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Algebraic Approaches for Fault Identification in

Discrete Event Systems

Yingquan Wu and Christoforos N. Hadjicostis

Abstract

In this note we develop algebraic approaches for fault identification in discrete event systems that

are described by Petri nets. We consider faults in both Petri net transitions and places, and assume

that system events are not directly observable but that the system state is periodically observable. The

particular methodology we explore incorporates redundancy into a given Petri net in a way that enables

fault detection and identification to be performed efficiently using algebraic decoding techniques. The

guiding principle in adding redundancy is to keep the number of additional Petri net places small while

retaining enough information to be able to systematically detect and identify faults when the system

state becomes available. The end result is a redundant Petri net embedding that uses 2k additional

places and enables the simultaneous identification of 2k − 1 transition faults and k place faults (that

may occur at various instants during the operation of the Petri net). The proposed identification scheme

has worst-case complexity of O(k(m + n)) operations where m and n are respectively the number of

transitions and places in the given Petri net.

Keywords —Petri nets, discrete event systems, fault detection and identification, algebraic

decoding.

I. INTRODUCTION

A commonly used approach to fault diagnosis in dynamic systems is to introduce analytical

redundancy (characterized in terms of a parity space) and diagnose faults based on parity relations
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[1], [2]. The methodology in [3] uses a similar idea to monitor faults in discrete event systems

(DESs) that can be modeled by Petri nets [4], [5]. This approach encodes the state (marking) of

the original Petri net by embedding it into a redundant one in a way that enables the diagnosis

of faults in the Petri net transitions and/or places via linear parity checks on the overall encoded

state of the redundant Petri net embedding. Place faults are associated with conditions that cause

the corruption of the number of tokens in a certain place of the Petri net whereas transition

faults are associated with conditions that prevent tokens from being removed from (deposited

at) the input (output) places of a particular transition.

In this note we consider fault identification in a Petri net where activity (transition firing) is

unobservable but the state (Petri net marking) is periodically observable. More specifically, at

the end of a period we observe the final state (marking) of the redundant Petri net embedding

and, based on this information, we aim at detecting and identifying faults that may have occurred

during this period. To achieve this, we construct redundant Petri net embeddings in which the

identification of multiple and mixed (transition and/or place) faults, even when certain state

information is missing, can be done systematically via algebraic coding/decoding techniques.

Apart from fault detection and identification guarantees, our goal in choosing an appropriate

redundant Petri net embedding is to keep the amount of redundancy (as indicated by the number

of additional places/sensors) small.

As we show in this note, the use of a redundant Petri net embedding with 2k additional places

(and the connections and tokens associated with them) allows the simultaneous identification of

up to 2k − 1 transition faults and up to k place faults. The worst-case complexity of the fault

identification procedure involves O(k(m + n)) operations where m and n are the number of

Petri net transitions and places respectively. The identification procedure is based on algebraic

techniques, such as traditional decoding methods (e.g., Berlekamp-Massey decoding [6]) and

more recently developed methodologies for solving systems of composite power polynomial

equations [7]. Note that the efficiency in the identification process comes at the cost of adding

redundancy into the original Petri net — in the form of additional places (sensors) and the

connections (acknowledgments) associated with them. This redundancy is chosen strategically

so as to guarantee diagnosability and enable fast detection and identification.
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II. PROBLEM FORMULATION

The functionality of a Petri net S is best described by a directed, bipartite graph with two types

of nodes: places (denoted by {P1, P2, ..., Pn} and drawn as circles) and transitions (denoted by

{T1, T2, ..., Tm} and drawn as rectangles). Weighted directed arcs connect transitions to places

and vice versa. The arc weights have to be nonnegative integers (we use b−ij to denote the weight

of the arc from place Pi to transition Tj and b+
lj to denote the weight of the arc from transition

Tj to place Pl). Places function as storage locations for tokens (drawn as black dots).

If qs[t] denotes the state/marking of the Petri net at time epoch t (i.e., it indicates the number

of tokens in each place of the Petri net at time epoch t) and B− "
= [b−ij] (respectively, B+ "

= [b+
ij])

denotes the n×m matrix with b−ij (respectively, b+
ij) at its ith row, jth column position, then the

state evolution of Petri net S is captured by

qs[t + 1] = qs[t] + B+x[t] − B−x[t] = qs[t] + Bx[t], (1)

where B
"
= B+ − B− and the input vector x[t] ∈ (Z+)m indicates the transitions that take

place (fire) at time epoch t. The input vector x[t] is usually assumed to be a unit vector with a

single nonzero entry at its jth position indicating that transition Tj has fired. Note that transition

Tj is enabled at time epoch t if and only if qs[t] ≥ B−(:, j) (where the inequality is taken

element-wise and B−(:, j) denotes the jth column of B−).

We consider two types of faults that may occur in a Petri net.

(i) A transition fault models a fault in the mechanism that implements a certain Petri net

transition. We say that transition Tj has a post-condition fault if no tokens are deposited at

its output places (even though the tokens from its input places are consumed). Similarly,

we say that transition Tj has a pre-condition fault if the tokens that are supposed to be

removed from the input places are not removed (even though tokens are deposited at the

corresponding output places). As will be shown shortly, each post-condition fault can be

indicated by an error of “+1,” whereas each pre-condition fault can be indicated by an error

of “−1;” thus, in terms of coding theory terminology, transition faults are measured under

the Lee distance metric [6].

(ii) A place fault models a fault that corrupts the number of tokens in a single place of the Petri

net. Note that place faults are measured in terms of the number of faulty places, independent

of the number of erroneous tokens in each faulty place. Thus, in terms of coding theory
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terminology, place faults are measured under the Hamming distance metric [6]. Note also

that, when state information from a certain place is unobservable or missing, one can treat

this situation as an erasure [6].

Clearly, a pre-condition (post-condition) fault on a transition that has nT input (output) places

can also be treated as a combination of nT place faults. In order for the fault identification

algorithm to be able to resolve such conflicts, we aim at determining the minimum number of

transition and/or place faults that explain the behavior observed in the Petri net. The underlying

assumption in this formulation is that the most likely explanation is the one that involves the

minimum number of faults (as would be the case if all transition and/or place faults are equally

likely and independent). Note that multiple faulty firings of the same transition are allowed in

our model (but count toward the maximum number of transition faults that we can tolerate).

We assume that the firing of transitions in the redundant Petri net is not directly observable

while the Petri net marking is periodically observable. We aim to identify faults based on the

observed marking at the end of a period. We use the term “non-concurrent” to capture the fact

that diagnosis is performed over a period of several time epochs, in this case once every N time

epochs. We assume that within the epoch interval [1, N ], each transition may suffer possibly

multiple pre-condition or post-condition faults, but not both (actually, if a particular transition

suffers both a pre-condition and a post-condition fault within [1, N ], their effects will be canceled,

making their non-concurrent detection impossible).

III. FAULT IDENTIFICATION

The operations involved in the Petri net state evolution in (1) are regular integer operations. The

proposed fault identification schemes, however, will actually be performed based on operations in

a finite field due to the simplicity of the resulting identification algorithm. More specifically, our

identification algorithms will operate in GF(p), the finite field of order p where p is prime: GF(p)

consists of the set {0, 1, 2, . . . , p−1} with all arithmetic operations taken modulo p. Due to page

limitations, we omit most mathematical derivations regarding assertions about fault identifiability

and the identification procedure. The readers who are interested in these mathematical details

are referred to [7], [8] for the analysis of transition faults, and to [6] for the analysis of place

faults.
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A. Redundant Petri net embeddings

The identification of faults in a given Petri net S can be facilitated by the construction of

a redundant Petri net embedding H [3]. More specifically, d places are added to the original

Petri net S to form a composite Petri net H whose state (marking) qh[t] is η-dimensional

(η = n + d, d > 0) and under fault-free conditions satisfies

qh[t] =




In

C



qs[t] (2)

for all time epochs t. Here, qs[t] is the state of the original Petri net S , In denotes the n × n

identity matrix and C is a d × n integer matrix to be designed. In order to guarantee that (2)

remains valid for all t, the state evolution of H is chosen to be of the form

qh[t + 1] = qh[t] +




B+

CB+ − D





︸ ︷︷ ︸

B+

x[t] −




B−

CB− − D





︸ ︷︷ ︸

B−

x[t], (3)

where D is a d × m integer matrix, also to be designed. The d additional places together with

the n original places comprise the places of the redundant Petri net embedding H. A valid

(redundant) marking/state can be checked by using the parity check matrix P
"
= [−C Id] to

verify that the syndrome

s[t]
"
= Pqh[t] = [−C Id]




In

C



qs[t] = 0. (4)

In [3] it is shown that if matrices C and D have integer nonnegative entries and satisfy

CB+ − D ≥ 0 and CB− − D ≥ 0 (element-wise), then a properly initialized redundant Petri

net embedding H (i.e., one that satisfies Eq. (2) at t = 0) admits any firing sequence that is

admissible in the original Petri net S .

B. Identification of transition faults

Recall that within the epoch interval [1, N ] each transition may suffer multiple pre-condition

or post-condition faults, but not both. Let e+
T ∈ (Z+)m denote an indicator vector of post-

condition faults and e−

T ∈ (Z+)m denote an indicator vector of pre-condition faults within the
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epoch interval [1, N ]. Assuming no place faults, the erroneous state qf [N ] at time epoch N is

given by

qf [N ] = qh[N ] − B+e+
T + B−e−

T , (5)

where qh[N ] is the state that would have been reached under fault-free conditions. The fault

syndrome at time epoch N is then

sT [N ] = [−C Id](qh[N ] − B+e+
T + B−e−

T )

= [−C Id]



qh[N ] −




B+

CB+ − D



 e+
T +




B−

CB− − D



 e−

T





and is easily calculated to be

sT [N ] = DeT , (6)

where eT
"
= e+

T − e−

T . Clearly, the identification of transition faults based on the syndrome

sT [N ] is completely determined by matrix D. Note that a transition fault corresponds to a Lee

(“±1”) error [6], with “+1” meaning a single post-condition fault and “−1” meaning a single

pre-condition fault as indicated by (6).

Let D take the form

Dk+1

"
=













1 1 1 . . . 1

α1 α2 α3 . . . αm

α2
1 α2

2 α2
3 . . . α2

m

... ... ... . . . ...

αk
1 αk

2 αk
3 . . . αk

m













, (7)

where α1,α2, . . . ,αm are m distinct nonzero elements in GF(p) (note that this requires p > m)

and αj
i is exponentiation in GF(p) (the subscript “k+1” is used to indicate the row dimension of

D, which corresponds to the number of additional places).

When up to k transition faults (i.e., “±1” errors) occur, Proposition 3(i) in [7] indicates that the

syndrome sT = [s0 s1 s2 . . . sk] is nonzero and uniquely determines those erroneous locations.

Furthermore, by adopting the approach in [7], we can identify up to k transition faults with

complexity of O(km) operations. The details of translating these results to the set-up here can

be found in [8]. Note that matrix C does not directly enter the development here and we consider

it later when we discuss the identification of place faults.
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Note that, for k = 1, the first row of matrix D in (7) is redundant; thus, we only need

D1

"
= (1, 2, . . . ,m), k = 1. (8)

For k = 2, the first row is again redundant. This is justified by the fact that the equations

x1 ≡ x2 + x3 and x2
1 ≡ x2

2 + x2
3 do not have a nonzero (non-trivial) solution in GF(p); thus,

there is no confusion about the number of faults. Therefore, for k = 2, we can use the following

matrix D:

D2

"
=




1 2 3 . . . m

1 22 32 . . . m2



 mod p , k = 2. (9)

C. Identification of place faults

We now focus on the identification of place faults under the assumption of no transition faults.

Let the place faults within the time epoch interval [1, N ] result in a corrupted state

qf [N ] = qh[N ] + eP , (10)

where qh[N ] is the state that would have been reached under fault-free transitions and eP ∈ Zη

denotes the (accumulated) place fault vector. Note that eP is an η dimensional vector and can

model faults on all places of the Petri net, including the redundant ones. We are interested in

identifying up to k place faults, which implies that eP has Hamming weight up to k. The place

fault syndrome is given by

sP [N ] = [−C I](qh[N ] + eP ) = [−C I]eP , (11)

i.e., the identifiability of place faults is exclusively determined by matrix C.

We next associate the design of matrix C with well-known algebraic decoding techniques.

Let H2k be defined as

H2k =













α1 α2 α3 . . . αη−1 αη

α2
1 α2

2 α2
3 . . . α2

η−1 α2
η

α3
1 α3

2 α3
3 . . . α3

η−1 α3
η

... ... ... . . . ... ...

α2k
1 α2k

2 α2k
3 . . . α2k

η−1 α2k
η













, (12)
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where α1,α2, . . . ,αη are η distinct nonzero elements in GF(p) (note that this requires p > η)1.

It is well-known that syndrome s in the form

s = H2ke (13)

uniquely determines e as long as the Hamming weight of e is up to k (cf. [6]). Furthermore, the

Berlekamp-Massey algorithm can be used to identify up to k Hamming errors with computational

complexity of O(kη) operations (cf. [6]). Note that, in the case of place faults, the syndrome

in (12) is a linear combination of columns of H2k where the weights with which columns are

combined are arbitrary integers; in the case of transition faults, however, the syndrome in (7) is

a linear combination of columns of Dk+1 where the weights with which columns are combined

are restricted to be ±1. Since the all “1’s” row that is present in Dk+1 is not useful for the

Berlekamp-Massey algorithm, it is not included in the construction of H2k.

To transform our problem to the algebraic decoding problem in (13), we make the reasonable

assumption that the number of erroneous tokens in a place is bounded. More specifically, we

assume that ePi
, the erroneous number of tokens in place Pi, is within the interval [−p−1

2
, p−1

2
].

Under this assumption, ePi
can be interpreted to fall within [0, p − 1] in GF(p) (by naturally

mapping ePi
to [ePi

mod p]).

The transformation from (11) to (13) can be achieved by setting d = 2k, and η = n + 2k and

by enforcing the transformation

H2k = Φ[−C̃ I2k] or P2k = Φ−1H̃2k, (14)

where the multiplication and inversion operations are defined in GF(p) and matrix Φ denotes

the last 2k columns of H2k

Φ
"
=













αn+1 αn+2 αn+3 . . . αη−1 αη

α2
n+1 α2

n+2 α2
n+3 . . . α2

η−1 α2
η

α3
n+1 α3

n+2 α3
n+3 . . . α3

η−1 α3
η

... ... ... . . . ... ...

α2k
n+1 α2k

n+2 α2k
n+3 . . . α2k

η−1 α2k
η













. (15)

1The code whose parity check matrix is defined by (12) is called a Reed-Solomon code whereas the code whose parity check

matrix is defined by (7) is called an extended Reed-Solomon code (cf. [6]).
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Note that Φ forms a nonsingular Vandermonde matrix. Clearly, if we set P = [−C̃ I2k] =

Φ−1H2k (by interpreting the entries as integer entries in [0, p− 1], i.e., by inverting the natural

mapping mentioned above), then we can easily convert (11) to the decoding problem (13). By

taking both sides of (11) modulo p we obtain

sP [N ] = Pqf [N ] = [−C̃ I2k]eP ⇒ ΦsP [N ] ≡ H2keP ,

where the symbol “≡” denotes equality modulo p.

To efficiently identify k place faults, we pre-process the syndrome sP [N ] = P2keP by (left)

multiplying by matrix Φ, i.e., we obtain the modified syndrome s′P [N ]
"
= ΦsP [N ], which satisfies

s′P [N ] ≡ H2keP and can be solved efficiently for eP using the Berlekamp-Massey algorithm.

The complexity of the identification procedure is O(kη) operations [6].

When a few places are unobservable, we can set the number of tokens in the unobserv-

able places to zero2 and apply error-and-erasure decoding which is again empowered by the

Berlekamp-Massey algorithm (cf. [6]). In such case, the error correction capability is charac-

terized by f + 2t ≤ 2k, where f denotes the number of unobservable places and t denotes the

number of place faults (among observable places).

D. Simultaneous Identification of Transition and Place Faults

In this section we show that with 2k additional places it is possible to simultaneously identify

2k − 1 transition faults and k place faults. As in the previous sections, we assume that no

transition suffers simultaneous pre-condition and post-condition faults during the epoch interval

[1, N ] and that the number of erroneous tokens added to or subtracted from each place does not

exceed +p−1

2
.

By combining Eqs. (6) and (11), we have the following fault syndrome at time epoch N :

s[N ] = P(qh[N ] − B+e+
T + B−e−

T + eP )

= DeT + PeP . (16)

Recall that the identification schemes for transition faults and place faults that we presented

earlier were essentially based on operations in GF(p) (modulo p operations). To identify both

2Essentially here we are treating a place whose number of tokens is unobservable as an erasure [6].
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types of faults simultaneously, the key idea is to incorporate regular integer operations into the

design of matrices D and C, as well as in the identification procedure (note that the marking

consists of nonnegative integers rather than elements in GF(p)). For notational simplicity, we

ignore the subscript “2k” in the sequel. Let p be a prime number larger than both m and η, and

let D follow the design in (7) and C be chosen such that P
"
= [C I] (mod p) satisfies (14).

Define D∗ and P∗ by

D∗ "
= −p · D, (17)

C∗ "
= p · 1 − C, P∗ "

= [−C∗ I] = [C − p · 1 I], (18)

where 1 is a 2k × n matrix with all entries being 1.

Note that the design in Eqs. (17) and (18) satisfies C∗ > 0, D∗ < 0 (element-wise). This

guarantees that the marking of the additional places C∗qs[·] is nonnegative and that the arc

weights associated with the additional places (given by C∗B− − D∗ and C∗B+ − D∗) are

nonnegative. It is possible, however, that after the occurrence of a fault some firings that are

enabled in the original Petri net become disabled in the redundant Petri net embedding due to

the (erroneous) marking of the additional places. Clearly, this is not an issue if the enabling and

disabling of transitions is not influenced by the number of tokens in the additional places. Even

when the additional places function as controllers (as in [9] for instance), this problem can be

avoided in straightforward ways (e.g., by adding a sufficiently large number of extra tokens to

each additional place and ignoring this extra number of tokens when performing parity checks

at the end of time epoch N ).

We now address the identification procedure. Clearly, the syndrome s[N ]
"
= P∗qf [N ] at time

epoch N satisfies

sP ≡ s[N ] ≡ [C I]eP (mod p). (19)

Left multiplying by Φ on both sides of (19), we obtain the modified syndrome

s′P
"
= ΦsP ≡ Φ[C I]eP ≡ HeP (mod p). (20)

When k or less place faults occur, they can be identified by the Berlekamp-Massey algorithm

based on s′P . Once the place faults have been successfully identified and eP has been obtained,

we can compute

sT
"
= (s[N ] − P∗eP )/p = (D∗/p)eT = −DeT , (21)
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which immediately enables us to identify up to 2k − 1 transition faults using the algorithm

discussed in the previous section (note that the symbol “=” denotes integer equality). Overall,

the identification of place faults requires O(kη) = O(k2+kn) operations and the identification of

transition faults requires O(km) operations; thus, the entire identification complexity is O(k(m+

n)) operations.

Note that in the approach presented above the identification of transition and place faults is

essentially separated. As a result, no matter how many transition faults occur, place faults are

always identifiable, as long as no more than k place faults happen.

E. Distributed Fault Identification

Consider a Petri net can be conveniently decomposed into a set of M interacting subsystems

{S1,S2, ...,SM} that have disjoint sets of transitions and share (a small number of) places. If

we design a redundant Petri net embedding for each of the subsystems separately (utilizing our

developments in this section), then when a transition associated with a shared place fires in

subsystem Si, its effect on the other subsystems Sj , j (= i, will be treated as a place fault in

the shared place. One way to overcome this limitation is to compensate for the fault syndrome

in each subsystem Sj, j (= i, by appropriately adjusting the number of tokens in its additional

places. Note that the decomposition of a Petri net into subsystems with disjoint sets of transitions

and shared places is essentially an arbitrary assignment of transitions into subsystems; a good

choice, however, would be one that minimizes the interactions between the transitions of one

subsystem and the places of another. This would be the case, for example, if the number of

shared places is small. More details can be found in [8].

IV. EXAMPLE

The Petri net shown in Figure 1 appears in [10] and represents the control logic for three

machines and three robots. There are twelve transitions (i.e., m = 12) and eighteen places (i.e.,

n = 18). The initial marking of the Petri net, as indicated in Figure 1 by the number of tokens

in each place, is

qs[0] = (1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0)T .

We describe the details for a fault diagnosis scheme in which we aim to simultaneously detect

and identify two transition faults and one place fault. We assume that the number of faulty tokens
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Fig. 1. Petri net model of a manufacturing system with three machines and three robots.

in any place is bounded by [−5, 5]. By our development in Section III, we need two redundant

places (d = 2) and, since the smallest prime number that it is greater than both m = 12 and

η = 18 + 2 = 20 is 23, we set p = 23. Following the construction in Section III, we obtain D∗,

H̃ and C∗ as in Figure 2.

Thus, the weights to (from) the redundant places from (to) the transitions in the original

system (shown in Figure 3 with dotted arcs) are given by

C∗B+ − D∗ =




29 52 123 114 120 147 219 205 222 233 306 277

27 103 266 372 52 300 108 425 278 190 189 148





and

C∗B− − D∗ =




70 73 75 97 159 158 170 197 242 265 256 285

43 117 218 382 65 319 70 430 317 193 144 160



 .

Furthermore, the initial marking of the overall system is

qh[0] =




I18

C∗



qs[0] = (1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 53 36)T .

Assume that the applied firing sequence is T7, T1, T2, T8, T3, T9, and that the following faults

occur: a pre-condition fault in transition T2 (during time epoch 3), a place fault that corrupts the
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D
∗ =




−23 −46 −69 −92 −115 −138 −161 −184 −207 −230 −253 −276

−23 −92 −207 −368 −46 −299 −69 −414 −276 −184 −138 −138





H̃ =




1 5 2 10 4 20 8 17 16 11 9 22 18 21 13 19 3 15 6 7

1 2 4 8 16 9 18 13 3 6 12 1 2 4 8 16 9 18 13 3





=




6 7

13 3





︸ ︷︷ ︸

Φ




1 17 17 18 2 18 14 10 22 8 20 14 13 20 10 8 2 3 1 0

19 19 12 9 12 17 22 7 13 21 17 1 21 22 13 9 2 16 0 1





︸ ︷︷ ︸

[C I]

C
∗ =




22 6 6 5 21 5 9 13 1 15 3 9 10 3 13 15 21 20

4 4 11 14 11 6 1 16 10 2 6 22 2 1 10 14 21 7





Fig. 2. Matrices associated with the monitoring scheme for the system of Figure 1.

number of tokens in P7 by +2 (during time epoch 5), and a post-condition fault in transition T9

(during time epoch 6). The sequence of markings is

T7 : qf [1] = (1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 102 74)T Fault-free

T1 : qf [2] = (0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 61 58)T Fault-free

T2 : qf [3] = (0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 113 161)T Pre-condition fault in T2

T8 : qf [4] = (0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 121 156)T Fault-free

T3 : qf [5] = (0 1 0 1 1 0 2 0 1 0 0 0 0 0 1 1 2 1 169 204)T P7 corrupted by + 2

T9 : qf [6] = (0 1 0 1 1 0 2 0 0 0 0 0 0 0 0 1 1 1 −73 −113)T Post-condition fault in T9

The resulting syndrome is s[6] = [−C∗ I2]qf [6] ≡
(

5 21
)T

(mod 23) and, by left multiply-

ing byΦ, we obtain the modified place fault syndrome as s′P = Φs[6] (mod 23) ≡
(

16 13
)T

.

By inspecting the punctured parity check matrix H̃, we easily identify place P7 as faulty with

the erroneous number of tokens being +2. This is consistent with what took place during the

operation of the system. Next, utilizing (21), we obtainDeT = −(s[6]−P∗eP )/23 =
(

7 8
)T

.

We note that the above syndrome does not coincide with any column of ±D, so there must be

two transition faults (if identifiable). We first consider the case of both faults undergoing pre-
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Fig. 3. Fault detection and identification for the manufacturing system of Figure 1 using a redundant Petri net
embedding.

condition faults, which results in the following equation array:






−x1 − x2 ≡ 7,

−x2
1 − x2

2 ≡ 8 .

We quickly realize that there does not exist a proper solution. Similarly, we eliminate the

possibility of both faults being post-condition faults. We then try the case of a pre-condition

fault and a post-condition fault, which translates to solving






x1 − x2 ≡ 7,

x2
1 − x2

2 ≡ 8.

These equations are easily shown to have a unique solution with x1 = 9 and x2 = 2. Therefore,

we conclude that transition T2 suffered a pre-condition fault and transition T9 suffered a post-

condition fault, which is consistent with what took place during the operation of the system.

Note that, during the operation of the redundant Petri net system in our example, the number

of tokens in the additional places becomes negative (at time epoch 6). If the additional places

function as controllers (as in [9]), then this implies that the firing of transition T9 during time

epoch 6 would be inhibited. This issue can be avoided by adding a sufficiently large number of
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extra tokens to each redundant place (and ignoring this extra number of tokens when performing

parity checks).

V. CONCLUSIONS

In this note we have presented algebraic approaches to fault identification schemes in discrete

event systems that are described by Petri nets. Our setting assumes that system events (transition

firings) are not directly observable but that the system state (marking) is periodically observable,

and aims at capturing faults in both Petri net transitions and places. To achieve this, we introduce

redundancy and construct a redundant Petri net embedding whose additional places encode

information in a way that enables error detection and identification to be performed using

algebraic decoding techniques. Our approach does not need to reconstruct the various possible

state evolution paths associated with a given discrete event system and the identification algorithm

has low complexity.
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