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Abstract We prove that each semialgebraic subset of R
n of positive codimension can be

locally approximated of any order by means of an algebraic set of the same dimension. As a
consequence of previous results, algebraic approximation preserving dimension holds also
for semianalytic sets.
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1 Introduction

If A and B are two closed subanalytic subsets of R
n , the Hausdorff distance between their

intersections with the sphere of radius r centered at a common point P can be used to
“measure” how near the two sets are at P . We say that A and B are s-equivalent (at P) if the
previous distance tends to 0 more rapidly than rs (if so, we write A ∼s B).

In the papers [3,4] and [5], we addressed the question of the existence of an algebraic
representative Y in the class of s-equivalence of a given subanalytic set A at a fixed point P .
In this case, we also say that Y s-approximates A.
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The answer to the previous question is in general negative for subanalytic sets (see [4]).
On the other hand, in [3], it was proved that, for any real number s ≥ 1 and for any

closed semialgebraic set A ⊂ R
n of codimension ≥1, there exists an algebraic subset Y

of R
n such that A ∼s Y . The proof of the latter result consists in finding equations for Y

starting from the polynomials appearing in a presentation of A. For instance, if A = {x ∈
R
n | f (x) = 0, h(x) ≥ 0} with f, h ∈ R[x], then A can be s-approximated by the algebraic

set Y = {x ∈ R
n | ( f 2−hm)(x) = 0} for any sufficiently large odd integerm. This procedure

does not guarantee that Y has the same dimension as A at P as the following trivial example
shows.

Let A be the positive x3-axis inR
3 presented as A = {(x1, x2, x3) ∈ R

3 | x21+x22 = 0, x3 ≥
0}. Then, according to the previous procedure, for any sufficiently large odd integerm, A is s-
approximated at the origin O by the algebraic set Y = {(x1, x2, x3) ∈ R

3 | (x21 +x22 )
2−xm3 =

0}, whose germ at O has dimension 2. However, we can also s-approximate A at O by the
one-dimensional algebraic set W = {(x1, x2, x3) ∈ R

3 | x21 − xm3 = 0, x2 = 0} for any
sufficiently large odd integer m. This algebraic set can be obtained by a similar construction
as before, but starting from the different presentation A = {(x1, x2, x3) ∈ R

3 | x1 = 0, x2 =
0, x3 ≥ 0}.

In [5], we proved that, for any s ≥ 1, any closed semianalytic subset A ⊆ R
n is s-

equivalent to a semialgebraic set Y ⊂ R
n having the same local dimension as A. However,

the arguments used in the proof of this latter result do not guarantee that, even if A is analytic,
it can be approximated by means of an algebraic one of the same dimension.

In this paper, we prove in Theorem 4.1 that any semialgebraic set of codimension ≥1 is
s-equivalent to an algebraic one of the same dimension. Using the mentioned result of [5], we
obtain (Corollary 4.3) that any semianalytic set of codimension≥1 can be s-approximated by
an algebraic one preserving the local dimension. The proof of Theorem 4.1 works provided
that the semialgebraic set is described by means of a suitable presentation, as in the previous
example. Therefore, Sect. 3 is devoted to introduce the notion of “regular presentation” and
to prove that one can reduce to work with regularly presented sets.

We wish to thank the referee for his useful comments and suggestions.

2 Basic properties of s-equivalence

In this section, we recall the definition and some basic properties of s-equivalence of sub-
analytic sets at a common point which, without loss of generality, we can assume to be the
origin O of R

n . We refer the reader to [4] for the proofs of the results that we only mention.
If A, B are non-empty compact subsets of R

n , let δ(A, B) = supx∈B d(x, A). Thus,
denoting by D(A, B) the classical Hausdorff distance between the two sets, we have that
D(A, B) = max{δ(A, B), δ(B, A)}.
Definition 2.1 Let A and B be closed subanalytic subsets of R

n with O ∈ A ∩ B. Let s be
a real number ≥1. Denote by Sr the sphere of radius r centered at the origin.

(a) We say that A ≤s B if one of the following conditions holds:

(i) O is isolated in A,
(ii) O is non-isolated both in A and in B and

lim
r→0

δ(B ∩ Sr , A ∩ Sr )

rs
= 0.

(b) We say that A and B are s-equivalent (andwewill write A ∼s B) if A ≤s B and B ≤s A.
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Algebraic approximation preserving dimension 521

It is easy to check that ≤s is transitive and that ∼s is an equivalence relation.
Let B(O, R) denote the open ball centered at O of radius R. Observe that if there exists

R > 0 such that A ∩ B(O, R) ⊆ B, then A ≤s B for any s ≥ 1.
The following result shows the behavior of s-equivalence with respect to the union of sets:

Proposition 2.2 Let A, A′, B and B ′ be closed subanalytic subsets of R
n.

1. If A ≤s B and A′ ≤s B ′, then A ∪ A′ ≤s B ∪ B ′.
2. If A ∼s B and A′ ∼s B ′, then A ∪ A′ ∼s B ∪ B ′.

Auseful tool to test the s-equivalence of two subanalytic sets is introduced in the following
definition:

Definition 2.3 Let A be a closed subanalytic subset of R
n , O ∈ A. For any real σ > 1, we

will call horn-neighborhood with center A and exponent σ the set

H(A, σ ) = {x ∈ R
n | d(x, A) < ‖x‖σ }.

Remark 2.4 If A is a closed semialgebraic subset of R
n and σ is a rational number, then

H(A, σ ) is semialgebraic. Moreover, if O is isolated in A, then H(A, σ ) is empty near O .

Proposition 2.5 Let A, B be closed subanalytic subsets ofRn with O ∈ A∩B and let s ≥ 1.
Then, A ≤s B if and only if there exist real constants R > 0 and σ > s such that

(A \ {O}) ∩ B(O, R) ⊆ H(B, σ ).

An essential tool will be the following version of Łojasiewicz’ inequality, proved in [5];
henceforth, for any map f : R

n → R
p , we will denote by V ( f ) the zero-set f −1(O).

Proposition 2.6 Let A be a compact subanalytic subset of R
n. Assume f and g are subana-

lytic functions defined on A such that f is continuous, V ( f ) ⊆ V (g), g is continuous at the
points of V (g) and such that sup |g| < 1. Then, there exists a positive constant α such that
|g|α ≤ | f | on A and |g|α < | f | on A \ V ( f ).

The following consequences of Proposition 2.6 will be very useful for us:

Proposition 2.7 Let A, B be closed subanalytic subsets of R
n with A ∩ B ⊆ {O}. Then,

there exist positive constants R and β0 such that, for any β ≥ β0, we have

H(A, β) ∩ B ∩ B(O, R) = ∅.

Proof Let φ : B → R be the function defined by φ(x) = d(x, A) for every x ∈ B. The
function φ is subanalytic, continuous and V (φ) = A∩ B ⊆ {O}. Hence, by Proposition 2.6,
there exist positive constants R and β0 such that d(x, A) > ‖x‖β0 for all x ∈ B ∩ B(O, R) \
{O}. So, for any β ≥ β0, no x can lie in H(A, β) ∩ B ∩ B(O, R). ��
Proposition 2.8 Assume that A and B are closed subanalytic subsets of R

n with B ⊆ A and
O ∈ B. If there exists s0 ≥ 1 such that A ≤s B for every s ≥ s0, then there exists R > 0
such that A ∩ B(O, R) = B ∩ B(O, R).

Proof Assume by contradiction that A ∩ B(O, R) � B ∩ B(O, R) for every R > 0. In
particular, this implies that O ∈ A \ B and so, by the curve selection lemma, there exists an
analytic curve γ : (−1, 1) → R

n such that γ (0) = O and γ (t) ∈ A \ B for t ∈ (0, 1). We
can assume that the arc γ intersects each sphere centered at O of sufficiently small radius,
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i.e., there exists r0 < 1 such that for any 0 < r ≤ r0 there exists xr ∈ Im(γ ) ∩ Sr ⊆
(A \ B) ∩ Sr . Since d(xr , B ∩ Sr ) > 0, the subanalytic function ϕ : [0, r0] → R, defined by
ϕ(r) = supx∈A∩Sr d(x, B ∩ Sr ) = δ(B ∩ Sr , A ∩ Sr ) if r > 0 and ϕ(0) = 0, vanishes only
at 0. Hence, by Proposition 2.6, there exists a real μ ≥ 1 (and we can assume μ ≥ s0) such
that ϕ(r) > rμ for all r ∈ (0, r0], that is δ(B∩Sr ,A∩Sr )

rμ > 1 for all r ∈ (0, r0]. Then, A �μ B,
which is a contradiction. ��

The following technical result shows that it is possible to modify a subanalytic set by
means of a suitable horn-neighborhood producing a new subanalytic set s-equivalent to the
original one:

Lemma 2.9 Let X ⊆ A ⊆ R
n be closed subanalytic sets such that O ∈ X and let s ≥ 1.

Then:

1. for any σ > s, we have A ∼s A ∪ H(X, σ );
2. if A \ X = A, there exists σ > s such that A \ H(X, σ ) ∼s A.

Let us now present a generalization of the previous result that will be used later on:

Lemma 2.10 Let X ⊆ A ⊆ R
n be closed subanalytic sets such that O ∈ X ∩ A \ X and let

s ≥ 1. Then, there exists σ > s such that A \ H(X, σ ′) ∼s A \ X for all σ ′ ≥ σ .

Proof Let Z = A \ X . Since Z \ (Z ∩ X) = Z , the sets Z and Z ∩ X satisfy the hypothesis
of Lemma 2.9 (2). Hence, there exists τ > s such that Z \ H(Z ∩ X, τ ) ∼s Z . Since
(Z \H(Z ∩ X, τ ))∩ X ⊆ {O}, by Proposition 2.7 there exist positive constants R and σ > s
such that

H(X, σ ) ∩ (Z \ H(Z ∩ X, τ )) ∩ B(O, R) = ∅,

i.e., (Z \ H(Z ∩ X, τ )) ∩ B(O, R) ⊆ Z \ H(X, σ ) and hence

Z ≤s Z \ H(Z ∩ X, τ ) ≤s Z \ H(X, σ ) ≤s Z .

Therefore,

Z ∼s Z \ H(X, σ ) = A \ H(X, σ ).

Moreover, since for any σ ′ ≥ σ near the origin we have H(X, σ ′) ⊆ H(X, σ ), then

A \ X ≤s A \ H(X, σ ) ≤s A \ H(X, σ ′) ≤s A \ X

which yields the thesis. ��

3 Presentations of semialgebraic sets

This section is devoted to the first crucial step in our strategy, that is reducing ourselves to
prove the main theorem for semialgebraic sets suitably presented.

Definition 3.1 Let A be a closed semialgebraic subset of R
n with dimO A = d > 0. We

will say that A admits a good presentation if

(a) the Zariski closure A
Z
of A is irreducible
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Algebraic approximation preserving dimension 523

(b) there exist generators f1, . . . , f p of the ideal I (A
Z
) ⊆ R[x1, . . . , xn] and h1, . . . , hq

polynomial functions such that

A = {x ∈ R
n | fi (x) = 0, h j (x) ≥ 0, i = 1, . . . , p, j = 1, . . . , q}

(c) hi (O) = 0 and dimO(V (hi ) ∩ V ( f )) < d , for each i , where f = ( f1, . . . , f p).

Lemma 3.2 Let A be a closed semialgebraic subset of R
n with dimO A = d > 0. Then,

there exist closed semialgebraic sets Γ1, . . . , Γr , Γ
′ such that

1. A = (⋃r
i=1 Γi

) ∪ Γ ′
2. for each i , dimO Γi = d, and dimO Γ ′ < d
3. for each i , Γi admits a good presentation.

Proof Arguing as in [5, Lemma 3.2] in the semialgebraic setting, there exist semialgebraic
sets Γ1, . . . , Γr , Γ

′ fulfilling conditions (1) and (2) of the thesis and such that, for each i , Γi

admits a presentation satisfying conditions (a) and (b) of Definition 3.1. In order to achieve
also condition (c), it suffices to drop from the presentation of each Γi all the inequalities
h j (x) ≥ 0 such that h j vanishes identically on Γi . ��

Since we are interested in preserving dimension, we will reduce ourselves to work with a
set presented by as many polynomial equations as its codimension and with the critical locus
of the associated polynomial map nowhere dense.

Notation 3.3 LetΩ be an open subset of R
n. For any smooth ϕ : Ω → R

p, denoteΣr (ϕ) =
{x ∈ Ω | rk dxϕ < r} and Σ(ϕ) = Σp(ϕ).

Definition 3.4 Let A be a closed semialgebraic subset of R
n with dimO A = d > 0. We will

say that A admits a regular presentation if there exist a polynomial map F : R
n → R

n−d

and polynomial functions h1, . . . , hq such that

(a) A = {x ∈ R
n | F(x) = 0, h j (x) ≥ 0, j = 1, . . . , q},

(b) dimO (Σ(F) ∩ A) < d
(c) hi (O) = 0 and dimO (V (hi ) ∩ A) < d , for each i .

A useful tool to pass from a good presentation to a regular one will be the following result
(for a proof see for instance [1, Lemma 7.7.10]):

Lemma 3.5 Let A be a closed semialgebraic subset of R
n and let h, g be polynomial func-

tions on R
n. Then, there exist polynomial functions ϕ,ψ with ϕ > 0 and ψ ≥ 0 such

that

1. sign(ϕh + ψg) = sign(h) on A

2. V (ψ) ⊆ V (h) ∩ A
Z
.

Proposition 3.6 Let A be a closed semialgebraic subset of R
n with dimO A = d > 0 which

admits a good presentation. Let s ≥ 1. Then, there exists a closed semialgebraic subset Ã of
R
n with dimO Ã = d > 0 such that

1. Ã admits a regular presentation
2. Ã ∼s A.

Proof By hypothesis, we have that

A = {x ∈ R
n | f (x) = O, h j (x) ≥ 0, j = 1, . . . , q}
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with f = ( f1, . . . , f p) such that V ( f ) is irreducible, V ( f ) = A
Z
and f1, . . . , f p gener-

ate the ideal I (V ( f )). In particular, dimO(Σn−d( f ) ∩ V ( f )) < d (see for instance [1,
Definition 3.3.3]).

If p = n − d , we have the thesis with Ã = A; thus, let p > n − d .
Denote by Π the set of surjective linear maps from R

p to R
n−d and consider the smooth

mapΦ : (Rn −V ( f ))×Π → R
n−d defined byΦ(x, π) = (π ◦ f )(x) for all x ∈ R

n −V ( f )
and π ∈ Π .

The map Φ is transverse to {O}: namely the partial Jacobian matrix of Φ with respect
to the variables in Π (considered as an open subset of R

p(n−d)) is the (n − d) × p(n − d)

matrix
⎡

⎢
⎢
⎢
⎣

f (x) O O . . . O
O f (x) O . . . O
...

O O O . . . f (x)

⎤

⎥
⎥
⎥
⎦

;

thus, for all x ∈ R
n − V ( f ) and for all π ∈ Π , the Jacobian matrix of Φ has rank n − d .

As a consequence, by a well-known result of singularity theory (see for instance [2,
Lemma3.2]),wehave that themapΦπ : R

n−V ( f ) → R
n−d definedbyΦπ(x) = Φ(x, π) =

(π ◦ f )(x) is transverse to {O} for all π outside a set Γ ⊂ Π of measure zero, and hence,
π ◦ f is a submersion on V (π ◦ f ) \ V ( f ) for all such π .

Let x ∈ V ( f ) be a point at which f has rank n − d . Then, there is an open dense set
U ⊂ Π such that, for all π ∈ U , the map π ◦ f is a submersion at x , and hence off some
subvariety of V ( f ) of dimension smaller than d .

Thus, if we choose π0 ∈ (Π \ Γ ) ∩ U , the map F = π0 ◦ f : R
n → R

n−d satisfies the
following properties:

– dimO V (F) = dimO V ( f ) = d ,
– Σ(F) ∩ V (F) ⊆ V ( f ) ⊆ V (F),
– dimO (Σ(F) ∩ V (F)) < d .

We want to show that there exist polynomials h′
i such that

– A = {x ∈ R
n | f (x) = O, h′

i (x) ≥ 0, i = 1, . . . , q}
– dimO (V (F) ∩ ⋃q

i=1 V (h′
i )) < d.

Namely, for each i ∈ {1, . . . , q} denote by Wi the union of the irreducible components Y

of V (F) such that dimO(V (hi )∩Y ) < d ; let also Ti = V (F) \ Wi
Z
. Note that V ( f ) ⊆ Wi .

If we apply Lemma 3.5 choosing h = hi and g = ‖ f ‖2 on Wi , then there exist ϕ,ψ with
ϕ > 0 and ψ ≥ 0 such that the function h′

i = ϕhi + ψ‖ f ‖2 has the same sign as hi on Wi

and V (ψ) ⊆ V (hi ) ∩ Wi
Z
. Then,

– V (h′
i ) ∩ Wi = V (hi ) ∩ Wi

– since h′
i |Ti = (ψ‖ f ‖2)|Ti , then V (h′

i ) ∩ Ti = (V (ψ) ∩ Ti ) ∪ (V ( f ) ∩ Ti ) ⊆ Wi ∩ Ti .

Thus, dimO(V (h′
i ) ∩ V (F)) < d for any i and

A = {x ∈ R
n | f (x) = O, h′

i (x) ≥ 0, i = 1, . . . , q}.
For each m ∈ N denote

Ãm = {x ∈ R
n | F(x) = 0, ‖x‖2m − ‖ f (x)‖2 ≥ 0, h′

i (x) ≥ 0, i = 1, . . . , q}. (1)

Since A ⊆ Ãm ⊆ V (F), then dimO Ãm = d .

123



Algebraic approximation preserving dimension 525

Weclaim that there existsm such that Ãm ∼s A. Since A ⊆ Ãm ,we trivially have that A ≤s

Ãm for any m. Thus, it is sufficient to prove that there exists m such that Ãm ≤s A. Namely,
let Λ = {x ∈ R

n | h′
i (x) ≥ 0, i = 1, . . . , q}. Since V (‖ f ‖) ∩ Λ = A = V (d(x, A)) ∩ Λ,

by Proposition 2.6 there exist a rational number τ and a real number R > 0 such that

d(x, A)τ < ‖ f (x)‖ ∀x ∈ (Λ \ V ( f )) ∩ B(O, R) = (Λ \ A) ∩ B(O, R).

Let m > sτ . Then d(x, A) < ‖ f (x)‖ 1
τ ≤ ‖x‖m

τ for all x ∈ ( Ãm \ A) ∩ B(O, R). This
implies that ( Ãm \ {O}) ∩ B(O, R) ⊆ H(A, m

τ
), and hence, by Proposition 2.5, Ãm ≤s A.

Up to increasing m, we can also assume that dimO(V (F) ∩ V (‖x‖2m − ‖ f (x)‖2)) < d
and hence that (1) is a regular presentation of Ãm .

It is thus sufficient to choose m as above and Ã = Ãm . ��

4 Main result

Since s-equivalence depends only on the germs at O , we are allowed to identify a subanalytic
set with a realization of its germ at the origin in a suitable ball B(O, R) with R < 1.
Henceforth, wewill even omit to explicitly indicate the intersection of our sets with B(O, R);
in particular, given two sets U and U ′, when we write that U ⊆ U ′ we mean that U ∩
B(O, R) ⊆ U ′ for a suitable radius R.

Theorem 4.1 For any real number s ≥ 1 and for any closed semialgebraic set A ⊂ R
n of

codimension ≥1 with O ∈ A, there exists an algebraic subset S of R
n such that A ∼s S and

dimO S = dimO A.

Proof We will prove the thesis by induction on d = dimO A.
If d = 0 the result holds trivially. So let d ≥ 1 and assume that the result holds for all

semialgebraic sets of dimension smaller that d .
By Lemma 3.2, there exist closed semialgebraic sets Γ1, . . . , Γr , Γ

′ such that

1. A = (⋃r
i=1 Γi

) ∪ Γ ′
2. for each i , dimO Γi = d and Γi admits a good presentation
3. dimO Γ ′ < d .

By Proposition 2.2, by Proposition 3.6 and by the inductive hypothesis, we can assume
that A is described by means of a regular presentation as

A = {x ∈ R
n | F0(x) = O, h j (x) ≥ 0, j = 1, . . . , q}

with F0 = ( f1, . . . , fn−d). We can assume q ≥ 1, because otherwise there is nothing to
prove.

We will use the following notation:

– Zi = ⋃q
j=i+1 V (h j ) for i = 0, . . . , q − 1, and Zq = ∅,

– X = (Σ(F0) ∪ Z0) ∩ A,
– f̃ = ( f2, . . . , fn−d) : R

n → R
n−d−1 and V = V ( f̃ ),

– Λi = {x ∈ R
n | h j (x) ≥ 0, j = i + 1, . . . , q} for any i = 0, . . . , q − 1, and Λq = R

n .

In order to avoid trivial cases, we can consider only the case when O ∈ X .
Since the presentation of A is regular, we have that

dimO(Σ(F0) ∩ A) < d and dimO(Z0 ∩ A) < d.
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Let Y = X \ A \ X , then A = A \ X ∪ Y . Since dimO X < d , then dimO Y < d too and
thus, by the inductive hypothesis, there exists an algebraic subset T of R

n such that Y ∼s T
and dimO T = dimO Y.

In particular,

A = A \ X ∪ Y ∼s A \ X ∪ T .

Since dimO X < dimO A, then O is a non-isolated point in A \ X and Lemma 2.10
ensures that there exists σ > s such that, for any σ ′ ≥ σ , we have

A \ H(X, σ ′) ∼s A \ X .

We claim that there exists a rational number σ0 > σ such that O is an accumulation
point for A \ H(X, σ0). Otherwise for any integer n > 2, there exists Rn > 0 such that
(A \ H(X, n)) ∩ B(O, Rn) = ∅, i.e., A ∩ B(O, Rn) ⊆ H(X, n) ⊆ H(X, n − 1) ∪ {O}. By
Proposition 2.5, it follows that A ≤t X for any t > 1. Then, by Proposition 2.8, there exists
R > 0 such that A∩B(O, R) = X∩B(O, R),which is not possible since dimO X < dimO A.

If we denote K0 = R
n \ H(X, σ0), then

A ∩ K0 ∼s A \ X

and, moreover, O is an accumulation point for A ∩ ◦
K 0, where

◦
K 0 denotes the interior part

of K0.
Let g0 = f1. We will recursively construct polynomial functions g1 . . . , gq and closed

semialgebraic sets K1 . . . , Kq such that

– Ki ⊆ ◦
K i+1 ∪ {O} for any i = 0, . . . , q − 1

– if Fi = (gi , f2, . . . , fn−d), then for any i = 0, . . . , q the semialgebraic subset

Ai = {x ∈ R
n | Fi (x) = 0, h j (x) ≥ 0, j = i + 1, . . . , q} = V (gi ) ∩ V ∩ Λi

satisfies the following properties:

P1(i):

{
A ∩ K0 ∼s A \ X if i = 0
Ai ∩ Ki ∼s Ai−1 ∩ Ki−1 if i = 1, . . . , q

P2(i): Zi ∩ Ai ∩ Ki ⊆ {O}
P3(i): Σ(Fi ) ∩ Ai ∩ Ki ⊆ {O}
P4(i): O is an accumulation point for Ai ∩ ◦

K i .

Evidently, the set A0 = A satisfies the properties P1(0), P2(0), P3(0) and P4(0). Thus,
assume that 0 ≤ i ≤ q − 1, assume that we have already constructed Ai fulfilling the four
previous properties and let us construct gi+1 in such a way that Ai+1 satisfies properties
P1(i + 1), P2(i + 1), P3(i + 1) and P4(i + 1).

For any positive integer m, let gi+1 = g2i − hmi+1.
Wewill see that there existsms ∈ N such that for anyodd integerm ≥ ms the semialgebraic

set Ai+1 = V (gi+1) ∩ V ∩ Λi+1 satisfies properties P1(i + 1), P2(i + 1), P3(i + 1) and
P4(i + 1).

Properties P2(i) and P3(i) guarantee that (Ai ∩ Ki ) ∩ (Σ(Fi ) ∪ Zi ) ⊆ {O}. Hence, by
Proposition 2.7, there exists a rational number β > s such that (near the origin)

H(Ai ∩ Ki , β) ∩ (Σ(Fi ) ∪ Zi ) = ∅.

Let Hβ = H(Ai ∩ Ki , β). Up to increasing β, we can assume that

Hβ ∩ (Σ(Fi ) ∪ Zi ) ⊆ {O} (2)
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Property P1(i + 1). Consider the set E = R
n \ Hβ .

Evidently, the closed semialgebraic set W = (V ∩ Λi+1 ∩ Ki ∩ E) ∩ {hi+1 ≥ 0} fulfills
the condition

V (gi ) ∩ W = (Ai ∩ Ki ) ∩ E = {O}.
Thus, by Proposition 2.6 there exists m1 ∈ N such that, for any integer number m ≥ m1, we
have gi (x)2 ≥ hi+1(x)m for all x ∈ W and gi (x)2 > hi+1(x)m for all x ∈ W \ {O}.

If we take m an odd integer ≥ m1, by construction gi+1 = g2i − hmi+1 is strictly positive
onW \ {O} and on {hi+1 < 0}, hence gi+1 is strictly positive on (V ∩Λi+1 ∩ Ki ∩ E)\ {O}.
Since Ai+1 = V (gi+1) ∩ V ∩ Λi+1, it follows that

Ai+1 ∩ Ki ⊆ (Rn \ E) ∪ {O} = Hβ ∪ {O} (3)

and therefore, by Proposition 2.5, we have

Ai+1 ∩ Ki ≤s Ai ∩ Ki .

Claim: There exists a closed semialgebraic set Ki+1 such that

1. Ki ⊆ ◦
K i+1 ∪ {O}

2. (Ai ∪ Ai+1) ∩ Ki+1 ⊆ Hβ ∪ {O}.

Proof of the Claim Since Ai ∩ Ki ⊆ Hβ ∪ {O} and by (3), we have that

(Ai ∪ Ai+1) ∩ Ki ⊆ Hβ ∪ {O}. (4)

Then, the set
(
(Ai ∪ Ai+1) \ (Ki ∪ Hβ)

) ∪ {O} = (Ai ∪ Ai+1) \ Hβ is closed and intersects
Ki only at O . Hence, by Proposition 2.7, there exists a rational number σ ′ > s such that

(
(Ai ∪ Ai+1) \ (Ki ∪ Hβ)

) ∩ H(Ki , σ
′) = ∅.

Up to increasing σ ′, we can assume that
(
(Ai ∪ Ai+1) \ (Ki ∪ Hβ)

) ∩ H(Ki , σ ′) = ∅.

Thus, if we let Ki+1 = H(Ki , σ ′), we have
(
(Ai ∪ Ai+1) \ (Ki ∪ Hβ)

) ∩ Ki+1 = ∅
and hence

(Ai ∪ Ai+1) ∩ (Ki+1 \ Ki ) ⊆ Hβ .

Then, recalling (4), we have

(Ai ∪ Ai+1) ∩ Ki+1 = ((Ai ∪ Ai+1) ∩ Ki ) ∪ ((Ai ∪ Ai+1) ∩ (Ki+1 \ Ki )) ⊆ Hβ ∪ {O},
which concludes the proof of the Claim. ��

In particular, the previous Claim ensures that Ai+1 ∩ Ki+1 ⊆ Hβ ∪ {O}, and hence
Ai+1 ∩ Ki+1 ≤s Ai ∩ Ki .

It remains to prove that Ai ∩ Ki ≤s Ai+1 ∩ Ki+1.
Consider the set Bi = V ∩ Λi ⊇ Ai .
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By the Claim and by (2), for any x ∈ (Ai ∩ Ki+1) \ {O}, we have dimx Ai = d and
dimx Bi = d + 1. Moreover, since Ai ∩ Ki ∼s A∩ K0, O is a non-isolated point in Ai ∩ Ki

and hence in Ai ∩ Ki+1 too.

Then, if we letΩi = Ki+1 \ ◦
K i , for any x ∈ Ai ∩

◦
K i+1 \ {O} at least one of the following

facts holds:

– dimx (Bi ∩ Ki ) = d + 1
– dimx (Bi ∩ Ωi ) = d + 1.

It will be useful to consider the following closed semialgebraic sets

(Bi ∩ Ki )
∗ = {x ∈ Bi ∩ Ki | dimx (Bi ∩ Ki ) = d + 1}

(Ai ∩ Ki )
∗ = Ai ∩ (Bi ∩ Ki )

∗

(Bi ∩ Ωi )
∗ = {x ∈ Bi ∩ Ωi | dimx (Bi ∩ Ωi ) = d + 1}

(Ai ∩ Ωi )
∗ = Ai ∩ (Bi ∩ Ωi )

∗.

Since Ki ⊆ ◦
K i+1 ∪ {O}, the previous considerations imply that

Ai ∩ Ki \ {O} ⊆ (Ai ∩ Ki )
∗ ∪ (Ai ∩ Ωi )

∗.

Moreover, since Ai ∩ ◦
Ki \ {O} ⊆ (Ai ∩ Ki )

∗ and using property P4(i), then O is an
accumulation point for (Ai ∩ Ki )

∗ and hence a non-isolated point of (Ai ∩ Ki )
∗. Therefore,

Ai ∩ Ki ⊆ (Ai ∩ Ki )
∗ ∪ (Ai ∩ Ωi )

∗.

We also have that
(Bi ∩ Ki )∗ \ (Ai ∩ Ki )∗ = (Bi ∩ Ki )

∗. (5)

Namely, if x ∈ (Ai ∩ Ki )
∗, there exists a sequence xν ∈ (Bi ∩ Ki ) \ {O} converging to x

and such that dimxν (Bi ∩ Ki ) = d + 1. If definitively xν /∈ Ai , then x is a limit point of
(Bi ∩ Ki )

∗ \ (Ai ∩ Ki )
∗. Otherwise, for any xν ∈ Ai , since dimxν (Ai ∩ Ki ) ≤ d , there exists

yν ∈ (Bi ∩ Ki ) \ (Ai ∩ Ki ) such that dimyν (Bi ∩ Ki ) = d + 1 and ‖xν − yν‖ < 1
ν
. Then, x

is a limit point of the sequence yν ∈ (Bi ∩ Ki )
∗ \ (Ai ∩ Ki )

∗.
Let dg be the geodesic distance on (Bi ∩ Ki )

∗ and denote by Bg(x0, r) = {y ∈ (Bi ∩
Ki )

∗ | dg(y, x0) < r} the geodesic ball centered at x0 ∈ (Bi ∩ Ki )
∗.

By [6, Proposition 3, page 70], there exist constants R0 > 0, C > 0 and 0 < α ≤ 1 such
that, for any y1, y2 ∈ (Bi ∩ Ki )

∗ ∩ B(O, R0), we have that

‖y1 − y2‖ ≤ dg(y1, y2) ≤ C‖y1 − y2‖α.

Therefore, for x0 ∈ (Bi ∩ Ki )
∗ ∩ B(O, R0

2 ) and for r < R0
2 , we have

Bg(x0, r) ⊆ B(x0, r) ∩ (Bi ∩ Ki )
∗ ⊆ Bg(x0,Cr

α).

Up to decreasing R0 and α if necessary, we can assume thatC = 1.We emphasize that, by
the convention settled at the beginning of this section, we can assume that the ball B(O, R)

where we are working is contained in B(O, R0
2 ).

By (5) and by Lemma 2.9, there exists a closed semialgebraic subset L ⊆ (Bi ∩Ki )
∗ such

that

L ∩ (Ai ∩ Ki )
∗ = {O} and (Bi ∩ Ki )

∗ ∼ s+β
α

L .

Evidently,

V (gi ) ∩ L = V (gi ) ∩ L ∩ (Bi ∩ Ki )
∗ = Ai ∩ L ∩ (Bi ∩ Ki )

∗ = L ∩ (Ai ∩ Ki )
∗ = {O}.
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Thus, by Proposition 2.6, there exists m2 ∈ N such that for any integer m ≥ m2 we have
gi (x)2 ≥ hi+1(x)m for all x ∈ L and gi (x)2 > hi+1(x)m for all x ∈ L \ {O}.

If we take an integer m ≥ m2, by construction gi+1 = g2i − hmi+1 is strictly positive on
L \ {O}.

Let x ∈ (Ai ∩ Ki )
∗ \ {O}. By P2(i), we have hi+1(x) > 0, so that gi+1(x) < 0. Since

(Bi ∩ Ki )
∗ ∼ s+β

α
L , by Proposition 2.5 there exist η >

s+β
α

and z ∈ L ⊆ (Bi ∩ Ki )
∗ such

that ‖x − z‖ < ‖x‖η (and we can assume that z �= O).
As gi+1 is strictly positive on L\{O}, then gi+1(z) > 0. Since z ∈ B(x, ‖x‖η)∩(Bi∩Ki )

∗,
then z ∈ Bg(x, ‖x‖ηα). So, by the Intermediate Value Theorem on Bg (x, ‖x‖ηα), there
exists w ∈ Bg (x, ‖x‖ηα) ⊆ B (x, ‖x‖ηα) ∩ (Bi ∩ Ki )

∗ such that gi+1(w) = 0. Hence,
w ∈ (Bi ∩ Ki )

∗ ∩ V (gi+1) ⊆ Ai+1 ∩ Ki ; as a consequence, x ∈ H(Ai+1 ∩ Ki , ηα).
We have thus proved that (Ai ∩ Ki )

∗ \ {O} ⊆ H(Ai+1 ∩ Ki , ηα) and therefore, since
ηα > s, that

(Ai ∩ Ki )
∗ ≤s Ai+1 ∩ Ki (6)

by Proposition 2.5.
If O ∈ (Ai ∩ Ωi )

∗, a slight modification of the previous argument allows one to obtain
that there exists m3 ∈ N such that, for any integer m ≥ m3, if gi+1 = g2i − hmi+1, then

(Ai ∩ Ωi )
∗ ≤s Ai+1 ∩ Ωi .

The only needed change occurs to prove that (Ai ∩ Ωi )
∗ \ {O} ⊆ H(Ai+1 ∩ Ωi , η

′α)

for some η′, avoiding the use of P2(i). Namely, we can proceed as above to show that every
x ∈ (Ai ∩ Ωi )

∗ \ {O} such that hi+1(x) > 0 belongs to H(Ai+1 ∩ Ωi , η
′α); if instead

hi+1(x) = 0, then gi+1(x) = 0 too and therefore x ∈ Ai+1 ∩ Ωi .
Hence, if O ∈ (Ai ∩ Ωi )

∗, then, for any integer m ≥ max{m2,m3},
Ai ∩ Ki ≤s (Ai ∩ Ki )

∗ ∪ (Ai ∩ Ωi )
∗ ≤s (Ai+1 ∩ Ki ) ∪ (Ai+1 ∩ Ωi ) = Ai+1 ∩ Ki+1.

If instead O /∈ (Ai ∩ Ωi )
∗, then, near O , we have Ai ∩ Ki ⊆ (Ai ∩ Ki )

∗ and hence

Ai ∩ Ki ≤s (Ai ∩ Ki )
∗ ≤s Ai+1 ∩ Ki ≤s Ai+1 ∩ Ki+1

(in this case let m3 = 1).
Hence, if we let M = max{m1,m2,m3}, then, for any odd integer m ≥ M , we have

Ai+1 ∩ Ki+1 ∼s Ai ∩ Ki

and so P1(i + 1) is proved.
Property P2(i + 1). By (2) and by the Claim, we have that

Ai+1 ∩ Ki+1 ∩ Zi ⊆ {O}.
Since Zi+1 ⊆ Zi , property P2(i + 1) holds. In addition, we have obtained that hi+1 does not
vanish on Ai+1 ∩ Ki+1 \ {O}.
Property P3(i + 1). In order to prove P3(i + 1), consider the Jacobian matrix of Fi+1 =
(gi+1, f2, . . . , fn−d), i.e.,

⎛

⎜⎜⎜
⎝

2gi∇gi − m hm−1
i+1 ∇hi+1

∇ f2
...

∇ fn−d

⎞

⎟⎟⎟
⎠

.
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Evaluating it on the points of Ai+1, we get the matrix
⎛

⎜
⎜
⎜
⎜
⎝

h
m
2
i+1(2∇gi − m h

m
2 −1
i+1 ∇hi+1)

∇ f2
...

∇ fn−d

⎞

⎟
⎟
⎟
⎟
⎠

.

Since, as seen above, hi+1 does not vanish on Ai+1 ∩ Ki+1 \ {O},
Σ(Fi+1) ∩ Ai+1 ∩ Ki+1

=
{
x ∈ Ai+1 ∩ Ki+1 |

(
2∇gi − m h

m
2 −1
i+1 ∇hi+1

)
∧ ∇ f2 ∧ · · · ∧ ∇ fn−d = 0

}
.

If we let ϕ = 4‖∇gi ∧ ∇ f2 ∧ . . . ∧ ∇ fn−d‖2 and ψ = ‖∇hi+1 ∧ ∇ f2 ∧ · · · ∧ ∇ fn−d‖2, we
have that

Σ(Fi+1) ∩ Ai+1 ∩ Ki+1 ⊆ {
x ∈ Ai+1 ∩ Ki+1 | ϕ(x) = m2|hi+1(x)|m−2ψ(x)

}
.

Since V (ϕ) = Σ(Fi ), by (2) V (ϕ) ∩ Hβ ⊆ {O}; then, by Proposition 2.6, there exists λ

such that ϕ(x) ≥ ‖x‖λ on Hβ and hence, by the Claim, also on Ai+1 ∩ Ki+1.
Moreover, there exist constants μ and N such that both |hi+1(x)|μ ≤ ‖x‖ and ψ ≤ N on

a neighborhood of O .
If m > λμ + 2, then Σ(Fi+1) ∩ Ai+1 ∩ Ki+1 ⊆ {O}. Namely, if by contradiction

there exists a sequence of points xν ∈ Ai+1 ∩ Ki+1 converging to O such that ϕ(xν) =
m2|hi+1(xν)|m−2ψ(xν), then

‖xν‖λμ ≤ m2μNμ‖xν‖m−2

which is a contradiction.
Let m4 be an integer such that m4 > λμ + 2. Thus, for any odd integer m ≥ m4, we have

that Ai+1 satisfies property P3(i + 1).

Property P4(i + 1). By hypothesis, O is an accumulation point for Ai ∩ ◦
K i . Since Ai ∩

◦
K i \ {O} ⊆ (Ai ∩ Ki )

∗, by (6) O is an accumulation point for Ai+1 ∩ Ki and then also for

Ai+1 ∩ ◦
K i+1.

Finally, if we letms = max{M,m4}, then for any odd integerm ≥ ms , we have that Ai+1

satisfies all the properties P1(i + 1), P2(i + 1), P3(i + 1) and P4(i + 1).
At the end of the recursive construction, the set Aq is algebraic.
For any x ∈ Aq ∩ Kq \ {O}, by the properties P2(q) and P3(q) we have that dimx Aq = d ,

and hence, dimx (Aq ∩ Kq) ≤ d . Then, dimO(Aq ∩ Kq) ≤ d .

On the other hand, for any x ∈ Aq ∩ ◦
Kq \{O}, we have that dimx (Aq ∩Kq) = dimx (Aq ∩

◦
Kq) = d . Since, by property P4(q), O is an accumulation point for Aq ∩ ◦

Kq , then dimO(Aq ∩
Kq) ≥ d . Hence, dimO(Aq ∩ Kq) = d .

Moreover the following facts hold:

(a) A ∼s A \ X ∪ T ∼s (A ∩ K0) ∪ T ∼s (Aq ∩ Kq) ∪ T
(b) Aq \ Kq ⊆ R

n \ K0 = H(X, σ0), and thus, Aq \ Kq ≤s X
(c) Aq = (Aq \ Kq) ∪ (Aq ∩ Kq) ≤s X ∪ A \ X = A.

As a consequence

(Aq ∩ Kq)
Z ∪ T ≤s Aq ∪ T ≤s A ∪ Y = A ≤s (Aq ∩ Kq) ∪ T ≤s (Aq ∩ Kq)

Z ∪ T .
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Thus, S = (Aq ∩ Kq)
Z ∪ T satisfies the thesis. ��

The previous theorem allows us to strengthen the following result on approximation pre-
serving dimension which can be found in [5]:

Theorem 4.2 Let A be a closed semianalytic subset of R
n with O ∈ A. Then, for any s ≥ 1,

there exists a closed semialgebraic set B ⊆ R
n such that A ∼s B and dimO B = dimO A.

From Theorem 4.1 and from Theorem 4.2, we immediately obtain:

Corollary 4.3 For any real number s ≥ 1 and for any closed semianalytic set A ⊂ R
n of

codimension ≥1 with O ∈ A, there exists an algebraic subset S of R
n such that A ∼s S and

dimO S = dimO A.

Example 4.4 If A = {(x, y, z) ∈ R
3 | z = 0, x ≥ 0, y ≥ 0} and s ≥ 1, the approximation

technique described in the proof of Theorem4.1 yields a surface defined by (z2−xm)2−y p =
0 for suitable odd integers m and p; the shape of such a surface is represented in Fig. 1.

Fig. 1 Algebraic approximation
of a quadrant
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