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Abstract. Many popular stream ciphers apply a filter/combiner to the
state of one or several LFSRs. Algebraic attacks on such ciphers [10,11]
are possible, if there is a multivariate relation involving the key/state
bits and the output bits. Recent papers by Courtois, Meier, Krause
and Armknecht [1,2,10,11] show that such relations exist for several well
known constructions of stream ciphers immune to all previously known
attacks. In particular, they allow to break two ciphers using LFSRs and
completely “well designed” Boolean functions: Toyocrypt and LILI-128,
see [10,11]. Surprisingly, similar algebraic attacks exist also for the state-
ful combiner construction used in Bluetooth keystream generator E0 [1].
More generally, in [2] it is proven that they can break in polynomial
time, any combiner with a fixed number of inputs and a fixed number of
memory bits.
In this paper we present a method that allows to substantially reduce
the complexity of all these attacks. We show that when the known
keystream bits are consecutive, an important part of the equations
will have a recursive structure, and this allows to partially replace the
usual sub-cubic Gaussian algorithms for eliminating the monomials,
by a much faster, essentially linear, version of the Berlekamp-Massey
algorithm. The new method gives the fastest attack proposed so far
for Toyocrypt, LILI-128 and the keystream generator that is used in
E0 cipher. Moreover we present two new fast general algebraic attacks
for stream ciphers using Boolean functions, applicable when the degree
and/or the number of inputs is not too big.

Keywords: Algebraic attacks,stream ciphers, multivariate equations,
nonlinear filters, Boolean functions, combiners with memory, LFSR
synthesis, Berlekamp-Massey algorithm, Toyocrypt, Cryptrec, LILI-128,
Nessie, E0, Bluetooth.

1 Introduction

In this paper we study stream ciphers with linear feedback. In such ciphers there
is a linear component, and a stateful or stateless nonlinear combiner that pro-
duces the output, given the state of the first part. For stateless combiners – using
a Boolean function, most of the general attacks known are correlation attacks,
see for example [20,16,15,9]. In order to resist such attacks, many authors focused

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 176–194, 2003.
c© International Association for Cryptologic Research 2003



Fast Algebraic Attacks on Stream Ciphers with Linear Feedback 177

on proposing Boolean functions that will have no good linear approximation and
that will be correlation immune with regard to a subset of several input bits, see
for example [9]. Unfortunately there is a tradeoff between these two properties.
One of the proposed remedies is to use a stateful combiner, as for example in
the Bluetooth cipher E0 [6].

Recently the scope of application of the correlation attacks have been ex-
tended to consider higher degree correlation attacks with respect to non-linear
low degree multivariate functions, or in other words, allowing to exploit low de-
gree approximations [10]. The paper [10], proposes a novel algebraic approach to
the cryptanalysis of stream ciphers. It will reduce the problem of key recovery,
to solving an overdefined system of algebraic equations (i.e. many equations).
Following [10] and [11], all stream ciphers with linear feedback are potentially
vulnerable to algebraic attacks. If for one state we are able, by some method,
to deduce from the output bits, only one multivariate equation of low degree
in the state bits, then the same can (probably) be done for many other states.
Each equation remains also linear with respect to any other state, and given
many keystream bits, we inevitably obtain a very overdefined system of equa-
tions. Then we may apply the XL algorithm from Eurocrypt 2000 [25], adapted
for this purpose in [10], or the simple linearization as in [11], to efficiently solve
the system.

In the paper [11], the scope of algebraic attacks is substantially extended,
by showing new non-trivial methods to obtain low degree equations, that are
not low degree approximations. The method to reduce the degree of the equa-
tions, is analogous to the method proposed by Courtois and Pieprzyk to attack
some block ciphers [13], and the basic idea goes back to [12] and [23]. Instead of
considering outputs as functions of inputs, one should rather study multivariate
relations between the input and output bits. They turn out to have a substan-
tially lower degree. In this paper we take this idea further, and consider more
general equations that include potentially many output bits, instead of one (or
few) considered in [11,1]. Then we propose a new fast method to find and exploit
such equations, mainly due to an application of a non-trivial asymptotically fast
algorithm. This method allows to obtain equations that cannot be obtained by
any other known method (due to their size), and to get much faster algebraic
attacks.

The paper is organized as follows: in Section 2 we give a general view of
algebraic attacks on stream ciphers. In Sections 2.2, 2.4 and 3 we discuss in
details the types of equations that will be used in our attacks. In Section 4 we
design our pre-computation attack and in Section 5 we show how to speed-up this
attack. Then in Section 6 we apply it to Toyocrypt, LILI-128 and E0. In Section
7.1 we present a new general fast attack on ciphers with Boolean functions of low
degree. Finally in Section 7.2 we apply our fast method to substantially speed up
the general attack on stream ciphers using (arbitrary) Boolean functions with a
small number of inputs from [11].
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2 Algebraic Attacks on Stream Ciphers

For simplicity we restrict to binary stream ciphers defined over GF (2). We con-
sider only synchronous stream ciphers [21], in which there is a state s ∈ GF (2)n.
At each clock t the state s is updated by a “connection function” s �→ L(s)
that is assumed to be linear over GF (2). Then a combiner f is applied to s, to
produce the output bit bt = f(s). In principle also, we consider only regularly
clocked stream ciphers. However this condition can sometimes be relaxed, see
the attacks on LILI-128 described in [11]. Then the successive keystream bits
b0, b1, . . . are XORed with the plaintext.

We assume that L and f are public, and only the state is secret. In many
cases we assume that f is stateless, i.e. a Boolean function. Then our description
covers “filter generators”, in which the state of a single LFSR is transformed by
a Boolean function, and also not less popular “nonlinear function generators”,
in which outputs of several LFSRs are combined by a Boolean function [21],
and also many other known constructions. We will also apply our fast algebraic
attacks to the case when the combiner f is not a Boolean function, and contains
memory bits, as for example in E0. Then if if the number of memory bits is not
too big, efficient algebraic attacks will still exist.

2.1 The General Framework of the Attack

The problem we want to solve is the following: find the initial state given some
keystream bits. In principle, it is a known plaintext attack. However in some
cases, ciphertext-only attacks are possible: For example if the plaintext is written
in the Latin alphabet, and does not use too many special characters, we expect
all the bytes to have their most significant bit equal to 0. Then all our attacks
will work, only multiplying the amount of ciphertext needed by 8. Indeed this
is equivalent to knowing all consecutive keystream bits for the same cipher, in
which we replaced L by its eight-fold composition (L8).

The goal of our attacks is to recover the initial state (k0, . . . , kn−1) from
some m consecutive keystream bits b0 . . . bm−1, by solving multivariate equations.
(Unlike in [11], our fast algebraic attacks do require consecutive bits.)

There are many different closely related approaches to algebraic attacks on
stream ciphers and they differ mainly by the types of equations they use. This
usually determines the methods used to generate, and to solve these equations.

Attacks Based on Direct Equations Following [10,11]

This approach applies only for stateless combiners. The problem of cryptanalysis
of such a stream cipher is described as follows in [11].

Let (k0, . . . , kn−1) be the initial state. Then the output of the cipher (i.e. the
keystream) gives the following system of equations:
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b0 = f (k0, . . . , kn−1)
b1 = f (L (k0, . . . , kn−1))
b2 = f

(
L2(k0, . . . , kn−1)

)

...

In [10] such equations are solved directly. In [11] they are first multiplied
by well chosen multivariate polynomials, which decreases their degree, and then
solved. In this paper we describe a more advanced method of generating (better)
derived equations.

2.2 More General Attacks Using “ad hoc” Equations

Following [11], multivariate equations/relations that relate (only) key bits and
output bits, may exist, for very different reasons, for (potentially) any cipher:

{ 0 = α +
∑

βiki +
∑

γibi +
∑

δijkibj +
∑

εijkkibjbk+
...

In this paper we restrict ourselves to equations that are true with probability 1.
Types of Equations: Following the notations introduced in Section 5.1. of
[12], the equations given above may be called of type 1 ∪ k ∪ b ∪ kb ∪ kb2.
This notation is obvious to understand, for example 1 denotes the presence of a
constant monomial and kb2 of all monomials of type kibjbk. Following another
convention used in [12], we use capital letters to denote types of equations that
also contain lower degree monomials, for example K2 = k2 ∪k∪1 and B = b∪1.
Therefore the equations given above can also be said of type KB ∪ kb2 but
they are not of type KB2 because they do not contain monomials in bibj (a.k.a.
monomials of type b2).
Using ad hoc Such Equations: Our attacks will proceed in three steps:

• Step A1. Pre-computation stage: Find these equations.
• Step A2. Given some keystream, substitute the bi in the equations to get

an overdefined system of multivariate equations in the ki.
• Step A3. Solve this (very overdefined) system of equations. Given suffi-

ciently many keystream bits, we apply the simple linearization technique
[25,11], which consists of adding one new variable for each monomial that
appears in the system, and then solves a big linear system. If less keystream
is available, one should use a version of the XL algorithm [25] for equations
of any small degree over GF (2), described and studied in [10].

2.3 Remarks on ad hoc Equations

The idea of ad-hoc equations follows closely the idea called scenario S5 in Section
7 of [11]. The word emphasises their unexpected character: they may be found be
clever elimination by hand as in [1,2] or by an indirect unexpectedly fast method
as in the present paper. The idea itself can be seen as a higher-degree generali-
sation of the concept of “augmented function” proposed by Anderson in [3] and
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recently exploited in [18]. It is also, yet another application in cryptography of
looking for multivariate relations of low degree, main method for attacking nu-
merous multivariate asymmetric schemes [12,23], and recently proposed also for
attacking block ciphers [13].

Obviously, if such equations involving, say, T monomials exist, they can be
found in time Tω, with ω < 3 being the exponent of the Gaussian reduction.
The important contribution of this paper is to show that in some cases such
equations can be found in a time linear or even sub-linear1 in T .

A different view of “ad-hoc” equations is adopted in [2]. Instead of consid-
ering the equations with no limitation in the degree in the bi, and study their
degree when we substitute for bi their respective values, it is possible to look at
the equations in the state/key bits that are true each when several consecutive
outputs are fixed to some fixed values. This approach used in [2] allows to study
equations that contain much less monomials, which allows to find them faster,
yet cannot be applied to systems in which the number of outputs is very big, as
in the present paper.

Another way of looking at “ad-hoc” equations will be to consider that the
stream cipher having one output, is in fact using several output functions fi

def
=

f ◦Li. Then “ad-hoc” equations boil down to look for algebraic combinations of
type

∑
i figi that would be of unusually low degree, exactly as in Section 2 of [12].

Then, if the gi are also of low degree, the attack will exploit, for j = 0, 1, 2, . . .,
the following equation of low degree:

∑

i

fi(Lj(s)) · gi(s) =
∑

i

bi+j · gi(s).

This approach is much more powerful than the S3 attack scenario [11]. Such
equations may (and will) exist, without a low degree product fg to exist. They
may (and do) exist even for stateful combiners f [1,2].

2.4 Equations Used in the S3 Attack [11] and Additional Properties

Let f be a Boolean function. We assume that the multivariate polynomial f
has some multiple fg of low degree, with g being some non-zero multivariate
polynomial. Let deg(fg) = d and let d be not too big, then following [11],
efficient attacks exist. For each known keystream bit at position t, we obtain a
concrete value of bt = f(s) and this gives the following equation:

f(s) · g(s) = bt · g(s),

which, for the current s = Lt(k0, . . . , kn−1), rewrites as:

f
(
Lt(k0, . . . , kn−1)

) · g
(
Lt(k0, . . . , kn−1)

)
= bt · g

(
Lt(k0, . . . , kn−1)

)
.

1 It will be essentially linear in the number of equations involved in elimination, de-
noted later by L. This, assuming that the equations are written in a compressed
form, can indeed be sub-linear in their size T .
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If the degree of g is also ≤ d, this equation can be used for any value of bt,
otherwise it can still be used when bt = 0, i.e. for half of the time. We get one
multivariate equation for each one or about two keystream bits. Each of these
equations will be of the same degree and we inevitably obtain a very overdefined
system of equations (number of equations � n), that can be efficiently solved,
see [10,11,25].
Important Remark: Following [11], the chief advantage of the equations ex-
plained above may be of very low degree, without f being of low degree. In this
paper we explore an additional property of these equations. Let e the degree of g.
In [11], no distinction is made2 between d and e. In this paper, on the contrary,
we will exploit equations in which e < d, and show that for the same n and d, a
smaller e leads allows to compute another type of “ad-hoc” equations, that will
only be of degree e in the ki, leading to much faster attacks than in [11].

More generally, in the next section we define a subclass of “ad-hoc” equations
(including the example above with e < d) that will be subsequently used in the
next sections to compute efficiently other (much better) “ad-hoc” equations.

3 The Double-Decker Equations

Definition 3.0.1 (Double-Decker Equations). For any e < d, we call
“double-decker equations” with degrees (d, e, f), any set of multivariate equa-
tions of type Kd ∪ KeBf , with d, e, f ∈ IN. In other words, equations with a
maximum degree d in the monomials containing only the ki, and the maximum
degree e in the ki among the monomials being divisible by one of the bj .

The Double-decker equations will be used to find even better “ad-hoc” equa-
tions of type KeBf , with f ∈ IN, and finally used in our attacks. These equations
cannot be obtained directly due to their size, and will be found indirectly in two
major steps that will be described later:

• Step A1.1. Find some “double-decker equations” with degrees (d, e, f).
• Step A1.2. Then eliminate (at least) all the monomials of types ke+1 . . . kd,

leaving only monomials of type KeBf with a maximum degree e in the ki.

3.1 Step A1.1. – Find the Basic Double-Decker Equations

The exact method to find the “double-decker equations” we will use later varies
from one cipher to another.
Toyocrypt: Toyocrypt is a stream cipher, submitted to the Japanese govern-
ment call for cryptographic primitives Cryptrec and accepted to the second
phase. An impractical attack on Toyocrypt has been proposed [22] and it has
2 In the extended version of the paper [11], two versions of the main attack are studied,

called S3a and S3b, that simply require that e ≤ d. The complexity of the attack
does not depend on e, only on

(
n
d

)
. For another proposed version S3c, successful

attacks could be possible even when e is very big.
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been rejected by Cryptrec. A description can be found in [22]. From Section 5.1.
of [11] we know that there are 2 equations of type f(s) · g(s) = bt · g(s) in which
e = deg(g) = 1 and d = deg(fg) = 3. For example, anyone can verify that when
g(s) = (s23 − 1), then in f(s)g(s), all the terms of degrees ≥ 4 cancel out and
what remains is of degree 3.
LILI-128: LILI-128 is a stream cipher, that was submitted to the European
evaluation effort Nessie, and was subsequently rejected due to attacks [27]. A
description can be found in [26]. From Section 5.1. of [11] we know that there
are 4 equations of type f(s) · g(s) = bt · g(s) in which e = deg(g) = 2 and
d = deg(fg) = 4. For example, when g(s) = s44s80, anyone can verify that
f(s)g(s) is equal to the following multivariate polynomial of degree 4:

f(s) · s44s80 = s44s80 (s1s65 + s3s30 + s7s30 + s12s65 + s0 + s7 + s12 + s20) .

E0: EO is the keystream generator used in the Bluetooth wireless interface [6].
We will look for some equations of the following type:

h(s) =
∑

i

bi · gi 0(s) +
∑

i

bibj · gi j(s),

in which e = max(deg(gi j)) < d = deg(h). They may be called of type Kd ∪
B2Ke following notation of Section 2.2 or [12]. Such an equation of type K4 ∪
B2K3, combining only 4 successive states, and eliminating all the state bits
has been found by careful study of the cipher and successive elimination done
by hand in [1,2]. In this equation we have d = 4 and e = 3. Our simulations
confirmed that this equation exists, and is always true. We also found that it
was unique (when combining only 4 consecutive states).

3.2 Summary: The Equations That Will Be Used in Our Attacks

For all the three ciphers Toyocrypt, LILI-128 and E0 there are “double-decker
equations” (i.e. multivariate equations of type Kd ∪ KeBf ), with the following
degrees:

Table 1. The equations that will be used in our attacks

stream
cipher

Toyocrypt
LILI-128

E0

the degrees equation number of successive bi

d e f type equations per equation
3 1 1 K3 ∪ bk1 2 1
4 2 1 K4 ∪ bK2 4 1
4 3 2 K4 ∪ B2K3 1 4

Important Remark: Nothing proves that there are no better equations. For
any pair (d, e), even very small, when the number of bi used grows, the simu-
lations are becoming quickly impractical and cannot detect all equations that
would lead to a (fast) algebraic attack.
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4 The Pre-computation Attack on Stream Ciphers

This idea has been suggested to us by Philip Hawkes. Starting from the above
“double-decker equations” with degrees (d, e, f), we will be able to compute “ad-
hoc” equations of degree only e, by eliminating the monomials of type Kd, as
defined in Step A1.2. First, it will be done by Gaussian elimination, then by a
much faster method.

4.1 The General (Slow) Pre-computation Algebraic Attack

We assume that for a given stream cipher, we have a system of “double-decker
equations” being of type Kd ∪ KeBf , with f being small, for example in all our
attacks f ≤ 2. We also assume that the size of these initial equations is a small
constant O(1) (for example, they are sparse or/and use a small subset of state
bits). We will write the equations in the following form

Left(Lt(k)) = Right(Lt(k), b),

and we will put all the monomials of type Kd on the left side, and all the other
monomials of type KeBf on the right side. For monomials of type Ke we may
place them indifferently on one or the other side. Then we do the following:

1. We assume that we have at least R =
(
n
d

)
+

(
n
e

) ≈ (
n
d

)
equations, this can be

achieved given about at most3 about
(
n
d

)
keystream bits.

2. We will do a complete Gaussian elimination of all monomials that appear
on the left sides, i.e. of all monomials of degree up to d in the ki. This is
possible because R is chosen to exceed the number of monomials. This gives
at least one linear combination α of the left-hand sides that is 0:

0 =
∑

t

αt · Left(Lt(k)).

Since R =
(
n
d

)
+

(
n
e

)
, we are able to produce at least

(
n
e

)
such linearly

independent linear combinations. Each of them involves about
(
n
d

)
left sides.

3. The complexity of this first step is about
(
n
d

)ω to find several solutions α (we
need about

(
n
e

)
solutions, and

(
n
e

) 
 (
n
d

)
.

4. We apply these linear combinations to the right sides. We get a system of
equations of type BfKe.

0 =
∑

t

αt · Right(Lt(k)).

For example, for Toyocrypt or LILI-128, we get:

0 =
∑

t

αt · bt · g
(
Lt(k)

)
.

3 As a matter of fact, here for many ciphers there will be several, say M , equations
that exist for each keystream bit. Then given about

(
n
d

)
/M keystream bits, we still

get about
(

n
d

)
equations as required. Unfortunately, for the fast attack described in

Section 5 below, we only know how to use one of them and will assume M = 1.
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Similarly for E0 we get equations of the type B2K2 using up to
(
n
4

)
consec-

utive bi.
5. Now we obtain a pre-computed information (a sort of trapdoor) that consists

of
(
n
e

)
equations. Each of these equations is of size O(

(
n
d

)
), this is because

we assume that the size of the initial equations is a small constant O(1).
This trapdoor information allows, given a sequence bi at the previously de-
termined positions t that were in the sequence, to compute the secret key k
by solving a system of equations of degree e instead of d.

6. Given a sequence bt, we substitute it to all the equations. This step about
takes O(

(
n
d

) · (
n
e

)
) computations.

7. Then we have a system of
(
n
e

)
equations of degree e, that can be solved by

linearization.
8. The complexity of the last linearization step is about

(
n
e

)ω.

Remark: If all the equations are not linearly independent, the attack still works.
Simulations done in the extended version of [11] suggest that the number of
linearly dependent equations should always be negligible. Moreover, it is possible
to see that even if we had to produce, say 10 times more equations, it would not
greatly increase the complexity of the attack.

4.2 Summary: The General (Slow) Pre-computation Attack

To summarize we have a pre-computation attack that, given
(
n
d

)
initial equations,

allows to compute a trapdoor information, that later for any values of bt obtained
from the cipher, will allow to compute the key using only roughly

(
n
d

) ·(n
e

)
+

(
n
e

)ω

operations. For now, when applied with equations from Section 3.2, it does not
improve on the attacks from [11] and [1,2], except that with the same complexity
we may do a pre-computation once, and then break the cipher again and again
with a much lower complexity.

5 The Fast Pre-computation Attack

In this (fast) attack there are three additional requirements (or limitations):

1. The equation used has to be exactly the same for each keystream bit, mod-
ulo a variable change resulting from the fact that s = Lt. For example in
the previous attack we could use, for each keystream bit bt, one or several
equations of type f(Lt(k)) ·g(Lt(k)) = bt ·g(Lt(k)) with different linearly in-
dependent functions g. In this attack we may only use one g that has always
to be the same.

2. The slow pre-computation attack given above, as all attacks given in [11],
will work given any subset of keystream bits. The improved (fast) attack
will require consecutive keystream bits. (The attack will also work if they
are taken at regular intervals. This amounts simply to taking a different
linear feedback function L and without loss of generality we will assume
that all the keystream bits are consecutive.)
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3. Moreover we assume that the linear feedback L is non-singular, in a sense
that the sequence k, L(k), L2(k), . . . is always periodic, and we will also as-
sume that this sequence has only one single cycle. This is true for all known
stream ciphers with linear feedback, in particular when they are based on
one or several maximum-length LFSRs.

When all the equations are of the form Equation(Lt(k)) and if all the
keystream bits are consecutive, then the system has a very regular recursive
structure:






Left (k0, . . . , kn−1) = Right (k0, . . . , kn−1; b0 . . . bm−1)
...

Left (Lt(k0, . . . , kn−1)) = Right (Lt(k0, . . . , kn−1); bt . . . bm+t−1)
...

Now we are going (for some time) to ignore the right sides of these equations.
Their left sides do not depend on the bi, they are just multivariate polynomials of
type Kd. If we consider at least

(
n
d

)
consecutive equations, a linear dependency

α must exist. This linear dependency does not depend on the outputs bi. Let S
be the size of the smallest such linear dependency α. We have S ≤ (

n
d

)
.

One dependency is enough. Due to the recursive structure of the equations,
this dependency α can be applied at any place. Indeed we have:

∀k 0 =
S−1∑

t=0

αt · Left
(
Lt(k)

) ⇒ ∀k ∀i 0 =
S−1∑

t=0

αt · Left
(
St+i(k)

)
.

Moreover, since we assumed that the sequence k, L(k), L2(k), . . . has one
single cycle, this dependency α does not depend on the secret key of the cipher,
and is the same for all k.

In the previous (slow) pre-computation attack we had to find
(
n
e

)
linear

dependencies α. Here we find one α and re-use it on
(
n
e

) 
 S successive windows
of S ≤ (

n
d

)
equations.

5.1 Finding α Faster – LFSR Synthesis

We have shown a (well known) fact, that for every initial k, the values of the
left sides of our equations can be obtained from some LFSR of length at most
S and defined by α. We can also do the reverse: recover α from the sequence
(LFSR synthesis). It can be done given 2S bits of the sequence, see [19,21].
For this we choose a random key k′, (α does not depend on k), and we will
compute 2S output bits of this LFSR ct = Left (Lt(k′)) for t = 0 . . . 2S − 1.
Then we apply the well known Berlekamp-Massey algorithm [19,21] to find the
connection polynomial of this LFSR that will be essentially α. Done in this way,
both these steps (computing the sequence ci and the LFSR synthesis) will take
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O(S2) operations.4 However both can be improved to become essentially linear
in S.
Finding α Faster:

♦ First of all we observe that all the Li(k′) can be computed in time about
O(Sn2) and even in O(Sn) if L is composed only of a combination of LF-
SRs and MLFSRs. Then, since n 
 S ≈ (

n
d

)
, the time is indeed essentially

linear in S. Moreover, in many interesting cases in practice, the equations
Left (St(k′)) are sparse or/and have a known structure that allows to com-
pute them very fast, in a time that can be assumed constant, being less than
n and therefore much smaller than S. It is the case for Toyocrypt, LILI-128
and E0. We exploit here the fact that these ciphers have been designed to
be very fast.

♦ To recover α takes O(S2) computations using Berlekamp-Massey Algorithm,
but it will take only O(S log(S)) operations using improved asymptotically
fast versions of the Berlekamp-Massey Algorithm, see [5,14,7]. However we
do not know how fast are these algorithms for the concrete values of S used
in this paper.

How to Use α: We recall that the same linear dependency will be used
(
n
e

)

times:

∀i 0 =
S+i−1∑

t=i

αt · Right
(
St(k); bt . . . bm+t−1

)
.

Since Right(t) does depend on many bi, in general a sliding subset, and the
output sequence bi is not likely to have any periodic structure, all these equations
are expected to be very different for different i. From simulations on a simpler
but similar algebraic attack on Toyocrypt done in [11], we also expect that only a
negligible number of these equations will be redundant (i.e. linearly dependent).

5.2 Summary – The Fast Pre-computation Attack

1. Given about m =
(
n
d

)
+

(
n
e

) ≈ (
n
d

)
consecutive keystream bits.

2. We compute the linear dependency α using an improved version of the
Berlekamp-Massey Algorithm. This step is expected to be essentially lin-
ear in S and take at most O(S log(S) + Sn) steps with S =

(
n
d

)
. This α is

our pre-computed information (or the trapdoor). It allows, given a sequence
bi of consecutive keystream bits, to recover the secret key k by solving a
system of equations of degree only e < d.

3. The second step takes (as before) about O(
(
n
d

) · (
n
e

)
) +

(
n
e

)ω operations.

Memory Requirements: In this attack, the most memory-consuming opera-
tion will be to store the

(
n
e

)
equations of size at most

(
n
e

)
(we only store them

after substituting the bi by the output bits). It will be at most
(
n
e

)2 bits.
4 A quadratic time is already much faster than doing this by Gaussian elimination in

O(Sω), and only this would already give the fastest attack known on all the three
stream ciphers studied in this paper.
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6 Application to Toyocrypt, LILI-128, and E0

In this paper, write O(220) to say that the complexity is at most C · 220 for
some constant C, yet for simplicity we did not evaluate the exact value of C.
All our results given in such form should be regarded as rough (and optimistic)
approximations.

6.1 Application to Toyocrypt
For Toyocrypt we have n = 128, d = 3, e = 1. We obtain the following attack:
♦ With a pre-computation step in O(223).
♦ Given 218.4 consecutive keystream bits.
♦ The secret key can be computed in about O(220) CPU clocks and with about

214 bits of memory.

6.2 Application to LILI-128
In the second component of LILI-128 we have n = 89, d = 4, e = 2. The sequence
will only become regularly clocked if we clock the first LFSR of LILI-128 239 − 1
steps at a time, see [11]. We get the following attack:
♦ With a pre-computation step in O(226).
♦ Given 221.3+39 ≈ 260 consecutive keystream bits.
♦ The state of the second component can be computed in about O(231) CPU

clocks and with about 224 bits of memory.
♦ Once the initial state of the second LFSR is recovered, the state of the first

LFSR can be found easily in less than about 220 (many thanks to Philip
Hawkes for remarking this). Indeed, once the second LFSR is known, we can
predict any number of consecutive bits ai of the second component (without
decimation), then we may guess several (for example 20) consecutive output
bits ci of the first component, which determines a subsequence of the ai that
should be equal to the observed output sequence fragment bi. Our choice
will be confirmed only for on average 1 or 2 strings of 20 bits of ci. For each
of these (very few) cases, we will find the remaining 39−20 = 19 bits by the
exhaustive search.

6.3 Application to E0
For E0 we have n = 128, d = 4, e = 3. Then we obtain:
♦ With a pre-computation step in O(228).
♦ Given 223.4 consecutive keystream bits.
♦ The secret key can be computed in about O(249) CPU clocks and with about

237 bits of memory.

Note: In the real-life implementation of Bluetooth cipher, at most about 2745 ≈
211 bits can be obtained, see [17,6]. However this attack shows that the design
of E0 is not (cryptographically) very good. It is possible that even a real-life
application of E0 will be broken by our attack, if some other equations with a
smaller d are found. This possibility cannot at all be excluded, the computer
simulations only allow to explore equations that combine a few (e.g. up to 10)
output bits. Better equations may exist when more bits are combined, and may
be found by a clever elimination as in [1,2].
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6.4 Summary of the Results

The fast algebraic attack gives the best attack known on three well known stream
ciphers:

Table 2. The results of this paper vs. the best previous attacks

cryptosystem

n

d

e

Attack
Data

Memory
Pre-computation

Attack Cxty

Toyocrypt

128 128 128
3 3

1

[22] [11] new
248 218 218

248 237 214

280 O(223)
264 249 O(220)

LILI-128

89 89 89 89
4 4 4

2

[11] [11] [27] new
218 257 246 260

243 243 251 224

256 O(226)
296 257 256 O(231)

E0

128 128
4 4

2

[1,2] new
224 224

248 237

O(228)
268 O(249)

7 Fast General Attacks on Stream Ciphers Using Boolean
Functions

In [11] it is shown that for any cipher with linear feedback and a non-linear
stateless filtering function that uses only a small subset of state bits, for example
k bits out of n state bits, the key can be recovered in essentially

(
n

k/2

)ω operations,
which at most about nk ω

2 ≤ n1.19k using the fairly theoretical result from [8]. In
practice, if we consider the Strassen’s algorithm, we get rather n1.4k. This attack
works given any subset of

(
n

k/2

)
keystream bits.

In this paper we show that, given less than
(
n
k

)
keystream bits, that (now)

have to be consecutive, we may recover the key using only essentially nk com-
putations instead of n1.4k. In the two following subsections we will show two
separate attacks of this type that both will be better than nkω/2.
The first attack assumes that the Boolean function of the cipher is constructed
in such a way that it can be computed in constant time (for example using a
table, the usual case, otherwise the cipher is not practical !). Given

(
n
d

)
consec-

utive keystream bits, the key is recovered in nd+O(1) computations, with d ≤ k
being the degree of the Boolean function used. This attack can be sometimes
much faster than nk, as frequently we have d < k.
We also present a fast version of the general attack in nk ω

2 from [11], that for
ciphers using only a small subset of output bits k, (k is a small constant, e.g.
k = 10), will require (substantially) less than

(
n
k

)
consecutive keystream bits,

and about nk+O(1) computations.
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7.1 Fast General Attack on Stream Ciphers Using Boolean
Functions of Small Degree

Theorem 7.1.1 (New General Attack on Stream Ciphers with Linear
Feedback). If the degree of the Boolean function f is d, and its output can
be computed in time O(1), then given

(
n
k

)
consecutive keystream bits, one can

recover the key using only O(nd+2) operations.

All this is achieved immediately by a straightforward application of our fast
algebraic attack. The cipher is first described by the following set of equations:

f
(
Lt(k0, . . . , kn−1)

)
= bt.

We will split this equation into two 0 = f(s) + bt = Left(s) + Right(s, bt)
with:

• Right(s, bt) containing bt and the linear part of f .
• Left(s) being exactly the part of degrees 2 . . . d of f .

It is easy to see that, from the assumption that the computation of f is done
in constant time, the time to compute Left() will be in O(n), knowing that it
differs from f only by the linear part. Then we get the following set of equations
for some m consecutive bits t = 0 . . . m − 1:

Left
(
Lt(k0, . . . , kn−1)

)
= Right

(
Lt(k0, . . . , kn−1), bt

)
, t = 0, 1, 2, . . .

with the left sides being of type Kd and right sizes of type K ∪ b, and using
only one bi each. We have “double-decker equations” with degrees (d, e, f) =
(d, 1, 1).
The LFSR Synthesis. Let S =

(
n
d

)
. Let k′ be a random key. From Section

4, we recall that the time to compute all the Li(k′), i = 0 . . . 2S − 1 is at most
O(Sn2), and in many practical cases even O(Sn).

Since the time to compute Left(s) is O(n) computing 2S outputs
Left(Lt(k′)) for t = 0 . . . 2S − 1 will take time O(Sn). Then as in Section 5
we compute the LFSR connection polynomial α which takes about O(S log S)
operations.
Using the Pre-computed Information α. Again, as in Section 5, with a
pre-computation in time at most O(Sn2 + S log S) we get an equation in which
a linear combination of S =

(
n
d

)
successive keystream bits bi is equal to a linear

combination of the ki:

∀t

S−1∑

i=0

αt+ibt+i = ResultingLinearCombination(k0, . . . , kn−1).

By using this equation n times for n successive windows of S keystream bits, we
get a linear system that will give the key k. The complexity of the whole fast
pre-computation attack is at most about O(Sn2). In practice, it be we frequently
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Table 3. Fast algebraic attack when f has degree d

Consecutive Data
(

n
d

)

Memory O(nd+1)
Pre-computation O(nd+2)

Complexity O(nd+1)

at most O(Sn) and at any rate this time can be thought as essentially linear in
S, since n 
 S. We get the following attack:

Later, in Table 5, we will compare this attack to the attack from the next
section, and other previously known general attacks.
Important Remark. This is a very simple linear attack on a stream cipher.
Such equations of size S =

(
n
d

)
do always exist. Let LC of the linear complexity

of a cipher. We always have LC ≤ (
n
d

)
and when S < LC, the existence of such

an equation of size S can be excluded. Conversely, if the linear complexity LC is
less than expected (LC <

(
n
d

)
), the attack described here will still work with a

complexity essentially linear in LC. This attack shows that, ciphers in which the
Boolean functions f is of low degree and can be computed in constant time, can
be broken in time essentially linear in the linear complexity LC of the cipher.
This is, to the best of our knowledge, has never happened before.

7.2 Fast General Attack on Stream Ciphers Using a Subset of
LFSR Bits

This section improves the general attack from [11]. We consider a stream cipher
with n state bits, in which the keystream bit is derived by a Boolean function f
using only a small subset of k state bits: {x1, x2, . . . , xk} ⊂ {s0, s1, . . . , sn−1}. We
assume that k is a small constant and n is the security parameter. For example
in LILI-128 k = 10, n = 89.

As in [11] we are looking for polynomials g �= 0, such that fg is of low
degree, and for this we check for linear dependencies in the set of polynomials
C = A ∪ B defined as follows. A contains all possible monomials up to some
maximum degree d (this part will later compose fg).

A = {1, x1, x2, . . . , x1x2, . . .} .

Then we consider all multiples of f , multiplied by monomials of the degree
up to e (this degree corresponds to the degree of g):

B = {f(x), f(x) · x1, f(x) · x2, . . . , f(x) · x1x2, . . .} .

Let C = A ∪ B. All elements of A,B and C, can be seen as multivariate
polynomials in the xi: for this we need to substitute f with its expression in the
xi. A set of multivariate polynomials with k variables cannot have a dimension
greater than 2k. If there are more than 2k elements in our set, linear dependencies
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will exist. Such linear combinations allow to find a function g of degree ≤ e such
that f · g is of degree ≤ d. More precisely, we will prove the following theorem
that generalizes the Theorem given in [11]:
Theorem 7.2.1 (Tradeoff between the Degrees of fg and g).
Let f be any Boolean function f : GF (2)k → GF (2). For any pair of integers
(d, e) such that d + e ≥ k there is a Boolean function g �= 0 of degree at most e
such that: f(x) · g(x) is of degree at most d.

Proof: We have

|A| =
d∑

i=0

(
k

i

)

and |B| =
e∑

i=0

(
k

i

)

.

|C] =
d∑

i=0

(
k

i

)

+
e∑

i=0

(
k

i

)

=
d∑

i=0

(
k

i

)

+
e∑

i=0

(
k

k − i

)

>

k∑

i=0

(
k

i

)

= 2k.

Then, since the rank of C = A ∪ B cannot exceed 2k, and |C| > 2k, some
linear dependencies must exist. Moreover, g �= 0 because there are no linear
dependencies in A, and therefore linear dependencies must combine either only
the elements of B, or both A and B. This ends the proof. ��

From this we see that for any pair of integers (d, e) such that d + e ≥ k and
for any stream cipher with linear feedback, for which the non-linear filter uses
k variables, it is possible to generate “double-decker equations” with degrees
(d, e, 1) in the n keystream bits.

With this assumption, computing Left(), and Right(), that by construction
have at most 2k−1 monomials, will be very fast (using a table) and given 2k bits
of memory. this will be small, because we assumed that k is a small constant, for
example for LILI-128 k = 10, 2k = 1024 is very small compared to the memory
requirements of other parts of the attack.

Then the whole LFSR synthesis will take a time of at most O(Sn2 +S log S).
By inspection we verify that our fast pre-computation attack gives roughly
about:

Table 4. Fast algebraic attack when f has k inputs

∀(d, e) s.t. d + e ≥ k

Consecutive Data
(

n
d

)
+

(
n
e

)

Memory O(2k +
(

n
d

)(
n
e

)
)

Pre-computation
(

n
d

)1+o(1)

Complexity O(
(

n
d

)(
n
e

)
) +

(
n
e

)ω

Under the condition d + e ≥ k, we may assume d + e = k, and we see
that very roughly: O(

(
n
d

)(
n
e

)
) ≈ nd/d! · ne/e! ≈ nk · (

k
d

)
. The complexity of this
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attack will never be essentially lower than nk. However, to choose a bigger e will
substantially decrease the amount of keystream needed for the attack. Many
tradeoffs are possible, but two of them seem particularly interesting:

• It is easy to see that the maximum e that can be used in this attack without
increasing the complexity, is such that

(
n
e

)ω ≈ O(
(
n
d

)(
n
e

)
) ≈ nk. Thus we

have e ≈ k(1/ω) and then d is about k(1− 1/ω). The amount of consecutive
keystream required is then about

(
n
d

)
=

(
n

k(1−1/ω)

)
.

• We may also try to achieve the smallest possible amount of keystream, which
is achieved when e = d ≈ k/2, with a slower attack. It can be seen that in
this attack the fast pre-computation will not help because the final step will
be slower than the pre-computation step. Moreover, sine d = e the pre-
computation step is not necessary at all to obtain equations of degree e, and
this attack finally boils down to the general attack given in [11].

7.3 Summary – Fast General Attacks on Stream Ciphers Using
Boolean Functions

In the following table we give a simplified analysis of the complexity of the
attacks from Section 7.1 and 7.2 compared to previously known attacks.

Table 5. General attacks on LFSR-based stream ciphers using a Boolean function f

State bits n n n n
# inputs of f k k k k

d k �k/2� d = deg(f) ≤ k k(1 − 1/ω)
e �k/2� 1 k(1/ω)

Attack [4,16] [11] Section 7.1 Section 7.2
Data

(
n
k

) (
n

�k/2�
) (

n
d

) (
n

k(1−1/ω)

)

Consecutive no no yes yes

Memory
(

n
k

)2 (
n

�k/2�
)2 O(nd+1) O(nk+1)

Pre-computation O(nd+2) O(nk+2)
Attack Cxty O(nkω) O(nkω/2) O(nd+1) O(nk+1)

8 Conclusion

In this paper we have studied algebraic attacks on stream ciphers with lin-
ear feedback, using overdefined systems of algebraic multivariate equations over
GF (2). This gives many interesting attacks on both stateless combiners based
on Boolean functions and also on combiners with memory. Using equations of
a very special form, and by a novel application of known asymptotically fast
results on LFSR reconstruction, we are able to propose the best attack known
so far on three important stream ciphers. All these ciphers were believed quite
secure up till very recently, now they can be broken quickly on a PC.
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We also present two general algebraic attacks, for all regularly clocked ciphers
with linear feedback (e.g. using LFSRs) filtered by a Boolean function. Both may
be faster than all previously known attacks. In particular we show a surprising
result to the effect that some ciphers may be broken in time essentially linear in
their linear complexity.

There are good arguments to say that these attacks will work exactly as
predicted, because one may generate as many equations as one wants, and if some
are linearly dependent, one may generate more new equations. The computer
simulations done in the extended version of [11] suggest that the number of
equations that are linearly dependent in our attacks will be negligible.

Our attacks lead to, more or less the same design criterion for stream ciphers
as proposed in [11]: the non-existence of multivariate relations of reasonable size
and low degree linking the key bits and the output bits. This criterion turns out
to be almost identical to the security criterion defined in Section 2 of [12] for
multivariate trapdoor functions, and also to the requirements advocated in [13]
for S-boxes of block ciphers. However, in this paper we show that some equations
may be found and used in a time linear (or even sub-linear) in the size of the
equations. Therefore such equations should be taken very seriously in the design
of stream ciphers, and this even for systems of equations of sizes bigger than
e.g. 280. Then, the existence of such big systems of equations cannot be a priori
excluded by computer simulations, that would be too slow.

Therefore we do not recommend using stream ciphers with linear feedback
with fairly simple clocking control. However, all algebraic attacks we are aware
of, will not work, when the connections polynomials of the LFSRs are secret, or
when the clocking is very complex and uses the full entropy of the key, and/or
when the output sequence is decimated in a very complex way (as in shrinking
generators).

Acknowledgments. The pre-computation attack on stream ciphers has been
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erik Armknecht, Philip Hawkes, Willi Meier, Greg Rose, David Wagner, and
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equations and computation of Padé approximants. J. Algorithms, 1:259–295, 1980.

8. Don Coppersmith, Shmuel Winograd: Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Computation (1990), 9, pp. 251–280.

9. Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On
Correlation-immune Functions, Crypto’91, LNCS 576, pp. 86–100, Springer, 1991.

10. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, Springer. An updated version (2002)
is available at http://eprint.iacr.org/2002/087/.

11. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345–359, Springer.
An extended version is available at http://www.minrank.org/toyolili.pdf

12. Nicolas Courtois: The security of Hidden Field Equations (HFE), Cryptographers’
Track Rsa Conference 2001, San Francisco 8-12 April 2001, LNCS 2020, Springer,
pp. 266–281, April 2001.

13. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations, Asiacrypt 2002, LNCS 2501, Springer, a preprint with a
different version of the attack is available at http://eprint.iacr.org/2002/044/.

14. Jean-Louis Dornstetter: On the Equivalence Between Berlekamp’s and Euclid’s
Algorithms. IEEE Trans. on Information Theory. IT-33(3): 428–431. May 1987.

15. Eric Filiol: Decimation Attack of Stream Ciphers, Indocrypt 2000, LNCS 1977, pp.
31–42, 2000. Available on eprint.iacr.org/2000/040.

16. Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS
1039, pp. 173–188, Springer, 1996.

17. Jovan Dj. Golic, Vittorio Bagini, Guglielmo Morgari: Linear Cryptanalysis of Blue-
tooth Stream Cipher, Eurocrypt 2002, LNCS 2332, pp. 238–255, Springer, 2002.
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