

i) ∩ dom(p
DL SRC2

i), 

- if SET = MINUS, dom(p
DL RES

i) = dom(p
DL SRC1

i) \ dom(p
DL SRC2

i), 

• CRES = (DC
SRC1

, HC
SRC1

, <All, p
DC RES

1,…, p
DC RES

cc>) where ∀i∈[1..cc],  

- if SET = UNION, dom(p
DL RES

i) = dom(p
DL SRC1

i) ∪ dom(p
DL SRC2

i), 

- if SET = INTERSECT, dom(p
DL RES

i) = dom(p
DL SRC1

i) ∩ dom(p
DL SRC2

i), 

- if SET = MINUS, dom(p
DL RES

i) = dom(p
DL SRC1

i) \ dom(p
DL SRC2

i), 

• if SET = UNION, RRES = RSRC1 ∨ RSRC2, if SET = INTERSECT, RRES = RSRC1 ∧ RSRC2, if 

SET = INTERSECT, RRES = RSRC1 ∧ ¬RSRC2. 

Note that both union and intersection are commutative and associative operations whereas the 

minus operation is neither commutative nor associative. 

Example 6. Decision-makers want to analyse data from Tb with data from Tc. The expression 

UNION(Tb, Tc) produces TR1 = ((Forecast, {AVG(Temperature)}),(Geography, HCO, <All, 

Continent>),(Dates, HY, <All, Year, Month>), Model.All=’all’) with dom(Continent) = 

{Europ, Oceania, America}. 
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Figure 11: Multidimensional table resulting from union. 

GRAPHICAL QUERY LANGUAGE 

Although the algebra is a powerful tool, it may not be directly used by a decision-maker. We 

provide a user-oriented graphic language avoiding the specification of long tedious textual 

queries. The graphic language is based on the algebraic operations. With this language the 

user expresses the different OLAP manipulations disregarding the algebraic syntax.  

This section starts by defining the principles of the language. The second part provides formal 

specifications and the third focuses on the completeness with regard to the algebraic core.  

Principles 

The graphic language is based on an environment providing a display of the conceptual 

multidimensional elements and an analysis display interface presenting the results of the 

multidimensional OLAP analysis. Query specification uses both interfaces. 

Constellation display interface 

This interface presents to the user the schema of a MDB, with a graph (see Figure 3). In this 

graph, notations are inspired by (Golfarelli et al., 1998), each node is a fact (green) or a 

dimension (red) whereas links between facts and dimensions are represented by edges. 

Measures are directly associated to fact nodes. Each dimension is represented by a sub-tree of 

parameters (yellow circles) and weak attributes (underlined texts). Additional visualisations 

are provided for special cases (see appendix-A).  

Analysis display interface 
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This interface is a bi-dimensional table representing a multidimensional table defined in 

section 2.3. This interface, called MT, is composed of eight “drop zones” that may be used for 

query specification. These zones are depicted in the following table. It evolves incrementally, 

according to decision-maker manipulations. 

Parameter 

Header 

(Column)

Parameter Values / 

Dimensional Values 

(Column)

Parameter Header (Line)

Dimensional Header (Column)

D
im

e
n

s
io

n
a

l 
H

e
a

d
e

r 

(L
in

e
)

Factual Header 

(Fact + Measure(s))

Restrictive Predicate Zone

Parameter Values / 

Dimensional Values (Line) 
Factual Values

 

Figure 12: MT zones. 

Query specification 

In order to specify multidimensional OLAP analyses, the decision-maker expresses his 

queries with the use of the two previously defined interfaces: 

• Users may drag elements from the graph displayed in the constellation display interface 

onto a MT drop zone. He may also drag elements from a MT zone to another one. 

• Alternatively users may call a contextual menu on elements of the graph or on the 

elements in the MT. They then select the item in the menu corresponding to the desired 

operation. 

In order to ensure consistency during the specification of the analyses, the user is guided 

along the query specification process: incompatible operations with the ongoing analysis are 

deactivated. As a consequence, the user cannot create erroneous analyses. Each operation 

takes as input a multidimensional element and is applied to the current MT. If complementary 

information is needed by the system, the user specifies it through dialog boxes. 
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Formal specification of the graphic operations 

The system provides users with a set of operations for specifying graphically 

multidimensional OLAP analyses. Users start by defining a MT and employ the manipulation 

language to modify the MT. 

Formal specifications of graphical operations are as follows: OPERATION(E), where E is a 

multidimensional element. This element may be: a fact (F), a measure (fi(m
F

i) or fi(mi)), a 

dimension (D), a hierarchy (H
D

i or H) or a parameter (p
D

i or pi). This element may be either in 

the constellation display interface or in a MT, e.g. the column dimension DC is in the graph 

representation, but also in the column dimensional header. Notation: pi∈H⇔(pi∈Param
H∨ 

(∃pj∈Param
H
 | pi∈Weak

H
(pj))) 

MT definition 

A MT may be in two different modes: definition mode where only a few graphic operations 

are available; and alteration mode where all other operations are available. 

In definition mode, graphic manipulations are limited to those that may specify the DISPLAY 

operation in order to define the initial display of the MT: DIS_SUBJ to specify the displayed 

subject, DIS_COL and DIS_LN for the specification of the line and column axis. The MT 

stays in definition mode as long as the displayed fact and the column and line dimensions are 

not all specified, i.e. for a MT noted T=(S, L, C, R) as long as (S=∅∨L=∅∨C=∅). 

Example. The following algebraic expression permits to display the multidimensional table 

T1 (see example.1): 

Ex1: DISPLAY(‘Weather Constellation’, FORC, {SUM(Precipitation), AVG(Temperature)},  

GEO, HCOCN, DAT, HY) = T1

Within the graphical context, T1 (displayed in Figure 4) is defined by a sequence of three 

graphic actions which may be executed in any order. The MT is built incrementally and the 
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display is updated with each new instruction. The following steps (1, 2 and 3) are displayed in 

Figure 13: 

1) Subject selection (DIS_SUBJ): the user selects the fact FORECAST, drags its graphic 

icon and drops it in the factual header of the MT. This action defines F
S
, and 

automatically selects all its measures in M
S
, i.e. the two measures SUM(Precipitation) and 

AVG(Temperature). Alternatively, the user may drag each measure one after the other and 

drop them in the factual header. The user may also use contextual menus to select a fact 

and/or its measures. 

2) Column dimension selection: the user selects the dimension DATES and drags its graphic 

icon and drops it in the column dimensional header, defining DC. If a dimension is 

composed of a single hierarchy, this latest is automatically selected and the parameter of 

highest level which is just below the extremity parameter “All”: p
HC

vc. is displayed. If the 

system may not isolate this current hierarchy, automatic selection fails, which is the case 

here. The user is then prompted to select the correct hierarchy: HY. Alternatively, the user 

may drag the hierarchy edge or the desired parameter pi. As above, the user may rely on 

contextual menus.  

3) Line dimension selection: the user operates as previously described. In the example, the 

user drags the hierarchy edge HCOCN. In the end, the user obtains T1, displayed in Figure 

4. 

 

Figure 13: Example of a graphical definition of an MT. 
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The next table presents the different possibilities to define a MT with the graphic instructions. 

In the table (as in all other tables of this section) detailed instructions are presented only for 

the column definition (DC, HC,…), as they are identical to lines (DL, HL,…). “?” stands for 

an element that the user may have to select through a user prompt. In the DISPLAY case, this 

happens if: 1) DC is selected and DC has more than one hierarchy, i.e. ∥H
DC∥>1; 2) pi is 

selected and it belongs to more than one hierarchy, i.e. ∃ H∈H
DC

, H≠HC | pi∈H ∧ pi∈HC; or 

3) the edge between pi and pi+1 represents more than one hierarchy, i.e. ∃ H∈H
DC

, H≠HC | 

pi∈H∧pi∈HC∧pi+1∈H∧pi+1∈HC. 

Notice that the user may also directly select a parameter pi which is not the highest parameter 

in the hierarchy, i.e. level
HC

(pi)<level
HC

(pvc). 

Source element of the action (and 

conditions) 

Algebraic equivalent 

Subject specification : DIS_SUBJ(E) 

1) E=F | F∈FCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) 

with: 

FS=F, MS=MF

2) E=fi(mi) | fi(mi)∈MF ∧ F∈FCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) 

with: 

 FS=F, MS={ fi(mi)} 

Column specification: DIS_COL(E) 

3) E=D | ∃ H∈HD ∧ D∈DCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) 

with: 

 DC=D, HC=H? 

4) E=H | H∈HD∧ D∈DCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) 

with: 

DC=D, HC=H 

5) E=pi | pi∈H ∧ H∈HD∧ D∈DCs DISPLAY(NCs, FS, MS, DL, HL, DC, HC) 

with: DC=D, HC=H?  

6) E=pi | pi∈H ∧ H∈HD∧ D∈DCs ∧ 

levelHC(pi)<levelHC(pvc) 

PLOT(DISPLAY(NCs, FS, MS, DL, HL, DC, 

HC), DC, pi) with: DC=D, HC=H?  

Line specification: DIS_LN(E), identical to columns for selecting DL and HL. 

If (DC≠∅ ∧ FS≠∅) then DC∈StarCs(FS) and If (DL≠∅ ∧ FS≠∅) then DL∈StarCs(FS) 

Table 7: Graphical specifications of the algebraic DISPLAY operator. 

Figure 14 presents the graphical “drag and drop” actions that may be used to define a MT. In 

order to specify the analysis subject, the user drags the graphic icon representing the subject  

from the constellation graph, onto the MT and drops it in the factual header zone (executing a 

DIS-SUBJ operation). To specify an analysis axis, the user has to drop the element in a 
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dimensional header zone (executing a DIS_COL on the column header and a DIS_LN on the 

line header). In the following figure, operations numbered from 1) to 6) correspond to the six 

lines of the Table 7. 

 

Figure 14: Actions that may be used to define a MT. 

Once a fact has been designated as a subject and two dimensions have been specified as line 

and column axes, the MT switches to alteration mode authorizing all the other operations. 

MT manipulations 

In alteration mode, a MT may be modified by the use of operations of the following sets: 

• A set of six display-oriented operations. The three operations previously defined display 

an element as subject, in lines or in columns (DIS_SUBJ, DIS_LN, and DIS_COL). In 

addition to these three operations, the set is enriched by two “insertion” operations. These 

operations allow decision-makers to “insert” an element in the current line or column 

(INS_LN and INS_COL) of the analysis display interface. Moreover, a deletion operation 

is provided (DEL). 

• A set of specific operations: these operations allow the execution of specific algebraic 

operators. In order to ease understanding, they have the same name as their algebraic 

equivalent. These operations allow the restriction of the displayed data (SELECT), the 

inversion of two displayed values (SWITCH), the addition of aggregated data 
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(AGGREGATE), the removal of previously aggregated data (UNAGGREGATE) and the 

inversion of a all displayed values (ORDER).  

• A set of two drilling operations: DRILLDOWN, ROLLUP. As all drilling operations 

may not be expressed by the use of the graphic-oriented operations, these two operations 

are defined. 

Each of these graphic operations executes a sequence of core and/or advanced algebraic 

operations. 

The display operations are the equivalent of dropping elements into the factual header or the 

two dimensional headers; the insert operations are the equivalent of dropping elements into 

the parameter headers; and the delete operation is the equivalent of dragging an element 

which is in the MT and drop it out of the MT. The following figure summarises the different 

correspondences between graphic operations and “drag and drop” actions on a particular drop 

zone. 

 

Figure 15: Correspondance between graphic operations and drag and drop actions. 

Example. The following algebraic expression permits to display the multidimensional table 

T1 (see example.2): 

Ex2: DRILLDOWN(DRILLDOWN(SELECT(T1, Geography.Continent = ‘Europ’),  

Geography, Country), Geography, City) = T2

Within the graphical context, T2 (displayed in Figure 5) is defined by a sequence of three 

graphic actions. A MT is built incrementally and the display is updated with each new graphic 

action. These actions are described below (see Figure 16): 
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1) Restriction of the line values: the user selects the parameter on which he wishes to add a 

predicate. He drags the parameter graphic icon from the graph and drops it in the 

restriction zone of the MT, thus executing a SELECT(Continent). He will be prompted to 

specify the restriction predicate which will be applied: “=Europ”. 

2) Adding to the display parameters: the user selects the graphic icon representing the 

parameter Country, drags it onto the MT and drops it in the line parameter header, thus 

executing INS_LN(Country).  

3) Adding to the display parameters: the user repeats the operation with the parameter 

City: INS_LN(City). Alternatively, the decision-maker could have used the contextual 

menus in order to execute two DRILLDOWN operations on GEOGRAPHY dimension. In 

the end, decision-makers obtain T2 displayed in Figure 5. 

 

Figure 16: Example of a graphical definition of an MT. 

The next paragraphs present complete formal specification of graphic instructions of display-

oriented operations and their translation in algebraic language (see tables). These formal 

specifications are followed by their equivalent graphic “drag and drop” manipulations. Other 

specifications (specific operations and drilling operations) are in appendix B. 

Display-oriented operations: DIS_SUBJ, DIS_LN and DIS_COL 
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The graphic instruction DIS_SUBJ is used to designate an element that will be displayed as a 

subject of a MT. Formal specifications may be found in Table 8. Its corresponding “drag and 

drop” actions are displayed in Figure 17. In this figure, the numbers from 1 to 5 correspond to 

each line of the Table 8. 

DIS_SUBJ(E) 

Source element of the action (and 

conditions) 

Algebraic equivalent (TRES) 

1) E=FS History(TSRC, DL, History(TSRC, DC, 

DISPLAY(NCS, FS, {f1(m1),…,fw(mw)}, DL, HL, 

DC, HC))), ∀i∈[1..w], fi(mi)∈MFS

2) E=Fnew | Fnew≠FS ∧ 

DC∈StarCs(Fnew)∧DL∈StarCs(Fnew) 

FROTATE(TSRC, Fnew, {f1(M1),…,fw(Mw)}), 

∀i∈[1..w], Mi∈MFnew

3) E= fi(mi) | fi(mi)∉MS∧fi(mi)∈MFS ADDM(TSRC, fi(mi)) 

4) E= fi(mi) | fi(mi)∉MFS ∧ fi(mi)∈MFnew 

∧ DC∈StarCs(Fnew)∧DL∈StarCs(Fnew) 

FROTATE(TSRC, Fnew, {fi(mi)}) 

5) E=pi |∀pi∈ADnew∧Dnew∈StarCs(FS) PUSH(TSRC, Dnew, pi) 

Table 8: Formal specification of DIS_SUBJ(E). 

 

Figure 17: Possible drag and drop manipulations for the instruction DIS_SUBJ(E). 

The graphic instruction DIS_COL (respectively DIS_LN) is used to replace the elements 

currently displayed in columns (resp. lines). Formal specifications of DIS_COL may be found 

in Table 9 and corresponding “drag and drop” actions are displayed in Figure 18. As 

previously, the specification of DIS_LN is not presented. 

DIS_COL(E) 

Source element of the action (and 

conditions) 

Algebraic equivalent (TRES) 

1) E= fi(mi) | fi(mi)∈MFS PULL(TSRC, fi(mi), DC) 

2) E=DC ROLLUP(TSRC, DC, pDC
vc) the display of HC is reset 

on the most general parameter: pCmin= pCmax=pDC
vc
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3) E=Dnew | Dnew≠DC, Dnew∈StarCs(FS) ROTATE(TSRC, DC, Dnew, Hnew?), with Hnew∈HDnew

4) E=HC ROLLUP(TSRC, DC, pDC
vc) the display of HC is reset 

on the most general parameter: pCmin= pCmax=pDC
vc

5) E=Hnew | Hnew≠HC ∧ Hnew∈HDC HROTATE(TSRC, DC, Hnew) 

6) E=Hnew |Hnew∉HDC∧Hnew∈HDnew ∧ 

Dnew∈StarCs(FS) 

ROTATE(TSRC, DC, Dnew, Hnew) 

7) E=pi | pi∈PC ∨ (pi∉PC∧pi∈HC) PLOT(TSRC, DC, pi) 

8) E=pi | pi∉HC ∧pi∈Hnew∧H∈HDC PLOT(HROTATE(TSRC, DC, Hnew), DC, pi) 

9) E=pi | pi∉ADC ∧ pi∈ADnew∧ 

Dnew∈StarCs(FS) 

PLOT(ROTATE(TSRC, DC, Dnew ,Hnew?), Dnew, 

pi),with Hnew∈HDnew, pi∈Hnew

Table 9: Formal specification of DIS_COL(E), DIS_LN for lines. 

 

Figure 18: Possible drag and drop manipulations for the instruction DIS_COL(E). 

Display-oriented operations: INS_LN, INS_COL and DEL 

The graphic instruction INS_COL (respectively INS_LN) is used to insert an element into a 

column (respectively a line). Formal specification for INS_COL may be found in Table 10. 

As before, INS_LN is not presented. The corresponding “drag and drop” actions are presented 

in Figure 19. Notice that actions represented by dashed arrows take into account the exact 

position where the drop action took place. E.g. if the element is dropped between Year and 

Month, the element is inserted between both. More details are available in appendix B. 

INS_COL(E) 

Source element of the action (and 

conditions) 

Algebraic equivalent (TRES) 

1) E= fi(mi) | fi(mi)∈MFS PULL(TSRC, fi(mi), DC) 

2) E=DC DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, 

pDC
vc), DC, pDC

vc-1 )…), DC, pDC
1) 

all parameters of HC are displayed: PC = ParamHC

3) E=HC DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, 

pDC
vc), DC, pDC

vc-1 )…), DC, pDC
1) 

all parameters of HC are displayed: PC = ParamHC
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4) E=pi | pi∈PC NEST(DELETE(TSRC, DC, pi), DC, pj?, DC, pi), with 

pj∈PC 

5) E=pi | pi∉PC ∧ pi∈HC DRILLDOWN(TSRC, DC, pi), if levelHC(pi)<levelHC(pCmin) 

DRILLDOWN(…(DRILLDOWN(ROLLUP(TSRC, DC, 

pi), DC, pi+1)…), DC, pCmin), if levelHC(pi)>levelHC(pCmin) 
(1)

6) E=pi | pi∉HC ∧ pi∈H ∧ H∈HDC NEST(TSRC, DC, pj?, DC, pi), with pj∈PC 

7) E=pi | pi∉ADC ∧ pi∈ADnew∧ 

Dnew∈StarCs(FS) 

NEST(TSRC, DC, pj?, Dnew, pi), with pj∈PC 

(1)= pi not displayed (pi∉PC ∧ pi∈HC), pCi+1 (respectively pCi-1) is the attribute immediately inferior 

(resp. superior) to pi in PC: levelHC(pCi-1)=levelHC(pi)-1 (resp. levelHC(pCi+1) =levelHC(pi)+1) 

Table 10: Formal specification of INS_COL(E), INS_LN for lines. 

 

Figure 19: Possible drag and drop manipulations for the instruction INS_COL(E). 

The graphic instruction DEL is used to remove a displayed element in a MT. When removing 

all the elements of a MT zone such as the fact, the user is prompted to designate a new one. 

Formal specifications are provided in Table 11 and “drag and drop” actions are described in 

Figure 20. 

DEL(E) 

Source element of the action (and 

conditions) 

Algebraic equivalent (TRES) 

1) E=FS FROTATE(TSRC, Fnew?, {f1(m1),…,fw(mw)}), 

∀i∈[1..w] mi∈MFnew

2) E=fi(mi) | fi(mi)∈MS DELM(TSRC, fi(mi)) 

3) E=DC ROTATE(TSRC, DC, Dnew?, H?), Dnew∈StarCs(FS), 

H∈HDnew

4) E=HC ditto above: DEL(DC) 

5) E=pi | pi∈PC DELETE(DC, pi) 

6) E=R (zone de restriction) (1) UNSELECT(TSRC) 
(1)= This operation is done on the restriction zone (R) of the MT. 

Table 11: Formal specification of DEL(E). 
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Figure 20: Possible drag and drop manipulations for the instruction INS_COL(E). 

Completeness of the language 

The graphic OLAP query language rests upon two possible user interactions: drag and drop 

(DnD) or contextual menus. The DnD actions may be executed from the conceptual graph 

towards the MT, or from the MT to the same MT, or from the MT to outside the MT. The 

contextual menu may be called on the conceptual graph elements or on the elements in the 

MT. Manipulations with the contextual menus are assist with dialog boxes. It is easy to 

understand that the contextual menus have a greater expressive power in the number of 

different operations that they may allow. As specified in the following table, graphical 

manipulations are complete with regard to the algebraic operators. 
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o = partial support of the operator; p=complete support of the operator  

Table 12: Graphic actions for each operator / operation. 
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Implementation 

Our prototype is built using Java JDK 1.5 on top of the Oracle 10g DBMS. Composed of a 

hundred of classes, it allows the definition and manipulation of a R-OLAP constellation as 

well as visualizing and querying the multidimensional data with the use of a graph and an MT 

(the figures illustrating the present article are screenshots from the prototype). 

 

DEL(pi)

Figure 21: Prototype architecture. 

The visual interface allows decision-makers to specify analysis queries with the constellation 

display interface as well as with the analysis display interface. The constellation display is 

done with the use of meta-data describing the R-OLAP data warehouse architecture. 

Graphic queries are then translated into algebraic expressions, which are in turn, translated 

into SQL queries. Correctness of query expressions is validated through meta-data. These 

SQL queries are sent to the R-OLAP data warehouse and results are sent back to the MT 

which updates its display. Algebraic translation between graphic and algebraic expressions is 

done according to tables throughout this section and in appendix. 

 

CONCLUDING REMARKS 

The goal of this paper is to provide a user-oriented OLAP environment. The provided solution 

is based on three points: a conceptual model that disregards implementation issues, an OLAP 
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query algebra that provides formal specifications of manipulation operators and a graphic 

language easing graphic multidimensional OLAP analyses. 

The conceptual model we define allows a multidimensional representation of the available 

data. This model represents a constellation of facts, dimensions, and hierarchies. The 

constellation has the advantage to ease correlations between analysis subjects (multi-fact 

modelling). The model, based on multi-hierarchical analysis axes, provides multiple data 

analysis perspectives. This model acts as a basis for of OLAP manipulation languages. 

To formalize multidimensional OLAP analyses, we first define a query algebra. It allows the 

selection of analysis data to be displayed from a multidimensional schema (operator Display). 

This algebra uses a decisional analysis display structure adapted to decision-makers: a 

multidimensional table (MT), i.e. a hierarchical bi-dimensional table. This algebra allows 

decision-makers to express the different operations, which may be performed during an 

analysis. Query correctness is guaranteed through the closure property supported by the 

algebra. Each operator produces as output a multidimensional table that is a compatible input 

for the other operators. 

We defined a minimal core and advanced operations. The core operators allow the following 

modifications: 

• the data granularity or the analysis precision (Drilldown, Rollup and Select); 

• the analysis criteria (Rotate, Push, Pull, Nest, AddM and DelM); 

• the structure of the resulting table (Switch, Aggregate). 

In order to simplify complex OLAP query expression and to improve query processing, we 

provide a set of advanced operators defined by combinations of the core algebra operators. 

Finally to analyse two MT, we provide three set operators based on compatible or semi-

compatible tables. 
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Although user-oriented our algebra is difficult for decision-makers. As a consequence, we 

have defined a graphic language. This language is based on two interfaces. The first one 

displays the graphical schema of a multidimensional database and the second displays the 

resulting multidimensional table. To perform a multidimensional OLAP analysis, the 

decision-maker selects directly an element of the multidimensional schema and drags it in the 

result MT. These drag and drop actions may be completed by a set of menus that specify the 

analysis elements. The graphic language allows the definition of an analysis in an incremental 

way and at each step, the decision-maker visualises the resulting MT. The graphic language is 

complete with regard to the algebraic core. For each graphic instruction, we have specified the 

equivalent combination of algebraic operators. Finally, the language has been validated by its 

implementation in a prototype (figures throughout this paper are screen captures). The 

prototype is based on an implementation of the multidimensional concepts in a ROLAP 

environment with the DBMS Oracle. The graphic language is composed of a hundred java 

classes and other components. 

The next step of these works is to take into account multidimensional schema data evolutions. 

Versions could be used for the data evolution tracking (Ravat et al., 2006b), and within this 

framework, OLAP manipulation operators should be revised. Another step in OLAP systems 

is the integration of XML data. This will require adapted multidimensional models and 

methodologies (Rusu et al., 2005), (Nassis et al., 2005) (Messaoud et al., 2006) as well as 

adapted analysis operators (Ravat, et al., 2007). 
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APPENDIX-A: CONSTELLATION GRAPHICAL VISUALISATION 

If a dimension is composed of a complex hierarchical structure, the structure may be 

exploded, in order to see easily the different parameters of each hierarchy. This is useful as 

drilling operations follow the hierarchical order of the dimensional parameters. For example 
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in Figure 22, the dimension named GEOGRAPHY is composed of 6 parameters spread over 4 

different hierarchies. 

 

Figure 22: The GEOGRAPHY dimension in (top) compact version and (bottom) split version. 

It is not exceptional that a corporate multidimensional database holds several facts and 

numerous dimensions. Users may be lost in large constellations. An alternative visualisation 

is provided in order to focus on relevant parts of the constellation graph. The constellation 

graph is projected on a hyperbolic space (Lamping and Rao, 1994) and decision-makers 

“move” quickly the graph in order to see relevant nodes. 

 

Figure 23: Hyperbolic view of a constellation. 

APPENDIX-B: COMPLEMENTARY FORMAL SPECIFICATIONS 
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The following table presents specific operations that modify the MT display. 

Source element of the action (and conditions) Algebraic equivalent (TRES) 

SELECT(E) 

E= fi(mi) | fi(mi)∈MFS SELECT(pred?), pred is a predicate on dom(fi(mi)) 

E=pi | pi∈AD, D∈StarCs(FS) SELECT(pred?), pred is a predicate on dom(pi) 

SWITCH(X) (1)

X=valx | valx∈dom(pi), pi∈PC SWITCH(TSRC, DC, pi, valx, valy?), with valy∈dom(pi) 

AGGREGATE(E) and UNAGGREGATE(E) 

E=pi | pi∈PC, dom(pi)=<v1,...,vx> AGGREGATE(TSRC, DC, fi?(pi)) 

E=pi | pi∈PC, dom(pi)=<v1,fi(v1),…,vx, fi(vx)> UNAGGREGATE(TSRC) 

ORDER(E) 

E=pi | pi∈PC ORDER(TSRC, DC, pi, ord?) 

Table 13: Formal specification of the algebra-oriented graphic operations. 

Table 14 presents the formal specification of the two drilling operations. 

Source element of the action (and conditions) Algebraic equivalent (TRES) 

DRILLDOWN(E) 

E=DC | ∃pi∈HC, levelHC(pi)=levelHC(pCmin)-1 DRILLDOWN(TSRC, DC, pCmin-1)
(1)

E=HC | ∃pi∈HC, levelHC(pi)=levelHC(pCmin)-1 DRILLDOWN(TSRC, DC, pCmin-1)
(1)

E=pi | levelHC(pi)>levelHC(pCmin) DRILLDOWN(TSRC, DC, pi) 

ROLLUP(E)  

E=DC | ∃pi∈HC, levelHC(pi)=levelHC(pCmin)+1 ROLLUP(TSRC, DC, pCmin+1)
(1)

E=HC | ∃pi∈HC, levelHC(pi)=levelHC(pCmin)+1 ROLLUP(TSRC, DC, pCmin+1)
(1)

E=pi | levelHC(pi)<levelHC(pCmin) ROLLUP(TSRC, DC, pi) 
(1) pCmin-1 (resp. pCmin+1) is the parameter immediately inferior (resp. superior) to pCmin in the 

list ParamHC (i.e. levelHC(pCmin-1)+1=levelHC(pCmin)=levelHC(pCmin+1)-1). 

Table 14: Formal specification of the graphic drilling operations. 

Figure 24 illustrates some graphic drag and drop operations that may be used on a parameter 

header zone. These graphic manipulations consist in “inserting in line” (INS_LN). The 

position of drop actions determines the equivalent algebraic operations; e.g., in figure 23, the 

parameter noted Global_Zone is dropped between Country and City, thus this action is 

translated in a nest operator NEST(T, GEOGRAPHY, Country, GEOGRAPHY, 

Global_Zone). 

 

Figure 24: Some specific nesting and drilling interactions (INS_LN(E)). 
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1 Business Objects XI from http://www.businessobjects.com/ 
2 Cognos Business Intelligence 8 from http://www.cognos.com/ 
3 Tableau 2 from http://www.tableausoftware.com/ 
4 Targit Business Intelligence Suite from http://www.targit.com/ 
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