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Abstract

The relation between the parameters of a differential equation and
corresponding discrete maps are becoming increasingly important in
the study of nonlinear dynamical systems. Maps are well adopted for
numerical computation and several universal properties of them are
known. Therefore some perturbation methods have been proposed to
deduce them for physical systems, which can be modeled by an or-
dinary differential equation (ODE) with a small nonlinearity. A new
iterative, rigorous algebraic method for the calculation of the coeffi-
cients of a Taylor expansion of a stroboscopic map from ODE’s with
not necessarily small nonlinearities is presented. It is shown analyt-
ically that most of the coefficients are small for a small integration
time and grow slowly in the course of time if the flow vector field of
the ODE is polynomial and if the ODE has fixed point in the origin.
Approximations of different orders respectively of the rest term are
investigated for several nonlinear systems.



1 Introduction

The motion of the driven Helmholtz oscillator [l]. of a van der Pol vscil-
lator [2]. and many other nonlinear dynamical systems show complex long
time behavior. but smooth short time dynamics. In this case the topologi-
cal structure of the trajectories of the continuous and the discrete system is
equivalent [3]. Also the motion of the planets can be described in a good
approximation by a fast rotation around the sun on elliptic orbits, where the
eccentricity and the point of culmination change comparatively slowly but
with a complex long time dynamics. Is the motion of the point of culmina-
tion chaotic. periodically oscillating, stable or unstable. the whole dynamics
possesses this property. Poincaré and others [4.5.6] have shown that the pa-
rameter dependence of those dynarnical systems can be described easier by
means of iteration functions, which describes e.g. the dynamics of the point
of culmination of a trajectory, than by the original differential equation. Es-
pecially if the amplitude frequency coupling (AF-coupling) (7] of a nonlinear
oscillator is complicated, a Poincaré map may be comparatively simple. since
it is insensitive to the AF-coupling, if the Poincaré surface is properly chosen.
Recently, stroboscopic maps have become important, since it has been shown
that they are insensitive on the AF-coupling too after an appropriate rescal-
ing of the flow vector field of the corresponding ODE, and since they can
be calculated by some algebraic methods. [5,6,9] All these methods start
from the assumption that the strength of the nonlinearity is expressed by
a parameter €. In perturbation theory the exact solution is expanded with
respect to € for small e. The resulting solutions are valid for a large class of
initial states but only for small €. Recently it has been shown [5,8,9,10] that
even for large € stroboscopic maps may be approximated with high accuracy
by a polynomial of low degree for initial states in the neighborhood of an
attractor. Feigenbaum [12] and others [13,14,16] have demonstrated that
the parameter dependence of those maps may have universal properties if
the higher order contributions are small enough. Therefore it seems useful
to expand the exact solution of the ODE with respect to the initial states
in the neighborhood of an attractor and calculate the leading coefficients of
the expansion algebraically. If the resulting contributions of higher orders
are small. a stroboscopic map which just takes into account the leading co-
efficients should qualitatively reproduce the parameter dependence of the
dynamics of the ODE. Additionally a method for just the opposite way, to
construct a class of suspensions and autonomous differential equations for
diffeomorphisms in the plane is already known [15]. In this paper we present
a rigorous algebraic method to calculate the relation between coefficients of
a Taylor expansion of a stroboscopic map and the parameters of the ODE



in closed form. In Sec.2 we present the algorithm and argue that the Tavlor
expansion of the stroboscopic map converges quickly for short intervals of
integration time if the low vector iieid of the ODE is a polynomial and has a
fixed point in the origin. These conditions are fulfilled e.g. by the oscillators
of Lorenz [17], Réssler [13]. van der Pol [2] etc.. In sec. 3 we compare the
bifurcation sets of forced Helmholtz's oscillator respectively the limit cycle
behavior of van der Pol’s oscillator resulting from a numerical integration
and from the algebraic algorithm using a first order approximation. Further-
more in sec. 1.5 we demonstrate some results in the case of van der Pol’s and
Réssler's system using approximations of higher orders or approximations of
the rest term. caused by truncation of the Taylor series. In sec.6 we discuss
the connection between mathematical properties of the algebraic method and
physical properties of dynamical systems. Finally in sec.7 we present some
concluding remarks and suggestions for future directions.



2 Algebraic Calculation of Stroboscopic
Maps

C'onsider a system of ordinary differential equations in R™

E= flx(t) (1)

where z(t) € R" is called state vector and f : R* — R".r — f(z) is the
corresponding n dimensional flow vector field, assumed to be a polynomial.
Therefore the j-th component of the flow vecter field f can be represented
as:

where { € Ny is an index vector and the components of the vector d, € Ng
fulfill the condition: ¥ d;, = g; = degree of the polynomial f;.
1

Assuming f(Q) = Q. This is no restriction as we can demonstrate for many
cases [21]. There exists a transformation in an equivalent system of this form
(for example Helmholtz's oscillator(chapt.3) or the Réssler system (chapt.3)).
Definition 2.1: Let z(t) represent a solution to the ODE under investigation.
Then for fixed T € R a mapping

Sr:R* =R g(t) = z(t +T) (3)
is called stroboscopic map of strobe time T'.

Using Eq.(1) and (3) we obtain a differential equation for the dynamics of
the stroboscopic map.

d d :
-d—f;(T) = ;ﬁ:ﬁr(io) = Sr(z0) = f(Sr(20)) (4)

where
So(x9) = 2o := 2(0) (3)

is the initial condition of the system. Thus we can formulate the identity:
() =ud

Recently it has been demonstrated that the stroboscopic map of some non-
linear systems can be approximated with high accuracy by a polynomial of

4,
.



low order in the initial values of the system [3.3]. Therefore we take a Tavlor
expansion as an ansatz for each component j of the stroboscopic map:

where ry, € R are the components of the initial state vector ry. The dyv-
namics of the svstem is now represented by the time dependence of the mode
amplitudes a, ,(T) € R.

n
Definition 2.2: The order of a mode a;» € R is given by ||m|, = ¥ m..

=1

Remark 2.1: Constant. linear respectively nonlinear modes are of order
|lmj]1 = 0. 1. respectively > L.

Lemma 2.1: Let f;(x) € R be analytical functions in the state variables
r,€Rforey=1,2.....n

then S () = z; are analytical functions of their arguments. in some neigh-
borhood of each value and therefore there exists a T > 0 such, that S, 7(zp)
converges

For a proofsee [19] and [20].

Theorem 2.1: Let f,Sr € R" be polynomials as defined in Eq.(2,6), let
(i.3) € N x Np be an index of the index vector k € Ng, let m € Ng, then
the dynamics of a;»(T) € R,j = 1,2,...,n is given by

41 xQ n
a;m(T) = ZC)’,L z H H G‘-'E..‘;)(T)é _— (7)
=0 (N g [1=13=0 my 3 kD
0<ALY, =1 4=0
1<1<n

proof: Using Eq.(3). Eq.(7) can be derived from Eq.(4) by equating the coef-
ficients of like powers in the initial values. See [21] for details.

Remark 2.2: Because /; = 0 is possible, the running index 3 € Ny starts
with 8 = 1 — 8gy,. This involves the requirement for 3 = 0:k*? := 0 and
a, o0 := 1 to get the right general formula for the mode amplitudes. There-
fore in consideration of this requirement § € Ny can always start with 3 = 0.
In the following we argue that Eq.(6) is determined by only a few coefficients
for small T. Afterwards we will solve Eq.(7) in a closed form.

Lemma 2.2: Let S5(-) € R™ be the identity operator, then the radius of
convergence of the stroboscopic map Sr € R" is infinite for T = 0.

proof: Due to Eq.(5) we obtain

ajm(0) = 61.m, H b0.maq V a,j=1,....n (8)
a#)

ot



Remark 2.3: For a n-dimensional <ystem only n linear modes a,mn € Rdo
not vanish for T = ().

Lemma 2.3: For T = 0 the radius of convergence of the time derivative of
the stroboscopic map Sy(zo) € R map is infinite for T = 0.

proof: Eq.i7) leads to

1, n
a,m(0) =3¢,y [] tmaa vV j=1.... n (Y)
{ a=

Thus. caused by the Kronecker-delta in Eq.( 9). i;m(0) # 0 for all m which
correspond to such index vector m = [ with ¢,; # 0.

Due to Eq.(3) nearly all modes vanish at time T = 0 and due to Eq.(9) only
a few modes change their amplitude at time T = 0. So Eq.(9) indicates that
all other modes remain small for small strobe times T. Therefore we have
the following definition:

Definition 2.3: Let a;,, € R be characterized by a non changing amplitude
at T =0:4,,(0) #0 for some j = 1.2,...,n, then a;, € R is called impor-
tant mode V j=1,2,....n. -

Definition 2.4: The stroboscopic map Sr € R", consisting of all linear
modes and only the important nonlinear modes is called first order approz:-
mation of St: ,_T Nzo)

For n > 1 a n-th order approrimation: 5‘;’(;0) consists of all modes of order
mlly = n.

Lemma 2.4: Let a;, € R be an important mode and g, = Z d;, € R the

degree of the flow vector field f; € R, then the maximum order of a;, and
t.J =12,...,nis given by: [|u|l1,maz = maz{g;|j = 1....,n}

proof: Due to Eq.(9) each nonlinear term with coefficient c;; € R of the flow
vector field f corresponds definitely to one important mode a;,(T').

Finally we argue that the relation between the coefficients of the flow vector
field ¢;; € R and the coefficients of the Taylor expansion of a stroboscopic
map a;m € R can be calculated in closed form.

Definition 2.5: The structure of modes a;, € R i called hierarchically, if a
mode a;,, only depends on modes a,, .21, Where il components of the index

vector k) € N2 are less or at most equal than the corresponding compo-
nents of the vector m € Ng. Or in other wors, if modes of higher order can
iteratively be calculated from the lower ones with a recursion formula.
Lemma 2.5 evt. Theorem 2.2: Eq.(7) is a hierarchical system of differen-
tial equations.

proof With k{#) € Ny the §—function in Eq.( 7) leads to k{#) < m,
V a=1,2,...,n

Lemma 2.8 evt. Theorem 2.3: Consider Eq.(1,2) andlet c;g =0 V j =

6



L.200..on which is equivalent to the fixed point behavior f(0) = 0 then
Eq.( 7} becomes a linear differential equation with constant coefficients
(‘J-i € R

proof: Due to Eq.(7.8) the assumption ¢, = 0 leads to a,o(T) = 0
¥ ) =1.2.....n By this Eq.(7) is a linear differential equation with con-
stant coefficients and an inhomogeneity consisting of products of modes ot
ouly lower order than |jm||,. which are known caused by the hierarchic prin-
ciple of the mode equations. For a more detailed proof. see [21].

In this chapter the differential equations of modes are reduced to a linear.
inhomogeneous, n-dimensional system of differential equations with constant
coefficients, which is analytically solvable [22]. In the next sections this
method will be applied to calculate the bifurcation set of Helmholtz's oscil-
lator or the phase space dynamics of van der Pol’s and Rdssler’s system.

-~



3 First Order Approximations of the Stro-
boscopic Map

3.1 The stroboscopic map of Helmholtz’s oscillator

Consider forced oscillatious in the potential V,(z) of the form

I+er+ il;(:):fcos(..ut) (10)
dr

where ¢ > 0 is the damping constant, ¥ € R quantifies the form of the
potential and f.. frequency and amplitude of external forcing.
The special potential of Helmholtz's system

, 1
Vi(z) = %1:2-%_—1'3 (L1)

3

shows oscillatory behavior in the case of €2 — 4y < 0 (complex eigenvalues).
Eq. (10) can be transformed in a system of first order differential equations

Iy 0 1 0 0 I 0

2 | _| -y —¢ 1 0 2 | _ | =t (12)
3 |~ 0 0 0 1 T3 0 -
.i:4 0 0 —w2 0 T4 0

In this representation the flow vector field f € R* of Eq. (12) is a polynomial
with a fixed point in the origin, as provided in the last chapter.
With the ansatz

o

Sir(ze) = Y. ajm(T)zg zilzpzo (13)
r'r'::l;.r"rll2‘=0

we obtain a linear hierarchic system of differential equations with constant
coefficients describing the dynamics of the mode amplitudes.

0

&l.m O 1 0 0 ay m =

C.Ig,m _ -y —€ 1 0 az‘m _ z; a;_Lal_kém,Hk ,
dom | | 0 0 0 Lf|ag | | (14)
d4.m 0 0 —qu 0 a4.m / 0

LN}



m. ke N}
Applying the identity of S; € R" respectively the corresponding condition
for the modes | Eq.(3))

(l_,‘.'_’_t_(o) = 61.m, H 60"710 (13
ag)

the coefficients «, », € R* of the stroboscopic map Sr € RY are determined.
Fig.(1) demonstrates that for small T only few modes do not vanish and
only the amplitude of the important nonlinear mode is not small. which
corresponds to Lemima 2.2 and Eq.( 9) in chapt.2. Thus a first order approx-
imation of the stroboscopic map 51 for the Helmholtz system is successive
for about T < 3.

Therefore the algebraic expression for this first order approximation includ-
ing only the linear and important nonlinear modes m = (2.0.0.0) is derived,
provided that «w = 1.

S 1 Xg) = DzeolT—DleDQTx +’DZT'°DITX
1.T Dy - Dy 0 D2 - Dy 0,
+ (e-Dz(*r—l\laD‘T+(-!+ D;(’f-l)]aozr T + et T X
(D = DN e+ vy =1) Ay =1 =e) 03
+ (D;t—'vd—l)eD\T—(Dl=+~—l\602r e'T + e T X
(D3 =~ DN Ate+ vy =1) 2y =1=1e) 04
2 2 2 2
. 1 :’D1 -202 - 0,07 ngT JDL-ZDI - Dy D2¢DZT
(Dg = Dy ;2 D1(2D2 - Dy) D2(2D0; - D7)
D3 D?
+ 2D14D)T _ 2 20T _ i 2D2T \ x2
Dy(2Dy - Dy) Da(2Dy = Dy 0,
D,T o T
S _ D20y _oyT_ DT D3e”2’ - Dye
(X)) = (1T ~P2Tyx, X
2T X9 Dy - Dy 0, Dy - Dy 0
+ ((t ~ Do(~ — 1)]D1eC1T 4 (<4 Dy(~ -1)1029027 et T e T X
(Dy = DyIN Aretvr-1  Av-1-101) "0g
. ((th-l-'v—l)chDlT—(D1e+1—l)D;aDZT T + =T X
(D = Dy )N e+ v =1) Ay =1 =1¢) 04
1 3p? -2p3 - DD 303 -20 - 0,0
+ 3 A 2 ! 201001r+ ! 2DzeDzr
(D2 = D) Dy(2D3 = Dy) D2(2Dy = Dy)
" T\ — o ——
D\+D3)T 203 DT 0} 0,7 \x2
+ Q(Dl+Dz),( 10T _ 222 D)7 _ __ 1 2D X
2Dy - D 2D, - Dy 01
S(l)( ) = cosT Xg +4aT X
3T 03 04
S .
( s —siaT Xg +cosT X
a1'%0 04 0,

N = (y=1)>+¢? and Dy, = —¢/2 £ i\/47 — €}/2 are two eigenvalues of the
linearized system. ‘

The complicated dependence of the oscillation parameter ¢, becomes evi-
dent in this mep. Note, this is already true for the driven harmonic oscillator.
as seen in the linearized map above.



In Fig.(2) we show a numerical comparison of the bifurcation sets of this
algebraic map ._\_";”(gu) and the bifurcation set of Eq.(10). calculated with a
Runge-Kutta method [25]. Note that only the nonlinear modes with index
vector m = (2.0.0.0) have been included for this good qualitative agreement.

Figure 1: Time dependence of the mode amplitudes az (T) of Helmholtz's
oscillator (7 = 0.5.¢ = 0.3.||m|l, < 2) whereby the coefficients of the first

order approximation are specially signed: ( linear ones: (1] : az,1.00.0) 2] :
a2,(0.1,0,0)» {3] 1 @2,(0.0,1,0) [4] 1 4a2,0,0,0.1) and the important one: [5] 1 @2,(2,0.0.0)

Figure 2: Bifurcation diagrams of Helmholtz's oscillator (y = 0.5,w = 1):
First component of S;rn(Zo) as a function of the force parameter f for var-
ious damping coefficients €. (n € N, 2o, = =0.5, zo, = 0.1, 20, = f, Zo, = 0)
a) Runge-Kutta-method b) algebraic, first order approximation: S{},ﬁ;( Zo)
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3.2 Stroboscopic Map of van der Pol‘s Oscillator

The differential equation of van der Pol's oscillator describes a nonlinear
system with an amplitude-depending dampiug coefficient.

P—ell=uf)i+r=0 0<e<? (161

Eq.( 16) can be written as a first order system. where f(0) = Q is automati-

cally fulfilled.
.i‘l _ 0 1 I _ 0 -
()2 0E)-a) oW

Again the corresponding equations describing the motion of the amplitudes
a,nm € R? are hierarchic. linear with constant coefficients and inhomoge-
neous.

[ c'll.nm - 0 1 ay,nm —~€ % 0
de.nm -1 ¢ az.nm ) Z Ay klB1,i382, i~ =k m~j—i

1.7.k,(=0

As a result we will compare numerically calculated limit cycles [24] with the
corresponding algebraic calculated phase plots: for the algebraic calculation
a map of first order is iterated; where first order means in the case of van
der Pol’s oscillator a map consisting of all linear modes and the important
nonlinear modes m = (2,1). For several strobe times T > 0 the periodic
motion is demonstrated in Fig. (3.4). Even for larger damping constants
the qualitative limit cycle behavior can be reproduced with this low order
approximation, for example ¢ = 1.7 in Fig. (4).

For special strobe times T we get good agreement of approximated limit
cycles and numerical ones. Further. as will be shown below for the van der
Pol system and Rdéssler’s system these quantitative discrepances disappear if
higher order contributions are used or if all higher order modes are estimated
by a linear rest term.

11



Figure 3: Limit cycles of van der Pol's oscillator (zro, = 0..x0, = 2) for a)e =
0.3,b)e = 0.5, numerically calculated [0]. algebraic: first order approximation
S (o) for different T, using the symbols: [1] : T = 0.1,[2] : T = 0.3.(3] :
T=050[4]:T=07[5:T =09

(in case a) the limit cycles [0 ], [1 Jcannot be separated; in case b) there is
small disagreement).

Figure 4: Limit cycles of van der Pol’s oscillator (¢ = 1.7,zo, = 0., 70, = 2):
numerically calculated [0], first order approximation : ,SSF‘)(;O) for several
strobe times T: a)[1]: T =0.1,[2]: T =02 b)(3]:T =03

‘l
'



4 Higher Order Approximations of the Stro-
boscopic Map

In the last chapter we demonstrated that already in first order approxima-
tion tvpical nonlinear behavior can be reproduced qualitatively. The next
question is. what happens if one goes to higher order approximations. C'an
one derive a good quantitative solution, too. using this algebraic method?
In practice the modes of higher orders cannot be calculated by hand because
the higher the order, the larger is the inhomogeneity of the linear differential
equations of these modes in Eq.( 7). This is the problem for calculating the
stroboscopic map to any order. Using algebraic manipulation programs like
reduce [27], macsyma [26] few more modes of higher order can be derived.
But because the algebraic manipulation programs are based on standard
analysis solving methods for linear differential equations. they are not effi-
cient enough to do this to any order. For example with macsyma one is able
to get all mode amplitudes to fifth order for the van der Pol oscillator.
Already using this fifth order approximation of van der Pol’s oscillator we
investigate the algebraic method in more detail.

Remark 4.1: In the case of van der Pol's oscillator we have the additional
symmetry property f(—z) = —f(z). This causes that all modes a;» € R of
even order vanish. Therefore we investigate the k — th order approximation
for k =1,3,5.

There exists numerical evidence for the following statements:

Statement 4.1: For a given order k = 1,3,5 there exists a maximum pa-
rameter e(*)  such, that for all € > ¢{¥)_ the iteration diverges for all T > 0.

S (z0) "= 00

Here we have used the abbreviation 3 := S5 ' 0 S = S7 ' (Sr(%)), SF :=
id, n is called number of iterations and k is the order of the Taylor series in
the initial values of Sy.

!
By numerical investigation we have! k |1 3 5

|

| €maz | 2[ 2[ 0.6 |

for T > 0 (who:eby T is varyed in steps of AT = 0.1) and 0 < € < 2 (e
is variied in steps of Ae = 0.1). €maz = 2[ corresponds to the unrestricted
interval e < 2.

Of course there exists a convergent iteration for k = 5,T < 0.1 and ¢ > 0.6,
but we investigated this iteration behavior due to convergence by varying
AT in steps of AT = 0.1.

Statement 4.2: For a given order k < kpoz(= 5) and a fixed ¢ < e!¥)_ there

marl

13




exists a maximum stroboscopic time T!%) 1o each e with T!*_ > 0. such

mar. mar.e

that tor T > T!¥) the iteration diverges.

S (k) n—=
:T.: (L)) — X

Fig.(3) shows the results of this numerical investigations (¢ and T is varied
in steps of 0.1).

o Fore=101s T,‘ﬂ,.o = V k=1.3,5, because in this case Eq.( 16)
is reduced to the differential equation of the harmonic oscillator.

o For a given order k = 1.3.3 we get: the larger ¢ the smaller T{%), , for a
converging iteration. This seems understandable. because the algebraic
expression for the mode amplitudes and therefore for the stroboscopic
map depends on the expression e’T. Therefore the individual modes

a,, are increasing with e and T.

Figure 5: Maximum stroboscopic time T'%). , which corresponds to a converg-

ing iteration [filled box ]and a diverging iteration [unfilled box |for n = 10
iterations, z¢, = 0.,Zo, = 0.1 and several orders a) k = 1, b) k =3, ¢) k=3

In addition to Fig.(5) the iteration converges in the case k = 3 for a few
more special parameter values: For ¢ = 0.1 there is convergence, too for
T € [6.0,19.9) U {20.6} and for € = 0.2 when T € (6.0,7.7] U {9.0} Thus in
the case of ¢ = 0.1 and ¢ = 0.2 we are able to derive an algebraic expression
S (z,) as the Poincaré map, which reflects the periodic motion as seen in

Fig.(6)

14
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Further numerical results involve that the con\'ergence-(li\'ergence-behavior
does not depend sensitive on the number of iterations. In about 3 x 20 x
70 different used parameter values k.e. T we get ouly I cases in which the
iteration converges {or n = 300 iterations and diverges for n = 10*. This
reflects a kind of stability of this algebraic method in long-time-predictions.
\What is the best stroboscopic time. for a given ¢ < e, T < TR, to
describe the limit cycle behavior using this algebraic integration method?”
Definition 4.1: Let X7(z;) € R? be a numerically calculated iteration point
of Eq.( 16) and i(rk)fio) € R¢ a k — th order approximation for the map. then
the quantity < r*) > is defined as the averaged difference between numerical
and algebraic limit cycle.

. L alh) - alk)e-
< >i= = Y ISF M (20) - Xr(SF T o))
=1

(Again as defined in statement 4.1 index i corresponds to the i -- th iterate
of Sp) Caused by Comparison of Fig.(7) and (8) we argue that < r*) >
is a possible quantity to describe the agreement of numerical and algebraic
results.

As general behavior for € < €{f)., T < T®)_  and different orders k = 1,3,53
we derive:

e For k = 1,3,5 : Except for the oscillating effects < r¥) > increases
with T which corresponds to a decreasing agreement cf numerical and
algebraic limit cycles for all calculated orders.

e Fork=3,5: iS;:—(Tﬂz- > "—%(%)Z. This means that for larger T and higher
orders the time dependence of the approximation quality changes slower
respectively the algebraic solution seems to be a better approximation
for k = 3,5 compared with k = 1.

o For 03 < T < T®)_ :< r® ><< r® ><< rll) > This seems in
agreement with the plots in Fig.(7) that a fifth order map causes a
better approximation than a third order and than a first order map.

e For T = 0.2 the approximation of Sr is for k =1 better than for
k = 3,5. Perhaps in this case < r%) > is too small to derive quantitative
predictions.

Nevertheless < r(¥) > is an approximative quantity to describe the agree-

ment of numerical and algebraic limit cycle. To derive quantitative predic-
tions | < 7 > — < r\¥) > | should be not too small.

15



As seen in Fig.(9.10) we obtain this general behavior also for € = 0.5. In this
case we observe a kind of resonance in Fig.(10) for the fifth order solution
in the interval of T € [0.12.0.31] where the iteration of $7(zy) diverges.
Currently we do not unclerstand this. Nevertheless we get the best approx-
imation using ::Efs)flg) as seen by comparison of Fig.(9).(10). In this case
there is good agreement between numerical and algebraic limit cycle except
2 places in phase space. A few comments on this will be given in chapt.6.
[n the example of van der Pol's oscillator we demonstrated that using ap-
proximations of higher than first order for stroboscopic maps a really good
quantitative agreement between numerical and algebraic solution can be de-
rived. The observation that for a given T.¢ € R a higher order approximation
do not have to be a better approximation is not a typical effect of this alge-
braic method: it also corresponds to numerical methods as for example the
Runge-Kutta-algorithm where a higher order do nct has to involve a higher
accuracy to the solution [24].

As numerical results demonstrate, there is no difference whether the numer-
ical iteration point X r(zy) is calculated by a Stor-Bulirsch method or by an
Euler integration procedure (step-size = 0.01). Therefore an estimation of the
optimal stroboscopic time I’ € R can be derived independend on numerical
solving packages.

16



Figure 6: Periodic motion of van der Pol’s oscillator (¢ = 0.2) : [x] alge-
braically described by the Poincaré map: Sff)(go), as a comparison to the
numerically calculated limit cycle [ solid line ].

Figure 7: Comparison of limit cycles of van der Pol’s system (e = 0.3): [0]
numerically, [1 Jalgebraic 3%(z,), [3 Jalgebraic S (o), [5 |algebraic S%(z,)
for different T.a) T =0.2,b) T =0.5,¢) T = 0.7

17
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Figure 8: Van der Pol’s system (¢ = 0.3): Averaged difference between nu-
merically and algebraic calculated limit cycle < ri¥) > (T) for different orders
k:([1):k=1.[3]:k=3,[5]:k=73)and n = 10° iterations.

Figure 9: Comparison of limit cycles of van der Pol’s system (e = 0.5): [0]
numerically, [1 ]Jalgebraic S (zo), [3 |algebraic SP(zo), [5 |algebraic S (zo)
for different T.a) T =0.2,b) T =0.4,¢c) T =0.5

18



Figure 10: Time dependence of < r*) > for ¢ = 0.5 and given orders k& =
1,3,3, corresponding to [1},[3],[3] and » = 10° iterations.

19



5 FEstimation of the Rest Term

With a kind of hvhrid ansatz we take into account all modes of higher than
first order to improve the results of first order approximations of St(y).
Definition 5.1: The differcuce hetween the exact stroboscopic map St(go) €

R" (defined by Eq.( 3)) and the first order approximation i‘r”(go) e R"
(defined by definition 2.3) is called rest term Arigy) € R

Selzo) = S5 ze) + AriLo) (13)

In the case of van der Pol's oscillator we demonstrate explicitly that the rest
term caused by truncation of the power series in the initial values can be
approximated by a differential equation for Ar{zy) € R?. Inserting Eq.( 18)
in Eq.( 17) leads to this nonlinear differential equation for the components
of Ar(zo) € R?

Al - 0 1 A1 -

( ..Sz ) = ( _(1 +26S{1)25-£”) E(l _ Sil)z) ) ( A'Z +=(.I-07T)+Q(l.0a T)
(19)

Z(zo.T) € R? is the nonlinear part of the differential equation:

0
a:n ’T = —¢ 2
(20, T) = —¢ ( SEUA? 1280 A A, + ALY, ) (20)

&(z,, T) € R? is the inhomogeneity of the equation:

0
sa1= )
(20,T) —esiNsit 4 exd, zo,(a? 1082.01 + 2a1,1081.0162.10) (

As initial condition we get from the identity Eq.( 5, 18)

Aro(Zo) = Azo(zo) =0 (22)

With the use of A; =: A and after linearizing Eq. (19) we obtain an au-
tonomous differential equation of the form

A+ ei(zo T)A + ca(z0, T)A = 2(20,T) (23)

20
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where ¢, ¢;, ®, € R depend on £o. but alsoon T in a complicated way.
Note that Ay correspouds to the linearized rest term in the following.

In a general case the time dependence of the coefficients ¢(z,.T) and
ca(xy. T) involves that Eq.( 23) cannot be solved analytically. Therefore as
a first approximation we integrate Eq.{ 23) by a numerical solving method
[24]. After each iteration step this linearized rest term JAr(1y) is added to

the first order approximation ;:(Tl)(go) of the stroboscopic map.

This correction causes additional good quantitative agreement of algebraic
and numerical limit cycles as Fig.(11) demonstrates.

Figure 11: Limit cycles of van der Pol’s oscillator (¢ = 0.3) for different
approximation methods: {0] :numerically, {1]:algebraic first order approxima-

tion: $4")(zo), [2]:using numerically calculated rest term: S3'2(£o) + o 5(Zo)

In this approximation we cannot neglect numerical solving methods. Thus
to be independent of numerical algorithms we replace in the coefficients
c1(zgsT)y¢c2(Zo, T) and the inhomogeneity ®9(zy,T) of Eq.( 23) T by an
effective stroboscopic time T,ss as a further approximation.

Cy (;_0, T) i EI(I&)’ Tefj)o C'Z(Z.Ov T) d é2(§0v Te!f)s Q’Z(L{h T) - 62(5-01 Te!f)

For convenience ’ ~' is neglected in the following.
This replacements involve that Eq.( 23) becomes a linear differential equation
with constant coefficients and the form of a driven harmonic oscillator.

A + c1(20, Tes1)A + a0, Tes1)A = D2(20. Teyy) (24)
This equation can be soived analytically

QQ D— eD+T + D+

22 DT T 2
o\ DF - D" p-—p+¢ tH (29

Ar(zg, Tegy) =

21



with Dt = —-%‘L + %, /(‘f - _1(_'2_

Thus in this last approximation of the rest term. the map Sr € R? can be

written as

_XT(.l' . T rr)
T T (26)

. _ o
Srlee. Tegs) = 87 (Lo) + ( Alzy. Tjy)

T.;s appears as an additional parameter in Eq.( 26). which can be chosen
such way. that we get best agreement in numerical and algebraic calculated
limit cycles. Fig.(12) demonstrates that a variation of the parameter T,/
corresponds to a variation of the size of the limit cycle. Therefore the best
parameter value of T,z (in the sense of best agreement) can be fig: -d out
as I.z5 = 0.3.

In the following we describe the mathematical determination of the bes T.y;.
Definition 5.2: Let ' := S7(zo, T.ss) be an algebraic calculated iteration
point of Eq.( 26) and zV = Xr(zy) be a numerically calculated iteration
point [24]: then the quaatity r := |z* — zV| depending on T.;; describes the
difference of numerical and algebraic solution.

We argue that the minimum value of r as a function of T.;; corresponds to
this parameter value of T,y with best agreement in numerical and algebraic
solution. Compare Fig. (12) and (13).

Again there is no difference if z" is calculated by an Euler method (step-size
= 0.01) or by a Stor-Bulirsch method [24]. This important feature involves

the independence of the determination of the best T.;; on numerical solving
packages for ODE’ s.

We have done analogous calculations with Rdssler’s system [18]:

T 0 -1 -1 T 0
y|=1002 0 y |+ 0 (27)
z 0 0 —pu z b+ z:=

bueR

By the introduction of the parameter b as an additional variable, with 6(0) =
b, the origin is fixed point of the transformed system of the ODE

z 0 -1 -1 0 T 0

g | (o002 0 offw 0 .
710 0 —pd N (28)
b 0 0 0 O b 0

22
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In Fig. (14) and (13) we compare numerical results (a) with algebraic ones
for periodic and chaotic behavior. which depends on the parameter 4 € R.
We demonstrate (b.c). that even for chaotic behavior the qualitative system
behavior can be reproduced in low order approXxinations. [u consideration ot
the rest term (d), which is calculated from the linearized differential ecua-
tion of the rest term A7(r,) the algebraic iteration points are lying on the
numerically calculated phase trajectories.

In the case of Réssler’s system we integrated the linearized rest term
Ar(zo) € R* numerically [24]. In principle the time dependence of the
coefficients in the differential equation of the rest term can be approximated
by an effective time step T.ss, as it is done explicitly in the case of van der
Pol's system. To solve this resulting differential equation with constant coet-
ficients one have t¢ find out the zero-points of the characteristic polynomial.
which is of third order. In the case of Réssler's system this expression for
the zero-points is so complicated. that we could not apply the second kind
of approximation of the rest term, yet.

--



Figure 12: Variation of T.;s causes variation of the size of the limit cvcles
of van der Pol’s oscillator (¢ = 0.3): numerically [0] and algebraic. using

S (2o) + DoslLo, Tess) for [L Ty = 0.1, [2 |Teyy = 0.2, 3 [Ty = 0.3,
(4 1Tess = 0.4, [3]T.sr =05

Figure 13: Determination of best T, for the rest term approximation in the
case of van der Pol’s system (¢ = 0.3,T = 0.5)
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Figure 14: Periodic hehavior of Réssler's system (u 1.3 = (1,0.1)):
[0} : numerically, (1] : first order approximation: Y 2 7] : second order
approximation ;‘(f]’ ). [3] : using S5 sl )(Lg) + oilLo). whele Ar € Rt is the
linearized rest term, numencally calculated.

Figure 15: Chaotic behavior of Rdssler's system (4 = 5.7,z = (1.0.1)),
whereby the transient response is not neglected: a) numerically, b) first or-
der approximation: Sf]_) Zo) ¢) second order approximation ,S‘(, )(z,) d) using
S‘()I,Z(zo) + Ao.1(Zo), where Ar € R* is the linearized rest term, numerica.lly
calculated.
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6 Correlation of the Algebraic Method with
the Local Divergence Rate of a Dynamical
System

Definition 6.1: Let S1(z,) = £(T) € R" be the stroboscopic map as defined
in Eq.( 3) then

S141(Z0) = S, (81, (20)) (29)
is called semt group condition.
Lemma 6.1: Let 57 € R" be given as a power series in the initial values
I, of the system, like Eq.( 6), then Eq.( 29) is satisfied exactly only if S7 1s
linear in the components of 1y or St is given as an infinite power series.
proof: Inserting Eq.( 6) in Eq.( 29).
Therefore we make the following definition:
Definition 6.2: For a stroboscopic map S7(zy) € R™ 6sem: € R{ is called
semi group violation, for

Osems = liT,-q-T,(l'-o) - ST,(ST,(-LO)N (30)

Lemma 8.2: §,.m: = 0 for linear differential equations (|{||; < 1).

proof: The basis for this proof is the known statement: The solution of linear
differential equations is always linear in the initial values.(this can also be
derived from Eq.( 7, 8) proceeding a linear differential equation (||l|}y < 1)).

As demonstrated in chapt.2, the solution of nonlinear systems can be rep-
resented as an infinite power series in the initial values. But in reality only
a finite number of coefficients a;,(T) € R can be calculated. This is the
reason why the semi group condition is only satisfied approximatively re-
spectively 8,emi > 0 for nonlinear systems. Of course é,emi depends on the
several kinds respectively orders of approximations of the stroboscopic map
St € R, demonstrated in chapt.(2-5).

In the case of van der Pol’s oscillator we demonstrate the mutual dependency
of the semi-group-violation 6,.mi, the local divergence rate Aloc of the physi-
cal system and the agreement between numerically and algebraic calculated
limit cycle.

The local divergence rate describes how fast nearby trajectories separate lo-
cally and is defined in [30).

Moca(z) = = * Eigenvalue[D:f + D,f'] and ze€R® (31)

B

o] —
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For the van der Pol oscillator Eq.( 16) leads to

Mo ye) = SIL = 2%) £3/(L = a2) ety (32)

In Fig.(16) there 64, and Aoc := mar{ Ao, - Aloc, } is plotted for each point
ot the limit cycle. At this 2 edges of the limit cycle. where the difference
between numerical and algebraic solution is maximal. there a nonvanishing
8sem: 15 related to a nearly vanishing local divergence rate.

So it seems: For a given integration time 0 < T < T, a vanishing local
divergence rate amplifies the difference between numerical and algebraic so-
lution whereby a nonvanishing local divergence rate reduces the error. In
other words: the place on the limit cycle where d,.n; is maximal does not
correspond to the maximum difference between numerical and algebraic so-
lution.

Perhaps we can explain by this the property, seen in Fig.(3.4). By enlarging
the strobe time T' > 0 we get typically this maximum disagreement in nu-
merically and algebraic calculated limit cycle at this two edges in the form
of sharp peaks.

Fig.(17) and (18) demonstrate, that going to higher order approximations re-
spectively using the linearized rest term as a correction of 5(7})(;'0), bsemi can
be reduced (for the same parameter values). This involves a better approxi-

mation for the limit cycle at places in phase space where the local divergence
rate vanishes.

Figure 16: Van der Pol oscillator (¢ = 0.5): (1 Jlocal divergence rate i
, [2 ]semi group violation 6,m; and difference between numerically (0] arnd
algebraic $4'3(z,)[3] calculated limit cycle are correlated.
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0.3): [0} numerical limit cycle, [3] fifth

Figure 17: Van der Pol oscillator (e 3
]'\locs [-Z ]éaemi

order algebraic limit cycle: S0(zo), 1

Figure 18: Van der Pol oscillator (¢ = 0.5): [0] numerical limit cycle, 3]

algebraic limit cycle: ,s},T;(;o) + Ao.5(£0,0.3), 1 llocal divergence rate A
and [2 ]6,,,-,“'
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7 Conclusion

In typical cases dynamical systems which should model physical system be-
havior describe the experimentally found behavior not exactly. Often some
additional. for example not known terins are neglected in the model. Then it
seemns sufficient to simulate for instance the topological structure of dynami-
cal systems respectively qualitative dynamical effects. In this sense the main
interest in this paper was not to derive extremely quantitative agreement
between algebraic and numerical solving routines. This question should be
answered by choosing really small integration time (T < 0.1). But it should
be demonstrated that even for not necessarily small strobe times T an al-
gebraic expression is derivable, which describes the dynamical system in a
finite, but not infinitesimal neighborhood of the initial state.

The advantage of algebraic integration procedures is. that the whole parame-
ter dependence of the stroboscopic map related to the parameters of the ODE
is given in closed form. Therefore the investigation of dynamical system be-
havior as a function of these parameters is facilitated [23]. Since nonlinear
systems tend to have many parameters, a systematic numerical investigation
of the solution of the ODE on the parameters seems impossible. The algo-
rithm presented in this paper is closely related to a straight forward algebraic
integration by Euler's method. If all the transformations of the resulting al-
gebraic formula are done in order to spare computation time an evaluation
using this algebraic formula is quicker than for example Runge-Kutta's algo-
rithm [25].

As Lorenz observed [29], chaotic behavior sometimes occurs when differ-
ence equations used as approximations to ODE are solved numerically with
an excessively large time increment T. Fig.(19) demonstrates that this com-
putational route to chaos can also appear for some special parameter val-
ues for van der Pol’s oscillator by iterating the algebraic stroboscopic map.
To describe this transition we calculated the largest Ljapunov exponent A
as a function of strobe time T and got following results: a)T = 11,A =
—-0.596)T = 13,A = —0.38¢)T = 15, = 0.22d)T = 16,A = 0.07¢)T =
16.5,A = 0.46f)T = 18, = 0.43. But it turnsed out that also for T < 11
there exists A > 0 in cases where the limit cycle approximation is very good.
Therefore in this case the maximum Ljapunov exponent A is not a proper
quantity to classify this route to computational chaos. For further discussion
the paper of Lorenz [29] is a motivation for more detailed investigation of
the correspondence of computational chaos and algebraic integration method
as a comparison to other solving routines of ODEs.

A generalization of the presented method to ODEs where the flow vector
field is just assumed to be an analytic function seems to be straight for-
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ward. if the flow vector field is approximated by a polvnomial. Discrete maps
can be much more easily extracted from experimental systems [l11.31] than
ODEs. Since the equations of motion of many physical systems are ODEs
it is essential to know the stroboscopic map in a closed form in order to
make a quantitative comparison hetween experiment and theory. The appli-
cation of stroboscopic maps to controlling experimental svstems [28] may
have important consequences.

Figure 19: Demonstration of the computational route to chaos for large strobe
times T of van der Pol’s oscillator (k = 3,e = 0.1,z9, = 0,20, = .1): a)
T=1,b)T=13,¢)T=15,d) T =16,e) T =16.5,f) T = 18
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