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Using semi-tensor product of matrices, a matrix expression for multivalued logic is proposed,
where a logical variable is expressed as a vector, and a logical function is expressed as a multilin-
ear mapping. Under this framework, the dynamics of a multivalued logical network is converted
into a standard discrete-time linear system. Analyzing the network transition matrix, easily
computable formulas are obtained to show (a) the number of equilibriums; (b) the numbers of
cycles of different lengths; (c) transient period, the minimum time for all points to enter the
set of attractors, respectively. A method to reconstruct the logical network from its network
transition matrix is also presented. This approach can also be used to convert the dynamics of
a multivalued control network into a discrete-time bilinear system. Then, the structure and the
controllability of multivalued logical control networks are revealed.
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1. Introduction

When the genetic circuits are described as Boolean
networks, the gene state is quantized to only two
levels: True and False. This approach was first
proposed by [Kauffman, 1969] and then studied
by many authors, e.g. [Huang & Ingber, 2000;
Huang, 2002; Ideker et al., 2001].

A Boolean network is a set of nodes
A1, A2, . . . , An, which interact with each other in a
synchronous manner [Farrow et al., 2004]. At each
given time t = 0, 1, 2, . . . , a node can take only
one of two different values: 1 or 0. In a Boolean
network with n nodes, since there are only finite
possible states, starting from any initial state, the
Boolean network will evolve into either a fixed
point or a cycle. Both fixed points and cycles
are called attractors. The attractors of a Boolean

network have two different interpretations [Zhang
et al., 2007]: one is that the attractors should corre-
spond to cell types [Kauffman, 1995] and the other
is that they should correspond to cell states of
growth, differentiation and apoptosis [Huang, 1999].
The attractors form the limit sets of a Boolean
network. So it is important to find the attrac-
tors in the system. The problem of finding attrac-
tors is widely studied, for instance, [Cheng, 2009;
Farrow et al., 2004; Heidel et al., 2003; Zhang et al.,
2007].

A Boolean network is commonly described by
a directed graph, called the network graph. The
graph consists of a set of nodes, denoted by N =
{1, 2, . . . , n}, which represents n nodes, and the
set of edges, denoted by E ⊂ N ×N . If (i, j) ∈ E,
there is a directed edge from node i to node j, which
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Fig. 1. Boolean network with three nodes.

means node j is affected by node i directly. The net-
work graph shows only incidence relation. In fact,
it is equivalent to incidence matrix [Robert, 1986].
To describe the dynamics of a network, we need a
logical dynamic equation. We give a simple example
to illustrate these concepts.

Example 1.1. Consider a Boolean network,
depicted in Fig. 1. It consists of three nodes A,B,C.

Its dynamics is described by a set of discrete-
time logical dynamic equations, for instance, as


A(t+ 1) = B(t) ∧C(t)

B(t+ 1) = ¬A(t)

C(t+ 1) = B(t) ∨C(t).

(1)

From (1), it is easy to calculate that its state-
transition diagram is depicted in Fig. 2.

From Fig. 2, one sees that the cycle (0 1 1) →
(1 1 1) → (1 0 1) → (0 0 1) → (0 1 1) is the only
attractor.

The aforementioned Boolean network is a deter-
ministic model. Random Boolean network means
there are several models and the real dynamics
takes one of them as the active model at a time
with certain probability. We refer to [Aldana et al.,
2003; Shmulevich et al., 2002a, 2002b] for detailed
description.

For some complex physical and biologi-
cal phenomena, we give some abstractions and
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Fig. 2. State-transition diagram.

idealizations in modeling. [Harvey & Bossomaier,
1997] mentioned that “. . . In fitting such complex
systems into a framework such as RBNs, simpli-
fications and abstractions must be made; two of
these are the Boolean idealization and the synchrony
idealization”. [Huberman & Glace, 1993] pointed
out that synchronous updating and asynchronous
updating can lead to different conclusions in the
simulation of Prisoner’s Dilemma interactions. The
result leads to a debate on whether the synchronous
updating was reasonable for the RBNs model to
study gene regulatory network [May et al., 1995].
Gershenson studied the properties of asynchronous
random Boolean networks in [Gershenson, 2002,
2003, 2004]. It was pointed by [Gershenson, 2004]
that synchronous RBNs are justifiable theoretical
models of biological networks.

This paper focuses on deterministic logic
dynamics. For the Boolean idealization, it is obvi-
ous that the binary approach is an approximation.
Even if two-valued status is precisely correct, since
the heredity is group-wise, a group of genes bounded
by chromosome may also be considered as a mul-
tivalue logical variable. Multivalued networks also
appear in some other complex systems, for instance
in chemical reactions [Adamatzky, 2003], cognitive
sciences [Volker & Conrad, 1998], etc. When the
gene state is not limited to true and false, such as
the inference of one gene to the other one is not
strong, we should modify the model. It was pointed
by [Kitano, 2001] that binary values may lose the
precision.

In [Martin et al., 1984], a class of cellular
automata (CA) which have additivity are studied
by using algebraic technique. The global properties
of CA are determined by a fixed polynomial. All
the results give by [Martin et al., 1984] can be used
for p-valued CAs, where p is a prime integer. But
when p is a composite number or the CA is non-
additive, the algebraic technique given in [Martin
et al., 1984] seems not suitable. It was pointed by
[Martin et al., 1984]: “. . .the possibility of universal
computation with sufficiently complex non-additive
cellar automata demonstrates that a complete anal-
ysis of these systems is fundamental impossible . . . ”.
In this paper, we give a new way to study k-valued
networks, and k can be any positive integer. The
method given in this paper may be used not only to
deal with the above impossible problem (while the
system has limited size), but also deal with the more
general multivalued cellular automata, multivalued
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network. In the following sections, the dynamics of
k-valued networks are discussed.

First, we give a rigorous definition.

Definition 1.2

(1) A k-valued logical variable A takes a value from
Dk, which is

Dk =
{

1,
k − 2
k − 1

, . . . ,
1

k − 1
, 0

}
. (2)

(2) A k-valued network, G(V, F, k), is defined by a
set of nodes V = {A1, A2, . . . , An}, and a list
of logical functions F = {f1, f2, . . . , fn}, which
provide a rule for each node to take values from
Dk at each time t = 0, 1, 2, . . ..

For the ith node Ai(t) ∈ Dk, i = 1, 2, . . . , n,
its value at t + 1 is determined by the k-valued
logical function fi, called the network dynamics.
The dynamics of the k-valued network can be
described as



A1(t+ 1) = f1(A1(t), A2(t), . . . , An(t))

A2(t+ 1) = f2(A1(t), A2(t), . . . , An(t))
...

An(t+ 1) = fn(A1(t), A2(t), . . . , An(t)),

(3)

where fi, i = 1, 2, . . . , n are n-ary k-valued logical
functions.

One of the main tools we used is semi-
tensor product, which is a generalization of con-
ventional matrix product [Cheng & Qi, 2007]. For
the sake of completeness, we will review it briefly
in Sec. 2. When k = 2, the network becomes a
Boolean network. Using semi-tensor product and
the matrix expression of logic, the topological struc-
ture, including the fixed points, cycles and tran-
sient period, has been revealed by providing easily
computable formulas for corresponding issues. This
approach can also be used to the synthesis of
Boolean control networks. Some related topics such
as controllability and observability, etc. are also
studied. We refer to [Cheng, 2009; Cheng & Qi,
2009a, 2009b] for details.

This paper considers the logical network, whose
nodes can take more than two values. The paper
extends the results obtained in [Cheng, 2009;
Cheng & Qi, 2009a, 2009b] to multivalued networks.
Using matrix approach, the topological structure of
k-valued networks is revealed by providing precise
formulas. Then some characteristics of the networks
are discussed. Finally, the k-valued control networks

are investigated and necessary and sufficient condi-
tions for controllability are presented.

The paper is organized as follows. Section 2
gives a brief review on the semi-tensor product
and the algebraic expression of logical operator. In
Sec. 3, the dynamics of a k-valued network is con-
verted into a standard discrete-time linear system.
In Sec. 4 formulas are obtained to calculate (a) the
number of equilibriums; (b) the numbers of cycles
of different lengths; (c) transient time. The formulas
for constructing them are also presented. In Sec. 5,
it is proved that the k-valued network can be recon-
structed from its network transition matrix L, and
an algorithm is presented. In Sec. 6, the controlla-
bility of k-valued control networks is investigated.
Section 7 is a brief conclusion.

2. Preliminaries

2.1. Semi-tensor product

This section is a brief review on semi-tensor prod-
uct (STP) of matrices. STP was first introduced
by [Cheng & Qi, 2007], and it plays a fundamen-
tal role in the following discussion. We restrict this
review to the concepts and some basic properties,
which are useful in the sequel. In addition, only left
semi-tensor product for multiple-dimension case is
considered in the paper. We refer to [Cheng, 2007;
Cheng & Qi, 2007] for right semi-tensor product,
general dimension case and more details. Through-
out this paper “semi-tensor product” means the left
semi-tensor product.

Definition 2.1

(1) Let X be a row vector of dimension np, and Y
be a column vector with dimension p. Then we
split X into p equal-size blocks as X1, . . . ,Xp,
which are 1 × n rows. Define the STP, denoted
by �, as


X � Y =

p∑
i=1

Xiyi ∈ R
n,

Y T
�XT =

p∑
i=1

yi(Xi)T ∈ R
n.

(4)

(2) Let A ∈ Mm×n and B ∈ Mp×q. If either n is a
factor of p, say nt = p and denote it as A ≺t B,
or p is a factor of n, say n = pt and denote it
as A �t B, then we define the STP of A and
B, denoted by C = A �B, as the following: C
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consists of m× q blocks as C = (Cij) and each
block is

Cij = Ai
�Bj , i = 1, . . . ,m, j = 1, . . . , q,

where Ai is ith row of A and Bj is the jth col-
umn of B.

We use some simple numerical examples to
describe it.

Example 2.2

(1) Let X = [1 2 3 − 1] and Y =
[
1

2

]
. Then

X � Y = [1 2] · 1 + [3 −1] · 2 = [7 0].

(2) Let

A =


1 2 1 1

2 3 1 2
3 2 1 0


 , B =

[
1 −2
2 −1

]
.

Then

A�B =




(1 2 1 1)
(

1
2

)
(1 2 1 1)

(−2
−1

)

(2 3 1 2)
(

1
2

)
(2 3 1 2)

(−2
−1

)

(3 2 1 0)
(

1
2

)
(3 2 1 0)

(−2
−1

)




=


3 4 −3 −5
4 7 −5 −8
5 2 −7 −4


 .

Remark 2.3. Note that when n = p the STP coin-
cides with the conventional matrix product. There-
fore, the STP is only a generalization of traditional
matrix product.

Some fundamental properties of the STP are
collected in the following, which coincide with that
of conventional matrix product.

Proposition 2.4. The STP satisfies (as long as the
related products are well defined)

(1) (Distributive rule)

A� (αB + βC) = αA�B + βA� C,

(αB + βC) �A = αB �A+ βC �A,

α, β ∈ R. (5)

(2) (Associative rule)

A� (B � C) = (A�B) � C. (6)

Proposition 2.5. Let A ∈ Mp×q and B ∈ Mm×n.
If q = km, then

A�B = A(B ⊗ Ik), (7)

If kq = m, then

A�B = (A⊗ Ik)B. (8)

Proposition 2.6

(1) Assume A and B are of proper dimensions such
that A�B is well defined, then

(A�B)T = BT
�AT , (9)

(2) In addition, assume both A and B are
invertible, then

(A�B)−1 = B−1
�A−1. (10)

Proposition 2.7. Assume A ∈Mm×n is given.

(1) Let Z ∈ R
t be a row vector, then

A� Z = Z � (It ⊗A), (11)

(2) Let Z ∈ R
t be a column vector, then

Z �A = (It ⊗A) � Z. (12)

Next we define the concept of swap matrix,
which is also called the permutation matrix and is
defined implicitly in [Magnus & Neudecker, 1999].
Many properties can be found in [Cheng, 2002;
Cheng & Qi, 2007]. The swap matrix W[m,n] is
an mn × mn matrix constructed in the following
way: label its columns by (11, 12, . . . , 1n, . . . ,m1,
m2, . . . ,mn) and its rows by (11, 21, . . . ,m1, . . . , 1n,
2n, . . . ,mn). Then its element in the position
((I, J), (i, j)) is assigned as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(13)

When m = n, we simply denote by W[n] for W[n,n].

Example 2.8. Let m = 2 and n = 3, the swap
matrix W[2,3] is constructed as

W[2,3] =




(11) (12) (13) (21) (22) (23)
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




(11)
(21)
(12)
(22)
(13)
(23)

.
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Let A ∈ Mm×n, i.e. A is an m × n matrix.
Denote by Vr(A) the row stacking form of A, that is,

Vr(A) = (a11 · · · a1n · · · am1 · · · amn)T ,

and by Vc(A) the column stacking form of A, that is,

Vc(A) = (a11 · · · am1 · · · a1n · · · amn)T .

The following “swap” property shows the mean-
ing of the name.

Proposition 2.9

(1) Let X ∈ R
m and Y ∈ R

n be two columns, then

W[m,n] �X � Y = Y �X,

W[n,m] � Y �X = X � Y.
(14)

(2) Let A ∈Mm×n, then

W[m,n]Vr(A) = Vc(A),
W[n,m]Vc(A) = Vr(A).

(15)

(3) Let Xi ∈ R
ni , i = 1, . . . ,m. Then

(In1+···+nk−1
⊗W[nk,nk+1] ⊗ Ink+2+···+nm)

×X1 � · · · �Xk �Xk+1 � · · · �Xm

= X1 � · · · �Xk+1 �Xk � · · · �Xm.

(16)

Proposition 2.10

W T
[m,n] = W−1

[m,n]
= W[n,m]. (17)

Proposition 2.11

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗W[q,r]). (18)

Taking transpose on both sides of (18) yields

W[r,pq] = (Ip ⊗W[r,q])(W[r,p] ⊗ Iq). (19)

The swap matrix can be constructed by the fol-
lowing method: Denote the ith canonical basic ele-
ment in R

n by δn
i . That is, δi

n is the ith column of
In. Then we have

Proposition 2.12

W[m,n] = (δ1n � δ1m · · · δn
n � δ1m · · · δ1n

� δm
m · · · δn

n � δm
m). (20)

In [Magnus & Neudecker, 1999], (20) is used as
the definition.

Using swap matrix, we can prove that

Proposition 2.13. Let A ∈ Mm×n and B ∈ Ms×t.
Then

A⊗B = W[s,m] �B �W[m,t] �A

= (Im ⊗B) �A. (21)

If X ∈ R
n, Y T ∈ R

m, then

X � Y = Y �W[n,m] �X. (22)

Remark 2.14

(1) Let X ∈ R
m, Y ∈ R

n be two column (or row)
vectors. Then X � Y is always well defined.

(2) Throughout this paper, the matrix product is
assumed to be semi-tensor product. For nota-
tional compactness, hereafter in most cases the
symbol “�” is omitted.

2.2. Matrix expression of k-valued
logic

Now we consider the matrix expression of k-valued
logic. Similar to Boolean logic, we will show that as
the k-valued logical variables are expressed as vec-
tors, the logical operators can also be determined by
their structure matrix. Then the action of an opera-
tor can be performed as the product of its structure
matrix with argument vectors. We refer to [Cheng &
Qi, 2007] for this matrix expression.

We need some necessary notations and pre-
results for the matrix expression of k-valued logic.

Definition 2.15

(1) The domain of a k-valued logic, denoted by
Dk, is

Dk =
{
T = 1,

k − 2
k − 1

, . . . ,
1

k − 1
, F = 0

}
.

(23)

(2) An n-ary k-valued logical operator is a function
f : Dn

k → Dk, where n is called the arity of f ,
denoted by ar(f) = n [Barnes, 1975].

To use matrix expression we identify the ele-
ments inDk with a k-dimensional vector as T = 1 ∼
δ1k, (k − 2/k − 1) ∼ δ2k, . . . , F = 0 ∼ δk

k , where δi
k is

the ith column of the identity matrix Ik. Denote the
set of such vectors as

∆k := {δ1k, δ2k, . . . , δk
k}.

We use (k − i/k − 1) or δi
k alternatively for the

value of a k-valued logical variables without expla-
nation. TheDk and ∆k will be used freely according
to the variable types.

Using this vector expression, we can define the
structure matrix of a k-valued logical operator.

First, we define some basic logical operators.

Definition 2.16. The following operators are
defined using scalar value expression of logical
variables.
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• An anary logical operator ¬ : Dk → Dk, called
the negation, is defined as

¬(P ) = ¬P := 1 − P ;

• A binary logical operator ∧ : D2
k → Dk, called

the conjunction, is defined as

∧(P,Q) = P ∧Q := min(P,Q);

• A binary logical operator ∨ : D2
k → Dk, called

the disjunction, is defined as

∨(P,Q) = P ∨Q := max(P,Q);

• An anary logical operator ∇i : Dk → Dk, i =
1, 2, . . . , k, is defined as

∇i(P ) =




1, when P =
k − i

k − 1
,

0, otherwise.

Definition 2.17. An anary operator � : Dk → Dk,
called the rotator, is defined as

�(P ) :=



P +

1
k − 1

, P �= 1,

0, P = 1.

Remark 2.18. In general, there are kkn
n-ary k-

valued logical operators. In Definitions 2.16 and
2.17, we give only a few of them. They are com-
monly used. Moreover, we can prove that they form
a complete set [Luo, 1992]. Precisely speaking, all
other k-valued logical operators can be expressed as
combinations of {�,∧,∨}. Roughly speaking, they
are enough to express any k-valued logical opera-
tors.

Definition 2.19. A k × ks matrix Mσ is called the
structure matrix of an s-ary k-valued logical oper-
ator σ, if

σ(P1, P2, . . . , Ps) = MσP1P2 · · ·Ps, (24)

where P1, . . . , Ps ∈ ∆k. Like in the Boolean logic
case, if a structure matrix exists, it uniquely deter-
mines the k-valued logical operator [Cheng & Qi,
2007].

It is easy to check by direct computation that,
for each operator we can construct its structure
matrix. For notational ease, we let k = 3 and give
the truth table for the operators in Tables 1 and 2.

Table 1. Truth table of 3-valued anary
operators.

P ¬(P ) �(P ) ∇1(P ) ∇2(P ) ∇3(P )

1 0 0 1 0 0
0.5 0.5 1 0 1 0
0 1 0.5 0 0 1

Converting the values in truth table into vector
forms yields their structure matrices. For instance,
for negative operator ¬, we have

M¬ = Mn =


0 0 1

0 1 0
1 0 0


 .

Example 2.20. When P = δ13 ,

¬(P ) =


0 0 1
0 1 0
1 0 0


 δ13 =


0 0 1
0 1 0
1 0 0





1

0
0


 =


0

0
1


 .

Definition 2.21. A k × s matrix is called a logi-
cal matrix, if its columns, Col(A), are of the form
δi
k, i.e.

Col(A) ⊂ ∆k.

The set of k × s logical matrixes is denoted by
Lk×s. Let A ∈ Lk×s. Then A has its columns of δij

k ,
j = 1, . . . , s. For notational compactness, we denote
it as

A = δk[i1 i2 · · · is].

Using this notation, we have Mn := M¬ =
δ3[3 2 1]. Similarly, we have

Mo := M� = δ3[3 1 2],
Mc := M∧ = δ3[1 2 3 2 2 3 3 3 3],
Md := M∨ = δ3[1 1 1 1 2 2 1 2 3].

Table 2. Truth table of 3-valued
binary operators.

P Q P ∧ Q P ∨ Q

1 1 1 1
1 0.5 0.5 1
1 0 0 1
0.5 1 0.5 1
0.5 0.5 0.5 0.5
0.5 0 0 0.5
0 1 0 1
0 0.5 0 0.5
0 0 0 0
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Similar to the Boolean case, for k-valued logic,
we also need the power-reducing matrix, defined as

Mrk
=



δ1k 0k · · · 0k

0k δ2k · · · 0k

...

0k 0k · · · δk
k


 , (25)

where 0k ∈ R
k, Mrk

∈ Lk2×k.
As its name implies, it is easy to check that

Lemma 2.22. Let P ∈ ∆k. Then we have

P 2 = Mrk
P. (26)

For being compact, denote by Mrk
:= Mr.

Using the above lemma, we can prove the follow-
ing [Cheng & Qi, 2007]:

Theorem 2.23 [Cheng & Qi, 2007]. Any k-valued s-
ary logical operator L(P1, . . . , Ps), with logical vari-
ables P1, . . . , Ps ∈ ∆k, can be expressed in a canon-
ical form as

L(P1, . . . , Ps) = MLP1P2 · · ·Ps, (27)

where ML ∈ Lk×ks, called the structure matrix of L.

Remark 2.24. In Boolean logic, we have A → B =
(¬A) ∨ B and A ↔ B = (A → B) ∧ (B → A). If
we use them as the definitions of implication and
equivalence for k-valued logic, when k = 3, we have

Mi = MdMn = δ3[1 2 3 1 2 2 1 1 1],

and

Me = McMi(I9 ⊗Mi)(I3 ⊗Mr)(I3 ⊗W[3])Mr

= δ3[1 2 3 2 2 2 3 2 1].

In Table 3, we list the structure matrixes for
some basic logical operators (when k = 3), which
are used in the sequel.

Table 3. Some matrix of operators (k = 3).

Operator Structure Matrix

¬ Mn = δ3[3 2 1]

� Mo = δ3[3 1 2]

∇1 M∇1 = δ3[1 1 1]

∇2 M∇2 = δ3[2 2 2]

∇3 M∇3 = δ3[3 3 3]

∨ Md = δ3[1 1 1 1 2 2 1 2 3]

∧ Mc = δ3[1 2 3 2 2 3 3 3 3]

→ Mc = δ3[1 2 3 1 2 2 1 1 1]

↔ Me = δ3[1 2 3 2 2 2 3 2 1]

3. Algebra Form of Multivalued
Networks

In this section, using semi-tensor-product (STP),
we convert the dynamics of a multivalued network
(3) into an algebraic form. The technique is the
same as the one for Boolean networks. We use some
examples to depict this.

Example 3.1. Consider the following k-valued
network 



A(t+ 1) = A(t)
B(t+ 1) = A(t) → C(t)
C(t+ 1) = B(t) ∨D(t)
D(t+ 1) = ¬E(t)
E(t+ 1) = ¬C(t).

(28)

In algebraic form, we have




A(t+ 1) = A(t)
B(t+ 1) = MiA(t)C(t)
C(t+ 1) = MdB(t)D(t)
D(t+ 1) = MnE(t)
E(t+ 1) = MnC(t).

(29)

where Mi,Md,Mn are structure matrixes for the
corresponding logical operators defined in the above
section.

Define x(t) = A(t)B(t)C(t)D(t)E(t). Then we
have

x(t+ 1) = A(t)MiA(t)C(t)MdB(t)D(t)
×MnE(t)MnC(t).

(30)

Using the pseudo-commutative property of
semi-tensor product, say Proposition 2.7 etc., we
can move A(t), B(t), . . . , E(t) to the last part of the
product in the right-hand side of (30). Then use
the power-reducing matrix to reduce the powers of
A(t), B(t), . . . , E(t) to 1. Finally, we have

x(t+ 1) = Lx(t),

where

L = (Ik ⊗Mi)Mr(Ik ⊗ (Ik ⊗Md(Ik

⊗(Ik ⊗Mn(Ik ⊗Mn)))))(Ik ⊗W[k])

×(Ik4 ⊗W[k])(Ik3 ⊗W[k])(Ik ⊗ (Ik ⊗Mr)).
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When k is decided, we can calculate the network matrix L. Say, k = 3, L is a 243 × 243 matrix as

L = δ243[9 6 3 9 6 3 9 6 3 35
32 29 35 32 29 35 32 29 61 58
55 61 58 55 61 58 55 9 6 3
18 15 12 18 15 12 35 32 29 44
41 38 44 41 38 61 58 55 70 67
4 70 67 64 9 6 3 18 15 12

27 24 21 35 32 29 44 41 38 53
50 47 61 58 55 70 67 64 79 76
73 90 87 84 90 87 84 90 87 84

116 113 110 116 113 110 116 113 110 115
112 109 115 112 109 115 112 109 90 87
84 99 96 93 99 96 93 116 1131 10

125 122 119 125 122 119 115 112 109 124
121 118 124 121 118 90 87 84 99 96
93 108 105 102 116 113 110 125 122 119

134 131 128 115 112 109 124 121 118 133
130 127 171 168 165 171 168 165 171 168
165 170 167 164 170 167 164 170 167 164
169 166 163 169 166 163 169 166 163 171
168 165 180 177 174 180 177 174 170 167
164 179 176 173 179 176 173 169 166 163
178 175 172 178 175 172 171 168 165 180
177 174 189 186 183 170 167 164 179 176
173 188 185 182 169 166 163 178 175 172
187 184 181].

Example 3.2. Consider the following k-valued
network



A(t+ 1) = B(t)
B(t+ 1) = (D(t) → ¬C(t)) ∨A(t)
C(t+ 1) = B(t) ↔ D(t)
D(t+ 1) = ¬A(t)
E(t+ 1) = ¬C(t).

(31)

In algebraic form, we have


A(t+ 1) = B(t)
B(t+ 1) = MdMiD(t)MnC(t)A(t)
C(t+ 1) = MeB(t)D(t)
D(t+ 1) = MnA(t)
E(t+ 1) = MnC(t).

(32)

Define x(t) = A(t)B(t)C(t)D(t)E(t). We have

x(t+ 1) = B(t)(MdMiDMnC(t)A(t))(MeB(t)D(t))

× (MnA(t))(MnC(t)). (33)

Since there is no E(t) on the left-hand side, we
have to formally add it.

As in the Boolean case, we need a dummy oper-
ator to add some fabricated variables into the right-
hand side of Eq. (33) when these variables do not
appear. Define

Ed := [Ik Ik · · · Ik]︸ ︷︷ ︸
k

:= δk[1 · · · k︸ ︷︷ ︸ · · · 1 · · · k︸ ︷︷ ︸︸ ︷︷ ︸
k

].

(34)

A straightforward computation shows that

Proposition 3.3

EdPQ = Q, P,Q ∈ ∆k. (35)
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Similar to the Boolean case [Cheng, 2009], we
can prove the following power-reducing formula by
mathematical induction.

Lemma 3.4. Assume P� = A1A2 · · ·A�, where Ai ∈
∆k, i = 1, 2, . . . , �, then

P 2
� = Φ�P�, (36)

where

Φ� =
�∏

i=1

(
Iki−1 ⊗

[
Ik ⊗W[k,k�−i]Mrk

])
.

In the following, we give a universal method
to convert the network dynamics to a discrete sys-
tem. For a network described by Eq. (3), using
semi-tensor product, we can convert Eq. (3) into
an algebraic form. Define

x(t) = A1(t)A2(t) · · ·An(t).

Using Theorem 2.23, we can find structure
matrixes, Mi = Mfi

, i = 1, . . . , n, such that

Ai(t+ 1) = Mix(t), i = 1, 2, . . . , n. (37)

Using Lemma 3.4, a straightforward computa-
tion shows the following:

Proposition 3.5. Equation (3) can be expressed as

x(t+ 1) = Lx(t), x ∈ ∆kn , (38)

where the system coefficient matrix L is

L = M1

n∏
j=2

[(Ik ⊗Mj)Φn].

Proof. Note that from Lemma 3.4 we have

x(t)2 = Φnx(t).

Now

x(t+ 1) = M1x(t)M2x(t) · · ·Mnx(t)

= M1(Ik ⊗M2)x(t)2M3x(t) · · ·Mnx(t)

= · · ·

= M1(Ik ⊗M2)Φn(Ik ⊗M3)Φn · · ·
× (Ik ⊗Mn)Φnx(t).

So

L = M1(Ik ⊗M2)Φn(Ik ⊗M3)Φn · · · (Ik ⊗Mn)Φn

= M1

n∏
j=2

[(Ik ⊗Mj)Φn]. �

We call the system coefficient matrix L of
Eq. (38) the network transition matrix. For a par-
ticular system, we may get the network transition
matrix by a direct computation.

Example 3.6. Reconsider Example 3.2, we add
E(t) by using dummy matrix Ed.

x(t+ 1) = B(t)(MdMiDMnC(t)A(t))

× (MeB(t)D(t))(MnA(t))(MnC(t))

= B(t)(MdMiDMnC(t)A(t))(MeB(t)D(t))

× (MnA(t))(MnEdE(t)C(t)).

Using the same technique as in Example 3.1, we
have

x(t+ 1) = Lx(t),

where

L = (Ik⊗MdMi(Ik⊗Mn(Ik⊗(Ik⊗Me

× (Ik⊗(Ik⊗Mn(Ik⊗MnEd)))))))(Ik2⊗W[k])

× (Ik⊗W[k])W[k](Ik5⊗W[k])(Ik4⊗W[k])

× (Ik3⊗W[k])(Ik2⊗W[k])(Ik⊗W[k])(Ik4⊗W[k])

× (Ik3⊗W[k])(Ik4⊗W[k])(Ik7⊗W[k])(Ik6⊗W[k])

× (Ik5⊗W[k])Mr(Ik⊗Mr(Ik⊗Mr(Ik⊗Mr))).

When k = 3, we can compute

L = δ243[9 9 9 18 18 18 27 27 27 8

8 8 17 17 17 26 26 26 7 7

7 16 16 16 25 25 25 99 99 99

99 99 99 99 99 99 98 98 98 98

98 98 98 98 98 97 97 97 97 97

97 97 97 97 189 189 189 180 180 180

171 171 171 188 188 188 179 179 179 170

170 170 187 187 187 178 178 178 169 169
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169 33 33 33 42 42 42 24 24 24
32 32 32 41 41 41 23 23 23 4
4 4 13 13 13 22 22 22 123 123

123 123 123 123 96 96 96 122 122 122
122 122 122 95 95 95 94 94 94 94
94 94 94 94 94 213 213 213 204 204

204 168 168 168 212 212 212 203 203 203
167 167 167 184 184 184 175 175 175 166
166 166 57 57 57 39 39 39 21 21
21 29 29 29 38 38 38 20 20 20
1 1 1 10 10 10 19 19 19 147

147 147 120 120 120 93 93 93 119 119
119 119 119 119 92 92 92 91 91 91
91 91 91 91 91 91 237 237 237 201

201 201 165 165 165 209 209 209 200 200
200 164 164 164 181 181 181 172 172 172
163 163 163].

4. Attractors and Transient Period

This section considers the attractors and transient
period of k-valued networks. As in the study of
Boolean network, the attractors in k-valued net-
works are also important. We will use the alge-
braic form [Eq. (38)] to investigate these. Now we
have to answer such a question: Is the original log-
ical system equivalent to its algebraic form? Using
the properties of semi-tensor product, it is easy to
prove the following proposition, which shows how
to calculate Ai(t) from x(t). Then one sees easily
that x(t) contains the same information as the set
{A1(t), A2(t), . . . , An(t)}.
Proposition 4.1

(1) The state, x(t), is of the form of δi
kn . Precisely,

x(t) ∈ ∆kn , ∀ t ≥ 0. (39)

(2) Assume x(t) = δi
kn. Define b0 := kn − i, then

Aj(t) can be calculated inductively (in scalar
form) as


aj(t) =

[
bj−1

kn−j

]
,

bj = bj−1 − aj ∗ kn−j,

Aj = aj/(k − 1), j = 1, 2, . . . , n

(40)

where in the first equation [a] is the largest inte-
ger less than or equal to a.

We give an example to explain how to use the
above algorithm.

Example 4.2. Assume x = A1A2A3A4A5 and x =
δ17243. Then b0 = 243 − 17 = 226. It follows that


a1 =

[
b0
34

]
= 2,

A1 = 1,
b1 = b0 − a1 ∗ (34) = 64,


a2 =

[
b1
33

]
= 2,

A2 = 1,
b2 = b1 − a2 ∗ 33 = 10,


a3 =

[
b2
32

]
= 1,

A3 = 0.5,
b3 = b2 − a3 ∗ 32 = 1,


a4 =

[
b3
3

]
= 0,

A4 = 0,
b4 = b3 − a4 ∗ 3 = 1,

a5 =
[
b4
1

]
= 1,

A5 = 0.5.
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We conclude that A1 = 1 ∼ (1, 0, 0)T , A2 = 1 ∼
(1, 0, 0)T , A3 = 0.5 ∼ (0, 1, 0)T , A4 = 0 ∼ (0, 0, 1)T ,
and A5 = 0.5 ∼ (0, 1, 0)T .

Using the same technique developed for
Boolean network, we can obtain the following
results for cycles and transient period.

Theorem 4.3. Consider the k-valued net-
work (3).

(1) δi
kn is its fixed point, iff in its algebraic form

(38) the diagonal element �ii of network matrix
L equals to 1. It follows that the number of
equilibriums of system (3 ), denoted by Ne, is
equal to the number of i, for which �ii = 1 .
Equivalently,

Ne = Trace(L). (41)

(2) The number of length s cycles, Ns, is induc-
tively determined by

N1 = Ne,

Ns =

Trace(Ls) −
∑

t∈P(s)

tNt

s
, 2 ≤ s ≤ kn,

(42)

where P(s) is set of proper factors of s, that is,
a positive integer t ∈ P(s) iff t < s and s/t
is an integer. For example, P(6) = {1, 2, 3},
P(10) = {1, 2, 5}.

(3) The elements on cycles of length s, denoted by
Cs, is

Cs = Da(Ls)\ ∪t∈P(s) Da(Lt), (43)

where Da(L) is the set of diagonal nonzero
columns of L.

Theorem 4.4. For system (3) the transient
period is

Tt = r0 = min{r |Lr ∈ {Lr+1, Lr+2, . . . , Lkn}}.
(44)

Moreover, let T > 0 be the smallest positive number,
which implies Lr0 = Lr0+T . Then T is the least
common multiplier of the lengths of all cycles.

We give an example to illustrate how to find
the fixed points and cycles in k-valued network by
using the above theorems.

Example 4.5. Consider the following 3-valued net-
work 


A(t+ 1) = C(t) ∧ (¬D(t))
B(t+ 1) = (A(t) ↔ B(t)) ∧D(t)
C(t+ 1) = ¬A(t)
D(t+ 1) = B(t) ∨ C(t).

(45)

Define x(t) = A(t)B(t)C(t)D(t). It is easy to calcu-
late that

x(t+ 1) = [McC(t)MnD(t)][McMeA(t)B(t)D(t)]

× [MnA(t)][MdB(t)C(t)]

= Lx(t).

where L ∈ L34×34 . L can be calculated as

L = δ81[61 43 25 61 43 52 61
70 79 70 43 25 71 44
53 71 71 80 79 52 25
80 53 53 81 81 81 67
40 22 67 40 49 67 67
76 67 40 22 68 41 50
68 68 77 67 40 22 68
41 50 69 69 78 73 46
19 73 46 46 73 73 73
64 37 19 65 38 47 65
65 74 55 37 19 56 38
47 57 66 75].

Then it can be readily checked that


Trace(L6k+1) = 2, k = 0, 1, 2, . . .
Trace(L6k+2) = 4, k = 0, 1, 2, . . .
Trace(L6k+3) = 11, k = 0, 1, 2, . . .
Trace(L6k+4) = 4, k = 0, 1, 2, . . .
Trace(L6k+5) = 2, k = 0, 1, 2, . . .
Trace(L6k) = 13, k = 1, 2, . . . .

(46)

From Theorem 4.3, we conclude that the net-
work has two fixed points, one cycle of length 2,
three cycles of length 3.

Denote the ith column of L as Li, because
L41 = δ4181 and L64 = δ6481 . Hence, the two fixed
points are

δ4181 ∼ (0.5 0.5 0.5 0.5), δ6481 ∼ (0 0.5 1 1).

Next, we can find the cycles. Consider L2. It is
easy to figure out that (L2)41 = δ4181 , (L2)64 = δ6481 ,
(L2)55 = δ5581 , (L2)73 = δ7381 . We should note that
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δ4181 and δ6481 are two fixed points. For δ5581 and δ7381 , it
follows that

Lδ5581 = δ7381 , Lδ7381 = δ5581 .

Using formula (40) to convert δ5581 and δ7381 back
to ternary form, we have δ5581 ∼ (0 1 1 1), δ7381 ∼
(0 0 1 1).

So the cycle of length 2 is

δ5581 → δ7381 → δ5581 ,

and the corresponding state expression is

(0 1 1 1) → (0 0 1 1) → (0 1 1 1).

Similarly, since δ1981 is a diagonal nonzero col-
umn of L3, then δ1981 , Lδ1981 = δ7981 , L2δ1981 = δ5781 ,
L3δ1981 = δ1981 form a cycle of length 3. Converting
them to ternary form yields the following cycle:

(1 0 1 1) → (0 0 0 1) → (0 1 1 0) → (1 0 1 1).

We can also use δ7981 or δ5781 to generate the above
cycle of length 3. Using the same method, the other
two cycles of length 3 are obtained as

(0.5 0.5 1 1) → (0 0.5 0.5 1)
→ (0 0.5 1 0.5) → (0.5 0.5 1 1),

(0.5 0.5 1 0.5) → (0.5 0.5 0.5 1)
→ (0 0.5 0.5 0.5) → (0.5 0.5 1 0.5).

Finally, we consider the transient period. Since
it is easy to check that the first repeating Lt is
L4 = L10, then r0 = 4. This ensures that, from
any initial state, the trajectory will enter into an
attractor after at most four steps.

Example 4.6. Recall Example 3.1. It is easy to
check that

Trace(Lt) = 6, t = 1, 2, . . .

Using Theorem 4.3, we conclude that there are
six fixed points and no other attractors. Moreover,
we can find out the fixed points in the following
way.

Consider the transition matrix L. It is easy to
figure out that the 3rd, 41st, 79th, 84th, 122ed,
165th columns of L are diagonal nonzero columns.
So the six fixed points are δ335 , δ

41
35 , δ

79
35 , δ

84
35 , δ

122
35 , δ

165
35 .

Using Proposition 4.1, we can convert the fixed

points back to standard form as

E1 = (1 1 1 1 0),
E2 = (1 0.5 0.5 0.5 0.5),
E3 = (1 0 0 0 1),
E4 = (0.5 1 1 1 0),
E5 = (0.5 0.5 0.5 0.5 0.5),
E6 = (0 1 1 1 0).

It is easy to check that the first repeating Lk is
L6 = L7, then r0 = 6. That is Tt = 6, T = 1. So the
transient period is 6, which means that from any
initial state, the trajectory will enter an attractor
after at most six steps.

5. Network Reconstruction

Assume for a k-valued logical system the network
matrix L is given. We have to reconstruct the logical
network and its dynamics from the network matrix.
Denoting a set of column vectors as

Ωk
i = [1, . . . , 1︸ ︷︷ ︸

i

, 2, . . . , 2︸ ︷︷ ︸
i

, . . . , k, . . . , k︸ ︷︷ ︸
i

].

Define a set of matrices, called the retrievers,
as

Sn
1 = δk[Ωk

kn−1 ];

Sn
2 = δk[Ωk

kn−2 , . . . ,Ωk
kn−2︸ ︷︷ ︸

k

];

...

Sn
n = δk[Ωk

1 , . . . ,Ω
k
1︸ ︷︷ ︸

kn−1

].

(47)

For example, when n = 2 and k = 3, Ω3
32−1 =

Ω3
3 = [1, 1, 1, 2, 2, 2, 3, 3, 3], Ω3

32−2 = Ω3
1 = [1, 2, 3].

Hence,

S2
1 = δ3[1 1 1 2 2 2 3 3 3];

S2
2 = δ3[1 2 3 1 2 3 1 2 3].

Using them, we have

Proposition 5.1. Assume the network matrix L of
system (38) is known. Then the structure matrix of
fi is

Mi = Sn
i L, i = 1, 2, . . . , n. (48)

Next, we have to find which node is connected
to i. That is, to remove fabricated variables from
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ith logical equation. We have the following:

Proposition 5.2. Consider system (38). Assume
Mi satisfies

MiW[k,kj−1](Mo − Ik) = 0,
MiW[k,kj−1]((Mo)2 − Ik) = 0,

...
MiW[k,kj−1]((Mo)k−1 − Ik) = 0,

(49)

where Mo is the structure matrix of �. Then the
node j is not in the neighborhood of node i. In other
words, the edge j → i does not exist. Then the equa-
tion of Ai can be replaced by

Ai(t+ 1) = M ′
iA1(t) · · ·Aj−1(t)Aj+1(t) · · ·An(t),

(50)

where

M ′
i = MiW[k,kj−1]δ

1
k.

Proof. Using the property of semi-tensor product,
we can rewrite the ith equation of (3) as

Ai(t+ 1) = MiW[k,kj−1]Aj(t)A1(t) · · ·
Aj−1(t)Aj+1(t) · · ·An(t).

Now we replace Aj(t) by ∇1(Aj(t)), ∇2(Aj(t)), . . .,
∇k−1(Aj(t)), if it does not affect the overall struc-
ture matrix, it means Ai(t + 1) is independent of

Aj(t). The invariance of replacement is depicted by
Eq. (49). As for Eq. (50), since Aj(t) does not affect
Ai(t + 1), we can simply set Aj(t) = [1, 0, . . . , 0]T

(you can set Aj(t) = [0, . . . , 0, 1]T or any other ele-
ments in ∆k) to simplify the expression. �

Example 5.3. Given a 3-valued network with four
nodes. Assume its network transition matrix L ∈
M81×81 is

L = δ81[3 6 9 29 41 44 55 67 79
3 3 6 9 29 41 44 28 40

52 3 6 9 2 14 17 1 13
25 6 6 9 32 41 44 58 67
79 6 6 9 32 41 44 31 40
52 6 6 9 5 14 17 4 13
25 9 9 9 35 44 44 61 70
79 9 9 9 35 44 44 34 43
52 9 9 9 8 17 17 7 16
25].

We can reconstruct the system as follows. Using
retrievers S3

i , we have

Mi = S3
i L, i = 1, 2, 3, 4.

A straightforward computation shows that

M1 = δ3[1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 2 2 1 1 1

1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2

2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1],

M2 = δ3[1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3 1 1 1

1 2 2 1 2 3 1 1 1 1 2 2 1 2 3 1 1 1 1 2 2

1 2 3 1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3

1 1 1 1 2 2 1 2 3 1 1 1 1 2 2 1 2 3],

M3 = δ3[1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3

2 2 3 2 2 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3],

M4 = δ3[3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3

2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2

1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1

3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1].
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Next, to remove fabricated variables, it is easy to
verify that

M1Mo −M1 = 0, M1(Mo)2 −M1 = 0,

M1W[3](Mo − I3) �= 0, M1W[3]((Mo)2 − I3) �= 0,

M1W[3,32](Mo − I3) �= 0,

M1W[3,32]((Mo)2 − I3) �= 0,

M1W[3,33](Mo − I3) = 0,

M1W[3,33]((Mo)2 − I3) = 0.

So we conclude that A(t+ 1) depends on B(t) and
C(t) only. Using the same procedure, we know that
B(t + 1) depends only on C(t) and D(t);C(t + 1)
depends only on A(t) and D(t);D(t + 1) depends
only on C(t). To remove the fabricated variables
A(t) and D(t) from the first equation, we set A(t) =
D(t) = δ13 and get

A(t+ 1) = M1δ
1
3B(t)C(t)δ13

= M1δ
1
3W[3,9]δ

1
3

= δ3[1 2 3 1 2 2 1 1 1]

×B(t)C(t). (51)

In a similar way, we can remove the fabricated vari-
ables from the other equations. And finally we get

B(t+ 1) = δ3[1 1 1 1 2 2 1 2 3]

×C(t)D(t),

C(t+ 1) = δ3[1 2 3 2 2 3 3 3 3]

×D(t)A(t),

D(t+ 1) = δ3[3 2 1]C(t).

Converting back to logical equations, we have


A(t+ 1) = B(t) → C(t),

B(t+ 1) = C(t) ∨D(t),

C(t+ 1) = D(t) ∧A(t),

D(t+ 1) = ¬C(t).

(52)

In general, converting an algebraic form back to its
logical form is not an easy job. We give a mechanical
procedure to do this.

Recall Definition 2.16, it is easy to see that,

M∇i = δk[k, . . . , k︸ ︷︷ ︸
i−1

, 1, k, . . . , k︸ ︷︷ ︸
k−i

], i = 1, 2, . . . , k.

(53)

Proposition 5.4. Assume a k-valued logical vari-
able L has an algebraic expression as

L = L(A1, A2, . . . , An) = MLA1A2 · · ·An, (54)

where ML is the structure matrix of logical variable
L. Then

ML = [∇1(A1) ∧ L1(A2, . . . , An)]

∨ [∇2(A1) ∧ L2(A2, . . . , An)] ∨ · · ·
∨ [∇k(A1) ∧ Lk(A2, . . . , An)],

where

ML = (ML1 |ML2 | · · · |MLk
).

Precisely, if we divide the columns of matrix ML

into k equal length blocks, then the structure matrix
of Li is the ith block of ML. That is,

Li(A2, . . . , An) = MLiA2 · · ·An.

Using Proposition 5.4 we can get the logical
expression of L recursively. We give an example to
describe this.

Example 5.5. Let L be a logical variable, and

L = MLABCD,

where A,B,C,D ∈ ∆3 and
ML = δ3[1 2 3 2 2 2 3 2 1 2 2 2

2 2 2 3 2 2 3 2 1 3 2 1
3 2 1 2 2 2 2 2 2 3 2 2
2 2 2 2 2 2 2 2 2 3 2 2
2 2 2 2 2 2 1 1 1 2 2 2
3 3 3 2 2 2 2 2 2 2 2 3
3 2 1 2 2 2 1 2 3],

(55)

Then

ML = [∇1(A) ∧ L1(B,C,D)]

∨ [∇2(A) ∧ L2(B,C,D)]

∨ [∇3(A) ∧ L3(B,C,D)], (56)

and

ML1 = δ3[1 2 3 2 2 2 3 2 1 2
2 2 2 2 2 3 2 2 3 2
1 3 2 1 3 2 1],

(57)
ML2 = δ3[ 2 2 2 2 2 2 3 2 2 2

2 2 2 2 2 2 2 2 3 2
2 2 2 2 2 2 2],

(58)
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ML3 = δ3[ 1 1 1 2 2 2 3 3 3 2
2 2 2 2 2 2 2 3 3 2
1 2 2 2 1 2 3].

(59)

Next, consider L1

L1(B,C,D) = ML1BCD

= [∇1(B) ∧ L11(C,D)] ∨ [∇2(B)

∧L12(C,D) ∨ [∇3(B) ∧ L13(C,D)],
(60)

where

ML11 = δ3[ 1 2 3 2 2 2 3 2 1 ],

ML12 = δ3[ 2 2 2 2 2 2 3 2 2 ],

ML13 = δ3[ 3 2 1 3 2 1 3 2 1 ].

Hence, we have

L11(C,D) = C ↔ D,

L12(C,D) = ML12CD,

L13(C,D) = ¬D.

In the same way, we have the following expression.

L2(B,C,D) = [∇1(B) ∧ L21(C,D)] ∨ [∇2(B)

∧L22(C,D) ∨ [∇3(B) ∧ L23(C,D)],
(61)

L3(B,C,D) = [∇1(B) ∧ L31(C,D)] ∨ [∇2(B)

∧L32(C,D) ∨ [∇3(B) ∧ L33(C,D)].
(62)

Putting all together, we have

L = [∇1(A) ∧ [∇1(B) ∧ L11(C,D)]

∨ [∇2(B) ∧ L12(C,D)] ∨ [∇3(B) ∧ L13(C,D)]]

∨ [∇2(A) ∧∇1(B) ∧ L21(C,D)]

∨ [∇2(B) ∧ L22(C,D)] ∨ [∇3(B) ∧ L23(C,D)]]

∨ [∇3(A) ∧∇1(B) ∧ L31(C,D)]

∨ [∇2(B) ∧ L32(C,D)] ∨ [∇3(B) ∧ L33(C,D)]]
(63)

Remark 5.6. We can also write down the split form
of all binary operators. For instance,

L12(C,D) = δ3[2 2 2 2 2 2 3 2 2]CD,

= [∇1(C) ∧ δ3[2 2 2]D]

∨ [∇2(C) ∧ δ3[2 2 2]D]

∨ [∇3(C) ∧ δ3[3 2 2]D],

= [∇1(C) ∧ δ23 ] ∨ [∇2(C) ∧ δ23 ]
∨ [∇3(C) ∧ ψ(D)], (64)

where the structure matrix of the anary logical
operator ψ is δ3[3 2 2].

6. k-valued Logical Control
Networks

A k-valued logical control network is defined as


A1(t+ 1) = f1(A1(t), . . . , An(t),

u1(t), . . . , um(t)),

A2(t+ 1) = f2(A1(t), . . . , An(t),

u1(t), . . . , um(t)),
...
An(t+ 1) = fn(A1(t), . . . , An(t),

u1(t), . . . , um(t));
(65)

and

yj(t) = hj(A1(t), A2(t), . . . , An(t)),

j = 1, 2, . . . , p. (66)

where Ai(t) ∈ Dk, ui ∈ Dk, fi, i = 1, 2, . . . n,
hj , j = 1, 2, . . . p are k-valued logical functions; yj,
j = 1, 2, . . . p are outputs; ui, i = 1, 2, . . . m are con-
trols. We may either assume ui are logical variables
satisfying certain logical rule, say


u1(t+ 1) = g1(u1(t), . . . , um(t)),

u2(t+ 1) = g2(u1(t), . . . , um(t)),
...
um(t+ 1) = gm(u1(t), u2(t), . . . , um(t)),

(67)

or assume {ui} are a sequence of k-valued variables.
In the first case, system (65)–(67) can also be

expressed into an algebraic form as{
u(t+ 1) = Gu(t), u ∈ ∆m

k ,

x(t+ 1) = Lu(t)x(t)x(t), x ∈ ∆n
k ,

y(t) = Hx(t), y ∈ ∆p
k.

(68)

We give an example.
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Example 6.1. Consider the following system

A(t+ 1) = u(t) → B(t),

B(t+ 1) = A(t) ∧ C(t),

C(t+ 1) = ¬A(t),
y(t) = ¬B(t),

(69)

with input network

u(t+ 1) := u(t).

We set x(t) = A(t)B(t)C(t), then

x(t+ 1) = A(t+ 1)B(t+ 1)C(t+ 1)

= Miu(t)B(t)McA(t)C(t)MnA(t)

:= Lu(t)x(x).

Then L can be calculated easily as

L = δ27[3 6 9 12 15 18 21 24 27
5 5 8 14 14 17 23 23 26
7 7 7 16 16 16 25 25 25
3 6 9 12 15 18 12 15 18
5 5 8 14 14 17 14 14 17
7 7 7 16 16 16 16 16 16
3 6 9 3 6 9 3 6 9
5 5 8 5 5 8 5 5 8
7 7 7 7 7 7 7 7 7].

Note that

y(t) = MnB(t) = MnE
2
d(I3 ⊗W[3])x(t) := Hx(t),

then

H = δ3[3 3 3 2 2 2 1 1 1 3 3 3
2 2 2 1 1 1 3 3 3 2 2 2
1 1 1].

Finally, the algebraic form of (69) is obtained as{
u(t+ 1) = u(t),

x(t+ 1) = Lu(t)x(t),

y(t) = Hx(t).

(70)

Next, we consider the controllability of (65).

Definition 6.2. Consider a k-valued network (65)
with control (67). Given the initial state x(0) = x0

and destination state xd. xd is said to be reachable
from x0 (in s steps) with fixed (designable) input
structure (G), if we can find u0 (and G), such that
x(u, 0) = x0 and x(u, s) = xd (for some s ≥ 1).

We use ΘG(t, 0) to denote the input-state trans-
fer matrix in k-valued network, which can be calcu-
lated as

ΘG(t, 0) = LGt−1(Ikm ⊗ LGt−2)(Ik2m ⊗ LGt−3) · · ·
(Ik(t−1)m ⊗ L)(Ik(t−2)m ⊗ Φm) · · ·
(Ikm ⊗ Φm)Φm, (71)

where Φm is defined in Lemma 3.4 as

Φm =
m∏

i=1

Iki−1 ⊗ [(Ik ⊗W[k,km−i])Mrk
].

Then, it is easy to prove that for system (68),

x(t) = ΘG(t, 0)u(0)x(0). (72)

In fact, Eq. (72) provides a tool for investigating
the control problems. To avoid a similar argument,
we discuss only the following two cases:

Case 1. Fixed s and fixed G.

From the definition of transfer matrix, the fol-
lowing result is obvious.

Theorem 6.3. Consider system (65) with control
(67), where G is fixed. xd is s-step reachable from
x0, iff

xd ∈ Col {ΘG(s, 0)W[kn,km]x0

}
, (73)

where Col means the set of columns.

We give an example to describe this result.

Example 6.4. Consider the following system

A(t+ 1) = B(t) ↔ C(t),

B(t+ 1) = C(t) ∨ u1(t),

C(t+ 1) = A(t) ∧ u2(t);

(74)

with controls satisfying{
u(t+ 1) = g1(u1(t), u2(t)),

v(t+ 1) = g2(u1(t), u2(t)).
(75)

Assume g1 and g2 are fixed as{
g1(u1(t), u2(t)) = ¬u2(t),

g2(u1(t), u2(t)) = u1(t).
(76)

Assume A(0) = 0.5, B(0) = 0, and C(0) = 0.5 and
s = 5. Denote by u(t) = u1(t)u2(t), then

u(t+ 1) = Mnu2(t)u1(t) = MnW[3]u(t).
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Then

G = MnW[3] = δ9[7 4 1 8 5 2 9 6 3].

x(t+ 1) = MeB(t)C(t)MdC(t)u1(t)McA(t)u2(t) = Lu(t)x(t),

where

L = δ27[ 1 10 19 10 10 10 19 10 1 2 11 20 11
11 11 20 11 2 3 12 21 12 12 12 21 12
3 2 11 20 11 11 11 20 11 2 2 11 20

11 11 11 20 11 2 3 12 21 12 12 12 21
12 3 3 12 21 12 12 12 21 12 3 3 12
21 12 12 12 21 12 3 3 12 21 12 12 12
21 12 3 1 13 22 10 13 13 19 13 4 2
14 23 11 14 14 20 14 5 3 15 24 12 15
15 21 15 6 2 14 23 11 14 14 20 14 5
2 14 23 11 14 14 20 14 5 3 15 24 12

15 15 21 15 6 3 15 24 12 15 15 21 15
6 3 15 24 12 15 15 21 15 6 3 15 24

12 15 15 21 15 6 1 13 25 10 13 16 19
13 7 2 14 26 11 14 17 20 14 8 3 15
27 12 15 18 21 15 9 2 14 26 11 14 17
20 14 8 2 14 26 11 14 17 20 14 8 3
15 27 12 15 18 21 15 9 3 15 27 12 15
18 21 15 9 3 15 27 12 15 18 21 15 9
3 15 27 12 15 18 21 15 9].

Φ2 = (I3 ⊗W[3])Mr3(I3 ⊗Mr3) = δ81[1, 11, 21, 31, 41, 51, 61, 71, 81].

Finally, using formula (71) yields Θ(5, 0) as

Θ(5, 0) = LG4(I32 ⊗ LG3)(I34 ⊗ LG2)(I36 ⊗ LG)(I38 ⊗ L)(I36 ⊗ Φ3)(I34 ⊗ Φ3)(I32 ⊗ Φ3)(I3 ⊗ Φ3)Φ3.
(77)

It is calculated as

δ27[ 21 20 19 20 20 20 19 20 21 21 20 19 20 20
20 19 20 21 21 20 19 20 20 20 19 20 21 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 12 11 11 11 11 11 11 11 12 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 14 14 23

14 14 14 23 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14 14 14 14 14 14 15 15 15 15 15
15 6 15 15 15 15 15 15 15 15 6 15 15 15
15 15 15 15 15 6 15 15 27 27 27 27 27 27
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27 27 27 15 15 15 15 15 15 15 15 15 3 3
3 3 3 3 3 3 3 14 14 14 14 14 14 14

14 14 14 14 14 14 14 14 14 14 14 15 14 14
15 14 14 15 14 14 9 18 27 9 18 27 9 18
27 9 18 27 9 18 27 9 18 27 9 18 27 9
18 27 9 18 27].

Now let (A(0), B(0), C(0)) = (0.5, 1, 1). Then

x0 = δ27[0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0]T .

Using Theorem 6.3, we have the reachable set as

Θ(5, 0)W[27,9]x0

= δ27[21 11 3 14 14 15 15 14 9].

We conclude that the reachable set at step 5 is{
δ2127 , δ

11
27 , δ

3
27, δ

14
27 , δ

15
27 , δ

9
27

}
.

Converting them to ternary form, we have

(A(5), B(5), C(5)) ∈ {(0, 1, 0), (0.5, 1, 0.5), (1, 1, 0),

(0.5, 0.5, 0.5), (0.5, 0.5, 0),

(1, 0, 0)}.

Finally, we have to find the initial control u0, which
drives the trajectory to assigned xd. Since

xd = Θ(5, 0)W[27,9]x0u0

= δ27[21 11 3 14 14 15 15 14 9]u0,

it is obvious that to reach, say, δ2127 ∼ (0, 1, 0), the
control should be u0 = [1, 0, 0, 0, 0, 0, 0, 0, 0]T , i.e.
u1(0) = δ13 ∼ 1 and u2(0) = δ13 ∼ 1. Similarly, to
reach all the six points (0, 1, 0), (0.5, 1, 0.5), (1, 1, 0),
(0.5, 0.5, 0.5), (0.5, 0.5, 0), (1, 0, 0) at step 5, the cor-
responding control initials are given in the Table 4.

Remark 6.5. The ΘG(s, 0) can be calculated induc-
tively, and the algorithm is similar to the one in
[Cheng & Qi, 2009a].

Case 2. Fixed s and constrained G.

It is easy to estimate that there are m0 =
(km)k

m
possible distinct G′s. For statement ease,

we may express each G in a condensed form
and order them in “increasing order”. Say, when

m = 2, k = 3 we have G1 = δ9[1, 1, 1, 1, 1, 1, 1, 1, 1],
G2 = δ9[1, 1, 1, 1, 1, 1, 1, 1, 2], . . . , G99 = δ9[9, 9,
9, 9, 9, 9, 9, 9, 9]. In general, we may consider a sub-
set Λ ⊂ {1, 2, . . . ,m0}, and allow G to be chosen
from an admissible set: {Gλ|λ ∈ Λ}.

Corollary 6.6. Consider system (65) with control
(67), where G ∈ {Gλ|λ ∈ Λ}. Then xd is reachable
from x0, iff

xd ∈
⋃
λ∈Λ

Col
{
ΘGλ(s, 0)W[kn,km]x0

}
. (78)

Example 6.7. Consider the system (71) again, and
also assume k = 3. We still assume A(0) = 1,
B(0) = 0, and C(0) = 1 and s = 5. Assume Ξ =
{G1, G2, G3, G4}, where G1 = δ9[1, 2, 3, 4, 5, 6, 7,
8, 9], G2 = δ9[1, 5, 8, 9, 7, 4, 6, 3, 2], G3 = δ9[1, 8, 9, 6,
5, 7, 3, 2, 4], G4 = δ9[9, 8, 5, 6, 4, 2, 3, 1, 7], the corre-
sponding Vi = Col{Θi(5, 0)W[3n,3m]x0} are

δ27[2 11 21 14 14 15 14 14 9],

δ27[2 14 12 14 15 15 11 26 15],

δ27[2 11 17 27 14 6 15 14 12],

δ27[23 17 11 11 15 15 15 21 15].

Table 4. Destinations and the corresponding con-
trols, x(0) = (0.5, 1, 1).

xd u(0) u1(0) u2(0)

(0, 1, 0) δ1
9 ∼ (0, 1, 0) δ1

3 ∼ 1 δ1
3 ∼ 1

(0.5, 1, 0.5) δ2
9 ∼ (0, 1, 0) δ1

3 ∼ 1 δ1
3 ∼ 0.5

(1, 1, 0) δ3
9 ∼ (0, 1, 0) δ1

3 ∼ 1 δ1
3 ∼ 0

δ4
9 ∼ (0, 1, 0) δ2

3 ∼ 0.5 δ1
3 ∼ 1

(0.5, 0.5, 0.5) δ5
9 ∼ (0, 1, 0) δ2

3 ∼ 0.5 δ2
3 ∼ 0.5

δ8
9 ∼ (0, 1, 0) δ3

3 ∼ 0 δ2
3 ∼ 0.5

(0.5, 0.5, 0) δ6
9 ∼ (0, 1, 0) δ2

3 ∼ 0.5 δ3
3 ∼ 0

δ7
9 ∼ (0, 1, 0) δ3

3 ∼ 0 δ1
3 ∼ 1

(1, 0, 0) δ9
9 ∼ (0, 0, 0) δ3

3 ∼ 0 δ3
3 ∼ 0
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So the reachable set at five steps is
4⋃

i=1

Vi = {δ227, δ627, δ927, δ1127 , δ
12
27 , δ

14
27 , δ

15
27 , δ

17
27 ,

δ2127 , δ
23
27 , δ

26
27 , δ

27
27}

Now assume we want to reach (A(5), B(5),
C(5)) = (0.5, 1, 0), which is δ1227 . The 3rd compo-
nent of V2 is 12. (We have some other choices such
as the 9th component of V3.) So we can choose G2

and u(0) = u1(0)u2(0) = δ39 to drive (0.5, 0, 0.5) to
(0.5, 1, 0) at five steps.

We can reconstruct the control dynamics
from the logical matrix, G2. Converting G2 =
[1, 5, 8, 9, 7, 4, 6, 3, 2] back to standard form, we have

G2 = δ9[1 5 8 9 7 4 6 3 2].

From u1(0)u2(0) = δ39 , we have u1(0) = δ13 and
u2(0) = δ33 .

To reconstruct control dynamics, we need
retrievers

S1 = δ3[1 1 1 2 2 2 3 3 3],

S2 = δ3[1 2 3 1 2 3 1 2 3].

Then, we have the structure matrixes as

M1 = S1G = δ3[1 2 3 3 3 2 2 1 1],

M2 = S2G = δ3[1 2 2 3 1 1 3 3 1].

It follows that

u1(t+ 1) = M1u1(t)u2(t),

u2(t+ 1) = M2u1(t)u2(t).

Similar to [Cheng & Qi, 2009a], some other
cases can also be investigated.

Next, we consider the controllability via the
control of k-valued sequence. We give the following
definition.

Definition 6.8 [Akutsu et al., 2007]. Consider k-
valued logical system (65), assume an initial state
of the network Ai

I , i = 1, . . . , n and a desired state
of the network Ai

D, i = 1, . . . , n at the sth time step
are given. Then the problem is to find a sequence of
δi
k vectors u(0), . . . , u(s − 1) such that Ai(0) = Ai

I ,
Ai(s) = Ai

D, i = 1, . . . , n.

Define L̃ = LW[kn,km], then the second equation in
(68) can be expressed as

x(t+ 1) = L̃x(t)u(t). (79)

Using it repetitively yields

x(s) = L̃sx(0)u(0)u(1) · · · u(s− 1). (80)

So the answer to this kind of control problem
is obvious.

Theorem 6.9. Ai
D is reachable from Ai

I , i =
1, . . . , n at sth time step by controls of k-valued
sequences of length s, iff

xs ∈ Col{L̃sx0}, (81)

where xs = �
n
i=1A

i
D, x0 = �

n
i=1A

i
I .

Remark 6.10. Note that (81) means xs is equal to a
column of L̃sx0. Say, xs is equal to the kth column
of L̃sx0, then the controls should be

u(0)u(1) · · · u(s− 1) = δk
ms , (82)

which uniquely determines all ui, i = 0, 1, . . . , s− 1.

The following example is taken from [Akutsu
et al., 2007], but here we allow the values of the
notes in the network to be three different values
{0, 0.5, 1}.
Example 6.11. Consider a 3-valued logical control
network depicted in Fig. 3.

Its logical equation is

A(t+ 1) = C(t) ∧ u1(t),
B(t+ 1) = ¬u2(t),
C(t+ 1) = A(t) ∨B(t).

(83)

Its algebraic form is

A(t+ 1) = McC(t)u1(t),
B(t+ 1) = Mnu2(t),
C(t+ 1) = MdA(t)B(t).

(84)

A B

C

AND

OR

NOT

Fig. 3. A 3-valued control network.
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Denote x(t) = A(t)B(t)C(t), u(t) = u1(t)u2(t). Then, we can express the system by

x(t+ 1) = L̃x(t)u(t), (85)

where

L̃ = δ27[ 7 4 1 16 13 10 25 22 19 16 13 10 16 13
10 25 22 19 25 22 19 25 22 19 25 22 19 7
4 1 16 13 10 25 22 19 16 13 10 16 13 10

25 22 19 25 22 19 25 22 19 25 22 19 7 4
1 16 13 10 25 22 19 16 13 10 16 13 10 25

22 19 25 22 19 25 22 19 25 22 19 7 4 1
16 13 10 25 22 19 16 13 10 16 13 10 25 22
19 25 22 19 25 22 19 25 22 19 8 5 2 17
14 11 26 23 20 17 14 11 17 14 11 26 23 20
26 23 20 26 23 20 26 23 20 8 5 2 17 14
11 26 23 20 17 14 11 17 14 11 26 23 20 26
23 20 26 23 20 26 23 20 7 4 1 16 13 10
25 22 19 16 13 10 16 13 10 25 22 19 25 22
19 25 22 19 25 22 19 8 5 2 17 14 11 26
23 20 17 14 11 17 14 11 26 23 20 26 23 20
26 23 20 26 23 20 9 6 3 18 15 12 27 24
21 18 15 12 18 15 12 27 24 21 27 24 21 27
24 21 27 24 21].

Now we assume (A(0), B(0), C(0)) = (0, 0, 0). We wish to know if a designed state can be reached by the
sth step. Say, s = 3, using Theorem 6.9, we calculate L̃3x0 ∈M33×36 as follows. (It is too large and we cite
only a few columns.).

δ27[27 24 21 27 24 21 27 24 21 26 23 20 26 23 20
26 23 20 25 22 19 27 24 21 27 24 21 27 24 17

...
14 11 26 23 20 7 4 1 16 13 10 25 22 19].

It is clear that at third step all states can
be reached (via computer searching). Choose one
state, say δ2527 ∼ (0, 0, 1). The program reported
that in 19th, 22nd, 25th, . . . columns we have 25,
which means controls δ19729, or δ22729, or δ25729, or · · ·
can drive the initial state (0, 0, 0) to the destination
state (0, 0, 1). we choose, for example,

u1(0)u2(0)u1(1)u2(1)u1(2)u2(2) = δ19729.

Converting 729 − 19 = 710 to ternary form yields
(1, 1, 1, 0, 1, 1), which means the corresponding con-
trols are u1(0) = 1, u2(0) = 1; u1(1) = 1, u2(1) =
0;u1(2) = 1, u2(2) = 1. It is easy to check directly
that this set of controls work. We may check
some others. Say, choosing δ22729, and converting
729− 22 = 707 to ternary form as (1, 1, 1, 0, 0.5, 1),

we have u1(0) = 1, u2(0) = 1; u1(1) = 1, u2(1) =
0;u1(2) = 0.5, u2(2) = 1. It also works.

In general, it is easy to calculate that when
s = 1 the reachable set from (0, 0, 0) is

{(0, 0, 0), (0, 0.5, 0), (0, 1, 0)}.
when s = 2 the reachable set is
{(0, 0, 0), (0, 0.5, 0), (0, 1, 0), (0, 0, 0.5), (0, 0.5, 0.5),
(0, 1, 0.5), (0, 0.5, 1), (0, 0, 1), (0, 1, 1)}.

7. Conclusion

In this paper, we first review some recent devel-
opments of the semi-tensor product approach to
Boolean networks, and then provide a framework
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to study the dynamics of multivalued networks.
For a k-valued network, the network equation was
converted into an algebraic form as a standard
discrete-time linear system. By analyzing the net-
work transition matrix, easily computable formu-
las were obtained to show (a) the number of
fixed points; (b) the numbers of cycles of different
lengths; (c) transient period, i.e. the minimum time
for all points to enter the set of attractors. Then
formulas were obtained to recover the network and
its dynamics from its transition matrix L. Finally,
the controllability of k-valued logical control net-
work via two kinds of controls has been discussed.
Formulas were obtained to construct the reachable
set.

Several examples were included to illustrate the
results. The computations involved seem compli-
cated, but they can be easily performed with a
computer.
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