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ALGEBRAIC APPROXIMATION OF STRUCTURES

OVER COMPLETE LOCAL RINGS

by M. ARTIN (1)
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Section i.

In this paper we generalize to dimensions greater than one a theorem of

Greenberg [9], and we apply this generalization to some algebraization problems.

Some of our results are announced in [2], and an analytic analogue was treated in [3].

Further applications will appear in [4].

Two general types of question which may sometimes be treated by our methods

are the following: We let A be a noetherian ring, and m be an ideal of A. Denote

by A the m-adic completion of A.

Question (i. i). — Let S be an< ( algebraic structure " over A. Can one approximate

it by some structure S over A?

Question (1.2). — Let S and S' be <( algebraic structures 5? over A which induce

isomorphic structures over A. Are S and S' themselves isomorphic?

In order to pose the problems precisely, we will assume that the structure under

consideration is classified by a functor

(1.3) F : (A-algebras) -> (sets),

so that for every A-algebra B, F(B) is the set of isomorphism classes of structures over B.

Then an element ^eF(A) or ^eF(A) induces by functorality an element of F(A/Tnc)

for each c, and we will say that i; and S are congruent modulo m0 if they induce the same

element there. Question (1.1) can thus be rephrased as follows:

Question (1.4). — Let F be a functor as above, let c be an integer, and let ^ eF(A).

Does there exist an element ^eF(A) such that

^ = ^ (modulo m6) ?

(
1
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24 M. A R T I N

Moreover, it is clear that most questions of type (1.2) can be reduced to (1.4). In

fact, denote by Sjg the structure induced by S over an A-algebra B, and by I(B) the set

of isomorphisms Sg w Sg. Assume that I is a functor on A-algebras. Then question (1.2)

is the following : Does I(A)=0 imply I(A)=0? This is a weak form of (1.4).

It is natural to put some finiteness condition on the functor F under consideration,

and the fundamental one is supplied by the following notion of Grothendieck:

Definition (1 .5) . — Let A be a ring and let F be a functor (1 .3) . F is said to be locally

of finite presentation if for every filtering inductive system of A-algebras {B^}, the canonical map

limF(B,)-^F(limB,)

is bijective.

This condition is an extremely natural one. It holds for nearly all functors which

occur in practice, and is often very easy to verify.

Suppose F locally of finite presentation, let B be an A-algebra, and write B as the

direct limit of a filtering system of A-algebras of finite presentation:

limB,=B.

This can always be done. Then we can apply condition (i .5) to an element ^eF(B),

to conclude that it is induced functorially from a S^F(BJ for some sufficiently large i.

Now choose a finite presentation

B-A[Y]/(/(Y)),

where Y= (Yi, ..., Y^) and /== (/i, .. .,j^)eA[YJ. Then a homomorphism of

A-algebras B,-»G is given by a solution in G of the system of polynomial equations

/(Y)=o. Given such a homomorphism, the element ^eF(B,) induces an element

of F(G). Thus we conclude the following:

Corollary (1.6) . — Let F be a functor (1.3) locally of finite presentation, let B be an

A-algebra^ and let ^eF(B). There exists

(i) A finite system of polynomial equations

/(Y)=o,

where Y = (Y^, . . ., Y^) and f= CA, . . . ,/J eA[YJ.

(ii) Afunctorial rule associating to every solution of this system of equations in an A-algebra G

an element of F(Gj.

(iii) A solution of the system (i) in B, so that the rule (ii) applied to this solution yields S.

It is easily seen, conversely, that if a functor has the property (1.6), then the

canonical map of (i .5) is surjective; and the case that it is surjective but not injective

seems of little interest. Note that the system of equations and the rule are allowed

to depend on the pair (B, ^). This is an important point, for while ( i . 6) is a rather

weak condition, the existence of a fixed system of equations and rule would be a very

strong one.

24



ALGEBRAIC APPROXIMATION OF STRUCTURES OVER COMPLETE LOCAL RINGS 25

The above corollary shows that a basic question closely related to all of the

questions (1.1), (1.2), (i .4) is

Question (i. 7). — Let Y = (Y^, . . ., Y^) be variables, let /= (/i, . . . ,^) eA[Y]

be polynomials, and suppose given elements j==(Ji, ...,y^)eA which solve the

system of polynomial equations

(*) /(Y)=o.

Let c be an integer. Does there exist a solution j/==(j/i, . . .,j^)eA of (*) such that

^i==3^ (modulo m6)?
Indeed, we have

Corollary (1.8). — Suppose/or the given pair (A, m), that the answer to (1 .7 ) is affir-

mative for each system (*) of polynomial equations. Then question (1.4) has an affirmative

answer for every functor (1 .3) locally of finite presentation.

For, given ^eF(A), we put A==B in (1.6). We obtain a system of equations (i)

and a solution (iii), say y , of this system in A which yields i; via the rule (ii). It is

clear that to find ^eF(A) as in (1.4), it suffices to approximate the solution ~y of (i)

by a solution yeA (modulo m6), and to apply the rule (ii) to this approximation.

We now ask for conditions under which (1.7) has an affirmative answer. If the

system of equations (*) is linear, then it is sufficient that A be a local ring and m+ A

(or, more generally, that m be in the Jacobson radical of A), as follows immediately

from the faithful flatness of A over A in that case. Consequently, (1.4) also has an

affirmative answer for functors F which are <c sufficiently linear 5?. As example in the

form of ( i . 2), one has the fact that finite modules M, M' over a local ring A such that M

and M' are isomorphic are themselves isomorphic (EGA IV, (2.5.8)).

But most structures are not described by linear equations, and so it is natural to

study these questions locally for the etale topology. This amounts to assuming that A

is a henselian local ring. We recall that a local ring is henselian if the following analogue

of the implicit function theorem holds (this is roughly EGA IV, (18.5.11), b))\

(i.9). - Let
/(Y)=(/i(Y),...,A(Y))eA[Y]

be polynomials, where Y== (Y^, ..., Y^). Let y° = (j^, .. .,j^)eA:=A/Tn be elements

such that

rw-o

and that det 1-j^}0^0)^ o,
\ 0\j/

the symbol0 denoting residue modulo m. Then there are elements j/==(j^, ...,j^)^A, with

Vi^y^ (modulo m), such that

/00=o.

25



26 M. A R T I N

Here m denotes the maximal ideal of A. But in fact, when A is a henselian local
ring, the maximal ideal may be replaced by any proper ideal.

The henselian condition does not suffice for the general question (1.7). For

there exists a henselian discrete valuation ring A whose completion A is a purely inse-

parable algebraic extension ([15], p. 205, ex. 3). Hence there are polynomial equations

in this ring A having solutions in A but not in A itself. It seems reasonable to conjec-

ture, however, that (1.7) has an affirmative answer when A is an excellent (EGA IV,

(7.8.3)) hensel ring. This was proved for discrete valuation rings by Greenberg [9]

and Raynaud. Various other papers should also be mentioned which treat more special
cases ([6], [10], [i6], [17]).

Our main result is the following answer to question (1.7):

Theorem (i. 10). — Let R be afield or an excellent discrete valuation ring, and let A be

the henselwtion (EGA IV, (18.6)) of an ^.-algebra of finite type at a prime ideal. Let m be

a proper ideal of A. Given an arbitrary system of polynomial equations

( I - 1 1 ) /(Y)=o Y=(Yi,...,Y^)

with coefficients in A, a solution J==(J^ . . .,j^) in the m-adic completion A of A, and an

integer c, there exists a solution j/==(j^, . . .,j^)eA with

j^==3^. (modulo m6).

Applying (1.8), we obtain an affirmative response to question (1.4) :

Theorem (1.12). — With the assumptions of (i .10), let F be a functor (1.3) which is

locally of finite presentation. Given any ^eF(A), there is a ^eF(A) such that

S=S (modulo m0).

The proof of theorem ( i . 10) is given in section 5. We use an inductive procedure

which is similar to the proof of the analytic analogue [3], except that in the present

situation we have to control divisibility by the relevant prime ideal p of R. To do

this we have adapted the desingularization theory of Neron [17]. It is reviewed for
our set-up in section 4.

Greenberg's result [9] is more precise than (1.10). It asserts the existence of a

solution^ whenj is merely a sufficiently near approximate solution. Perhaps an analysis

of our method would give this too. Using results of Hermann [12] and Stolzenberg [19],

we have carried out such an analysis in section 6, for the case that R is a field.

Another direction in which our result might be improved is towards a more global

version. For instance, if m is an ideal of a ring A of finite type over R, one can study

the corresponding questions in an etale neighborhood of Spec A/m in Spec A. We do
not know any counterexample to (1.7) in this context.

2. Variant assertions.

This section contains some more or less routine translations of ( i . 10) and (1.12)

into local statements about schemes. In order not to overload the notation, we will

26



ALGEBRAIC APPROXIMATION OF STRUCTURES OVER COMPLETE LOCAL RINGS 27

carry such translations out only in the case that the ideal m is the maximal ideal at the

point in question. Throughout the section, S will denote a scheme which is of finite

type over a field or over an excellent dedekind domain.

Let s be a point of S. By etale neighborhood o f j i n S we mean an etale map S'->S

together with a rational lifting of s to S':

s==Speck(s) ——> S'

S

We will often use the symbol S' to stand for such an etale neighborhood as well as for

the underlying scheme.

The henselization ^Pg g of the local ring of S at s is the limit of the rings r(S', ^g,)

as S' runs over the (filtering) category of etale neighborhoods. Thus theorem (1.10)

translates immediately as

Corollary (a. i). — Let Y = (Yi, . . ., Y^) be variables, and let /= (/i, ... ,fJ e^g [Y]

be polynomials whose coefficients are global sections of 0^. Let ~y==(jj;\, . . .,jj^) ^e a solution

of the system of equations „ , __

in the complete local ring ^g^? ^d let c be an integer. There exists an etale neighborhood S' of s

in S, and a solution y= (ji, . . .^^rXS', ^s') °f tfle system of equations, such that

y ==~y (modulo m^).

Similarly, ( i . 11) reads

Corollary (2.2). — Let

F : (schemes/S)° -> (sets)

he a (contravariant) functor locally of finite presentation, and let ^eF(S) (S =Spec <Pg g).

Let c be an integer. There is an etale neighborhood S' ofs in S and an element ^'eF(S') such

that
^==^ (modulo TO.

The congruence notation used is explained in a self-evident way as in section i.

We leave it to the reader to make precise definitions.

A functor F as in (2.2) is said to be locally of finite presentation if it has the property

of (1.5) with respect to affine S-schemes, viz., let {Xj be a filtering inverse system of

^g-schemes, where X^==SpecB^. Then

lim F(X,) ̂  F(Iim Xj.

We recall the following fact:

Proposition (2.3). —Let

X Y

v
z

27



a8 M. A R T IN

be a diagram of S-schemes such that Z is quasi-compact and quasi-separated, and that X, Y are

of finite presentation over Z. Consider the functor Hom^'K, Y) which to an S-scheme S' associates

the set Hom^(X', Y'), where Z'=ZXgS', etc. This functor is locally of finite presentation.

The proposition follows immediately from (EGA IV, (8.8.2)), if one replaces S
by Z in that proposition.

One can now combine the assertions (2.2) and (2.3) and specialize them in various
ways. We will content ourselves with some illustrative examples:

Corollary (2.4). — Let X, Y be S-schemes of finite type, and assume X proper over S.

Let c be an integer. Suppose given a formal map from X to Y at s, i.e., a compatible system of

S-maps
?n ^n-^Yn ^ = 0, . . . .

where S^Spec^g^/Tn^1), X^=XXgS^ and Y^==YXgS^. Then there exists an etale

neighborhood S' of s in S and a map

9' :X'->Y', X'^XXgS', Y^YXgS'

such that P'^Pc (modulo m^4"1).

For, by (EGA III, (5.4.1)), the formal map 9^ is induced by a map

9 : X ^ Y ,

where " denotes the change of base S-^S (S=Spec^gg). Thus we may set Z=S

in (2.3) and apply (2.2).

Corollary (2.5). — Let X, Y be S-schemes of finite type, and let x be a point ofX. Set

X=Spec ^x.a;- ^ c ^e an integer. Given an S-map

9:X^Y,

there is an etale neighborhood X' of x in X and a map

9' :X'->Y

such that 9'^? (modulo m^).

To obtain this corollary, we view 9 as given by its graph, a section of

X XgY == X Xx(X XgY) over X. Thus we may apply (2.2) and (2.3) with X = Z == S

and with XXgY replacing Y.

Corollary (2.6). — Let X^, Xg be S-schemes of finite type, and let ^eX, be points.

If the complete local rings C^-, x, {l^= I ? 2) are 0^-isomorphic, then X^ and Xg are locally isomorphic

for the etale topology. By this we mean that there is a common etale neighborhood (X', x') of x^

in X^, i.e., a diagram of etale maps

sending

and inducing isomorphisms of residue fields K(^) w K(^) w K^).

28



ALGEBRAIC APPROXIMATION OF STRUCTURES OVER COMPLETE LOCAL RINGS 29

In fact, the isomorphism of the complete local rings yields a map

9 ; Xi -> Xg

which can by (2.5) be approximated in an etale neighborhood X' of x^ by a map

9' '• X' —>• Xg,

say modulo m^ . This map 9' induces an isomorphism on the complete local rings

^x x -^x' a;7 {xl ^e lifting of A:i) since it agrees with the given isomorphism modulo m^
(cf. for instance [3], p. 282). Since 9' is of finite type, it follows that it is an etale map

(EGA IV, (17.6.3)). Thus (X', x ' ) is the common etale neighborhood.

For future reference, we include here two lemmas about functors locally of finite

presentation:

Lemma (2.7). — Let A be a ring, let B be an arbitrary A-algebra, and let G be a functor

locally of finite presentation on ^-algebras. Define a functor F on K-algebras by

F(A')= 0(^0^3).

Then F is locally of finite presentation. An analogous assertion holds for contravariant functors

on ^-schemes.

This follows immediately from the fact that tensor product commutes with direct

limits.
Lemma (2.8). — Let A be a ring, and let F -> G be a morphism of functors on A-algebras,

with G locally of finite presentation. For an A-algebra A' and an element ^G-(A'), denote

by F^ the functor on A'-algebras defined by

F,(B /)={7]EF(B /)|^(Y])=^},

where fy : F(B')->G(B') is the map, and where ̂  is induced from ^. If F^ is locally of

finite presentation for every pair (A', ^), then F is locally of finite presentation. A similar assertion

holds for contravariant functors on A-schemes.

Proof. — Suppose F^ locally of finite presentation for all (A', i;). Let B=lim B,,

where {Bj is a filtering inductive system of A-algebras, and let T)(=F(B). The element

/(7])==^eG(B) is induced by a ^eG(B,) for suitable i, and Y) is an element of F^.(B).

By assumption, this element is induced by an ^•eF^.(B^.) for suitable j. Thus the map

(*) lim F(B,) -> F(B)

is surjective. If ^, 27],eF(B,) have the same image in F(B), then /(i^-) =/(273j)= ̂

in G(B^) for some j. Hence ̂  and ̂  are in F^(B^), and they represent the same

element ofF-(B). Thus they become equal in F(B^) for some k. This shows injectivity

of the map (*).

3. Some applications.

An important application of Theorem (1.12) is to the following result of

([5]? ^P- XII). Its importance comes from the fact that it is the main tool needed for

29



30 M. A R T I N

the proof of the " proper base change theorem " for etale cohomology (loc. cit.). We

can now derive it very quickly:

Theorem (3.1). — Let S be the spectrum of a henselian local ring A, let f : X-^-S be

a proper, finitely presented map, and let Xo be the closed fibre of X/S. Denote by Et(Z) the

category of schemes finite and etale over a scheme Z. The inclusion Xo->X induces an equivalence

of categories

Et(X) -^ Et(Xo).

Proof. — We can write S as a limit of schemes S, = Spec A,, where A, is the hense-

lization of a Z-algebra of finite type. By (EGA IV, (8.8.2) and (8.10.5)), the proper

S-scheme X can be descended to some S,. Now given a morphism of finite presentation

/: X->S of schemes, the functor associating to an S'-^S the set of isomorphism classes

of finite, etale X'-schemes (X'^XXgS') is locally of finite presentation. For a finite

etale X-scheme is determined by a locally free sheafed of (Px-a^bras, which is described

by a functor locally of finite presentation (EGA IV, 8, in particular, (8.5.2) and (8.5.5)).

The supplementary condition on ^ to be an etale ffl^-olgebrsi is the vanishing of the

sheaf of relative differentials, which is a condition locally of finite presentation once ^

is given. Hence the assertion follows from (2.8). Similarly, the functor Horn ofX-maps

between two given coverings is locally of finite presentation, by (2.3). This known,

one sees immediately that it suffices to prove the theorem in case A is the henselization

of a Z-algebra of finite type. Thus we may apply Theorem (1.12) to A.

Let XQ be a scheme finite and etale over XQ. We want to show that it is induced

by an etale X-scheme X'. We adopt the notation

(3.2) S^== Spec A/m^, S = Spec A,

X,=XXsS, X=XXgS.

Here m=maxA, and A denotes the (m-adic) completion of A.

Since nilpotents don't affect etale extensions (SGA I, (8.3)), X,o is induced by a

compatible system of schemes X^ finite and etale over X^, say described by coherent

sheaves of ^xn^g^ras ̂ . By Grothendieck's existence theorem (EGA III, (5.1)),

the formal sheaf {^n}
 ls induced by a coherent sheaf ^ of ^x-^g^ras, and it is imme-

diately seen that ^ is etale. (We are just repeating Grothendieck's argument (FGA, 182,

th. 12) for the case A complete here.) Since, as we saw above, finite etale schemes

are classified by a functor locally of finite presentation, we can approximate the sheaf ^

(modulo m) by an etale sheaf ^ offi^-^g^ras, and then e^O^o^^o? as required.

It remains to show that given two finite etale X-schemes X', X", the inclusion

of the closed fibre induces a bijection

Hon^X'.X^Hom^Xo.Xo'). ,

This is shown by a well-known argument:

An X-map 9 ^'-^X" is described by its graph, which is open and closed in

30



ALGEBRAIC APPROXIMATION OF STRUCTURES OVER COMPLETE LOCAL RINGS 31

X' XxX" (SGA I, (3.4)). If we assume X' connected and non-empty, then such maps 9

are in one-one correspondence with the connected components of X' XxX" which are

of degree one over X\ The degree of such a component can be measured at any point

ofX'. Hence if we replace X by a component of X' X^X", the bijectivity of the above

map reduces immediately to the following assertion:

Lemma (3.3). — With the notation of (3.1), X is connected and non-empty if and only

if Xo is.

Proof. — If X is non-empty, then its image in S must contain the closed point So.

For, since/is proper, the image is a closed set. Thus XQ is non-empty. This reasoning

applies to any component of X, and shows that Xo is disconnected if X is.

Suppose Xo disconnected. Then a connected component Co is finite and etale

over Xo, and thus is induced by a finite etale X-scheme C. By what has been proved,

C is connected. The map C-^X is therefore of degree one at every point of C. Since

it is etale and finite, it is an open and closed immersion, i.e., G is a connected component

of X. Since Co is not all of Xo, C is not all of X, whence X is not connected.

We recall that if Xo is connected and pointed by a geometric point, and if, say,

A is noetherian, then Theorem (3.1) translates immediately as

(3.4) ^i(Xo)^(X),

where n-^ denotes the pro-finite fundamental group (SGA, exp. V).

A result of a nature similar to (3.1) is the following:

Theorem (3.5). — Let R be afield or an excellent dedekind domain. Let S==Spec A,

where A is a henseli^ation of an ^.-algebra of finite type at a prime ideal. Let f: X-^S be a

proper map. Then with the notation of (3.2), the map

H^X, G1(N)) -> lim H^X,, G1(N))
n

is injective, and has a dense image. In particular^ the map

Pic X -> lim Pic X^

is injective and has a dense image.

Here G1(N) denotes the group scheme of invertible N x N matrices, and

PicZ=ff(Z,GJ, where G^Gl(i).

Proof. — As is well known, Grothendieck's existence theorem (EGA III, (5.1))

implies that the map

(3.6) H l(X,Gl(N))-^nmH l(X„Gl(N))
n

is bijective (notation (3.2)). For, a compatible system of elements a^eH^X^ G1(N))
is determined by locally free sheaves JSf^ and isomorphisms ^®fl^__i» JS^_^, i.e., by

a formal sheaf. This formal sheaf is induced by a locally free sheaf S on X, by

Grothendieck's theorem, and JS^ is necessarily locally free. Thus (3.6) is surjective.

21



32 M. A R T I N

Now suppose oSf is a locally free sheaf on X such that oSf^ is free for each n. The

modules H°(X^, J?J are of finite length for each n. Hence the images of the maps

Ho(X,,JSfJ->HO(X,,JSfJ

(m_>7z) are constant for large m, say equal to M^cH°(X^, JSfJ. The M^ form an

inverse system of modules whose maps M^->M^_^ are surjective, and clearly

(EGA III, (4.1.5))

lim M^lim H°(X^ JSfJ ^ H°(X, J^).

Since JSf^ is free, it contains sections ^, ...,^ whose determinant is nowhere zero.

This being true for all m, the module M.Q must contain sections s^y . . ., s^ of JSfg with

nowhere zero determinant. These sections lift successively to M^ for each n, hence to

sections ?1, . .., j^eH^X, JSf). Since the determinant of these sections ?1 is not zero

on Xg, it is nowhere zero. Hence (3.6) is injective.

It remains to show that the map

(3.7) H^X, G1(N)) -> HI(X, G1(N))

is injective, and with dense image. Now it is clear from (EGA IV, (8.5.2), (8.5.5))

that the functor H^X X g • , G1(N)) is locally of finite presentation. Thus theorem (1.12)

implies that the image is dense. Moreover, if JSf is a locally free sheaf on X such that

the induced sheaf ^ is free, then there are sections ?1, . . ., ^N of JSf which have nowhere

zero determinant. By (1.12), these sections can be approximated (modulo m) by

global sections s
1
, .. ., s^ of JSf, and the determinant of ^ will be automatically nowhere

zero. Thus ^ is free.

We now combine our result with some rigidity theorems ofHironaka ([13], [14]).

The first consequence is the fact that isolated singularities are algebraic:

Theorem (3.8). — Let k be afield, let B =^[[X]]/(/) be a quotient of the power series

ring over k, with X==(Xi, . . ., XJ, y==(y^, . . .,^4). Assume Spec B formally smooth over

Spec k outside of its closed point. Then there is an algebraic scheme S over k, a point seS, and a

k-isomorphism B w fi^g g.

Here Spec B is called formally smooth at a point p if some (n—r) -rowed minor

of the jacobian matrix (^/^Xj) is invertible at p, where r=dimBp.

Note that (S, s) is unique up to local isomorphism for the etale topology, by (2.6).

The uniqueness was known previously for an isolated singularity.

This theorem was conjectured by Grauert, and has attracted considerable interest,

partly because it resists direct geometric analysis. Various special cases were proved

previously by methods which break down in the general case ([i], [13], [14], [i8]).

Actually, a good theory of singularities should allow one to approximate algebraically

an arbitrary formal singularity, say in an " equisingular " way (cf. [22]). One test

of such a theory would be to prove that if the given singularity is analytic [k==C),

then the approximation has the same topological type in a neighborhood of the origin.
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But nilpotent elements should also be taken into account if possible. Then one could

hope to derive the theorem on algebraization of formal moduli ([4], (i .6)) as a corollary.

We used a rather crude approximation in the proof of that theorem.

Suppose for simplicity that Spec B =V is irreducible and of dimension r. Then

Hironaka and Rossi have shown that there is an integer c with the following property:

Any ring B =k[\x\~\l[f) whose truncation (modulo^)6) is equal to that ofB and whose

dimension is r, is isomorphic to B. Thus it suffices to choose algebraic series

/i? • • '9fm
e
k[x]^ very near f^, . . .,^5 and such that the dimension of B' is r. (Here

A;[^]^ denotes the henselization ofA;[^] at the origin.) Of course, a random choice of

// will generally cause the dimension to drop.

Here is an ad hoc way to control the dimension by means of auxiliary polynomial

equations: Adjusting the ̂  if necessary, we may suppose that the series f^, . . . , ^_y

cut out scheme-theoretically a locus of the form VuW of dimension r in Spec A;[[^]],

where W^>V. Choose a series afeA:[[^]] which vanishes on W but not on V. Then

/i5 • • ' ^ f n - r generate the whole ideal (/i, . . .,^), when d is inverted. Thus we can find

series g^ such that for suitable N the equations

^f—^g^
j = i

hold for i == n — r + i, . . ., m. Now consider the system of equations

D-F—VG^
j-i

in which everything is unknown! Approximate the above solution algebraically to high

order. It is easily seen that the resulting locus f^y . .. ,f^ = o has the correct dimension.

However, the most efficient way to prove theorem (3.8) is by using a recent

equivalence theorem of Hironaka ([14], § 2, equivalence theorem I). With a trivial

limit argument, theorem (3.8) becomes a special case of the following:

Theorem (3.9). — Let k be afield^ and let A be the henselization of the polynomial ring k [X],

X==(Xi, .... XJ at a prime ideal. Let a be a proper ideal of A. Given a quotient B=A/(y),

jf=(/i, . . .,ĵ ) of A such that Spec B is formally smooth over Spec k outside of the locus V(a)

in Spec A, there exists a quotient B of A and a k-isomorphism B w B.

Here ^ denotes a-adic completion, and formal smoothness at a point p of Spec B

is defined as above, but with r==codim^p.

It follows from Hironaka's equivalence theorem, as in ([14], § 3, example i), that

the following holds: Let
£ ^3 _> di --.. _

3 -> LI—^ A —> B —> o

be a resolution ofB, where L^, Lg are free A-modules. Let

L^L^A
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be maps satisfying d^ = o, d, = rf, (modulo a6), 2=1 ,2 .
^s

Let B be the cokernel of^. If c is sufficiently large, there is a A-automorphism of A

carrying B to B. _ _
Now it is clear by Theorem ( i . 10) that we can approximate the pair rfi , d^ modulo

arbitrary powers of a by a pair with d^ == o. This proves the theorem.

Another immediate consequence of Hironaka [14] is

Theorem (3.10). — Let A be a henseli^ation of an ^-algebra of finite type at a prime

ideal, where R is afield or an excellent Dedekind domain. Let a be a proper ideal of A. Given

a finite A-module M which is locally free on Spec A outside of the locus V(S), there is a finite

A-module M such that M and M are isormorphic.

Here again, - denotes a-adic completion. As above, it suffices by ([14], § 3,

example II) to approximate a free resolution of M. Of course, M is unique up to

isomorphism, by (1.12).

As a final application, we will derive the following:

Theorem (3 .11 ) . — With the notation of (3.10), denote by C(A) the category of finite

algebras over A which are etale outside of the locus V(a) of Spec A, and by G(A) the category

of A-algebras defined analogously. The extension of scalar s A-^A induces an equivalence of

categories6 C(A)-^C(A).

This implies in particular that etale coverings of U==Spec A—V(a) and of

U=SpecA—V(S) are in one-one correspondence, which was proved in greater

generality in ([i a], II, (2.1)). However, the present proof is more elementary. We

went on in ([i a], II, (4.1)) to prove, in the equal characteristic case, that the etale

coverings still correspond if A is replaced by the completion of A with respect to its

maximal ideal, provided V(a) is everywhere of codimension ^ 2 in Spec A (or that

the characteristic is zero). This is connected with some rigidity phenomenon for rami-

fication types in codimension ^ 2 which we do not yet fully understand, and which

merits further study.
Now it is clear that the finite algebras satisfying the etaleness condition, and the

homomorphisms between two given algebras, are classified by functors locally of finite

presentation. Thus we may approximate a given algebra or homomorphism modulo

arbitrary powers of a, by ( i . 12). It therefore suffices for (3.11) to prove the following

rigidity assertions:

Lemma (3. ia). — Let a be an ideal of a noetherian ring A, and assume A complete with

respect to the a-adic topology. Let C(A) denote the category of finite A-algebras which are etale

over A at every point of U = Spec A—V(a).

(i) Given a map cp : Bi-^Bg in C(A), there is an integer c such that any map q/ : B^-^Bg

satisfying 9 == <p' (modulo a") is equal to 9.
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(ii) Given Bed (A), there is an integer c with the following property9. Let B'eC(A)

be an algebra whose degree over A on each component of U is the same as that of B. (The extra

condition on the degrees still gives a functor locally of finite presentation.) If B/a^B'/a0,

then B«B'.

Proof. — (i) The customary consideration of the graph of 9 given by a map

I^—BI^A^ ^d replacement of A by Bg, reduces this problem to the case Bg=A

and, say, Bi=B.

Let A°, B° be the rings obtained from A and B respectively by killing a-torsion

elements. Then B°£C(A°). A map 9 induces 9° : B°->A°, and it suffices to prove

assertion (i) for 9°. For let c be large enough to work for 9° and so that in addition

Tn a
0
 == o, where T is the ideal of a-torsion elements of A. Then if 9' == 9 (modulo a0),

we have ^°{b)=^°(b), i.e.,

(9—9')(&)^o (modulo T),

and (9—9')(6)=o (modulo a6),

whence 9=9'.

Now if A is a-torsion free, then the map 9 is determined by its restriction to a

map U->-V, V==Spec B—V(aB). Since this map is etale, it is determined by its

underlying set-theoretic map (SGA I, (3.4)). Thus 9 is determined set-theoretically,

and so it suffices to control the set-theoretic map on each irreducible component of

Spec A, which reduces us to the case that A is an integral domain.

Let V1, .. .3 V^ be the connected components of V, and let B^ be the image of the

homomorphism B-^r(V\ O^i).

The map B->B*==nB\
i

makes B* into a finite B-module, and since V is finite and etale over U, its cokernel is

annihilated by some power of a. Because A is an integral domain and U is non-empty,

a map 9 : B->A extends to (^ : B+->A3 and it is immediately seen that 9* is given

by the projection of B* onto some factor B1 isomorphic to A. Thus 9* == 9'* (modulo a)

implies that 91tt==9/*, whence that 9 ==9'. Choose a non-zero element a of A such that

aB*cB, and c so that a(^)D a^ (a). Then if 9=9' (modulo a6), we have for all 6eB

a(9*—9'*)(6)=(9—9')(^) ==o (modulo a6).

Hence (9*—9 /*)(6)=o (modulo a), as required.

Consider (3.12) (ii): If the ideal a is nilpotent, this assertion is trivial. Suppose

not. Then U is non-empty. The extension B/A is generated by one element ^eB

locally at one of the generic points ueV. Multiplying^ by a suitable element invertible

at u, we may assume ^ satisfies a monic equation ^(Z)===o of the right degree with

coefficients in A. Let us say that B»B()==A[Z]/(^(Z)) outside of the locus ^<z=o},

where aea is invertible at u.

By noetherian induction on Spec A, the assertion is true of the ring A l[a°) for
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arbitrary c. Hence we may suppose B/a- B ̂  B' /a'B'. Since A is complete with respect

to the (a)-adic topology, this means that we may assume d=(a).
Then there exists an r so that given B' as in (ii) and an isomorphism

e:B/a ( : + rBwB'/a' '+ rB', there is a map BQ->B' compatible with the given map Bo-^B

and with the given isomorphism 6 (modulo cf}: To give the map, we have to find a

suitable root ^'eB' of the equation g(Z)=o. Since B' is complete (radically, the
usual Newton's method yields the required root (cf. [7], p. 93, Gor. i, or (5.10)). For

Bo is etale over A outside V(a), hence

a"*= o (modulo g ' ( z ) )

in Bo, for some m. Take r=2OT, and assume 6 given. Let ^°eB' be any element

representing Q(z) in B'/a^B' (-denoting residue modulo a^0). Then

a'»=o (modulo [g'{zo))+{a2m+e))

in B', whence aw=g'^)x+a2m+^

am{l-am+ey)=g'{,€}x.

Since i — a "
1
' ^ " ^ is invertible in B',

a'»=o (modulo g'(z°))-

From g{z)=o, we obtain g{z°)=o (modulo a2"1 +'), hence

g{z°)=o (modulo g'^0)2^)-

Thus ([7], p. 93, Gor. i) implies the existence of a root z ' such that

Z'sz° (modulo ̂ V),

as required.
It follows that we may assume given the compatible map Bo-^B', and so we may

replace A by Bo, which reduces us to the case that in (ii) the degree of B over A is one

at every point of U.
Now consider the canonical map /: A^B. Let I, M be its kernel and cokernel

respectively, and define Bi so as to make the sequences

o-»- I -^A-^Bi-^-o

(3-'3) o-^Bi-^B^M-^o

exact. Let I', M', Bi be defined in the same way relative to /' : A-^B'.

Given an A-isomorphism

(3.14) O-.B/^B^B'/^B',

we obtain an isomorphism
M/a'MwM'/a'M'.

Since the degree of B on A is one at every point of U, M is an (a)-torsion module. Thus

M/a^M^M for large c, whence

M.'|aeM.'wM'|a's-lM.f.
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This implies that M'^M'/^M', and that 6 induces a unique isomorphism M^M',

for large c. We may identify M and M' via this isomorphism.
Now the A-modules Tor^(M, A/a'A) form an inverse system, indexed by c, which

is essentially zero. This follows immediately from the Artin-Rees lemma applied to

an exact sequence o-^R->L—M->o with L free. Hence the map s in the diagram

Tori(M,A/^A) ——> Bi/^Bi —> B/^B ——> M -> o

(3.i5)

Tor^M.A/^^A) -> Bi/^-'Bi -> B/^-'B M

is the zero map for large r and c ' == c—r. This, together with the similar diagram for B',

shows that an isomorphism (3.14) induces an isomorphism

BI/^'BI-^BI/^'BI

for such c ' .

The ideals I, I' of A are {a) -torsion ideals, and hence are mapped injectively to

A / a
0
' A for large c ' (independent of I'). Then the diagram

o -> I -^ A l a
6
' A -> Bi/^'Bi -^ o

o -> I' -> A l a
6
' A -> Bi/^'Bl -> o

shows that I==I'. This allows us to replace A by B^^B^, and reduces us to the case

that/and/' are injective:
o->A->B -^M->o

(3-16) „ . A ^ „ -
o->A->B -^M->o

o->A-^B'-.M->o.

Applying diagram (3.15) again, it follows that the isomorphism (3.14) induces

an isomorphism of exact sequences of A-modules

o -> A I ^ ' A -> B/^'A -> M -> o

o -> A I ^ ' A -> B'/^'A -> M -> o,

with c ' ^ c — r ,

Lemma (3.17). — The map Exti(M, A)-^Exti(M, A/^A) is injective for large c.

Assuming the lemma, it follows that the two sequences (3.16) are isomorphic

as sequences of A-modules, if c^>o. Thus we may assume this to be the case. Now
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the A-module isomorphism B^B' is determined up to an element of Hom^(M, A).

Since M is (fl)-torsion, the inverse system Hom^M, A/a0 A) is essentially equal to

Hom^(M, A), from which it follows that an isomorphism cp : B-^B' can be found which

is compatible with (3.14) modulo (^), if c=c-r and r are large. We claim that

this is an algebra isomorphism. This amounts to showing that a certain map

B(^B->B'«B is zero, and it is zero (modulo (a6')). Since B®^B and B are both

isomorphic to A on U, this is clear.

Proof of Lemma (3.17). — Let K, be the kernel of the map in question. To show

K,=o for ^o, it suffices by noetherian induction to show that its support cannot be

a constant non-empty set. Suppose peSpec A is a generic point of Supp K, for large c.

Since M is (a)-torsion, ^eV(a). Thus we can localize and complete A at this point.

The formation of Ext commutes with this process, and we are therefore reduced to the

case that K, is of finite length. Then it suffices to show that a particular extension

o-^A-^E->M-^o

which is in K, for all c is trivial.
Let FcE be the (a)-torsion submodule, and let S be such that 0^=0. If

E/a'A^-M is a splitting of the sequence

o -^A/a'A -> E I a
6
 A -> M -> o,

then its image in E/^A is annihilated by a
8
. Thus if xeE represents an element of

this image, we have
asx=acy

for some veA, or a8 {x- a0-8^) = o,

whence ^~^-^=^eF.

Thus the image F of F in E/^A contains the image of M. If c is large enough,

then F is isomorphic to F. Hence M maps to FcE compatibly with the projection

^ap E->M, i.e., E is the trivial extension.

4. Neron^s p-desingularization.

In this section, we consider a pair A, A' of discrete valuation rings such that A'

is (c unramified 3? over A in the weak sense that a local parameter p of A is also a local

parameter of A'. We make no other restriction on the pair at present.
put T=SpecA, T=SpecA'. Let X be a T-scheme of finite type, and let

s ' : T->X be a point of X with values in T'/T. Suppose X/T smooth at the generic

point ofj'. (Strictly speaking, we should say the generic point of^'(T'). The termi-

nology should not cause confusion.) Then we define, following N^ron [i 7], a measure l^)

of singularity of X at J' as follows: Choose an affine open of X containing s ' . Say

that this affine is the locus of zeros of f^ .. .^eA|>] in affine space E^. Let r be
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the relative dimension of X/T at the generic point of s\ Then for every minor M of

rank N—r of the jacobian matrix

j=^J w
evaluation on s ' yields a matrix with values in A', and we define

(4.1) ^')=inf(o'(detM(j')))
M

as M runs over the minors of rank N—r, and where •o' denotes the valuation of A'.

It is immediately checked that this is independent of the choice of the affine

neighborhood and of {/J. Moreover, /(j7) is zero if and only if X/S is smooth
on s ' .

Next, we define Neron's blowing up as follows: Let X be a T-scheme of finite

type, and let YcX be a closed subscheme. Let y= (P^^^S
2
^® . . . be the symme-

tric algebra on the sheaf of ideals ^ of Y in 0^ and consider the (non-homogeneous)

ideal a of y generated by sections of the form

P[§]~^ g
 a section of J^,

where [g] denotes the corresponding element of y of degree one, and g the element

of degree zero (in fi^)' Here p is as above the local parameter of A. Clearly this

defines a quasi-coherent sheaf of ideals of V. Let ^ be the quasi-coherent sheaf of

^-algebras obtained by killing ^-torsion in .S^/a. Neron's blowing up of Y in X is
defined as

(4-2) X==Spec^,

which is a scheme affine over X.

Suppose X=Spec A is affine, and let ^, . . ., g, generate the ideal of Y. Then

it follows from the above description that X == Spec A, where A is the ring obtained by
killing j&-torsion in

A[^i, .. .,^,]/a,

a being the ideal generated by the relations

(4-3) X—<?v=o ^==1, • • •^ .

Note that adding p to the set of generators for the ideal of Y does not affect the

blowing up. For it amounts to adding an extra variable ^.^ with the relation

J^r+i-A

whence, modulo ^-torsion, ^.^==1.

Thus Neron's blowing up of Y in X depends only on the closed fibre Y° of Y over T.

Moreover, the map X-^X is an isomorphism outside of the locus {^=o}, as follows

again from (4.3).
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We revert to the notation of the beginning of this section. Let Y° be the

closure in X of the closed point of s ' ' , with its reduced structure. We work locally in

a neighborhood of/. With the above notation for X=SpecA, we have

^(/)=o (modulo^),

by definition of Y°. Hence g^s') is divisible by p in A', and so we can find unique

elements ^ in A' satisfying the equation^ (4.3). Since A' is ^-torsion free, the map

A->A' defining the section / extends to A, and thus the section / lifts to a section s ' :

X

N^ron's fundamental and beautiful observation is the following:

Theorem (4.5). — With the above notation, suppose Y° generically smooth over the residue

field k of A, i.e., that its function field A(Y°) is a separable extension of A. Then

/(r')^(/),

with equality if and only if l [ s ' } =o, i.e., X/S is smooth on s .

Since A;(Y°) is a subfield of the residue field of A', it follows that

Corollary (4.6). — Suppose that the residue field k' of A' is a separable extension of k,

and let s ' : T->X be a T-map such that X is smooth at the generic point of s ' . Consider the

operation of replacing X by Moron's blowing up X and s ' by 7', as in (4.4). A finite number

of repetitions of this operation results in a situation where X/T is smooth on s ' .

The proof of (4.5) consists in a reduction to the case that X is affine and that Y°

is the c < origin " {^1== - - ' =^N =^ = °} in affined-space E^, and an explicit calculation

in that case. We begin with the calculation:

Let X be the locus of zeros of /i, . . .,^A[j/]. Then by (4.3) the blowing up

is given by the equations

P^=Vi
 Z = I . --N.

and the extra equations needed to kill ̂ -torsion. Thus we may eliminate the variables^,

and view X as a locus in affine -s-space.

Set
N

My) -Mo + s Wj + (^s^ ̂ 2) •

Then fW=p^+^pa^+p
2

 {degree ̂ 2),

whence fi{P^) =P
(
?iW

with

(4.7) ?^)=^o+Sfl^+^(degree^2),
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and X is the locus of zeros of the polynomials 9^) together with some extra equations

needed to kill j&-torsion.

We have p^ (z) = -^f{pz) =?f {pz),

i.e.,

(4.3) ^{z)=
<
^W (PW,).

This shows that /(7') ^ Z(j'), since the jacobian matrix of X is a submatrix of that of X

if we use generators {^}, {9^} for the respective ideals.

Denote by a symbol ° the residue (modulo p). Then by (4.7), the poly-

nomials 9^ are linear, and the jacobian matrix

J°-^(.)-^(0)J
 ~ ̂ >'~ Sy^'

is just the constant matrix (a^), whence J(j')°=(^.). If we assume that X is not smooth

on s ' y then the rank of {a^) is <N—r.

Suppose that the infimum in (4.1) is taken on for a minor of the form —l where i, j
^

run from i to N—r. Since the rank of (<^) is less than N—r, we may make an

invertible linear transformation of^, . . .,,/N-r wlt
^- coefficients in A so that, say, a^ =o

for all j. Then f^ has the form

/lO^Mo+Sj&a^, +(degree^2).

Hence /i(^)=Mo+^(Sa^.+(degree ^ 2)).

Since f^(p^) vanishes on the section 7', it follows that

a^Q~=o (modulo p),

whence <pi(^) = o (modulo j&).

Thus^"1^! is a polynomial vanishing on X, and if we replace 91 by this polynomial

in the jacobian matrix (4.8), the value of the subdeterminants involving i = i is decreased

by one, whence /(.? /) ^/( .y ' )—i, as required.

It remains to reduce the general case to the above one. The problem is local on X

in a neighborhood of s ' , hence we may assume X=Spec A affine. Let </=dimY.

Since Y is generically smooth over Spec k, it is generically etale and finite over

(JD • • ^J^)"8?3^ ^* Let A be the local ring of E^ at the generic point of its closed

fibre. This ring A is a discrete valuation ring with local parameter p. Since s ' maps
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the closed point of T' to the generic point of Y, the induced map T'^Er carries T'

to SpecA=T. We have a cartesian diagram

fN-d __^ rp
E^ —> T.

EN ____;, VS
T ————> .BIT

Let X, Y° be the subschemes of E^ induced by X, Y° respectively. Then s '

lifts to a T-map 7' : T'->X, and .the image of the closed pomt^of T' is Y°, which is

a closed point of X°. With the above notation, the schemes X, Y° are denned respec-

tively by the equations {/,=o}, {^=o}, where these elements are viewed as poly-

nomials in A|j',.n, ...,Js}. It therefore follows from equations (4.3) that Ndron's

blowing up X of Y° in X induces the blowing up of Y° in X. Moreover, it is clear that

l ^ ' ) = l ( r ' ) , provided at least that the coordinates^, ...,^ are chosen " generically ",

and that /(7') ^ l(f') in any case. (Here the work " generically " means so that the

infimum in (4. i) is taken on for a minor of J=(8/</^.) in which j runs over indices > d.)

Hence we may replace (T, X, s ' ) by (T, X,7'), which reduces us to the case that Y°

is a closed point of X°, with residue field separable over k.

Finally, the integer l{s') does not change if A' is replaced by any larger discrete

valuation ring A'i having p as local parameter. Moreover, it is clear that Neron's

blowing up commutes with etale extensions A->Ai, where Ai is a discrete valuation

ring. An appropriate choice of Ai, A[ followed by suitable localization reduces us to

the case that Y° is a rational point ofX° over k, whence by translation to the case thatY0

is the point {j'=o}.

5. Proof of theorem (i. 10).

We begin with some preliminary reductions. First of all, it is enough to treat

the case that m is the maximal ideal of A. For, suppose that the theorem has been proved

in that case, and let m be any ideal. Let m^...., m, be generators for the ideal m'.

Under the assumptions of ( i . 10), the elements J. are in the m-adic completion A of A.

Thus there are elements j^eA such that

y\ =y (mod m'A),

whence 7, =Vi + S fly m^

for suitable a., in A. The elements {J.,"a,,}eA are thus a solution of the larger

system of equations

/.(YI,...,YN)=O ^i,...,m

Y^_^_SA,jOT,=o !=I,...,N, j==i,...,r,
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and we can view these elements as lying in the completion A of A with respect to its

maximal ideal. The theorem in the known case implies the existence of a solution

[y^ ^y}^, and y^y, ==Ji (mod m'), as required.
Next, we may assume that R is a discrete valuation ring and that the maximal

ideal m of A lies over the closed point of Spec R. For, if R is a discrete valuation ring

but m lies over the generic point, then we replace R by its field of fractions, and if R

is a field, then we replace it by the power series ring R[[^]], where t acts on A as zero.

Since R[[^]] is excellent, this is permissible.
Moreover, we may assume that K=A/m is finite over the residue field k of R.

For, since A is the henselization of an R-algebra of finite type at a prime ideal, K is

a field extension of k of finite type. Let d be its transcendence degree. Then we can

find elements ^, . . ., ^eA so that K is finite over k{^, . . ., ̂ ), where ° denotes the

residue modulo m. Consider the map R[Z]->A sending Z,-^^. The inverse image

of m is the prime ideal of R[Z] generated by the local parameter p of R. Since A is

local, this map factors through the localization R' of R[Z] at this prime ideal, which

is an excellent (EGA IV, (7.8.6) (i) and (7.8.3) (ii)) discrete valuation ring. Clearly,

A is the henselization of an R'-algebra of finite type. Thus we may replace R by the

ring R', whose residue field is A;(Z).
Finally, say that A is the henselization of the R-algebra of finite type AQ at a

maximal ideal which we will denote also by m. Then we can make Ao into a finite

algebra over a polynomial ring R[X] (X== (X^, . . ., XJ) in such a way that m lies

over the "origin55
 {p, Xi, . . . , XJ of Spec R[X]. This is clear: Write AQ as a quotient

of some R[Zi, . . . ,ZJ. Let ^(Z,)e/;[Zj be a monic polynomial satisfied by the

residue of Z, in Ao/m. Choose a monic polynomial ^(Z,)eR[Zj representing ^°,

and set X,=^(Z,). Then the resulting map R[X]->A() is as required.

Now let R[X]" denote the henselization of R[X] at the origin [p, X). The

R[X] "-algebra \ obtained from Ag by extension of scalars is a product of local rings

(EGA IV, (18.5.11) a}) which are the henselization of Ap at the various points lying

over the origin. Our ring A is among them, hence is a finite R[X] "-algebra.

We claim that it is enough to prove theorem (1.10) for the ring R[X]" itself.

Indeed, suppose the theorem proved in that case, let A be any finite local R[X] "-algebra,

and

(5.1) /(Y)=o, Y=(Yi, . . . ,YN)J=(A, ...,/J

a system of polynomial equations with coefficients in A. Let F be the functor which

to an R[x] "-algebra B associates the set of solutions of (5.1) in the ring A0B (the

tensor product being over the ring R[X]"). This functor is locally of finite presentation,

by lemma (2.7). Thus we may apply corollary (1.8). Since A is finite over R[X]",

wehave A»A€)R[Xr,

the symbol - denoting completion of a local ring with respect to its maximal ideal.

43



44
M. A R T I N

Hence a solution J of (5.1) in A yields an element ^ of F(R[X]'), which we may

approximate (p, X)-adically to arbitrary order by a E;eF(R[XD, to obtain the required

solution y in A.
We are therefore reduced to the case that A==R[X]^ (X== (Xi, . . ., XJ), and

^^ ^^(^X). Proceeding by induction on the number n^o of variables X,, we

may fix n and assume the theorem true for fewer than n variables.
Lemma (5.2).—^ suffices to treat the case that the given polynomials f= (/i,..., fj e A [Y]

have coefficients in the polynomial ring R[X].

p^of. — Suppose the theorem proved for such polynomials, and let/be arbitrary.

Consider the homomorphism

(5.3) A[Y]^R[Xr

defined by the substitution of J for Y. Since R[X]'=R[[X]] is an integral domain,

its kernel is a prime ideal p, and p contains (^, . . .,/J. Clearly, it is permissible to

add extra equations to the system so that (/i, .. .,fJ generate the whole ideal p. Let
p^=pnR[X,Y]. Since A is the henselization of R[X], the ring A[Y] is a limit of

et°ale extensions of R[X, Y]. Therefore A[Y]/poA[Y] is reduced (SGA I, (9.2)),

i.e., poA[Y] is an intersection of prime ideals. The ring A being algebraic over R[X],

it is easily seen for reasons of dimension that p is one of these prime ideals. If p^o^^l

we are through. Otherwise we have

^»oA[Y]=pnq3 pq

for some ideal q not containing p. Since p is the kernel of the map (5.3), it follows

that there is an element geq with g(j>)^o.

Let <p == (<pi, .. ., -pi) eR[X, Y] be generators for po. Applying the theorem to the

solution ~y of the system of equations
V(Y)=O,

which is possible by assumption, we can find J=(^i, ...,^)eA arbitrarily close

to J, m-adically, so that 9(7)= o. Since g { y ) ^ r 0 , it follows that 5(^+0 if y is

sufficiently near ~y. But since ?qCpoA[Y], we have

f^y}g{y}=°.

hence M^=°

for all i. Thusjy is the required solution of (5. i).
We now suppose /=(/i, ...,/J€R[X,Y]. Let S=SpecR[X], S=SpecR[X]~

and S == Spec R [X] •"•. It is permissible to assume that the elements/, generate the whole

kernel of the map

(5.4) R[X,Y]^R[Xr

defined by the substitution ofj for Y, which is a prime ideal p of R[X, Y]. Then the

"^P SpecR[X,Y]/(/)=V->S
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is generically smooth. For, since R is excellent, so is R[X] (EGA IV, (7.8.6), (i)).

Therefore (EGA IV, (7.8.2), (ii)) the map S-^S is regular, and so fract(R[X;p)

is a separable extension of tract (R[X]). (We write fract(D) for the field of fractions

of an integral domain D.) Since R[X, Y]/p is a subring of R[X]", fract(R[X, Y]/p)

is a separable extension of tract (R[X]), which proves the assertion.

Let A be the localization of R[X] at the prime ideal P generated by the local

parameter p of R, and similarly let A' be the localization of R[X]^ at P=^.R[X]^.

These rings A, A' are discrete valuation rings, and p is a local parameter for them both.

Moreover, the residue field of A' is a separable extension of that of A. This is because

these fields are tract (A; [[X]]) and tract (A [X]) respectively, and k[~K] is excellent (EGA IV,

(7.8.6), (i)), k=='R,lp. Thus we may apply corollary (4.6) to this pair.

Write T=SpecA, T'==SpecA', Vrp=VXgT. The solution^ yields an S-map

CT:S^V,

which induces a map s ' : T'-^Vp

making a commutative diagram

T.

We want to reduce ourselves to the case that Vp is smooth over T on s\ Since T, T'

are obtained by localization from S, S respectively, this is equivalent with the assertion

that V be smooth over S at the point a(P), where P =p. R[X]^. To do this, let W°c V

be the closure of (r(P) with its reduced structure. Since Vp is a localization of V, the

scheme W^ =W° XgT is the closure in Vrp of the closed point of s\ Thus we can induce

Neron's blowing up of W$ in Vp by blowing up W° in V: Let (^i, . . ., g,) eR[X, Y]

generate the ideal of W°. Then we blow up W° in V by killing j&-torsion in the ring

R[X, Y, Z]/a, Z==(Zi, .. ., Z^), where a is the ideal generated by the relations

(5-5) J^v-^-o V=I. • • • . r

/,=o z'=i, ...,m.

Let the blow up be the spectrum of this ring, say V. Clearly Vr==VXgT is Neron's

blowing up ofW^ in Vrp. Moreover, since (r(P) lies in W°, it follows that

^(j)=o (modulo^. REX]').

Hence we can find ^eR[X]" satisfying the equations

P^-g.{J)==^
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whence since R[X]" is ^-torsion free, a lifts to an S-map

and 'a induces the lifting of s ' to 7' : T'-^Vrp.

Now our problem is to approximate m-adically the map a : S -^V given by the

solution^ of (5. i) by a map S->V, and it is clearly sufficient to approximate the map o

instead, i.e., to solve the system of equations given by (5.5) together with the additional

equations needed to kill ^-torsion. Since V is reduced and irreducible because V is,

we may replace V by V and a by ~S. Since V and V are isomorphic outside of the

locus {p=o} (cf. section 4), the elements (/i, . . .,/J still generate the whole kernel

of (5.4). By Corollary (4.6), a finite number of repetitions of this process results in a

situation where V is smooth over S at cr(P). We have therefore proved

Lemma (5.6). — It suffices to treat the case that /=(/i, . . .,/JeR[X, Y], and that

V==Spec R[X, Y]/(/) is smooth at the point cr(P), where

CT:S-^V

is the map defined by the substitution of J for Y, and where P=^.R[X]^«

Assume the conditions of the lemma hold. Let r be the relative dimension of V/S

at <r(P). Then by the jacobian criterion for smoothness, there is an (N-r)-rowed

minor M of the jacobian matrix (^/^Yj) such that

8=detMeR[X,Y]

has the property 8 (X, J) ̂ o (modulo p)

in R [X;T. We may suppose that M is the minor i ̂  i, j ̂  N— r. Let V c Spec R [X, Y]

be the locus of zeros of /i, . . . ,/N-r- Then v/ and v are e(lual ^a^Y at the P01111 ^l^)?
hence we can write, set theoretically,

V'=VuW

for some closed set WcSpecR[X,Y] which does not contain the image CT(S). Thus

there is an element ,?eR[X, Y] vanishing on W such that

^(X,J)+o.

Let y=(^i, . . -^N^^-P^]^ ^
e
 ^y l̂̂ i

011
 of the system of equations

(5.7) /i(Y)-...=/N-.(Y)=o.

If y=J modulo a sufficiently high power of the maximal ideal of R[X]^, then it follows

that ^(X,jQ +o, hence that the image of Spec R[X]" in Spec R[X, Y] under the map

defined by the substitution ofy for Y does not lie in W. Since Spec R[X]" is reduced
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and irreducible, and since the image lies in V, it follows that it lies in the subscheme V.

Hence

My)=o

for all z'==i, . . ., m. Thus it suffices to treat the system of equations (5.7)3 whence

Lemma (5.9). — With the notation of (5.6), we may assume in addition that m==N—r,

where r is the relative dimension of'V /S at a (P), and that the determinant 8 of the minor (^/^Yj),

i ̂  i, j ^ m, satisfies

8 (X, J) =j= o (modulo p).

We can now complete the proof as in the analytic case [3]: Recall the following

Lemma (5.10). — Let A be a ring and a an ideal of A such that the pair (A, a) satisfies

the implicit function theorem (1.9) with a == TH. For instance^ A may be a henselian local ring

and a any proper ideal. Let y=C/i, . • .3./nj£A[Y] be polynomials in the variables

Y==(Yi, . .., Y^), let M be the matrix (B/;/^.), i ̂ i, j^m, and let 8=detAf. Suppose

given elements j/°==(j^, ...,j^)eA such that

f{y°)^o (modulo 82(y^). a).

Then there are elements y=[y^ . . .,y^)eA such that

/o')==o
and that V^V^ (modulo 8 (j/°). a).

We will give a proof of the following stronger assertion, due to Tougeron [20]:

Lemma (5 .11) . — Let A, a,f be as in (5.10). Let J be the jacobian matrix {<)fJ 8V j ) 9

i==i, . . ., m\ J==i, . . ., N. Suppose given elements jy°===(j'^y - - .,j^)eA such that

f{f)=o (modulo A
2
, a),

where A is the annihilator ideal of the A-module C presented by the relation matrix J{y°) (i.e., G is

the cokernel of the homomorphism P^—^A^ whose matrix is /(j^0)). Then there is a solution

j/==(j^, .. .,J^) °f ^le ^^m of equations f(Y)==o with

y •==.y° (modulo A. a).

Proof. — Let 81, . . . , 8 ^ generate the annihilator A. This means that, writing

J=J^y
0
)^ there are N x w matrices N^ with

JN,=S^

where / is the mxm identity matrix. Write

' /(y)=SS.S,e.,
^J

for suitable vectors £y==(£^i, ...,^) with e^ea. We try to solve the equations

/(y+^s<u.)=o
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for elements U,=(U,i, . . . ,U.N) of A1*. Expansion by Taylor's formula in vector

notation yields

o=/0°) +/.S8,U.+?8.8,Q,.,

=J.S8.U.+S8.S,(Q.,+£,)
* •,j

=S8J.U.+S8J.(SiV,.(Q,+£,)),
t I J

where Q^ are vectors of polynomials in the U, all of whose terms are of degree ^2.

Thus it suffices to solve the r vector equations

o=U,+SN,.(Q^+^),

which give Nr equations in the Nr unknowns {U,J. The jacobian of this system of

equations is the identity matrix at U = o. Thus the implicit function theorem implies

the existence of a solution u,= (z^, . . ., u^) with u^o (modulo a), and y==y°+^u,

is the required solution of /(Y) = o.

If we apply the above lemma with a == m° to our situation, it follows that, in the

notation of (5.10), it suffices to find f==(^, .. ..j^A^RpCT such that

y° =j (mod m6)

and that f{y°) = o (modulo S^X,^0). m6).

For then the lemma implies the existence of the required j/eA.

Now since JeA is a solution of (5.1), we have trivially

/(J) = o (modulo 82 (X, J). m6).

Thus, setting g = 82, we may apply the following lemma to complete the proof.

Lemma (5.12). — Suppose the theorem proved for the ring RpC]" when there are fewer

than n variables^ and let A=R[Xi, . . . , XJ" (^o). Let g,f^ . . .,^eR[X, Y] be

polynomials and let J=(Ji, . . .,JN) be
 ̂ ^

s
 °f^

 such that

^(X,J)^o (modulo^)

and that /z(X, J) = o (modulo ̂ (X, J))

for i = i, . . ., m. Then there are elements y == (^i, . . . ,J^)eA suc
^ ̂

/,(X,j/)=o (mod^(X,^))

for all i and that y=y (modulo m').

proof. — If^(X,J) is invertible, ^(X,^) will be invertible for all y=J (modulo m).

Then the desired divisibility is trivial. We may thus assume ,?(X,jQ not invertible.

This completes the proof in the case 72=0, since <?(X, J) =t=o (modulo^) just means

that it is an invertible element in that case.
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Suppose n>o. Since g(X,y)^o (modulo^), we may adjust the coordinates X

via an automorphism of R[X] of the type

X.——X.+X:1 Z=I , . . . ,7Z- I

X;=X,

in such a way that ^(X, J) ̂  o (modulo {p, X^, . . ., X^_^)).

Then B = R[X]"/(^(X, J)) is a finite algebra over the ring

R[[X,,...,X,_J]=R[X,,...,X,_,r

([21], p. 259, Cor. i), from which it follows immediately that the Weierstrass Preparation

Theorem holds for ^(X,J) with respect to the variable X^, i.e., that

(5.13) ^(X,J)=^(XJ.(unit)

where ^(XJ=X^+^_,X^-1+.. . + îX,+^

is a monic polynomial with coefficients ~d^ which are non-units in R[X^, . . ., X^_J"
(this can be seen as in ([21], p. 261)). Then

(5.14) B^R[[X,, ...,X,_J][XJ/(^(XJ).

We make the substitution

(5.15) Y:=^Y,,X^ v=i,...,N

for Y^ into the polynomials g, f,, where Y .̂ are variables. Dividing by the variable

polynomial

(5. i6) A(X,)=X^+A,_,X^-1+... +AA+A,,

we obtain
r-l

^(X,r)=A(XJQ+.SG,X^

(5.17)

/,(X, r)=A(XJQ:,+^F,X^

where Q, Q;,, G^, F .̂ are polynomials in the variables {X^, Y^, Aj with coefficients

in R, and where Gj, Fy do not involve the variable Xy^.

Next, divide j\ by ^(XJ (which is possible by (5.14)):

(5.i8) Jv-^X.^+^.X^

with ^(=R[Xr and J,,eR[Xi, . . ., X^F. Set

r-l

(5.19) j;==s^.x^.

Since J sj* (modulo ~a (X^)),

49
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it follows by Taylor's formula that

i(x,7)=^(x,j)

and that /.(X, J*) =^(X, j) (modulo -a (X,,)),

whence by (5.13)

^(X,J*)=o

(5•20) /.(X,J*)=o (modulo a (XJ)

for i
:
 == i, . . ., OT.

Substitute J ,̂ a, for Y^, A, in (5 .17 ) . The congruence (5.20) shows that

G,(Xi. ...,X»_i,{J,J,{^})=o

F.,(Xi, ...,X^_i,{7,J,{aJ)=o

for all relevant i , j . Thus {J^, a,} is a solution in R[Xi, ..., X»_J" of the system

of equations
G,=o

to-")

By the induction hypothesis, there are elements {j^, ^}eR[Xi, . . ., X^_J^ solving the

system (5.21), with

y^ ==J^v(Jl
a^==~d^ (modulo (j&, Xi, . . ., X^^i)6)

for arbitrarily large c.

Choose ^ == ?. (modulo m6)

where ^ is as in (5.18), and set

^(XJ-X^+^-iX^'+.-.+^X.+^o

y^^^x^
i=o

^=^(XJ^+J^

so that

(5.22) J^v^Jv (modulo m6).

Then since {j^,, ^} is a solution of (5.21), we have by (5.17)

^(X,V) == o

/,(X,y)=o (modulo ^(XJ),

whence by Taylor's formula

^(X.^-o

^'^^ /z(X,jQ = o (modulo ^(XJ), z=i, . . ., m.
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Now it is clear that if we write by Weierstrass

^(X^)^(XJ.(unit)

where 6(XJ is a monic polynomial whose coefficients are non-units ofR[Xi, . . ., X^_J^,

then the degree of b will be r (5-13)5 provided c (5.22) is chosen sufficiently large.

Since a(XJ divides &(XJ by (5.23), and since these polynomials have the same degree,

it follows that they are equal. Thus (5.23) implies that

/.(X,^)=o (modulo g(X,_y))

for all z. This completes the proof of Lemma (5.12) and of Theorem ( i . 10).

6. The case of a ground field.

Let f=(fi, - • ">fm) be polynomials with coefficients in some field. By degree

offwe mean the sum of the degrees of the f^. The degree of an ideal a of a polynomial

ring is the minimum among the degrees of generating sets for a, and the degree of a

closed subscheme V of affine space is the degree of its ideal -^(V).

This section is devoted to the following result:

Theorem (6.1) . — There is an integer valued function (B =(B(%, N, d, a), defined/or

non-negative integer values ofn, N, d, a, with the following property:

Let k be afield, let f=(fi, . . .?./n) be polynomials in A[X, Y], where X==(Xi, . . ., XJ

and Y==(Yi, . . ., Y^), with degree(/) ^ d. Suppose given polynomials j7=(j^, . . .,j^)eA;[X]

such that ^^ —. , , , /v\R\
/(X,^)=o (modulo (X)0).

Then there are elements j;==(j^, . . .,j^)eA;[X]^ solving the system of equations

(6.2) /(X,Y)=o

and such that V^-V (modulo (X)0').

Here as before, A[X]^ denotes the henselization of A[X] at the maximal ideal

(X)=(Xi , . . . ,XJ .

This result implies easily the strong form of Greenberg's theorem [9] for the ring

A[X]^ (^==1). One also obtains corollaries of the following type:

Corollary (6.3). — Let f \ U—^V be a morphism of schemes of finite type over k. Given a,

there is a (B ̂  a with the following property :

For every rational point veV and every V-map 9 : Spec{(Py^Jm^)->U, there is an etale

neighborhood V of v in V, and a \-map cp' : V'—^U, such that

y '==(p (modulo m^).

We leave the verification of this corollary to the reader. Note that we have to assume v a

rational point. We do not know how to get a uniform bound (B for all closed points v of V.

It is remarkable that while applications of theorem ( i . 10) leap to the mind, there

do not seem to be so many applications of the stronger assertion (6.1). (Perhaps this
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can be explained as lack of insight on my part.) The applications of (6. i) I know of

require only the following weaker result:
Corollary (6.4). — Let /=(/i, . . .,fJek[K, Y]. If/or every a there are elements

Je^X] such that /(X,J) EEC (modulo (X)01),

then there is a solution of the system of equations (6.2) in the ring A:[X]^.

We have needed such an assertion (cf. [n], § 3). But (6.4) is hardly stronger

than ( i . 10). In fact, one can deduce (6.4) from ( i . 10) if either A; is a finite field, or

if it is algebraically closed and uncountable. For, in those cases a kind of compactness

argument using Greenberg's functor [8] (which we leave to the reader) shows, under

the hypotheses of (6.4), that the system (6.2) has a solution in the power series ring k [ [X]],

whence in A;[X]^, by ( i . 10).
To prove (6.1), we will need the following result. Stolzenberg [19] has shown

that the methods of Hermann [12] yield:
Theorem (6.5) (Hermann-Stolzenberg). — There exists an integer valued function

y(^, d), defined for non-negative integer values of n, d, with the following property.

Let k be afield, and let a be an ideal of the polynomial ring k\x\, x={x^ . . ., A:J, of

degree ^ d. For a suitable primary decomposition of the ideal a :

a = q i n . . .nq,,

the following integers are bounded by ^(n, a):

(i) The number s.

(ii) The degree of each primary ideal q^.

(iii) The degree of the associated prime ideal p^Vq^

(iv) Exponents e, such that p^cq,.

Moreover, the degree of a n b is bounded in terms of the degrees of a and b.

Using this theorem, we can obtain (6.1) by an analysis of the proof of (1.10)

given in section 5, as follows:
The proof is by induction on n, the theorem being trivial for n = o. Next, we

apply induction on the Krull dimension of V=Spec A;[X, Y]/(/). This is permissible

since the dimension is bounded by n+N.
We will use the following terminology: Given polynomials J-= (Ji, . . . ,j^r) ̂ P^L

the notation ^ ̂ y (modulo (X)c)

will mean /(X, j) = o (modulo (X)6).

We may assume V reduced and irreducible. For let V==V,ed. The degree

of V may be bounded a priori, by (6.5). So may an exponent e such that J^V)6 c (/).

NowifJeA[X] satisfies (X,J)eV (modulo (X)66),

then (X,J)eV (modulo (X)-).

Thus i f ]B works for V, ^==(3 works for V.
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Assume V reduced, and let V be its irreducible components. Their number and

degrees may be bounded a priori, again by (6.5). Let I^e^V1). We have

( / )==I ln. . .n^DI l . I 2 . . .^ .

Therefore, ifj satisfies (X, J) eV (modulo (X)^),

then for some i (X, J) eV1
 (modulo (X)6).

Thus, assuming the result known for the V1, we can find the required solution y lying on

one of the V\ provided c is sufficiently large.

Now suppose the map V—^S==Spec k[~K] is not generically surjective. Then its

image lies in a proper closed set C of S. An elementary consideration of the universal

family of varieties V defined by polynomials of fixed degree shows that the degree s of

a non-zero polynomial vanishing on C can be bounded as a function of degree (/) alone.

Then there is no j^eA;[X] with

/(X,J)^o (modulo (X^^),

and so the constant p = j works trivially for such V.

Thus we may suppose V reduced and irreducible and that the map

V->S==Spec k[X] is generically surjective. We may moreover assume that V is gene-

rically smooth over A;[X]. This is seen by the following argument due to Raynaud

([9]? P- 61, case 2). Suppose it is not. Then the characteristic of A; is J^deg(/), and

there is a purely inseparable extension k' of k, with k^ck, such that V ==VXsS' is not

reduced at its generic point. (Here S' ==Spec ^'[X'J and X^==X,.) The degree

[A' : k] of such an extension may be bounded as a function of degree(/) alone. For the

polynomials f^ have coefficients in a subfield k^ of k whose transcendence degree over the

prime field is bounded by the number of coefficients ofy, and we may take for k ' the
join of k^ and k.

Set Z=V^- Then deg Z is bounded, since deg V == deg V. Denote by n the

functor II of Grothendieck (FGA, 195-12) (Well's restriction of the ground ring). It

is adjoint to the base change •XgS'. Hence we have a canonical map

V-^V.

Now 71̂  carries closed immersions to closed immersions. Hence ifW is the object making

the solid diagram below cartesian, then W is a closed subscheme of V.

w——> yi /
Y ^ ^

n Z — > n V
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To say W==V means that there is a dotted arrow as above making a commutative
diagram. By the adjointness property, we obtain

/vf

i—> v

which contradicts the assumption that V is not reduced. Thus W+V, and so
dim W<dim V.

Now a bound for deg W is given in terms of bounds for deg V and deg Z, as is

mmediately seen. Since by induction the theorem is known for dimensions <dim V,
it suffices to show that if JeA[X] and

(^C) /(X,J) -=o (modulo (X)^),

where e is an exponent with J^{ZY cKV') and where d is a sufficiently large fixed
integer, we have

(X,J)eW (modulo (X)6).

For then if c is sufficiently large we can find yek[X]^ with (X,J)eW, whence since
WcV,/(X,J)=o.

Let S^==SpecA:[X]/(Xy. Then by (6.6), J defines an S-morphism

y : S^->V, l== dec,

By base change, we have

cpXgS'.-S^XsS'^V,

whence a map S;^V, where S;=Spec //[X'J^X^. This map sends S^Z.

Since (X) generates an (X')-primary ideal in A;'[X'], it follows that S.XgS' is a closed
subscheme of S^ for d sufficiently large. Hence we obtain

^c ^S^ ~
>Lt

')

or S,-^Z.

Taking into account some functorial identities, this implies that (p sends S,->Wc V,
as required.

Thus we may assume V irreducible and generically smooth over S. Say that the

relative dimension of V/S at the generic point is r. Then with suitable labeling, the
polynomial

(6-?) 8=det(^/aY,) (zj=i,...,r)

is not identically zero on V. A primary decomposition for the ideal (/i, . . .,^.) yields

( / i^.- .^-^WnJ

where degrees of generating sets for these ideals are bounded and where ^(V) ̂ J.
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Set W=SpecA;[X,Y]/J. The locus V(8)nV contains WnV. Hence S'eJ^+J

for a suitable e which is bounded. Thus

(6.8) 8(X,^) ^ o (modulo (X)6)

implies (X,j/)^WnV (modulo (X)66).

It suffices to prove the following lemma:

Lemma (6.9). — Fix d, n, N. Then/or all integers a, y? tnere ts a P^Y sucn tnat if

(A 5 • • ')fr) nas degree ^d, and if j^eA;[X] are polynomials with the property

/,(X,J)^o (modulo (X)3) i= i, . . ., r

8 (X, J) 4:0 (modulo (X)^,

then there are yek\X}^ with y==y (modulo (X)0') and ^(X,j/) =o for i= i, . . ., r.

For suppose this shown, and let f==(fi, . . .5^)3 oc be as given. Choose y^

large enough so that
/(X,J)EEO (modulo (X)^)

and 8(X,j;) = o (modulo (X)^

imply the existence of y=y (modulo (X)0') solving the system of equations f=S==o.

This is possible by the induction hypothesis on dim V. Now apply the lemma with a

replaced by a'=max(a,Y^) to find p. If 8(X,j^)E=o (modulo (X)^ we are through

by the choice ofy? a-nd if not, the lemma implies the existence of v=y (modulo (X)0')

such that
/,(X,^)=o for z= i , . . ., r,

i.e., (A:,j^)eWuV. Then

8(X,jQ=j=o (modulo (X)^,

hence by (6.8) (X.j^WnV (modulo (X)^).

But (X,^)eV (modulo (X)"'),

therefore (X,j/) ̂ W (modulo (X)^).

Whence (X,j/)eV, as required.

Now to prove lemma (6.9), it suffices to prove

Lemma (6.10). — Assume Theorem (6 .1) true for fewer than n variables X. For all

integers a, y, D, there is a (B with the following property:

Let /=(/i, . . .,/J and g be polynomials in A;[X, Y] of degree ^D. If JeA;[X]

ja^y/î

/(X,J) =o (modulo te(X,J))+(X)3)

6^ ,?(X, J) =t o (modulo (X)^,

^A^ there are elements ^ek[K]^ such that J^^y (modulo (X)0') and

/(X,j/)=o (modulo g(X^)).
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For we let g^S2, D=max(rf, degg), r=m, and substitute Y'=2y and oc'=a+y'

into (6.10), to find p'. We choose (î  a'. Then j3 = p'works for Lemma (6.9): If

/(X, J) = o (modulo (X)3)

then the hypotheses of Lemma (6.10) are verified with a', y'. Hence the lemma implies

the existence of ji°ek[X]~ with j°=J (modulo (X)0'1) and

/<(x,y)=^x,y)A.(X) ^-=i,...,r.

Since /(X,j°) =/(X,J) =o (modulo (X)"'), it follows that A(X) =o (modulo (X)«)
Thus - ' ''

/(X,_y0) = o (modulo S^X,^0). (X)0'),

and so we may apply Lemma (5.10) to complete the proof.

Proof of Lemma {6.10). — We want to apply the Weierstrass Preparation Theorem

to the polynomial g{X,_y), and we need to bound the degree of the resulting monic
polynomial :

Lemma (6. n). — Given y, there is an r with the following property:

For every field k and every power series ({>{x)ek[[X.]] such that

<p(X)^o (modulo (X)^,

there exists a k-automorphism 6 of the polynomial ring A[X] sending the origin {X = o) to itself,

such that the transformed series 6 (9) =9' satisfies

<?' (o, ..., o, XJ =); o (modulo (X'J).

Proof. — Let the order of vanishing of <p at the origin be s^. To say

y'(o, ..., o,XJ^o (modulo (XJ1') is equivalent with the assertion that the homo-

geneous component <^ of 9 of degree s does not vanish at the point (o, ..., o, i) of the

projective space P^»-1. Provided that the field k has at least y-i^-'i 'elements,

there will be some rational point ofP,"-1 at which 9, is not zero. Then a homogeneous

linear transformation of the variables X; results in a situation where 9'(o, . .., o, XJ sj=o

(modulo (XJ8). Thus only fields with fewer elements have to be considered, which

reduces the problem to a finite number of exceptional finite fields k. We may consider
them separately.

Consider coordinate changes of the form

X^=X,+X^ i=i,... ,n-i

X'^=X^

No given power series 9 can be in the ideal (X^, ..., X'̂ ) for all integer values of

ei, •••,^-r This is because the branches {X[=.. .=X:,=o) are dense in Spec k [[X]].

Suppose that the minimum order of vanishing, as {^, ..., c^_J vary, of

<p'(o, .... o, XJ=9(-X^, .... -X'̂ , XJ

is unbounded, and choose a sequence {9,} of polynomials such that the minimum order
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for 9^ is at least v. Since the field k is finite, this sequence has a subsequence which

converges in A;[[X]] to a series <p. From

c p ' ( o , . . . , o , X ' J = t E O (modulo (X)6)

we get 9^(0, ..., o, X'J =)=o (modulo (X)6)

for v sufficiently large. This is a contradiction, which proves the lemma.

Returning to the notation of Lemma (6.10), we may make a change of variables X

as in (6.11)5 so that (5.13) holds with

(6.12) ^(XJ=X;+^_,X^-1+...+^X,+^

the ~d^ being non-units in the ring A;[[X^, . . . ,X^_J ] (they are actually in

A;[Xi, . . ., X^_J^). By (6. n), only a finite number of degrees r need be considered,

and so we may treat each r separately, i.e., fix r.

With the notation of (5.15), (5. i6), we may divide as in (5.17), to obtain poly-

nomials Q^, Q^,, G^, Fy in the variables X^, Y^, A^ with coefficients in A;, and where G,, F^

do not involve X^. Moreover the degrees of these polynomials are bounded a priori.

Lemma (6.13). — Let (p(X)eA;[[X]] be any series, and divide by ~d (6.12):

9(X)=^(XjTc+^P^,

where 7teA;[[X]] and pj£A[[X^, ..., X^_J], Then

cp(X)=o (modulo (X)^1')

implies that TT=O

and Pj=° (modulo (X)") for i==o, ...,r—i.

We leave this calculation to the reader.

Proceeding as in (5.18), (5.19), we have

5(X,J*)=o (modulo a (XJ).

Thus by (5.17)

(6.14) G,(Xi, . . . ,X^_i,{J^},{a,})=o, j==o, . . . ,r- i .

Moreover, /.(X,J)so (modulo (^(X,j))+(X)13)

implies that ^(X, J) = o (modulo (a(XJ) + (X)'3).

Therefore we can write ^(X, J*) ==a(XJA,(X) +<P.(X)

with A,, <p,6A;[[X]], and where

y.(X)so (modulo (X)3).

Divide by a(XJ: <p.(X) =a{X^^ + ̂ p,X^.

Then by uniqueness of division and (5.17),

p,,=F,,(Xi, ..., X»_i, {J^}, {a,}).

,57'
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Thus lemma (6.13) implies that

(6.15) F^(Xi, ..., X,_,, {3^}, {^}) =o (modulo (X)^-^).

By the induction hypothesis, (6.14) and (6.15) imply the existence of a solution of the

system ofequations G, = F .̂ = o in k[X^ .. ., X^_J ~ if (B is sufficiently large — the fact

Aatj^, a^ are power series instead of polynomials does not matter, since we can replace

them by their truncations at high order. Thus the proof may be completed as in section 5,
taking for c the maximum of a and r.
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