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Abstract We extend the decomposition theorem for numerically K -trivial
varieties with log terminal singularities to the Kähler setting. Along the way
we prove that all such varieties admit a strong locally trivial algebraic approx-
imation, thus completing the numerically K -trivial case of a conjecture of
Campana and Peternell.
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1 Introduction

For a compact Kähler manifold X with vanishing first Chern class, the
Beauville–Bogomolov theorem [6,13] tells us that a (finite) étale cover of X
splits as a product of a complex torus, irreducible symplectic manifolds, and
irreducible Calabi–Yau manifolds. Work of Druel–Greb–Guenancia–Höring–
Kebekus–Peternell [24,28,34,37,48] over the past decade has culminated in
an analog of this theorem for projective varieties with log terminal singularities
and numerically trivial canonical class, see [48, Theorem 1.5].

Our main result is a generalization of the decomposition theorem to the
Kähler setting:

Theorem A Let X be a numerically K -trivial compact Kähler variety with
log terminal singularities. Then there is a quasi-étale cover ˜X → X such that
˜X splits as a product

˜X = T ×
∏

i

Yi ×
∏

j

Z j

where T is a complex torus, the Yi are irreducible1 Calabi–Yau varieties, and
the Z j are irreducible holomorphic symplectic varieties.

Amorphism ˜X → X of normal complex spaces is quasi-étale if it is étale on
the complement of an analytic subset which is locally of codimension at least 2
in ˜X and a cover if it is finite and surjective. For convenience, we reproduce the
definitions of irreducible Calabi–Yau and irreducible holomorphic symplectic
varieties due to Greb–Kebekus–Peternell [39, Definition 8.16] here. Recall
that if X is a normal complex variety, the sheaf of reflexive p-forms �

[p]
X may

be equivalently thought of as either the reflexive hull (�
p
X )∨∨ or the push-

forward j∗�p
X reg from the regular locus j : X reg → X . If X furthermore has

rational singularities, it admits a third interpretation asπ∗�p
Y for any resolution

π : Y → X by Kebekus–Schnell [52, Corollary 1.8].

1 Greb–Kebekus–Peternell use the term Calabi–Yau for the irreducible factors in the decom-
position of the second type, but it seems natural to call them irreducible Calabi–Yau.
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Algebraic approximation and the decomposition theorem 1257

Definition 1.1 Let X be a compact Kähler variety with rational singularities.
We call X irreducible holomorphic symplectic (IHS) if for all quasi-étale
covers q : ˜X → X , the algebra H0(˜X , �

[•]
˜X

) is generated by a holomorphic

symplectic form σ̃ ∈ H0(˜X , �
[2]
˜X

). We call X irreducible Calabi–Yau (ICY)

if for all quasi-étale covers q : ˜X → X , the algebra H0(˜X , �
[•]
˜X

) is generated
by a nowhere vanishing reflexive form in degree dim X .

Note that this is equivalent to the definition in [39]: in the presence of a
reflexive form of degree dim X the singularities of X are rational if and only
if they are canonical by [30, Théorème 1] and [52, Corollary 1.8].

The proof of the decomposition theorem in the projective case uses algebraic
techniques (particularly regarding algebraic integrability of foliations, even
though the usage of characteristic p methods can be avoided by a recent paper
of Campana [16]) which at the moment cannot be directly generalized to the
analytic category. Instead, we reduce to the projective case via locally trivial
deformations. A crucial ingredient is therefore the following theorem, which
resolves the numerically K -trivial case of a conjecture of Campana–Peternell2

saying that Kähler minimal models admit an algebraic approximation:

Theorem B Any X as in Theorem A admits a strong locally trivial algebraic
approximation: there is a locally trivial family X → S over a smooth base S
specializing to X over s0 ∈ S such that points s ∈ S for which Xs is projective
are analytically dense near s0. ��

It is natural to ask whether the Bogomolov–Tian–Todorov theorem holds
in this context—that is, whether locally trivial deformations of numerically
K -trivial X as in the theorem are always unobstructed (which would be suf-
ficient to prove Theorem B, see [46, Theorem 1.2]). On the one hand, flat
deformations of such X are known to be potentially obstructed by an example
of Gross [44]. On the other hand, the proof of unobstructedness in the smooth
case is fundamentallyHodge-theoretic, and from this perspective locally trivial
deformations aremore natural as they are topologically trivial (see [3, Proposi-
tion 6.1]). While some special cases have been established (see [10,11,46]), it
is as yet unclear whether a locally trivial Bogomolov–Tian–Todorov theorem
should hold.

The main difficulty in the proof of Theorem B is therefore to produce suf-
ficiently many unobstructed deformations. Recall that by Kodaira’s criterion,
a compact Kähler manifold (or compact Kähler space with rational singulari-
ties) with no nonzero holomorphic 2-forms is automatically projective, so the
existence of 2-forms is the only obstruction to projectivity. The results of [47]

2 The conjecture has been attributed to Campana and Peternell in [19]. The authors are grateful
to Thomas Peternell for bringing this conjecture to our attention.
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extending the polystability of TX to the Kähler category provide a splitting of
TX into foliations and the symplectic foliations among the factors (precisely,
theweakly symplectic split foliations, seeDefinition 2.31) account for all of the
2-forms on X . It is therefore natural to try to deform to the symplectic direc-
tions inside H1(X, TX ). We show that locally trivial deformations obtained
by exponentiating the symplectic foliations of this splitting are always unob-
structed. As in the proof of the corresponding result for symplectic varieties
[10, Theorem 4.7], a crucial role is played by the degeneration of reflexive
Hodge-to-de Rham in low degrees [11, Section 2]. The general results we
prove about locally trivial deformations along foliations (Sect. 2) and the exis-
tence of simultaneous resolutions in locally trivial families (Corollary 2.27)
are of independent interest as well.

With Theorem B in hand, the proof of Theorem A proceeds as follows. We
first produce a locally trivial deformation π : X → � of X over the disk for
which projective fibers are analytically dense. By cycle-theoretic arguments
and Theorem A in the projective case [48, Theorem 1.5], after replacing X by
a quasi-étale cover it suffices to assume there is a splitting X ∗ = Y∗ ×�∗ Z∗
of the family X ∗ := X |�∗ over the punctured disk, and we must show that the
splitting extends over the puncture.

One first observes that local triviality of the family π : X → � implies the
Künneth decomposition of Rkπ∗QX ∗ extends, in fact as a decomposition of
the variation of Hodge structures. By K -triviality, the factors of the splitting of
the tangent bundle TX ∗/�∗ are cut out by differential forms and extend, so we
have a splitting TX /�

∼= A ⊕ B. The leaves of the splitting of the family over
�∗ have well-defined limits in the special fiber which are therefore tangent to
the factors of the limit splitting TX = A0 ⊕ B0 on the regular locus X reg.

It remains to show that the limit leaves define a product structure in the
singular locus X sing. There are essentially two types of phenomena that could
go wrong: the limit leaves could acquire new components in X sing, or limit
leaves in the two directions could have positive-dimensional intersections in
X sing. To rule these out, we show that the splitting of the Ricci-flat metricωt =
ωAt +ωBt of Xt for t ∈ �∗ induced by the splitting of the family extends over
the puncture to a decomposition ω0 = ωA0 + ωB0 of the Ricci-flat metric on
X0 = X into closed semipositive currents with bounded potentials. This is the
key technical part of the proof of TheoremA and the latter condition is critical:
it implies that these currents can be restricted to cycles in the singular locus
and that one can compute intersection numbers with these currents. The fact
that the decomposition is compatible with the limit Künneth decomposition
and the semipositivity of the factors together imply neither pathology arises.

Patrick Graf informed us that he independently obtained a Kähler version
of the decomposition theorem in dimension at most four, see [43].
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Algebraic approximation and the decomposition theorem 1259

1.2 Outline

• Section 2. We collect some background on locally trivial deformations,
define locally trivial deformations along foliations, and prove unobstruct-
edness of deformations along weakly symplectic split foliations.

• Section 3. We recall the precise notions of K -triviality and prove Theo-
rem B. We derive some first applications about fundamental groups and
deformation of the irreducible building blocks.

• Section 4. We recall some foundational aspects of relative Douady spaces
and show that local product decompositions can be spread out over Zariski
open sets.

• Section 5. A locally trivial family X → � which is a product over �∗
admits a limit product decomposition on cohomology. We deduce from
that a splitting for the relative tangent sheaf.

• Section 6. We prove that the Kähler–Einstein metric in the limit splits as
a sum of positive currents with bounded local potentials corresponding to
the product decomposition of the family X → � over �∗.

• Section 7. Building upon the previous results, we prove a global splitting
result for locally trivial families X → � that are a product over �∗, under
some additional conditions.

• Section 8. We proceed to checking that the assumptions in the splitting
theorem from the previous section are fulfilled in our geometric setting,
thereby proving Theorem A.

Notation and Conventions

Aresolution of singularities of a variety X is a proper surjective bimeromorphic
morphism π : Y → X from a nonsingular variety Y . The term variety will
denote an integral separated scheme of finite type over C in the algebraic
setting or an irreducible and reduced separated complex space in the complex
analytic setting. For a field k, an algebraic k-scheme is a scheme of finite type
over k. We will denote by � := {z ∈ C | |z| < 1} the complex unit disk and
by �∗ := �\{0} the punctured disk.

2 Locally trivial deformations along foliations and resolutions

Throughout we define Artk to be the category of local artinian k-algebras.
To simplify the notation, we agree that k will denote an algebraically closed
field when speaking about schemes and k = C when speaking about complex
spaces.
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1260 B. Bakker et al.

2.1 Locally trivial deformations

We begin with some background on locally trivial deformations.

Definition 2.2 Let f : X → S be amorphism of complex spaces (or algebraic
schemes3). We say:

(1) X is locally trivial over S if there is a cover Xi of X , a cover Si of S such
that Xi → S factors through Si , complex spaces (or schemes) Xi , and
commutative diagrams

Xi
∼= Xi × Si

Si

where the diagonal map is the projection.
(2) X is formally locally trivial over S if for any T = SpecA → S with

A ∈ Artk the base-change XT → T is locally trivial.

Remark 2.3 (1) Of course, over an artinian base, the notions of formal local
triviality and local triviality are equivalent.

(2) In the analytic category, by results of Artin [2, Theorem (1.5)(ii)], X /S
is locally trivial if and only if ̂OX ,x

∼= ̂OXs ,x ⊗C
̂OS, f (x) as ̂OS, f (x)-

algebras for all points x ∈ X . Thus, in the analytic categoryX /S is locally
trivial if and only if it is formally locally trivial. In the algebraic category,
local triviality is in general much stronger than formal local triviality over
nonartinian bases.

Definition 2.4 Let X/k be a complex space (or an algebraic scheme). The
locally trivial deformation functor F lt

X : Artk → Sets is defined as follows:
F lt

X (A) is the set isomorphism classes of locally trivial families X /SpecA
together with a k-morphism X → X which is an isomorphism modulo mA.
Here, we consider isomorphism classes for isomorphisms which are the iden-
tity modulo mA.

We recall that locally trivial deformations are controlled by the tangent sheaf
TX /S := HomOX (�1

X /S,OX ). This will be made precise in a way that can be
adapted easily to deformations preserving a foliation in Sect. 2.10. For A in
Artk let

GX (A) := AutA(OX ⊗k A)

3 or algebraic spaces, if we use the étale topology in the sequel.
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Algebraic approximation and the decomposition theorem 1261

be the sheaf of A-algebra automorphismsofOX ⊗k A, and letUX (A) ⊂ GX (A)

be the subsheaf of automorphisms which are the identity modulo mA.
The following proposition is immediate:

Proposition 2.5 Let X/k be a complex space (or an algebraic scheme) and F lt
X

its locally trivial deformation functor. Then we have a natural identification:

F lt
X (A) = Ȟ1(X, UX (A)).

Note that in characteristic zero we have an isomorphism of sheaves of
pointed sets

exp : TX ⊗k mA → UX (A)

where TX ⊗k A is given the obvious structure of a sheaf of A-linear Lie algebras.
For any small extension4

0 → J → A′ → A → 0 (2.1)

with A, A′ ∈ Artk the first row of the following commutative diagram is then
exact:

0 TX ⊗k J TX ⊗k mA′ TX ⊗k mA 0

0 TX ⊗k J UX (A′) UX (A) 1.

exp exp

exp

(2.2)

Here the horizontal maps are morphisms of sheaves of groups and the right
and center vertical maps are isomorphisms of sheaves of pointed sets.

It follows that the bottom row is exact. Moreover, as the top row is exact on
global sections, it follows that the bottom row is exact on global sections as
well.

Corollary 2.6 Suppose X/k is a separated complex space (or a separated
algebraic scheme with char(k) = 0). Then the following hold.

(1) The functor F lt
X admits a tangent-obstruction theory with tangent space

equal to H1(X, TX ) and obstructions in H2(X, TX ).
(2) For any family X /S = SpecA in F lt

X (A), the lifts of X /S to F lt
X (A[ε]) are

canonically parametrized by a functorial quotient of H1(X , TX /S).

4 Recall that a sequence such as (2.1) is a small extension if J.mA′ = 0. In this case, the
A′-module structure of J factors through k = A′/mA′ = A/mA.
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1262 B. Bakker et al.

Remark 2.7 It follows that F lt
X satisfies Schlessinger’s axioms (H1)–(H3), see

[59, Theorem 2.11]. Note that while F lt
X may not satisfy (H4), it does satisfy

axiom (H5) of [45, § 1], since the fibered coproduct of two deformations may
be constructed by taking thefibered direct product of the sheaves of rings. Thus,
the deformation module T 1(X /S) has the structure of an A-module, and in
part (2) we mean that it is a quotient of H1(X , TX /S) as an A-module which
is compatible with restriction maps. If X /S has no automorphisms restricting
to the identity on the special fiber, then H1(X , TX /S) → T 1(X /S) will be an
isomorphism. These remarks likewise hold for the other deformation functors
that will be defined in Sect. 2.10.

Proof of Corollary 2.6 The following lemma describes how much of the long
exact sequence survives in the cohomology of UX (A):

Lemma 2.8 Let

0 → T → G ′ → G → 1 (2.3)

be an exact sequence of sheaves of groups on a topological space where T is
abelian.

(1) If T is central in G, then we have a sequence

Ȟ1(X, T ) Ȟ1(X, G ′) Ȟ1(X, G) Ȟ2(X, T )
δ

where
(a) The natural action of Ȟ1(X, T ) on Ȟ1(X, G ′) is transitive on fibers;
(b) The image of Ȟ1(X, G ′) → Ȟ1(X, G) is the inverse image of 0 under

δ.
(2) If (2.3) is split exact,5 then for each α ∈ Ȟ1(X, G) the natural action of

Ȟ1(X, T α) on the fiber of the map

Ȟ1(X, G ′) Ȟ1(X, G)

above α is transitive, where T α is the sheaf obtained from T by twisting
by α.

Proof Easily checked with Čech cochains. ��
Now, the first claim is immediate upon taking the long exact sequence on Čech
cohomology of the second row of (2.2) using the first part of the lemma (where

5 Meaning G′ → G has a section.
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Algebraic approximation and the decomposition theorem 1263

we used separatedness to identify Čech cohomology with sheaf cohomology).
For the second part, we have a split exact sequence

0 TX ⊗k A UX (A[ε]) UX (A) 1
exp

(2.4)

and the claim follows from the second part of the lemma, as the stabilizer of
an element (X ′/S′) under the action of H1(X , TX /S) is easily seen to be an
A-submodule. Note that for α = (X /S) ∈ Ȟ1(X, UX (A)) we naturally have
(TX×S/S)

α = TX /S . ��
Remark 2.9 We would like to make a couple of remarks regarding (2.2).

(1) The restriction morphism UX (A′) → UX (A) may fail to be surjective
in characteristic p. If we take X = Speck[x]/(x p), A = k[ε]/(ε p), and
A′ = k[ε]/(ε p+1), the automorphism x 
→ x + ε of X × SpecA does not
lift.

(2) Let A′ → A be a small extension in Artk , let X ′ → SpecA′ be
flat, and X := X ′ ×SpecA′ SpecA. The same argument shows that
AutA′(X ′) → AutA(X ) is surjective whenever TX ′/A′ → TX /A is. Exam-
ple 2.6.8(i) in [60] shows that for A′ = k[t]/t3 → k[t]/t2 = A and
X ′ = Spec

(

k[x, y, t]/(xy − t, t3)
)

the automorphism of X determined
by x 
→ x + t x and y 
→ y does not lift to X ′. But neither does the vector
field t

∂

∂x
∈ TX /A.

2.10 Locally trivial deformations along foliations

The above results now easily extend to the situation of deformations along a
foliation, providedwe require char(k) = 0 in the algebraic case. For simplicity,
we therefore take k = C in the remainder.

Definition 2.11 Let X be a separated complex space (or a separated com-
plex algebraic scheme). The tangent sheaf of X is defined by TX :=
HomOX (�1

X ,OX ). A foliation is a subsheaf E ⊂ TX , such that E is sta-
ble under the Lie bracket and saturated in TX , i.e. such that the quotient TX/E
is torsion-free.

Definition 2.12 Let X be a separated complex space (or a separated complex
algebraic scheme) with a foliation E ⊂ TX . For A ∈ ArtC set UE (A) :=
exp(E ⊗C mA) ⊂ UX (A). We define the deformation functor F lt

E : ArtC →
Sets by

F lt
E (A) := Ȟ1(X, UE (A)).
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1264 B. Bakker et al.

We somewhat abusively refer to sections of F lt
E as (X /S) ∈ F lt

E (A) even
though the natural map F lt

E → F lt
X may not be injective on sections. Note that

the integrability of E is necessary in order for UE (A) ⊂ UX (A) to be a sheaf
of subgroups.

Proposition 2.13 Let X be a separated complex space (or a separated complex
algebraic scheme) with a foliation E ⊂ TX . Then the following hold.

(1) The functor F lt
E admits a tangent-obstruction theory with tangent space

H1(X, E) and obstructions in H2(X, E).
(2) Associated to any family X /S = SpecA in F lt

E (A) there is a functorial
foliation EX /S ⊂ TX /S which locally agrees with the trivial extension
of E on any local trivialization of the UE (A)-cocycle representing X /S.
The lifts of X /S to F lt

E (A[ε]) are canonically parametrized by a functorial
quotient of H1(X , EX /S).

Remark 2.14 Note that the functor F lt
E is not the functor of locally trivial

deformations for which E lifts locally trivially: there may well be sections of
UX (A)which stabilize E ⊗C A but do not come from exponentiating E ⊗CmA.
Indeed, take X = Y × Z with the induced splitting

TX = π∗
1 TY ⊕ π∗

2 TZ

and E = π∗
1 TY . Then any locally trivial deformation of the two factors will

obviously yield a locally trivial deformation of X for which the two foliations
lift locally trivially, but such a deformation does not in general come from a
section of F lt

E . Moreover, in this case, the gluing maps for a section of F lt
E are

not required to preserve π∗
2 TZ—that is, they are not required to be constant in

the Z direction.

2.15 Locally trivial deformations of tangent splittings

Throughout we say that a subsheaf Q ⊂ E is locally split if it is locally a
direct summand.

Definition 2.16 Let X be a separated complex space (or a separated complex
algebraic scheme), and suppose we have Q ⊂ E ⊂ TX where E is a foliation
and Q is a locally split subsheaf of E . For A ∈ ArtC and S := SpecA we
define F lt

E;Q(A) to be the set of (X /S) ∈ F lt
E (A) together with a flat lift

QX /S ⊂ EX /S of Q, up to the obvious notion of isomorphism. We usually
write (X /S) ∈ F lt

E;Q(A) when we mean (X /S, QX /S) ∈ F lt
E;Q(A). For E =

TX itself, we denote F lt
X;Q := F lt

TX ;Q .
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Note that choices of a split complement to BX /S ⊂ EX /S naturally form a
pseudotorsor6 for HomOX (EX /S/BX /S, BX /S). Thus, on a local trivialization
of the UE (A)-cocycle representing X /S over a cover Ui where we have a
splitting E |Ui = Q|Ui ⊕ Bi , the sheaf QX /S is locally identified with (1 +
fi )(Q|Ui ⊗C A) ⊂ E |Ui ⊗C A for some fi ∈ HomOUi

(Q|Ui , Bi ) ⊗C mA.
Given a locally trivial deformation X /S over an artinian base S, the rela-

tive tangent sheaf TX /S acts via the adjoint representation on TX /S , and for
(X /S) ∈ F lt

E;Q(A) and any local section e of EX /S we obtain an OX -linear
map adE;Q(e) : QX /S → EX /S/QX /S . We define a two-term complex

M E;Q
X /S := [EX /S

adE;Q−−−→ HomOX (QX /S, EX /S/QX /S)]

supported in degrees [0, 1]. For simplicity we write M E;Q := M E;Q
X/C

.

Proposition 2.17 Let X be a separated complex space (or a separated complex
algebraic scheme) with Q ⊂ E ⊂ TX where E is a foliation and Q is a locally
split subsheaf of E. Then the following hold.

(1) The functor F lt
E;Q admits a tangent-obstruction theory with tangent space

equal to H1(X, M E;Q) and obstructions in H2(X, M E;Q).
(2) For any (X /S) ∈ F lt

E;Q(A) the lifts of X /S to F lt
E;Q(A[ε]) are canonically

parametrized by a functorial quotient of H1(X , M E;Q
X /S ).

Before the proof it will be useful to explicitly describe the Čech hyperco-

homology of two-term complexes. For a two-term complex K = [A
f−→ B]

of sheaves on a topological space supported in degrees [0, 1] and a cover
U = {Ui }, by taking the total Čech complex we see that the Čech cochains
and coboundary operators are given by

C�(U , K ) = C�(U , A) ⊕ C�−1(U , B),

δ(a, b) = (δa, δb + (−1)deg a f (a)).

We write

Z�(U , K ) := ker
(

C�(U , K )
δ−→ C�+1(U , K )

)

,

B�(U , K ) := im
(

C�−1(U , K )
δ−→ C�(U , K )

)

for the �-cocycles and �-coboundaries.

6 That is, a torsor if nonempty.
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Proof of Proposition 2.17 Both parts are easily seen via Čech cohomology. By
Proposition 2.13, any (X /S) ∈ F lt

E (A) is trivialized on a Stein (or affine) open
coverU := {Ui } of X , and we may further assume we have E |Ui = Q|Ui ⊕ Bi
for some sheaf Bi . As nilpotent thickenings of Stein spaces are Stein, see e.g.
[41, Kapitel V, § 4.3, Satz 5], we may compute (hyper)cohomology in the
following using Čech cohomology with the cover {Ui }.

For the tangent space claim in the first part, take a small extension A′ → A
with kernel J , and assume (X ′/S′), (X ′′, S′) ∈ F lt

E;Q(A′) both lift (X /S) ∈
F lt

E;Q(A). If (X ′/S′) ∈ F lt
E (A′) is given by gluing data g′

i j on Ui j , then X ′′/S′
is given by gluing data g′

i j (1 − ei j ) for a 1-cocycle e valued in E ⊗C J , by
Proposition 2.13. With respect to those local trivializations we have QX ′/S′ =
(1+ f ′

i )(Q⊗C A′), and therefore QX ′′/S = (1+ f ′
i +(πi ⊗1)−1vi )(Q⊗C A′) for

a 0-cochain v valued inHomOX (Q, E/Q)⊗C J , where πi : Bi → (E/Q)|Ui

is the obvious isomorphism. Now for the QX ′/S′ to glue we must have that
(1− f ′

j )g
′
i j (1+ f ′

i ) preserves Q, and likewise for the QX ′′/S′ to glue we must
have that

(1 − f ′
j − (π j ⊗ 1)−1v j )g

′
i j (1 − ei j )(1 + f ′

i + (πi ⊗ 1)−1vi )

= (1 − f ′
j )g

′
i j (1 + f ′

i ) + (−ei j + (πi ⊗ 1)−1vi − (π j ⊗ 1)−1v j )

preserves Q, and therefore that adE;Q(e) = δv. Working backward,
Z1(U , M E;Q) ⊗C J naturally acts transitively on the set of lifts of (X /S) ∈
F lt

E;Q(A), and the 1-coboundaries are easily seen to act trivially.

For the obstruction space claim in the first part, take (X /S) ∈ F lt
E;Q(A)with

gluing data gi j and such that QX /S is locally identified with (1+ fi )(Q ⊗C A).
Choose arbitrary lifts g′

i j of gi j and f ′
i of fi . Then taking 1+ei jk = g′−1

ik g′
jk g′

i j

and −vi j ∈ H0(Ui j ,HomOX (Q, E/Q) ⊗C J ) the map induced by (1 −
f ′

j )g
′
i j (1+ f ′

i ), the 2-cochain (e, v) is easily seen to be a2-cocycle for M E;Q⊗C

J and to have cohomology class inH2(X, M E;Q)⊗C J which is independent of
the choices. If it is a coboundary, say (e, v) = δ(x, y), then g′

i j (1−xi j ) satisfies

the cocycle condition and thus gives gluing data for a lift (X ′/S′) ∈ F lt
E (A′),

and further vi j = −xi j + yi − y j , so the (1 + fi + (πi ⊗ 1)−1yi )(Q ⊗C A)

glue.
The second part follows by the same sort of computation as the proof of the

tangent space claim in the first part, and is left to the reader. ��
Definition 2.18 Let X be a separated complex space (or a separated complex
algebraic scheme) with a splitting TX = ⊕i E (i) ⊕ P of the tangent sheaf
where E := ⊕i E (i) is a foliation. For A ∈ ArtC and S := SpecA we define
F lt

E;split(A) to be the set of (X /S) ∈ F lt
E (A) together with a lift TX /S =
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⊕i E (i)
X /S ⊕ PX /S of the splitting for which EX /S = ⊕i E (i)

X /S , up to the obvious
notion of isomorphism. We suppress the specification of the splitting from the
notation for F lt

E;split as itwill be clear fromcontext, andweonce again abusively

write (X /S) ∈ F lt
E;split(A) when we mean (X /S, E (1)

X /S, . . . , E (n)
X /S, PX /S) ∈

F lt
E;split(A) where n is the number of summands of E .

We have

F lt
E;split =

(

F lt
E;E (1) ×F lt

X
· · · ×F lt

X
F lt

E;E (n)

)

×F lt
X

F lt
X;P .

The complex

M E;split
X /S :=

[

EX /S
⊕i adE;E(i)⊕adX;P

−−−−−−−−−−→
⊕

i

HomOX (E (i)
X /S, EX /S/E (i)

X /S)

⊕HomOX (PX /S, TX /S/PX /S)

]

is easily seen to be

M E;split
X /S =

(

M E (1)

X /S ⊕EX /S · · · ⊕EX /S M E (n)

X /S

)

⊕TX /S M P
X /S

and it is straightforward to conclude:

Corollary 2.19 Let X be a separated complex space (or a separated complex
algebraic scheme) with a splitting TX = ⊕i E (i) ⊕ P of the tangent sheaf
where E := ⊕i E (i) is a foliation. Then the following hold.

(1) The functor F lt
E;split admits a tangent-obstruction theory with tangent space

equal to H1(X, M E;split) and obstructions in H2(X, M E;split).
(2) For any (X /S) ∈ F lt

E;split(A) the lifts of X /S to F lt
E;split(A[ε]) are canoni-

cally parametrized by a functorial quotient of H1(X , M E;split
X /S ).

By Schlessinger’s criterion [59, Theorem 2.11], Propositions 2.5, 2.13, and
Corollary 2.19, when X/C is proper, the functors F lt

X , F lt
E , and F lt

E;split all
admit miniversal formal families in the category of formal complex spaces

(or formal algebraic schemes), and we denote by D̂ef
lt
(X), D̂ef

lt
E (X), and

D̂ef
lt

E;split(X) the bases of such a miniversal formal family, which is unique up
to (not necessarily unique) isomorphism.
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Corollary 2.20 In the setup of Proposition 2.17, assume further that X is
proper. Then there are maps

D̂ef
lt

E;split(X) → D̂ef
lt

E (X) → D̂ef
lt
(X)

of formal spaces whose derivatives are the natural maps

H1(X, M E;split) → H1(X, E) → H1(X, TX ).

2.21 Kuranishi spaces for locally trivial deformations

We recall some results in the analytic category realizing formal deformation-
theoretic objects as completions of germs.

Theorem 2.22 (Grauert, Douady) For any compact complex space Z there
exists a miniversal deformation Z → Def(Z) over a germ Def(Z) which is
a versal deformation of all of its fibers.

Proof This is [42, Hauptsatz, p 140], see also [27, Théorème principal, p 598].
��

The familyZ → Def(Z) is called the Kuranishi family and Def(Z) is called
Kuranishi space. If Z is a complex space satisfying H0(Z , TZ ) = 0, then
every miniversal deformation is universal.

We recall the analog of Theorem 2.22 for locally trivial deformations.

Theorem 2.23 (Flenner–Kosarew) For a miniversal deformation Z →
Def(Z) of a compact complex space Z there exists a closed complex sub-
space Deflt(Z) ⊂ Def(Z) of the Kuranishi space such that

Z ×Def(Z) Def
lt(Z) → Deflt(Z)

is a locally trivial deformation of Z and is miniversal for locally trivial defor-
mations of Z.

Proof This is [31, (0.3) Corollary]. ��

2.24 Locally trivial resolutions

Definition 2.25 Let S,X ,Y be complex spaces (or complex algebraic
schemes), X → S and Y → S morphisms, and f : Y → X an S-morphism.
We say:
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(1) f is locally trivial over S if there is a cover Xi of X , a cover Si of S, and
morphisms gi : Yi → Xi together with diagrams (over S)

Yi

f |Yi

∼= Yi × Si

gi ×id

Xi
∼= Xi × Si

where Yi = f −1(Xi ).
(2) f is formally locally trivial over S if for any T = SpecA → S with

A ∈ ArtC the base-change fT : YT → XT is locally trivial over T .

If f is (formally) locally trivial and fiberwise a resolution, we say it is a
(formally) locally trivial resolution (over S).

Let X, Y be separated complex spaces (or separated complex algebraic
schemes) and π : Y → X a C-morphism. There is a naturally defined defor-
mation functor F lt

Y/X : ArtC → Sets of locally trivial deformations X /S
and Y/S of X and Y , respectively, together with a locally trivial deformation
Y → X of π . Let UY/X (A) ⊂ π∗UY (A) × UX (A) be the sheaf of subgroups
whose sections over U ⊂ X are pairs of A-automorphisms ( f, g) making the
following square commute over SpecA

YU × SpecA YU × SpecA

U × SpecA U × SpecA

f

g

where YU = π−1(U ). We have a natural identification

F lt
Y/X (A) = Ȟ1(X, UY/X (A)).

There is also a naturalmapof functors F lt
Y/X → F lt

X coming from the projection
map UY/X (A) → UX (A).

For the next proposition, note that for any morphism π : Y → X we have
a natural map

π∗DerC(OY ,OY ) → DerC(π∗OY , π∗OY ).

In particular, if we have π∗OY = OX (via the natural map), then there is a
natural map π∗TY → TX .
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Proposition 2.26 Let X be a separated complex space (or a separated complex
algebraic scheme). Let π : Y → X be a morphism for which π∗OY = OX and
such that the induced map π∗TY → TX is an isomorphism. Then the natural
map F lt

Y/X → F lt
X is an isomorphism.

Proof It is enough to show that for all A ∈ ArtC the natural map UY/X (A) →
UX (A) is an isomorphism, and this is obvious by induction on small extensions
using the hypothesis on the tangent sheaves and the analog of (2.2) for UY/X .

��
By [36, Corollary 4.7], for a reduced and normal complex space X , a log

resolution π : Y → X for which π∗TY = TX always exists, cf. also [66,
Theorm 2.0.1]. We deduce:

Corollary 2.27 Let X be a normal compact complex variety and let X →
Deflt(X) be a miniversal locally trivial deformation. Then there is a locally
trivial log resolution π̄ : Y → X such that π̄∗TY/Deflt(X) = TX /Deflt(X).

Note that by this we mean π̄ : Y → X is a locally trivial resolution which is
fiberwise a log resolution, which by the local triviality of π̄ is equivalent to
the special fiber being a log resolution. Moreover, it follows that the inclusion
D → Y of the exceptional divisor (and even the map D → X ) is locally
trivial.

Proof Set S = Deflt(X) and take a log resolution π : Y → X for which
π∗TY = TX . From the proposition, we have a formal deformation ̂Y → ̂S of
Y and a locally trivial formal deformation π̂ : ̂Y → ̂X of π over ̂S. We may
trivialize X /S on a Stein cover Xi of X so that we have analytic gluing maps
gi j as in the right side of the diagram below

Yi | j × ̂S Y j |i × ̂S Yi | j × S Y j |i × S

Xi | j × ̂S X j |i × ̂S Xi | j × S X j |i × S

π×id

φi j

π×id π×id

fi j

π×id
ĝi j gi j

where Xi | j := Xi ×X X j , Xi | j := Xi | j ×X S, Yi | j := π−1(Xi | j ), and all mor-
phisms are S-morphisms. By the proof of the proposition, the resulting cocycle
(Xi , ĝi j ) ofUX (̂OS) := lim←− UX (OS/m

k
S) gives a cocycle forUY/X (̂OS) (anal-

ogously defined), as in the left part of the diagram. As π is an isomorphism
on a Zariski open set and the Y j |i × S are separated, the fi j in the diagram
on the right are locally uniquely determined, and if they exist they satisfy the
cocycle condition. By [2, Theorem (1.5)(ii)], the fi j exist locally, and so by the
previous remark we obtain a locally trivial resolution π̄ : Y → X . Since the
φi j in the left diagram are also uniquely determined by ĝi j , the map Y → X
in fact completes to ̂Y → ̂X . ��
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Recall that theFujiki classC consists of all those compact complex varieties
which aremeromorphically dominated by a compact Kähler manifold, see [32,
§ 1]. Recall also that a normal complex variety X has rational singularities if
for some (hence any) resolution π : Y → X we have Rqπ∗OY = 0 for q > 0.

Corollary 2.28 Let X → S be a locally trivial family of normal varieties of
Fujiki class C with rational singularities. Then for all p the function s 
→
h0(Xs, �

[p]
Xs

) is locally constant.

Proof Let Y → X be a locally trivial resolution. By Kebekus–Schnell [52,
Corollary 1.8] we have h0(Ys, �

p
Ys

) = h0(Xs, �
[p]
Xs

), and so the claim follows
from the local constancy of Hodge numbers in smooth families of Fujiki class
manifolds. Note that as for Kähler manifolds, the constancy of Hodge numbers
follows from the degeneration of theHodge-to-deRham spectral sequence [64,
Proposition 1.3] via Deligne’s classical argument [21, Théorème 5.5]. ��
Proposition 2.26 in particular applies to crepant bimeromorphic morphisms
of symplectic varieties; this greatly simplifies the approach of [11, Section 4]
and yields a generalization of [11, Proposition 4.5]:

Corollary 2.29 Let Y be a compact normal complex variety with a nowhere
degenerate form σ ∈ H0(Y reg, �2

Y reg) and let π : Y → X be a proper
bimeromorphic map to a normal variety X with rational singularities. Then
there is a locally trivial deformation Y → X of π over Deflt(X), where
X → Deflt(X) is the miniversal locally trivial deformation of X.

Proof The symplectic form σ induces a symplectic form on X reg, and we have
TY

∼= �
[1]
Y and TX

∼= �
[1]
X by reflexivity. Vector fields therefore lift from X

to Y as reflexive 1-forms do by Kebekus–Schnell [52, Corollary 1.8]. The
existence of the formal deformation of π then follows from Proposition 2.26,
and it is effectivized as in the proof of Corollary 2.27. ��

2.30 Deformations along weakly symplectic split foliations

In this section we show that locally trivial deformations along certain split
foliations are unobstructed, see Proposition 2.35 and Corollary 2.37. The fol-
lowing definitions will be useful.

Definition 2.31 Let X /S be a locally trivial family of normal varieties. We
say a splitting TX /S = ⊕i E (i)

X /S ⊕ PX /S is good if:

(1) EX /S := ⊕i E (i)
X /S is a foliation;

(2) For each i we have either:
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(a) E (i)
X /S admits a nondegenerate reflexive 2-form; or

(b) E (i)
X /S

∼= E ( j)∨
X /S for some j �= i .

We will refer to EX /S as a weakly symplectic split foliation.

Remark 2.32 Observe that the second condition in the definition is equivalent
to:

(2′) For each i there is a reflexive 2-form σ
(i)
S ∈ H0(X , �

[2]
X /S) such that

contraction with σ
(i)
S yields an isomorphism E (i)

X /S → E ( j)∨
X /S for some j .

This is justifies the term “weakly symplectic split foliation”: EX /S is not
necessarily a symplectic sheaf itself but every summand in the splitting is
either symplectic or embedded in a symplectic subsheaf.

Definition 2.33 LetX /S be a locally trivial family of normal varieties. Given
τ ∈ H0(X , �

[p]
X /S), we define the radical

rad(τ ) := {t ∈ TX /S | ιtτ = 0} ⊂ TX /S.

Remark 2.34 Note that if τ is a reflexive p-formon a normal compact variety X
of Fujiki class C with rational singularities, then E = rad(τ ) is automatically
a foliation. Indeed, for any u, v ∈ E we have

ι[u,v]τ = Luιvτ
︸ ︷︷ ︸

=0

−ιv Luτ

= −ιvιudτ − ιvdιuτ = −ιvιudτ = 0.

since dτ = 0 by Kebekus–Schnell [52, Corollary 1.8]. In particular, any split-
ting of TX intoOX -modules of trivial determinant is a splitting into foliations.

The main result of this section is the following:

Proposition 2.35 Let X be a compact complex variety of Fujiki class C with
rational singularities and a good splitting TX = ⊕i E (i) ⊕ P. Then F lt

E;split is
unobstructed.

Proof For (X /S) ∈ F lt
E;split(A), the deformation module of F lt

E;split is canon-
ically a functorial quotient of H1(X , M E;split

X /S ) by Corollary 2.19. We will use

the T 1-lifting criterion of [49,50,58]. While F lt
E;split is not necessarily pro-

representable, by Remark 2.7 we may use the version in [45, Theorem 1.8].
The claim follows once we know for any (X /S) ∈ F lt

E;split(A) and any lift

(X ′/S′) ∈ F lt
E;split(A′) through a small extension A′ → A that the restriction

map

H1(X ′, M E;split
X ′/S′ ) → H1(X , M E;split

X /S )
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is surjective.

Step 1 For any A ∈ ArtC and for any (X /S) ∈ F lt
E;split(A), the splitting

TX /S = ⊕i E (i)
X /S ⊕ PX /S is good.

It suffices to assume the splitting is good for (X /S) ∈ F lt
E;split(A) and

to show that the splitting of any lift (X ′/S′) ∈ F lt
E;split(A′) through a small

extension A′ → A is good. Note that in the notation of Remark 2.32, if σ
(i)
S

lifts to σ
(i)
S′ ∈ H0(X ′, �[2]

X ′/S′), then the induced map E (i)
X ′/S′ → E ( j)∨

X ′/S′ is also
isomorphism as both are flat.

We therefore reduce to showing the σ
(i)
S lift. For this we could appeal

directly to the degeneration of reflexive Hodge-to-de Rham in low degrees
[10, Lemma 2.4], but we also include a more direct argument using Corol-
lary 2.27. Let π ′ : Y ′ → X ′ be a simultaneous locally trivial resolution
with special fiber π̄ : Y → X . By Kebekus–Schnell [52, Corollary 1.8]
we have π̄∗�2

Y = �
[2]
X via the natural map. By local triviality we then have

π ′∗�2
Y ′/S′ = �

[2]
X ′/S′ via the natural map, as both are flat and the natural map

is an isomorphism on the special fiber. By Deligne [21, Théorème 5.5] (see
also e.g. [10, Lemma 2.4] for the necessary changes in the analytic category),
H0(X ′, �[2]

X ′/S′) = H0(Y ′, �2
Y ′/S′) is free and compatible with base-change,

and it follows that the restriction map H0(X ′, �[2]
X ′/S′) → H0(X , �

[2]
X /S) is

surjective.

Step 2 For any A ∈ ArtC, any (X /S) ∈ F lt
E,P(A), and any lift (X ′/S′) ∈

F lt
E,P(A′) through a small extension A′ → A the restriction map

H1(X ′, EX ′/S′) → H1(X , EX /S)

is surjective.

From[11,Lemma2.4] the restrictionmap H1(X ′, �[1]
X ′/S′) → H1(X , �

[1]
X /S)

is surjective. As the splitting of X ′/S′ is good by the previous step, for each
i we have that E (i)

X ′/S′ is a direct summand of �
[1]
X ′/S′ ∼= T ∨

X ′/S′ which is com-

patible with restriction, and therefore the restriction map H1(X ′, E (i)
X ′/S′) →

H1(X , E (i)
X /S) is surjective. The claim then follows.

Step 3 For any (X /S) ∈ F lt
E;split(A) the natural sequence

0 →
⊕

i

HomOX (E (i)
X /S, EX /S/E (i)

X /S) ⊕ HomOX (PX /S, TX /S/PX /S)

→ H1(X , M E;split
X /S ) → H1(X , EX /S) → 0
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is exact.

For notational simplicity set

HX /S :=
⊕

i

HomOX (E (i)
X /S, EX /S/E (i)

X /S) ⊕ HomOX (PX /S, TX /S/PX /S)

and HX /S for the global sections. Using the long exact sequence associated to
the triangle

M E;split
X /S → EX /S

⊕i adE;E(i)⊕adX;P

−−−−−−−−−−→ HX /S → M E;split
X /S [1]

its sufficient to show that the induced maps

adE;E (i) : Hq(X , EX /S) → Hq(X ,HomOX (E (i)
X /S, EX /S/E (i)

X /S))

adX;P : Hq(X , EX /S) → Hq(X ,HomOX (PX /S, TX /S/PX /S))

vanish forq = 0, 1. Temporarily set E (0)
X /S := PX /S and letπi : TX /S → E (i)

X /S
be the projection. Its then sufficient to show the induced map

π j ◦ ad : Hq(X , TX /S) → Hq(X ,HomOX (E (i)
X /S, E ( j)

X /S))

vanishes for q = 0, 1 and all i �= j with j �= 0. Together with the degeneration
of reflexive Hodge-to-de Rham Hq(X , �

[p]
X /S) ⇒ Hp+q(X , �

[•]
X /S) in the

range p + q ≤ 2 [11, Lemma 2.4], it is enough to show the following:

Claim For each i �= j with j �= 0 we have a commutative diagram

TX /S HomOX (E (i)
X /S, E ( j)

X /S)

�
[1]
X /S �

[2]
X /S.

π j ◦ad

d

(2.5)

Proof Fix i, j . Using Step 1, there is a reflexive 2-form σS whose radical
contains E (i)

X /S and which by contraction gives an isomorphism E ( j)
X /S →

E ( j ′)∨
X /S . We then take the left vertical map of (2.5) to be the contraction

map t 
→ ιtσS and the right vertical map to associate to a form α the map
f ∈ HomOX (E (i)

X /S, E ( j)
X /S) such that σS( f (u), v) = −α(u, v) for u ∈ E (i)

X /S

and v ∈ E ( j ′)
X /S . The latter is none other than the projection (up to a sign) of
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�
[2]
X /S onto the E (i)∨

X /S [⊗]E ( j ′)∨
X /S factor in its natural splitting using the identifi-

cation E ( j)
X /S

∼= E ( j ′)∨
X /S .

For the commutativity of (2.5) we need to show for sections t of TX /S , u of

E (i)
X /S , and v of E ( j ′)

X /S that

(dιtσS)(u, v) = −σS([t, u], v).

On the one hand, since σS is closed (again by the low degree degeneration of
reflexive Hodge-to-de Rham), we have

LtσS = dιtσS

by the Cartan formula. On the other hand, since σS vanishes on E (i)
X /S we have

(LtσS)(u, v) = t. σS(u, v)
︸ ︷︷ ︸

=0

−σS(Lt u, v) − σS(u, Ltv)
︸ ︷︷ ︸

=0

= −σS([t, u], v).

��
Step 4 Final step of the proof.

Now for X ′/S′ lifting X /S, we have a natural diagram

0 HX ′/S′ H1(X , M E;split
X ′/S′ ) H1(X ′, EX ′/S′) 0

0 HX /S H1(X , M E;split
X /S ) H1(X , EX /S) 0

using the notation of the previous step, where the verticalmaps are restrictions.
The right vertical map is surjective by Step 2, while the left vertical map
is surjective since each HomOX ′ (E (i)

X ′/S′, E ( j)
X ′/S′) (again using the notation

E (0)
X ′/S′ = PX ′/S′) is a summand of H0(X ′, �[2]

X ′/S′) that is compatible with the

restriction map H0(X ′, �[2]
X ′/S′) → H0(X , �

[2]
X /S), which is surjective as in

Step 1. The rows are exact by Step 3, and it follows that the middle vertical
map is surjective, thus completing the proof. ��
Remark 2.36 Without additional assumptions, Proposition 2.35 does not obvi-
ously generalize to arbitrary K -trivial splittings, and in particular cannot be
adapted to prove a locally trivial Bogomolov–Tian–Todorov theorem. For such
a splitting, each factor is identified with a direct summand of some �

[p−1]
X via
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contraction with a p-form, and Step 3 of the proof still carries through. Indeed,
themapd : �

[p−1]
X /S → �

[p]
X /S still induces the zeromaponzeroth andfirst coho-

mology using the Leray spectral sequence and the result of Kebekus–Schnell.
On the other hand, Step 2 may fail in general as reflexive Hodge-to-de Rham
does not necessarily degenerate in higher degrees (although see [20, Theo-
rem 3.4] and [61, (1.12) Theorem] for some special cases over a point).

Corollary 2.37 Assume the hypotheses of the previous proposition. Then
F lt

E;split → F lt
E is formally smooth and the functor F lt

E is unobstructed. In

particular, there exists a locally trivial deformation X → (H1(X, E), 0) of
X whose Kodaira–Spencer map is the natural map H1(X, E) → H1(X, TX ).

Proof As F lt
E;split → F lt

E is surjective on tangent spaces by Step 3 of

the proof of Proposition 2.35 and F lt
E;split is unobstructed, it follows easily

by induction on small extensions that F lt
E;split → F lt

E is formally smooth.

The unobstructedness of F lt
E;split then immediately implies that F lt

E is unob-
structed. By Corollary 2.20 we have a map on the level of formal spaces

̂(H1(X, E), 0) → D̂ef
lt
(X)with the required derivative, and by Artin approx-

imation [2, Theorem (1.2)] there is a map on the level of analytic germs with
the required derivative. ��

3 K-trivial varieties and strong approximations

Let us fix terminology. For a normal variety X , we denote by ωX the double
dual of det�1

X and by ω
[m]
X := (ω⊗m

X )∨∨ its reflexive powers.

Definition 3.1 A numerically K -trivial variety is a normal complex variety
X with rational singularities such that ω

[m]
X is a line bundle for some m > 0

and c1(ωX ) = 0 as an element of H2(X, Q). If ωX satisfies ω
[m]
X

∼= OX for
some m > 0 we say that X is K -torsion. We say X is K -trivial if ω∨∨

X
∼= OX .

Remark 3.2 Let X be a compact Kähler space with log terminal singularities.
By [18, Corollary 1.18], numerical K -triviality is equivalent to X being K -
torsion. Actually, the proof does not rely on X being Kähler but rather on X
admitting a Kähler resolution; in particular, the result holds when X is merely
in Fujiki class C . Note that by normality, ω[m]

X
∼= OX if and only if ωm

X reg
∼=

OX reg . Moreover, by the result of Kebekus–Schnell ( [52, Corollary 1.8]), if
X is normal with rational singularities and ω∨∨

X
∼= OX , then it has canonical

singularities (and is in particular K -trivial in the above sense).

It is easy to construct examples of numerically K -trivial varieties in the sense
of Definition 3.1. For example, any anti-canonical divisor with rational singu-
larities in a Gorenstein variety is K -trivial. Kähler varieties with symplectic
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singularities in the sense of Beauville provide some other examples (in partic-
ular, see the primitive symplectic varieties of [10]).

3.3 Proof of Theorem B

We are now ready to prove Theorem B. Given the results of Sect. 2.30, the
main step is to show the following:

Lemma 3.4 Let X be a numerically K -trivial compact Kähler variety with
log terminal singularities. Then there exists a good splitting TX = ⊕i E (i) ⊕ P
in the sense of Definition 2.31 where P is the common radical of all reflexive
2-forms.

Proof We fix a Kähler class on X ; in the following, we always mean stability
with respect to this class. By [47, Theorem A(ii)] there is a splitting TX =
⊕

i∈I Ei into stable factors with slope zero. Note that for any reflexive 2-form
σ we have a contraction map TX → �

[1]
X

∼= T ∨
X , and by stability of the factors

it follows that for each i either Ei ⊂ rad(σ ) or contraction with σ induces
an isomorphism Ei → E∨

j for some j . In particular, the common radical is
P = ⊕

i∈IP
Ei for a subset IP ⊂ I . Finally, for each i we have that Ei |X reg

is parallel with respect to the Ricci-flat metric in the chosen Kähler class, so
any sum of the Ei is a foliation. We therefore conclude that

TX =
⊕

i∈I\IP

Ei ⊕ P

is a good splitting. ��
By the lemma, the hypotheses of Proposition 2.35 are satisfied and Corol-

lary 2.37 applies. In view of Graf–Schwald [46, Theorem 3.1], the proof is
completed by the following:

Lemma 3.5 For X as in the previous lemma, suppose there is a splitting
TX = E ⊕ P such that every reflexive 2-form contains P in its radical. Then
for any Kähler class ω on X, the contraction map

ιω : H1(X, E) → H2(X,OX )

is surjective.

Werefer to Sect. 6.1 forKähler forms on singular spaces. To any such classω on
X , onemay associate an element κ(ω) ∈ H1(X, �1

X ), cf. (6.3).We then denote

by ιω the composition of the cup product H1(X, TX )
κ(ω)∪−−→ H2(X, TX ⊗

�1
X ) and the contraction H2(X, TX ⊗ �1

X ) → H2(X,OX ). Similarly, if t ∈
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H1(X, TX ), we have a contraction map ιt : H0(X, �
[2]
X )

t∪−−→ H1(X, �
[2]
X ⊗

TX ) → H1(X, �
[1]
X ).

Proof Set n := dim X ; one may assume n > 1. The contraction map

ιω : H1(X, TX ) → H2(X,OX )

is already surjective by [46, Theorem 4.1], and the proof of the lemma follows
by a similar computation. We have a perfect pairing

H0(X, �
[2]
X ) ⊗ H2(X,OX ) → C : (α, β) 
→

ˆ
X

ωn−2 ∧ α ∧ β

and so ιω is identified with the surjective map f : H1(X, TX ) →
H0(X, �

[2]
X )∨ given by

f (t) : α 
→
ˆ

X
ωn−2 ∧ α ∧ ιt (ω) = − 1

n − 1

ˆ
X

ωn−1 ∧ ιt (α)

using that ωn−1 ∧ α = 0 and

ιt (ω
n−1 ∧ α) = (n − 1) ωn−2 ∧ ιt (ω) ∧ α + ωn−1 ∧ ιt (α).

Now any α ∈ H0(X, �
[2]
X ) vanishes on P , so f kills H1(X, P), whence the

lemma.

The proof of Theorem B is now complete. ��

3.6 Quasi-étale covers in families and applications

In this section we deduce some first consequences of Theorem B. We refer to
the introduction for the definitions of quasi-étale maps and quasi-étale covers.
We first prove two lemmas asserting that quasi-étale covers can be spread out
in locally trivial families, and that the resulting families are also locally trivial.
Because it is all we will need, for simplicity we only consider families over
the disk �.

Recall that a quasi-étale cover restricts to an étale cover of X reg, and con-
versely any étale cover of X reg can be extended to a quasi-étale cover of X
[23, Thm. 3.4].

Lemma 3.7 Let π : X → � be a locally trivial family of normal varieties.

(1) Let f : Y → X be a quasi-étale cover. Then for any t ∈ �, f induces a
quasi-étale cover ft : Yt → Xt .
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(2) Conversely, let t ∈ � and let ft : Yt → Xt be a quasi-étale cover. Then
there exists a quasi-étale cover f : Y → X such that f |Yt = ft .

Proof The first part is straightforward; by Nagata’s purity of branch locus, f
is étale over X reg hence ft is étale over X reg ∩ Xt = X reg

t . As for the second
assertion, note that the canonical morphism π1(X reg

t ) → π1(X reg) induced
by the inclusion X reg

t ↪→ X reg is actually isomorphic since π is topologically
trivial. In particular, any étale cover Y reg

t → X reg
t is the restriction of an étale

cover Y reg → X reg over �. ��
Lemma 3.8 Let π : X → � be a locally trivial family of normal varieties
and f : Y → X a quasi-étale cover. Then f ◦ π : Y → � is locally trivial.

Proof One can cover X by (small) open subsets U where π is trivial; i.e.
U ∼= U0 × � over � where U0 = X0 ∩ U . We claim that up to shrinking
U , the space Y| f −1(U ) is isomorphic over � to V0 × � where V0 → U0 is a
suitable quasi-étale cover.

Since there is a 1− 1 correspondence between quasi-étale covers of U and
étale covers of U reg (or, equivalently, finite index subgroups of π1(U reg)), the
result follows from the isomorphism π1(U reg) ∼= π1(U

reg
0 ).

Indeed, set V := f −1(U ) and V ◦ := f −1(U reg). The cover f induces an
étale cover f |V ◦ : V ◦ → U reg

0 × �. By the observation above, there is an
isomorphism of étale covers V ◦ ∼= W0 × � for some étale cover h0 : W0 →
U reg
0 . We can uniquely extend h0 into a quasi-étale cover h : W → U0 of

normal spaces and we will automatically obtain an isomorphism V ∼= W × �

of covers over U0 × �. In particular, W is isomorphic to V ∩ Y0, and f ◦ π

is indeed locally trivial as claimed. ��
Corollary 3.9 Let X be a numerically K-trivial variety with log terminal sin-
gularities. Then X admits a maximally quasi-étale cover ˜X → X; i.e. the
natural morphism π̂1(˜X reg) → π̂1(˜X) is an isomorphism.

Proof By Theorem B, there is a locally trivial deformation X → � of X
such that for some t ∈ �, the fiber Xt is projective. By [38, Theorem 1.5],
there exists a maximally quasi-étale cover ˜Xt → Xt . By Lemma 3.7, we
can find a quasi-étale cover ˜X → X inducing ˜Xt → Xt and a quasi-étale
cover ˜X → X . By Lemma 3.8, the cover ˜X → X is a locally trivial family,
so by [3, Proposition 6.1] there is a homeomorphism ˜X

∼−→ ˜Xt inducing a
diffeomorphism ˜X reg ∼−→ ˜X reg

t by restriction. The corollary follows. ��
Recall that for X a compact Kähler variety with rational singularities, the

augmented irregularity q̃(X) [17, Definition 2.1] is

q̃(X) = sup{h1(˜X ,O
˜X ) = h0(˜X , �

[1]
˜X

) | ˜X → Xquasi-etale cover}
∈ N ∪ {∞}.
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If additionally X has klt singularities and trivial first Chern class, then q̃(X) ≤
dim X ; in particular, it is finite [17, Corollary 4.2(i)].

Corollary 3.10 Let X → � be a locally trivial deformation of a K -trivial
Kähler variety X with canonical singularities. Then the augmented irregularity
q̃(Xt ) is constant, and one fiber is IHS (resp. ICY) if and only if every fiber is
IHS (resp. ICY).

Proof The first statement is immediate from the lemmas and Corollary 2.28.
For the second part, assume that one fiber, say X0, is ICY or IHS. This

implies that q̃(X0) = 0, and q̃(Xt ) = 0 for all t . We fix t ∈ �. By [17,
Theorem C & Proposition 6.9] and Corollary 3.9, there exists a quasi-étale
cover ˜Xt → Xt such that the tangent sheaf of ˜Xt has a decomposition T

˜Xt
=

(⊕i∈I Ci ) ⊕ (⊕ j∈J S j ) where Ci (resp. S j ) is of ICY type (resp. IHS type).
Recall that this means that each Ci (resp. S j ) has full holonomy SU(rk Ci )

(resp. Sp(rk S j )) with respect to a singular Ricci-flat metric. By Lemma 3.7,
one can find a quasi-étale ˜X → X extending ˜Xt → Xt , and by Lemma 3.8
the family ˜X → � is a locally trivial deformation.

If one can show that T
˜Xt

has a single summand, then ˜Xt will be either
ICY or IHS by [17, Corollary E] and the type of ˜Xt will then be determined
by the Hodge numbers t 
→ h0(˜Xt , �

[p]
Xt

) which are independent of t , cf.
Corollary 2.28. By the same argument, Xt itself will be ICY or IHS, with type
determined by that of X0.

Since each of the factors in the decomposition of T
˜Xt

accounts for at least
one holomorphic form (in maximal rank), there can be only one such factor if
X0 is ICY.
It now remains to show the corollary in the case where X0 is IHS. Write

dim X0 = 2n. First, one observes that |J | = h0(˜Xt , �
[2]
˜Xt

) = 1. Let σ ∈
H0(˜Xt , �

[2]
˜Xt

) a nonzero element and let m := 1
2 rank(S1). We have m ≤ n,

and we want to show that this inequality is actually an equality. Clearly, one
has σm+1 = 0. Remember that the cup product map Symk H2(˜X0, Q) →
H2k(˜X0, Q) is injective for any k ≤ n, cf. [10, Proposition 5.15], so the same
statement is true for ˜Xt as locally trivial families (over �) are topologically
trivial. This implies that m + 1 > n, and given that n ≥ m, we have n = m as
desired. ��

4 Reminder on the Douady space

For a proper morphism f : X → S of complex spaces we denote by
D(X /S) → S the relative Douady space constructed by Pourcin [55], who
generalized the work of Douady [26] to the relative situation. Let us denote by
Dq(X /S) ⊂ D(X /S) the union of all irreducible components whose general
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element parametrizes a pure dimensional reduced subspace of dimension q.
Let Bq(X /S) be the relative Barlet space of dimension q cycles in the fibers
of f , see [4, Théorème 5]. By [4, Théorème 8], there is a morphism of complex
spaces

� : (Dq(X /S))red → Bq(X /S) (4.1)

where (Dq(X /S))red denotes the reduction of Dq(X /S).

Remark 4.1 As the following example shows, pure dimensionality is not an
open property. The Hilbert scheme H = Hilb3n+1(P3) of closed subschemes
of P3 with Hilbert polynomial p(n) = 3n + 1 is a union H = H ′ ∪ H ′′ where
H ′ and H ′′ are smooth and irreducible (of dimension 12, 15 respectively) and
intersect transversally with dim H ′ ∩ H ′′ = 11, see the main theorem of [56].
Generically, H ′ parametrizes twisted cubics and H ′′ parametrizes plane cubics
in P3 union an additional point. Both may degenerate to a singular plane cubic
with an embedded point at a singularity. In particular, elements of H ′ ∩ H ′′ are
pure dimensional (with embedded points) while the general element of H ′′ is
not.

Fujiki has obtained important properness results about the Douady and the
Barlet space. These results are fairly comprehensive forKählermorphisms.We
need however a slight generalization to weakly Kähler morphisms. Following
[8] we call a morphism X → S weakly Kähler if for any s0 ∈ S, there exists
a neighborhood S◦ ⊂ S of S and a smooth (1, 1)-form θ on X ◦ := X ×S S◦
such that for all s ∈ S◦, the restriction θ |X◦

s
is a Kähler form. Here, X◦

s is
the fiber at s of X ◦ → S◦. See [9, Example 3.9] for an example attributed to
Deligne showing that a deformation of a Kähler manifold need not be a Kähler
morphism.

The following result is proven with exactly the same methods as in Fujiki’s
article [32]. We include a sketch of a proof as we could not find it anywhere
in the literature. The argument is similar to [40, Proposition 2.6].

Proposition 4.2 Let X , S be reduced and irreducible complex spaces, let f :
X → S be a proper locally trivial morphism which is weakly Kähler, let S◦ ⊂ S
be any simply connected relatively compact subspace, and denote X ◦ :=
X ×S S◦. Then every irreducible component D ⊂ Dq(X ◦/S◦) respectively
B ⊂ Bq(X ◦/S◦) is proper over S◦.

Proof By [32, Proposition 3.4], it suffices to show the statement for the Barlet
space as the morphism � : D → Bq(X ◦/S◦) will then be proper as well.
Let B ⊂ Bq(X ◦/S◦) be an irreducible component and denote by {Fb}b∈B the
universal family of cycles parametrized by B. Let θ be a weak Kähler metric
for f . The key point is to show that λ(b) := ´

Fb
θq is bounded as b ∈ B varies,

cf. the proof of [32, Proposition 4.1].
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By [3, Proposition 6.1], the sheaf (R2q f∗QX ◦)∨ is a local system, and the
argument of [33, Lemma 19.1.3] shows that b 
→ [Fb] defines a section of the
pulled back local system along the projection π : B → S◦. As S◦ is simply
connected, the local system is constant and thus the [Fb] determine a global
section L of (R2q f∗QX ◦)∨. In particular, the continuous function λ′ : S◦ → R

defined by λ′(s) := Ls([θs]q) satisfies π∗λ′ = λ. As λ′ can be extended to the
closure S

◦
in S, we see that λ is bounded. ��

The following is an immediate consequence.

Corollary 4.3 Let S be a reduced and irreducible complex space, let f :
X → S be a locally trivial deformation of a compact Kähler variety X with
rational singularities. With the notation of Proposition 4.2, every irreducible
component D ⊂ Dq(X ◦/S◦) respectively B ⊂ Bq(X ◦/S◦) is proper over
S◦.

Proof By [8, Theorem 6.3], f is weakly Kähler. ��
As a consequence of properness, we obtain the following result.

Lemma 4.4 Let X be a normal compact Kähler variety with rational singular-
ities. Let f : X → S be a locally trivial deformation of X over an irreducible
and reduced base S. Suppose that for some nonempty Euclidean open V ⊂ S
we have a product decomposition

X ×S V ∼= YV ×V ZV

for locally trivial YV ,ZV /V and suppose that V is contained in a relatively
compact simply connected subspace S◦ ⊂ S. Then up to replacing S by S◦,
there is a finite morphism S′ → S, a Euclidean open V ′ ⊂ S′ mapping
generically isomorphically onto V , and a Zariski open U ′ ⊂ S′ containing V ′
such that the base change X ×S U ′ → U ′ has a product decomposition

X ×S U ′ ∼= Y ×U ′ Z (4.2)

for locally trivialY,Z/U ′ that specializes to the pullback of the one ofX×S V
over V ′.

Proof We may also assume S is normal by passing to the normalization. We
will proceed in three steps.

Step 5 Let v ∈ V and z ∈ Zv be smooth points. Then the relative Douady
spaceD(X /S) is smooth over S at Y (z) := Yv ×{z} and dim[Y (z)] D(X /S) =
dim Zv + dim S.
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The normal bundles form a short exact sequence 0 → NY (z)/Xv
→

NY (z)/X → NXv/X |Y (z) → 0 where the outer terms are trivial bundles of
rank dim Zv respectively dim S. We deduce

dim TD(X /S),[Y (z)] = dim H0(Y (z), NY (z)/X )

≤ dim Zv + dim S

= dimZV

≤ dim[Y (z)] D(X /S).

Note that the last inequality follows from the fact that the second projection
X ×S V → ZV can be thought of as the family of fibers Y (z) and the resulting
classifying map ZV → D(X /S) is clearly injective. We infer that equality
holds above and D(X /S) is smooth at [Y (z)].

Before the next step, we set some notation. By the previous step, there
is a unique irreducible component D ⊂ D(X /S) passing through [Y (z)] ∈
D(X /S) andwe let Dν → D be its normalization.Wedenote byF ⊂ Dν×SX
the (pullback of the) universal family and consider the S-morphism e : F → X
induced by projection. Replacing S by S◦, we may assume that Dν → S is
proper by Corollary 4.3 and therefore has a Stein factorization Dν → S′ → S.
Moreover, S′ is irreducible and S′ → S is surjective, as D respectively D → S
are.

Step 6 There is a nonempty Zariski open U ′ ⊂ S′ and a Euclidean open V ′ ⊂
U ′ ∩(S′×S V ) such that the inducedmorphisms e× id : F×S′ U ′ → X ×S U ′
and V ′ → V are isomorphisms.

Clearly, the classifying map of ZV factors as ZV → D ⊂ D(X /S). By
construction, ZV → D is injective and as the induced map ZV → D ×S V is
proper (sinceZV → V is),ZV maps bijectively onto an irreducible component
of D×S V . As Dν×S V = (D×S V )ν , we have a factorizationZV → Dν → D
such that ZV is isomorphic to a connected component of Dν ×S V . The map
ZV → V factors through an isomorphismV ′ → V for a connected component
V ′ ⊂ S′ ×S V . Indeed, V ′ → V is finite and bimeromorphic as ZV → V
has connected fibers and V is normal by assumption. Over V ′ ⊂ S′ we have
a diagram
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X ×S V ′

α

F ×S′ V ′ (X ×S S′) ×S′ V ′

ZV Dν ×S′ V ′

V ′

(4.3)

where α is the identity, so F ×S′ V ′ → (X ×S S′) ×S′ V ′ is an isomorphism.
The locus U ′ ⊂ S′ over which F → X ×S S′ is an isomorphism, is Zariski
open (and nonempty as V ′ ⊂ U ′).
Step 7 Final step of the proof.

We also apply the preceding steps swapping Y and Z , and thus obtain for
i = Y (resp. i = Z ) finite morphisms Si → S and nonempty Zariski open
subsets Ui ⊂ Si such that the following hold:

(1) Let Di be the unique component of D(X /S) containing all points corre-
sponding to subspaces of the form Y (z) (resp. Z(y)). Let Dν

i → Di be the
normalization. Then Dν

i → Si → S is the Stein factorization.
(2) Let Fi → Dν

i is the pullback of the universal family to the normalization.
Then the morphism Fi → X ×S Si is an isomorphism over Ui .

(3) The inclusion V ⊂ S lifts to Vi ⊂ Si and the canonical map ZV →
Dν

Y ×SY VY (resp. YV → Dν
Z ×SZ VZ ) is an isomorphism over V .

Passing to S′ := SY ×S SZ and the intersectionU ′ of the preimages ofUi under
S′ → Si we obtain morphisms Fi ×Si S′ → X ×S S′ whose restrictions to U ′
are isomorphisms. In particular, we have projections X ×S U ′ → Dν

i ×Si U ′.
Set Y = Dν

Z ×SZ U ′ and Z = Dν
Y ×SY U ′. The product morphism

X ×S U ′ → Y ×U ′ Z (4.4)

is an isomorphism when restricted over V ′ ⊂ U ′. Note that

(Y ×U ′ Z) ×S′ V ′ ∼= YV ×V ZV

by construction. By shrinking U ′ we may assume that (4.4) is an isomorphism
and thatY,Z/U ′ are locally trivial, as the former is Zariski open and the latter
Zariski closed (by Theorem 2.23). ��
Remark 4.5 The proof actually shows a little more, namely that X ×S S′ is
bimeromorphic to a fiber product whose factors are locally trivial families over
U ′ ⊂ S′.
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Let us record another consequence of the proof of Lemma 4.4, mainly to
set the notation for later use.

Corollary 4.6 Let X be a normal compact Kähler variety with rational sin-
gularities. Suppose we have a locally trivial family X → � with special fiber
X such that X ∗ := X ×� �∗ = Y∗ ×�∗ Z∗ where Y∗,Z∗/�∗ are locally
trivial. Then up to replacing � by a relatively compact open subset containing
the origin there is a reduced7 component DY ⊂ D(X /�) which is proper over
� such that, setting D∗

Y := DY ×� �∗ and F∗
Y := FY ×� �∗ the restriction

of the universal family FY ⊂ X ×� DY , the graph of the second projection
X ∗ ⊂ X ∗ ×�∗ Z∗ is isomorphic as a family of subspaces of X ∗ over Z∗ to
F∗

Y ⊂ X ∗ ×�∗ D∗
Y over D∗

Y . Likewise for DZ ,FZ .

Proof ByCorollary 4.3,we can shrink� andfind a component DY ofD(X /�)

which contains the generic fibers Yt ×{z} andwhich is proper over�. As in the
proof of Lemma 4.4, the projection X ∗ → Z∗ yields a bijective classifying
mapZ∗ → D∗

Y and DY is smooth at points Yt ×{z} if z ∈ Z∗. In particular, the
reducedness claim follows. The resulting pullback mapX ∗ → F∗

Y is in fact an
isomorphism, as the evaluation mapF∗

Y → X ∗ provides an inverse. It follows
that the Stein factorization of F∗

Y → D∗
Y is identified with X ∗ → Z∗ → D∗

Y ,
but as X ∗ → Z∗ is faithfully flat and F∗

Y → D∗
Y is flat, it follows that

Z∗ → D∗
Y is flat hence an isomorphism. ��

5 Splittings of relative tangent sheaves

In this section we show that given a product decomposition on the general
fiber of a locally trivial family of K -trivial varieties, the induced splitting of
the tangent bundle extends to the special fiber.

Proposition 5.1 Let π : X → � be a locally trivial family of K -trivial Kähler
varieties with rational singularities. Let X be the special fiber. Assume we have
a product decomposition X ∗ := X ×� �∗ = Y∗ ×�∗ Z∗ for locally trivial
families π1 : Y∗ → � and π2 : Z∗ → �∗. Then there is a splitting

TX /� = A ⊕ B

into foliations such that A|X ∗ = π∗
1 TY∗/�∗ and B|Y∗ = π∗

2 TZ∗/�∗ as sub-
sheaves of TX ∗/�∗ .

Before the proof of Proposition 5.1 we make some preliminary remarks.
We start by observing that there is a limit Künneth decomposition on the level
of cohomology.

7 Note that DY being reduced is equivalent to D(X /�) being reduced at the generic point
of DY . For the applications, this is irrelevant and we could also just have used the reduced
structure.
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Lemma 5.2 Assume the setup of Proposition 5.1. Let j : �∗ → � be the
inclusion. Then we have decompositions of local systems

Rkπ∗QX ∼=
⊕

r+s=k

j∗ Rrπ1∗QY∗ ⊗Q j∗ Rsπ2∗QZ∗ (5.1)

extending the Künneth decompositions over �∗.

Proof As π is topologically trivial, each Rkπ∗QX has no local monodromy,
and it follows that each Rkπ1∗QY∗ and Rkπ2∗QZ∗ also has no monodromy
(since for instance π1∗QY∗ and π2∗QZ∗ have no monodromy). ��
Note that the isomorphisms preserve the integral structure—that is, the torsion-
free quotients of cohomologywith integral coefficients—and that we also have
the corresponding decomposition on the level of homology. The decomposi-
tions are also compatible with cup and cap products.

Next we upgrade Lemma 5.2 to a Künneth decomposition of variations of
mixed Hodge structures.

Lemma 5.3 Let f : X → S be a locally trivially family over a smooth base
S. Then for all k, Rk f∗QX underlies a variation of mixed Hodge structures

Proof Note that because S is smooth, the normalization of X is locally triv-
ial and specializes to the normalization fiberwise. Following for instance the
proof of [57, Theorem 5.26], the family X → S then admits a locally trivial
semisimplicial resolution over S by Corollary 2.27, and this is enough. ��
Corollary 5.4 In the setup of Proposition 5.1, the Hodge filtrations of
Rrπ1∗CY∗ ⊗C O�∗ and Rsπ2∗CZ∗ ⊗C O�∗ extend so that (5.1) holds as
variations of mixed Hodge structures. Moreover, the cup-product maps are
morphisms of variations of Hodge structures.

Proof LetUk, Vr , Ws be the special fibers of Rkπ∗CX , j∗ Rrπ1∗CY∗, j∗ Rsπ2∗
CZ∗ , respectively. Now denoting by Fl the appropriate flag varieties, the period
map � → ∏

k Fl(Uk) associated to R•π∗CX maps �∗ to the image of the
closed embedding of

∏

k Fl(Vk) × ∏

k Fl(Wk) via taking the graded tensor
product. It therefore maps � into

∏

k Fl(Vk) × ∏

k Fl(Wk), and the first claim
follows. The second claim is obvious as it is true fiber-wise. ��

For simplicity, in the following we denote the Hodge filtration on
Rk f∗CX ⊗C O� (resp. j∗ Rr g∗CY∗ ⊗C O�, j∗ Rsh∗CZ∗ ⊗C O�) by
F• Rk f∗CX (resp. F• j∗ Rr g∗CY∗ , F• j∗ Rsh∗CZ∗).

Proof of Proposition 5.1 Let m = dimY∗ −1 and n = dimZ∗ −1. By Corol-
lary 2.27 there is a locally trivial resolution f : ˜X → X . By Kebekus–Schnell
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[52, Corollary 1.8] we have f∗�p
˜X /�

= �
[p]
X /� via the natural map, and like-

wise for Y∗ andZ∗. In particular, we naturally identify F p R pπ∗CX = �
[p]
X /�

for each p. Moreover, both Fm Rmπ1∗CY∗ = �
[m]
Y∗/�∗ and Fn Rnπ2∗CZ∗ =

�
[n]
Z∗/�∗ are line bundles as Y∗ and Z∗ are both families of K -trivial varieties.

From Corollary 5.4 it follows that Fm j∗ Rmπ1∗CY∗ is a vector subbundle of
Fm Rmπ∗CX , and so there is a τY ∈ H0(X , �

[m]
X /�) which specializes to the

pullback of a nonzero top-dimensional reflexive form on the fibers of Y∗ and
which is nonzero on the special fiber of X . Likewise for τZ ∈ H0(X , �

[n]
X /�)

and Z∗.
We claim that A = rad(τZ ) and B = rad(τY ) provides the desired splitting.

Note that the radical can only increase in rank under specialization, and that A
and B are generically complementary. The claim therefore follows provided
τY ∧ τZ is nonzero on the special fiber. But Corollary 5.4 implies the Künneth
decomposition provides us with an identification

Fm+n Rm+nπ∗CX ∼= Fm j∗ Rmπ1∗CY∗ ⊗ Fn j∗ Rnπ2∗CZ∗

where τY ∧τZ on the left-hand side is identified with τY ⊗τZ on the right-hand
side, and the claim follows. ��

6 Splittings of relative Kähler–Einstein metrics

By the results of the last section, given a locally trivial family which is generi-
cally a product, there is both a limit splitting of the cohomology of the special
fiber and a limit splitting of the tangent sheaf. We show in this section that the
decomposition of the Kähler–Einstein metrics carries over to the limit.

6.1 Forms and currents on singular spaces

The references for this section are [22] or [7, § 4.6.1]. Let X be normal complex
space. We introduce the following sheaves on X :

• L1
X is the sheaf of locally integrable real-valued functions on X ,

• C∞
X is the sheaf of real-valued functions which are locally the restriction

of a smooth function under a local embedding X ↪→
loc

CN ,

• PHX ⊂ C∞
X is the subsheaf made of pluriharmonic functions. A plurihar-

monic function can be equivalently defined as being locally the real part of a
holomorphic function (which by definition comes from a local embedding)
or a function in the kernel of the ddc operator.

We recall the following definitions.
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– A (1, 1)-form on X is a smooth (1, 1)-form on X reg that extends smoothly
under local embeddings.

– A (1, 1)-form is said to have local potentials if it arises as a global section
of C∞

X /PHX via the ddc operator. In particular, it is closed.
– A closed (1, 1)-currentwith local potentials is a global section of L1

X/PHX .
– A plurisubharmonic function (psh for short) on X is a locally integrable
function on X which is the restriction of a psh function under a local
embedding. If θ is a (1, 1)-form with local potentials on X , a function ϕ on
X is said to be θ -psh if it is locally the sum of a smooth and a psh function
and it satisfies θ + ddcϕ ≥ 0 weakly. We denote by PSH(X, θ) the set of
θ -psh functions on X . If we do not specify θ , we also speak of quasi-psh
functions.

– A Kähler metric on X is a (1, 1)-form with local potentials whose local
potentials are strictly plurisubharmonic, i.e. they are the restriction of a
(smooth) strictly psh function under a local embedding.

Remark 6.2 A closed (1, 1)-current T with local potentials on X enjoys the
important property that given a surjective morphism f : Y → X of complex
varieties, one can define its pull-back by f ∗T by lifting its local potentials.
The current f ∗T is again closed, of type (1, 1) and admits local potentials on
Y . Moreover, f ∗T is positive if and only if T is positive.

We have the following exact sequences

0 −→ PHX −→ L1
X −→ L1

X/PHX −→ 0 (6.1)

and similarly with C∞
X in place of L1

X , as well as

0 −→ RX
i ·−→ OX

Re(·)−→ PHX −→ 0 (6.2)

Composing the exterior differential map d : OX → �1
X with the isomorphism

PHX
∼= OX/RX , and passing to cohomology, we get a natural map

d : H1(X,PHX ) → H1(X, �1
X ). (6.3)

Next, the exact sequences (6.1)–(6.2) above yield exact sequences in coho-
mology

H0(X, L1
X/PHX )

[·]−→ H1(X,PHX ) −→ 0 (6.4)

and

H1(X,PHX )
α−→ H2(X, R)

β−→ H2(X,OX ) (6.5)
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A class in H1(X,PHX ) (resp. in H2(X, R)) is said to be Kähler if it is the
image of a Kähler metric under themap [·] in (6.4) (resp. under themap α◦[·]).
According to [10, Proposition 2.8], the Kähler class ends up in H1,1(X, R) :=
F1H2(X, C) ∩ H2(X, R). The following elementary result is very useful.

Proposition 6.3 Let X be a compact, normal variety of class C with rational
singularities. Then α is injective and β is surjective; i.e. we have an exact
sequence

0 −→ H1(X,PHX )
α−→ H2(X, R)

β−→ H2(X,OX ) −→ 0. (6.6)

Proof The injectivity of α is proved in [35, Remark 3.2 (2)]. Surjectivity of
β follows because the Hodge structure on H2(X, C) is pure and β can be
identified with the projection on the (0, 2)-part. Clearly, for α ∈ H0,2(X) the
class α + ᾱ is real. ��

6.4 Continuity of the relative KE metric

For the remainder of this section, we work with the following setup.

Setting 6.5 Let X be a normal complex space with canonical singulari-
ties equipped with a proper, holomorphic, surjective map π : X → �

and a smooth hermitian positive definite (1, 1)-form θ such that, setting
Xt := π−1(t) and X = X0, one has

(i) ωX /�
∼= OX .

(ii) The map π is locally trivial and H1(X0, R) = 0.
(iii) The restriction θt := θ |Xt is a Kähler form.
(iv) There is a splitting X ×� �∗ ∼= Y∗ ×�∗ Z∗ with π1 : Y∗ → �∗ and

π2 : Z∗ → �∗ locally trivial.
(v) The relative tangent sheaf splits: TX /� = A ⊕ B and A|X ∗ = π∗

1 TY∗/�∗
and B|Y∗ = π∗

2 TZ∗/�∗ as subsheaves of TX ∗/�∗ .

As mentioned before, this in particular implies that π is topologically, even
real analytically trivial by [3, Proposition 6.1].

In Setting 6.5, we can consider for any t ∈ � the unique singular Kähler–
Einstein metric ωt ∈ {θt }, provided by [29, Theorem A]. One can write ωt in
a unique way as

ωt = θt + ddcϕt

where ϕt is a θt -psh function normalized by
´

Xt
ϕt θn

t = 0. Moreover, it is
known from loc. cit. that ϕt ∈ L∞(Xt ) and from [54, Corollary 1.1] that ωt is
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a genuine Kähler form on X reg
t , the regular locus of Xt . Up to shrinking �, it

follows from [25, Theorem F] that there exists a constant C > 0 independent
of t ∈ � such that

sup
Xt

ϕt − inf
Xt

ϕt ≤ C. (6.7)

Actually, the quoted result requires θ to be relatively Kähler (hence globally
Kähler on X , possibly after shrinking �). However, taking a closer look at the
proof reveals that the only (truly) global argument appears in Theorem 2.9 in
ibid., where one needs to control away from 0 and +∞ the masses

´
Xt

(θt +
ddcψt ) ∧ θn−1

t uniformly for any θt -psh function ψt and any t ∈ �. In our
situation, this property is clearly satisfied since θt is Kähler (hence closed) and´

Xt
θn

t is a continuous function of t ∈ �.
Let us also observe that the normalization condition

´
Xt

ϕt θn
t = 0 implies

that supXt
ϕt ≥ 0 and infXt ϕt ≤ 0. The bound on the oscillation (6.7) thus

implies that with the same constant C , we have

− C ≤ ϕt ≤ C (6.8)

for all t ∈ �.
Up to shrinking�, by local triviality one can assume that there exists a finite

covering (Uα)α∈� of X by Euclidean open subsets such that if we set Ut,α :=
Uα ∩ Xt for t ∈ �, there exist biholomorphisms Fα : Uα,0 × � → Uα over
� and such that Fα|Uα,0×{0} coincides with idUα,0 via the natural identification
Uα,0 × {0} ∼= Uα,0. In other words, restriction to a fiber gives a family of
biholomorphisms

Fα,t : Uα,0 → Uα,t (6.9)

depending holomorphically on t such that Fα,t converges to idUα,0 when t → 0.
In the following, we will replace each Uα by a slightly smaller open set so
that we can assume that the biholomorphisms Fα,t extend to a neighborhood
of ∂Uα,0.

Proposition 6.6 For any α ∈ �, the currents F∗
α,tωt |Uα,t converge to ω0|Uα,0

when t → 0, weakly on Uα,0 and locally smoothly on the regular locus of that
set.

Proof Let us write F∗
α,tωt = θα,t + ddcψα,t on Uα,0 where θα,t := F∗

α,tθt and
ψα,t := ϕt ◦ Fα,t . First observe thatψα,t is a θα,t -psh function. We are going to
show at the same time the following three assertions, which altogether prove
the proposition.
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• The family (ψα,t ) is precompact in the L1
loc topology.• Any weakly convergent subsequence (ψα,t j ) actually converges locally

smoothly on U reg
α,0.• The only cluster value for (ψα,t ) when t → 0 is ϕ0|Uα,0 .

Note that even though the results above are local (i.e. on Uα,0), we need a
global argument to identify the sequential limits and obtain the last item.

The first item follows directly from classical pluripotential theory given the
estimate

‖ψα,t‖L∞(Uα,0) ≤ C (6.10)

inferred by (6.8) and the fact that θα,t converges (smoothly) to θ0 on Uα0 .
We now proceed to prove the remaining two assertions. Let us first observe

that if α, β are two indices such that Uαβ,0 := Uα,0 ∩ Uβ,0 �= ∅ and ψα,t j

converges to a quasi-psh function ψα,0 on Uα,0, then any sequential limit
ψβ,t ′j → ψβ,0 for a subsequence (t ′j ) of (t j ) will satisfy ψα,0 = ψβ,0 on

Uαβ,0. This follows from the fact that (Fα,t |Uαβ,0) ◦ (Fβ,t |Uαβ,0)
−1 converges

to idUαβ,0 when t → 0. Since the set � of indices is finite, we can iterate this
construction and out of any sequence t j → 0, one can find a subsequence (t ′j )
and a function ψ0 ∈ PSH(X0, θ0) ∩ L∞(X0) such that for any α ∈ �, the
current F∗

α,t ′j
ωt ′j converges to θ0 + ddcψ0 on Uα,0 in the weak topology.

In order to finish the proof of the proposition, we will show the following.

• The weak convergence F∗
α,t ′j

ωt ′j → θ0 + ddcψ0 is locally smooth over

X reg
0 ;

• The current θ0 + ddcψ0 coincides with ω0.

Since π is locally trivial, the functorial resolutions pt : ˜Xt → Xt can be
patched together to induce a simultaneous resolution p : ˜X → X that restricts
to pt over Xt for any t ∈ �, cf. [10, Lemma 4.8]. As the simultaneous resolu-
tion is a projectivemorphism, one can reproduce verbatim the argument in [54,
§ 3] (see also [5, Appendix B]) relying on Tsuji’s trick [63] to get laplacian
estimates

(trθt ωt )|Kt ≤ CK (6.11)

for any compact subset K � X reg where Kt := K ∩ Xt and CK > 0 is a
constant independent of t . From (6.11), one can get higher order estimates

‖ϕt‖Ck(Kt )
≤ CK ,k (6.12)

for any integer k ≥ 0 using standard results (Evans-Krylov and Schauder
estimates, cf. e.g. [12, § 5.6] and [62, § 2.3]).
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Now, let� ∈ H0(X , ωX /�) be a trivialization.We know from e.g. the proof
of [25, Theorem 6.1] that there exists a constant ct > 0 uniformly bounded
away from 0 and +∞ when t ∈ � such that

(θt + ddcϕt )
n = ct · in2�t ∧ �t on Xt . (6.13)

By (6.12), the function ψα,t is locally bounded for any Ck-norm on U reg
α,0 :=

Uα,0∩X reg
0 . Therefore, theArzela–Ascoli theorem guarantees that one can find

a subsequence (t ′′j ) of (t ′j ) such thatψα,t ′′j converges locally smoothly on U reg
α,0.

Since ψα,t ′′j already converges weakly to ψ0 on Uα,0, we have ψα,0|U reg
α,0

=
ψ0|U reg

α,0
. This shows that ψα,t converges locally smoothly to ψ0 on U reg

α,0 when

t → 0. Applying F∗
α,t ′′j

to (6.13) and passing to the limit on each U reg
α,0, one

finds that

(θ0 + ddcψ0)
n = c0 · in2�0 ∧ �0 on X reg

0 . (6.14)

As ψ0 ∈ L∞(X0), the uniqueness of the Kähler–Einstein metric [29, Propo-
sition 1.4] guarantees that θ0 + ddcψ0 = ω0. ��

6.7 Decomposition of the KE metric on X0

We now prove the splitting of the Kähler–Einstein metric.

Proposition 6.8 In Setting6.5, one can decompose the Kähler–Einstein metric
ωt on X reg

t as

ωt = ωAt + ωBt (6.15)

where

(1) The forms ωAt , ωBt are closed, semipositive smooth (1, 1)-forms on X reg
t .

(2) One has ker ωAt = Bt and ker ωBt = At .
(3) When t → 0, we have local smooth convergence ωAt → ωA0 (resp. ωBt →

ωB0) on X reg
0 under any local trivialization of the family.

(4) If t �= 0, then ωAt (resp. ωBt ) is the pull-back of a KE metric on Yt (resp.
Zt ). In particular, they extend to Xt as positive currents with bounded local
potentials satisfying the identity (6.15).

Proof Items (1) and (2). The decomposition of the tangent sheaf TXt = At ⊕Bt
induces a decomposition of TX reg

t
into parallel subbundleswith respect toωt by

[34, Theorem8.1.2]. That result was stated for projective varieties but the proof
of that particular result is purely analytic and does not rely on the projectivity
assumption, cf. [17, Remark 3.5].

123



Algebraic approximation and the decomposition theorem 1293

This implies that the Kähler–Einstein metric ωt splits canonically on X reg
t

as follows

ωt = ωAt + ωBt

where ωAt (resp. ωBt ) is a smooth, closed semipositive (1, 1)-form on X reg
t

whosekernel is Bt |X reg
t

(resp At |X reg
t
) andwhich is positive definite in restriction

to At |X reg
t

(resp. Bt |X reg
t
).

Item (3). This is an easy consequence of the local smooth convergence of ωt
to ω0 on X reg

0 via the local biholomorphisms Fα,t shown in Proposition 6.6
combined with the definition of ωAt , ωBt and the fact that the summand At of
TXt coincides with the restriction of the subbundle A ⊂ TX /� to X reg

t .
Item (4). From now on, we assume t �= 0. We will need the following

Lemma 6.9 For any t ∈ �∗, the natural map

H1(Yt ,PHYt ) ⊕ H1(Zt ,PHZt ) −→ H1(Xt ,PHXt )

is an isomorphism.

Proof Recall from Proposition 6.3 that H1(Xt ,PHXt ) is the kernel of the
natural map H2(Xt , R) → H2(Xt ,OXt ). We claim that this map is given by
the sum map H2(Yt , R) ⊕ H2(Zt , R) → H2(Yt ,OXt ) ⊕ H2(Zt ,OXt ), from
which the lemma follows.

Now, sinceπ is locally trivial and H1(X0, R) = 0,we have H1(Xt , R) = 0.
Since Xt has rational singularities, this implies that H1(Xt ,OXt ) = 0 as well.
The claim now follows from Künneth decomposition formula. ��

Therefore, one can decompose [θt ] ∈ H1(Xt ,PHXt ) as

[θt ] = pr∗t,1αt + pr∗t,2βt

for some classes αt and βt on Yt and Zt respectively. Since [θt ] is Kähler, so are
αt and βt . By [29], there exists a unique singular Kähler–Einstein metricωYt ∈
αt (resp. ωZt ∈ βt ). Since pr∗t,1ωYt + pr∗t,2ωZt ∈ [θt ] is smooth, Kähler and
Ricci-flat on X reg

t andhas boundedpotentials, it coincideswithωt . In particular,
one has ωAt = pr∗t,1ωYt and ωBt = pr∗t,1ωZt on X reg

t , hence everywhere since

none of these currents puts any mass on X sing
t . ��

6.10 Properties of the currents ωA0 and ωB0

In this section, we fix a functorial, simultaneous resolution p : ˜X → X
inducing fiber-wise resolutions pt : ˜Xt → Xt , we set π̃ := π ◦ p. Since
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p∗T
˜X = TX and X → � is locally trivial, one can find a cover (Uα) of X and

holomorphic vector fields vα on Uα such that

• π∗vα = ∂
∂t .

• vα = p∗ṽα for some holomorphic vector field ṽα on p−1(Uα).

Using a partition of unity (χα) subordinate to (Uα), one can construct a smooth
vector field v on X (resp. ṽ on ˜X ) such that p∗ṽ = v and π∗v = ∂

∂t . The
flow of these vector fields yields diffeomorphisms F : X0 × � → X and
˜F : ˜X0 × � → ˜X commuting with p; i.e. p ◦ ˜F = F ◦ (p0 × id�). With a
slight abuse, we denote by Ft (resp. ˜Ft ) the restriction F |X0×{t} : X0 → Xt
(resp. ˜F |

˜X0×{t} : ˜X0 → ˜Xt ).
For t �= 0, the currents ωAt , ωBt have local potentials by Proposition 6.8,

hence they induce cohomology classes αt , βt ∈ H2(Xt , R) such that

αt + βt = [θt ]. (6.16)

Lemma 6.11 With the notation above, there exist α0, β0 ∈ H2(X0, R) such
that F∗

t αt → α0 (resp. F∗
t βt → β0) when t → 0.

Proof From Lemma 5.2 we have R2π∗RX = j∗ R2π1∗RY∗ ⊕ j∗ R2π2∗RZ∗ ,
using (ii) of Setting 6.5. The sections t 
→ αt (resp. t 
→ βt ) of the vector
bundle (R2π1∗RY∗) ⊗ C∞

�∗ (resp. (R2π2∗RZ∗) ⊗ C∞
�∗) over �∗ are such that

their sum extends to a smooth section of (R2π∗RX ) ⊗ C∞
� . As each section

lives in a different direct summand, both extend separately across the origin,
proving the claim. ��

Another helpful result is the following

Lemma 6.12 In Setting6.5, there is a sub-vector bundleH ⊂ R2π∗RX⊗RC∞
�

and the inclusion is fiberwise canonically identified with H1(Xt ,PHXt ) ⊂
H2(Xt , R).

Proof By topological triviality and purity of the weight two Hodge structure,
the familyX → � gives rise to a variation ofHodge structureswith underlying
R-local system R2π∗RX .We denoteV := R2π∗RX ⊗C∞

� and by F p ⊂ V⊗C

the C∞-sections of the Hodge filtration. Then the base change of V → F0/F1

to t ∈ � is the surjectionβ from (6.6), so ifwedefineH := ker
(V → F0/F1

)

,
we have canonical identificationsHt = H1(Xt ,PHXt ). ��
Proposition 6.13 With the notation of Proposition 6.8, then the currents
ωA0, ωB0 extend to positive currents on X0 having local bounded potentials
and satisfying (6.15) on X0.
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Proof Let us first prove that ωA0, ωB0 can be extended across X sing
0 with

local potentials. We prove the claim for ωA0 , since the argument for ωB0 is
entirely similar. First of all, since the singularities of Xt are rational, p real-
izes R2π∗RX ⊗ C∞

� as a sub-vector bundle of R2π̃∗R
˜X ⊗ C∞

� , see e.g. [11,
Lemma 2.1]. In particular, Lemma 6.12 provides a sub-vector bundle

p∗H ↪→ R2π̃∗R
˜X ⊗ C∞

�

whose fiber at t is p∗H1(Xt ,PHXt ) ⊂ H2(˜Xt , R).
ByLemma 6.11, the section t 
→ p∗

t αt is a continuous section of R2π̃∗R
˜X ⊗

C∞
� whose image lies in p∗H over �∗. It follows that the latter holds across

the origin too. In particular, we get

p∗
0α0 ∈ p∗

0H0. (6.17)

Moreover, the arguments laid out in [1, Appendix] show that one can find
a sequence tk → 0 and a closed, positive (1, 1)-current T on ˜X0 such that
˜F∗

tk p∗
tk ωAtk

converges to T weakly when tk → 0. Since ˜X0 is a smooth, com-
pact Kähler manifold, one can write T = γ̃ + ddcṽ where γ̃ is a smooth,
closed (1, 1)-form on ˜X0 and ṽ ∈ L1(˜X0). Since the cohomology class in
H2(˜X0, R) of a closed current depends continuously on it (with respect to the
weak topology), we have [γ̃ ] ∈ p∗

0H0. Said otherwise, the local potentials of
γ̃ actually come from X0 via p0 modulo a global function on ˜X0, i.e. one can
write γ̃ = p∗

0γ + ddcw̃ where γ is a (1, 1)-form on X0 with potentials and
w̃ ∈ L1(˜X0). Set ũ := ṽ + w̃ so that T = p∗

0γ + ddcũ.
Given a fiber F of p0, ũ|F is either identically −∞ or it is a psh function.

Since F is connected and compact, u|F has to be constant. That is, there exists a
γ -psh function u on X0 such that ũ = γ ∗u or, equivalently, T = p∗

0(γ +ddcu)

on ˜X0.
Now, recall from Proposition 6.8 that F∗

t ωAt → ωA0 locally smoothly on
X reg
0 when t → 0. By uniqueness of the limit, this shows that T agrees with

p∗
0ωA0 on ˜X0\Exc(p0). Therefore, we have ωA0 = γ + ddcu on X reg

0 . This
shows that ωA0 extends to a closed positive (1, 1)-current with local potentials
on X0.

In the following, the extensions just constructed to X0 will still be denoted by
ωA0 (resp. ωB0), and we aim to prove that their local potentials are bounded.
Pick a Stein open subset U ⊂ X0 where ωA0 |U = ddcv1 (resp. ωB0 |U =
ddcv2) and ω0|U = ddcv where v, vi ∈ PSH(U ) and v is bounded on U , say
‖v‖L∞(U ) ≤ C1. Up to shrinking U slightly and subtracting a constant, one
can assume that the upper semicontinuous functions vi are nonpositive on U .
The function v − (v1 +v2) coincides almost everywhere with a pluriharmonic
function h on U . Up to shrinking U , one can assume that h is bounded; i.e.

123



1296 B. Bakker et al.

‖h‖L∞(U ) ≤ C2. Then, one has 0 ≥ vi ≥ −(C1 + C2) almost everywhere on
U , hence everywhere on U since vi is psh. Finally, the closed (1, 1)-current
ω0 − (ωA0 +ωB0) is supported on X sing

0 while it has local bounded potentials,
so it vanishes everywhere thanks to the support theorem applied on ˜X , which
is legitimate by Remark 6.2. Indeed, p∗

0(ω0 − (ωA0 + ωB0)) would have to be
a current of integration along a divisor, which violates the boundedness of its
potentials unless it vanishes identically. ��

7 Splittings of locally trivial families

In this section, we show using the results of the previous section that the
limit tangent splitting of Sect. 5 induces a product decomposition. The key
technical result of the previous section is the existence of a splitting of the
Kähler–Einstein metric as a positive current with bounded potentials.

The boundedness of the local potentials of a closed, positive (1, 1)-current
T on X allows us to do two things that we cannot do with closed positive
(1, 1)-currents in general, even when they admit local potentials.

(1) One can define the Bedford-Taylor Monge-Ampère operator T n , which is
a positive measure satisfying

´
X T n = [T ]n where the right-hand side is

computed in cohomology, cf. [14,15] or [22, § 2].
(2) If Z ⊂ X is a closed analytic subvariety of X , then one can define T |Z :=

θ |Z +ddcu|Z , which is again a closed, positive (1, 1)-current with bounded
local potentials on Z .

We assume we are in Setting 6.5 and adopt the notation of Corollary 4.6.
Thus, after shrinking � we have the reduced irreducible components DY , DZ
of D(X /�) which are proper over �, generically parametrize fibers Yt × {z}
and {y} × Zt , respectively, and furthermore DY ×� �∗ = Z∗ and DZ ×�

�∗ = Y∗. Let (DY )0, (DZ )0 be the fibers over 0 (endowed with the reduced
structure), and set m = dimY∗ − 1, n = dimZ∗ − 1. Let FY ,FZ be the
restrictions of the universal families to DY , DZ .

The map FZ
e−→ X is an isomorphism over �∗, hence it is surjective by

properness. For dimensional reasons, X �⊂ e(Exc(e)) so one can consider the
proper transform (FZ )+0 of X by e. This is the unique component of the special
fiber (FZ )0 for which the map to X is surjective and generically one-to-one.
We endow (FZ )+0 with the reduced structure.8

8 One can actually prove that (FZ )+0 is reduced with its given structure, i.e. the one for which

the inclusion in the special fiber is an isomorphism at the generic point of (FZ )+0 . Just notice
that FZ is reduced by [32, Lemma 1.4] and that e is an isomorphism at the generic point of
(FZ )+0 . We will however not need this.
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We have a diagram

(FZ )+0 X.

(DZ )0

p

e

(7.1)

Let (DZ )+0 = p((FZ )+0 ). Note that for any [V0] ∈ (DZ )+0 , we have that
V0 ∩ X reg is either empty or tangent to B|X reg , since by choosing the germ of a
curve C in DZ passing through [V0] and dominating�, we obtain a flat family
V/C specializing to V0, embedded as V ⊂ X ′ := X ×� C , and generically
tangent to B. Likewise we define (FY )+0 and (DY )+0 .

Lemma 7.1 Let X be as in Setting 6.5. Then for any point [V0] ∈ (DZ )+0
(resp. [U0] ∈ (DY )+0 ) we have that V0 (resp. U0) is irreducible and generically
reduced.

Proof Its enough to prove the claim for V0, as the one for U0 is the same after
switching factors. With V/C as above, the argument of [33, Lemma 19.1.3]
yields an integral section v of (R2nπ∗QX ′)∨ with vt = [Vt ]. Using the
decomposition of Lemma 5.2, we in fact have an integral generator η of
( j∗ R2nπ1∗QZ ′∗)∨ and v = η ⊗ pt, where pt is the integral generator of
( j∗π2∗QY ′∗)∨. Set

� :=
⊕

r+s=2n
r>0

( j∗ Rrπ1∗QY ′∗)∨ ⊗ ( j∗ Rsπ2∗QZ ′∗)∨.

Now, note that V0 is pure-dimensional, and assume that we have an effec-
tive decomposition [V0] = [V ′] + [V ′′]. In H2n(X, Q) one has an integral
decomposition [V ′] = λ′v0 +γ0 (resp. [V ′′] = λ′′v0 −γ0) for λ′, λ′′ ∈ Z with
1 = λ′ +λ′′ and γ0 ∈ �0, where �0 is the fiber of � over the point 0. Note that
the coefficients λ, λ′ are integral since v0 is a primitive vector in the integral
cohomology of X0. Generic reducedness is equivalent to themultiplicity of the
associated cycle being equal to one, so proving the lemma amounts to showing
that either [V ′] = 0 or [V ′′] = 0.

By Propositions 6.8 and 6.13, the Kähler–Einstein metric ωt ∈ [θt ] can
be decomposed as ωt = ωAt + ωBt , and we set αt := [ωAt ] ∈ H2(Xt , R)

(resp. βt = [ωBt ] ∈ H2(Xt , R)). Recall that these currents have bounded local
potentials, hence one can take their wedge products, cf. the beginning of this
section. We claim that the cap product

βn
0 · u0 = 0 for any u0 ∈ �0. (7.2)
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Indeed, any such u0 can be written as limit of elements ut ∈ �t but for t �= 0
we have βn

t · ut = 0 almost by definition and t 
→ βn
t · ut is continuous by

Lemma 6.11. Similarly, we have

αr
0β

n−r
0 · v0 = 0 for any r > 0. (7.3)

By Proposition 6.13 we have

0 ≤
ˆ

V ′
(ωB0)

n = λ′βn
0 · v0

and so 0 ≤ λ′. By the same argument, we also have 0 ≤ λ′′, and therefore
without loss of generality we have λ′′ = 0; i.e. [V ′′] = −γ0. Combining (7.2)
and (7.3), we find

ˆ
V ′′

ωn
0 = − βn

0 · γ0
︸ ︷︷ ︸

=0

−
∑

r>0

αr
0β

n−r
0 · v0

= −
∑

r>0

ˆ
V ′

(ωA0)
r ∧ (ωB0)

n−r

︸ ︷︷ ︸

≤0

+
∑

r>0

αr
0β

n−r
0 · v0

︸ ︷︷ ︸

=0

.

hence
´

V ′′ ωn
0 = 0, so [V ′′] = 0. ��

Proposition 7.2 Let X be as in Setting 6.5, and let [V0] ∈ (DZ )+0 and [U0] ∈
(DY )+0 . Then we have

ωA0 |V0 ≡ 0 and ωB0 |U0 ≡ 0.

In particular, ω0|U0∩V0 ≡ 0.

Proof Since the ωA0 and ωB0 have bounded local potentials by Proposi-
tion 6.13, it makes sense to restrict them to U0 or V0. The last statement
follows from the main one thanks to Proposition 6.13.

First assume V0 ∩ X reg �= ∅. Set V ◦
0 := V0 ∩ X reg which is a dense Zariski

open subset of V0. Since ωA0 |V ◦
0

≡ 0 by Proposition 6.8, it follows that the
restriction ωA0 |V0 is a positive (1, 1)-current with bounded potentials on V0
supported on V0\V ◦

0 . By Lemma 7.1 and the support theorem applied on a
resolution say (cf. Remark 6.2), the current ωA0 |V0 has to be a nonnegative
combination of currents of integration along the codimension one components
of V0\V ◦

0 which is only possible if ωA0 |V0 vanishes identically since it has
bounded potentials.
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Now for V0 arbitrary, take the germ of a smooth pointed curve (C, 0) with
a nonconstant morphism C → (DZ )0 sending 0 to [V0] and consider the
pullback diagram

F X

C

e

p

where we abusively use the same letters e, p for the restrictions of the cor-
responding maps in (7.1). By the previous paragraph, e∗ωA0 vanishes in
restriction to Ft for t general. Since p is smooth at a generic point x0 of
F0 = V0 by Lemma 7.1 and e∗ωA0 has local bounded potentials, Lemma 7.3
below implies that e∗ωA0 vanishes in restriction to a neighborhood of x0 in
V0, hence e∗ωA0 |G0 is supported on a proper analytic subset. Since its local
potentials are bounded, this implies that e∗ωA0 |G0 ≡ 0 as before. ��

In the course of the proof above, we used the following lemma about psh
functions on the total space of a trivial fibration that are pluriharmonic on all
but one slice.

Lemma 7.3 Let ϕ be a psh function on �n×�. Assume that ϕ is pluriharmonic
in restriction to each slice Dt := �n×{t} for t ∈ �∗. Then, either ϕ|D0 ≡ −∞
on D0 or ϕ|D0 is pluriharmonic.

Proof Assume that ϕ|D0 �≡ −∞. We use the coordinates (z1, . . . , zn) for the
first factor �n and (t) for the second factor �. The lemma is local, and it is
sufficient to prove that for every one-dimensional disk Dz

r ⊂ �n centered at
0 ∈ �n of small enough radius r , we have

ϕ(0, 0) =
 

Dz
r

ϕ(z, 0)dV (z). (7.4)

For that purpose, we introduce the function u : � → R ∪ {−∞} defined by

u(t) :=
 

Dz
r

ϕ(z, t)dV (z).

The function ϕ(t) := ϕ(0, t) is a psh function on � that satisfies

u = ϕ on �∗ (7.5)

since ϕ|Dt is pluriharmonic for any t �= 0. To show (7.4), we thus have to
extend the identity (7.5) across the origin. This will be achieved if we show
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that u is psh on � since psh functions are determined by their value almost
everywhere and ϕ is psh.

First of all, u is upper semicontinuous by Fatou’s lemma since ϕ is upper
semicontinuous as well (one can assume that ϕ ≤ 0without loss of generality).
Next, if t0 ∈ � and s is small enough, setting Dt

s := {t ∈ � | |t − t0| < s} we
have

u(t0) =
 

Dz
r

ϕ(z, t0)dV (z)

≤
 

Dz
r

 
Dt

s

ϕ(z, t)dV (t)dV (z)

=
 

Dt
s

u(t)dV (t)

where the inequality follows from ϕ(z, ·) being psh while the last identity is a
simple application of Fubini’s theorem. This shows that u is psh, and concludes
the proof of the lemma. ��

Wewill specifically need the following corollary of the previous proposition.
Let I := (FY )+0 ×X (FZ )+0 be the universal intersection, and consider the
resulting diagram

I + X

(DY )+0 × (DZ )+0

g

f

(7.6)

where I + is the unique irreducible component of I dominating X , endowed
with the reduced structure.

Corollary 7.4 In (7.6), f is surjective and generically one-to-one, and g is
finite, surjective, and generically one-to-one.

Proof The statements for f follow from the fact that the natural maps
(FY )+0 → X and (FZ )+0 → X are generically one-to-one and surjective
by definition and the surjectivity of g is clear as (FY )+0 → (DY )+0 and
(FZ )+0 → (DZ )+0 are surjective. The fibers of g are the intersectionsU0×X V0
in the notation of Proposition 7.2, so the finiteness is immediate from there
and the Kählerness of [ω0].

For the rest of the claim, as f −1(X sing) does not dominate (DY )+0 ×(DZ )+0 ,
for generic [U0] ∈ (DY )+0 and [V0] ∈ (DY )+0 we have U0 ∩ V0 ⊂ X reg. We
may take the germ of a smooth pointed curve (C, 0) with a nonconstant map
C → DZ sending 0 to [V0] and dominating �, as well as a nonconstant
map C → DY sending 0 to [U0] and dominating �. If we let F2 (resp. F1)
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be the pullback of FZ (resp. FY ) to C , then both F1 and F2 are naturally
embedded in X ′ := X ×� C . Every component9 of F1 ∩ F2 ∩ X ′reg has
dimension at least dimF1 − codimX ′F2 = (m + 1) − m = 1, as for example
the intersection is equal to the intersection of F1 × F2 ⊂ X ′ × X ′ with the
diagonal embedding of X ′reg, which is regularly embedded in X ′reg × X ′reg.
The fact that (F1)t ∩(F2)t is a single point for t �= 0 implies that there is atmost
one zero-dimensional component of (F1)0 ∩ (F2)0 ∩ X reg = U0 ∩ V0 ∩ X reg,
which is zero-dimensional. The claim then follows. ��

The following two lemmas will be key to obtain the main result of this sec-
tion, Proposition 7.7. This first result below states that, under some reasonable
assumptions, a compact Kähler space which is bimeromorphically covered by
a nontrivial product is already a product itself. Similarly flavored results have
been obtained in the algebraic setting, see e.g. [51, Proposition 18] and [28,
Lemma 4.6].

Lemma 7.5 Let X, Y, Z be normal compact complex varieties with a bimero-
morphic morphism f : Y × Z → X and assume X is Kähler with rational
singularities and H1(X,OX ) = 0. Then X ∼= Y ′ × Z ′ where Y ′ (resp. Z ′) is
the normalization of the image of a general fiber Y × {z} (resp. {y} × Z).

Proof By taking resolutions we may assume Y and Z are smooth. Observe
that from the rationality of the singularities and the exact sequence

0 → H1(X,OX ) → H1(Y × Z ,OY×Z ) → H0(X, R1 f∗OY×Z )

coming from the Leray spectral sequence, we obtain

H1(Y × Z ,OY×Z ) = H1(Y,OY ) ⊕ H1(Z ,OZ ) = 0. (7.7)

For a general fiber Yz := Y × {z} let Y ′′ = f (Yz) and nY : Y ′ → Y ′′ the
normalization; likewise for nZ : Z ′ → Z ′′. Note that the map g : Y × Z →
Y ′ × Z ′ is birational. The situation is summarized in the diagram below

Y × Z X

Y ′ × Z ′

f

g

For the claim it is enough to show that f factors through g and vice versa; note
that such a factorization is obviously unique provided it exists. As both f and

9 When we take intersections we mean the intersections of the reductions.
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g are proper with connected fibers and map to normal targets, by the rigidity
lemma it is sufficient to check the following claim:

Claim f and g have the same fibers.

Proof Let ω ∈ H2(X, R) be a Kähler class X . By (7.7) we have that
h1(Y,OY ) = 0, so the Künneth decomposition yields

f ∗ω = pr∗Y α + pr∗Zβ (7.8)

where α ∈ H2(Y, R) and β ∈ H2(Z , R). Identifying Yz with Y (likewise for
Z ), we find that α = ( f ∗ω)|Yz = f ∗ω|Y ′′ and β = f ∗(ω|Z ′′). Since we have
a factorization

Yz Y ′′

Y ′

f |Yz

g|Yz nY

we find that f ∗ω|Y ′′ = g∗n∗
Y ω|Y ′′ and f ∗ω|Z ′′ = g∗n∗

Zω|Z ′′ . In the end, (7.8)
becomes

f ∗ω = g∗(ω1 + ω2) (7.9)

whereω1 = n∗
Y ω|Y ′′ andω2 = n∗

Zω|Z ′′ . Note thatω1 andω2 are Kähler classes
by [65, Theorem 1], see also [35, Proposition 3.6].

Since ω (resp. ω1 + ω2) is a Kähler class, a subvariety V ⊂ Y × Z is
contracted to a point by f (resp. g) if and only if f ∗ω|V = 0 (resp. g∗(ω1 +
ω2)|V = 0). The claim now follows from (7.9). ��

As explained above, the lemma follows from the claim. ��
The next lemma allows one to spread a product structure of a given variety

to its locally trivial deformations.

Lemma 7.6 Let Y, Z be compact irreducible and reduced varieties with
H1(Y,OY ) = 0 = H1(Z ,OZ ). Let X = Y × Z. Then the natural map
Deflt(Y ) × Deflt(Z) → Deflt(X) is an isomorphism. In particular, the uni-
versal locally trivial deformation of X is the product of the pullbacks of the
universal families of Y and Z.

Note that H1(X, R) = 0 in our case so that the hypotheses on Y and Z are
fulfilled.
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Proof It suffices to show themap on tangent spaces is an isomorphism and that
the map on obstruction spaces is injective. By the Künneth decomposition, the
map on tangent spaces is the natural map

H1(Y, TY ) ⊕ H1(Z , TZ )

→ H1(Y, TY ) ⊗ H0(Z ,OZ ) ⊕ H0(Y,OY ) ⊗ H1(Z , TZ )

since the other Künneth factors vanish:

H1(Y,OY ) ⊗ H0(Z , TZ ) = 0 = H0(Y, TY ) ⊗ H1(Z ,OZ ).

In particular, the map on tangent spaces is an isomorphism. The map on
obstruction spaces is likewise identified via the Künneth decomposition with
the inclusion of the Künneth factors

H2(Y, TY ) ⊗ H0(Z ,OZ ) ⊕ H0(Y,OY ) ⊗ H2(Z , TZ )

and is therefore injective. ��
We are now ready to prove the main result of this section:

Proposition 7.7 Assume Setting 6.5. Then after shrinking � there is a splitting
X = Y ×� Z for locally trivial Y,Z/� restricting to the given splitting over
�∗.

Proof The map g of Corollary 7.4 is an isomorphism on normalizations, and
so X is a product by Lemma 7.5. Now, thanks to Lemma 7.6, after shrinking�

we have a product decomposition X ∼= Y ′ ×� Z ′ where Y ′,Z ′/� are locally
trivial. Let us denote Y := Y ′

0 and Z := Z ′
0. By construction, the subspaces

Y × {z} and {y} × Z for general y ∈ Y , z ∈ Z are obtained as fibers of the
families FY → DY respectively FZ → DZ which over �∗ coincide with
X ∗ → Z∗ and X ∗ → Y∗. As one fiber of FY → DY is contracted under
the projection FY → [e]X → Z ′, so are all the fibers thanks to the rigidity
lemma. In other words, Y∗ ∼= Y ′∗ and likewise for Z∗. ��

8 Proof of the decomposition theorem

In this section we prove Theorem A. Let X be a numerically K -trivial Kähler
variety with log terminal singularities. By [17, Corollary 4.2], there exists a
quasi-étale cover ˜X → X that splits as ˜X = T × Y where T is a torus and
Y is K -trivial with vanishing augmented irregularity, q̃(Y ) = 0. Replacing X
with Y , we may thus assume X is a K -trivial Kähler variety with canonical
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singularities and vanishing augmented irregularity.Moreover, byCorollary 3.9
and [17, Theorem C & Proposition 6.9], we also know TX has a splitting

TX =
⊕

i∈I

Ci ⊕
⊕

j∈J

S j (8.1)

into foliations such that with respect to some (hence any) singular Ricci-flat
metric on X the sheaves Ci |X reg (resp. S j |X reg ) are parallel with holonomy SU
(resp. Sp). We may assume (8.1) has at least two factors (or X is IHS or ICY
and there is nothing to prove) and at least one symplectic factor (or X is already
projective and we apply [48, Theorem 1.5]). It suffices to show by induction
that there is a quasi-étale cover of X which splits as a product.

Given Proposition 7.7, it is enough to show we are in Setting 6.5. We obtain
the weakly Kähler metric θ by [8, Theorem 6.3], see also [53, Proposition 5].
It thus remains to show the following:

Claim After replacing X with a quasi-étale cover, there is a locally trivial
deformation X → � of X such that we have a nontrivial product decomposi-
tion X ∗ = Y∗ ×�∗ Z∗ over �∗ for locally trivial families Y∗,Z∗/�∗ and a
splitting TX /� = A ⊕ B compatible with the decomposition over �∗.

Proof Taking E = ⊕

j∈J S j and P = ⊕

i∈i Ci , then the family X → S
guaranteed by Corollary 2.37 is a strong locally trivial approximation of X by
Lemma 3.5. By Corollary 3.10 every fiber has vanishing augmented irregu-
larity. A projective fiber has a BB decomposition on some quasi-étale cover
[48, Theorem 1.5], so by Lemmas 3.7 and 3.8 we may assume a fiber Xt of
X → S has a BB decomposition which is nontrivial by Corollary 3.10 and
which has no torus factor. By Lemma 7.6 this product decomposition persists
in a neighborhood of t , and by Lemma 4.4 after taking a finite base-change
S′ → S and choosing a curve � → S′ through the special point we have
a locally trivial family X → � with a locally trivial product decomposition
over �∗. By Proposition 5.1 the claim follows. ��
The proof of Theorem A is now complete. ��
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54. Păun, M.: Regularity properties of the degenerate Monge–Ampère equations on compact
Kähler manifolds. Chin. Ann. Math. Ser. B 29(6), 623–630 (2008)

55. Pourcin, G.: Théorème de Douady au-dessus de S. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(3) 23, 451–459 (1969)

56. Piene, R., Schlessinger, M.: On the Hilbert scheme compactification of the space of twisted
cubics. Am. J. Math. 107(4), 761–774 (1985)

57. Peters, C.A.M., Steenbrink, J.H.M.:MixedHodge structures, vol. 52. Ergebnisse derMath-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics
[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer, Berlin (2008)

58. Ran, Z.: Deformations of manifolds with torsion or negative canonical bundle. J. Algebraic
Geom. 1(2), 279–291 (1992)

59. Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)
60. Sernesi, E.: Deformations of Algebraic Schemes. Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences], vol. 334. Springer, Berlin
(2006)

61. Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. In: Real and
Complex Singularities (Proceedings of the Ninth Nordic Summer School/NAVF Sym-
posium in Mathematics, Oslo, 1976). Sijthoff and Noordhoff, Alphen aan den Rijn, pp.
525–563 (1977)

62. Székelyhidi, G.: An Introduction to Extremal Kähler Metrics, vol. 152. American Mathe-
matical Society (AMS), Providence, RI (2014)

63. Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic
varieties of general type. Math. Ann. 281(1), 123–133 (1988)

123

http://arxiv.org/abs/2101.06764


1308 B. Bakker et al.

64. Ueno,K.: Introduction to the theory of compact complex spaces in the classC . In:Algebraic
Varieties and Analytic Varieties (Tokyo, 1981), vol. 1. Adv. Stud. Pure Math. North-
Holland, Amsterdam, pp. 219–230 (1983)

65. Vâjâitu, V.: Kählerianity of q-Stein spaces. Arch. Math. (Basel) 66(3), 250–257 (1996)
66. Włodarczyk, J.: Resolution of singularities of analytic spaces. In: Proceedings of Gökova

Geometry-Topology Conference 2008. Gökova Geometry/Topology Conference (GGT),
Gökova, pp. 31–63 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123


	Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties
	Abstract
	1 Introduction
	2 Locally trivial deformations along foliations and resolutions
	3 K-trivial varieties and strong approximations
	4 Reminder on the Douady space
	5 Splittings of relative tangent sheaves
	6 Splittings of relative Kähler–Einstein metrics
	7 Splittings of locally trivial families
	8 Proof of the decomposition theorem
	Acknowledgements
	References




