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Abstract

The relation between the parameters of a differential equation and

corresponding discrete maps are becoming increasingly important in

thestudy ofnonlineardynamicalsystems.Maps arewelladoptedfor

numericalcomputationand severaluniversalpropertiesofthem are

known. Thereforesome perturbationmethods havebeen proposedto

deduce them forphysicalsystems,which can be modeled by an or-

dinaxydifferentialequation(ODE) with a smallnonlinearity.A new

iterative,rigorousalgebraicmethod forthe calculationofthe coeffi-

cientsofa Taylorexpansionofa stroboscopicmap from ODE's with

not necessaxilysmallnonlinearitiesispresented.Itisshown analyt-

icallythat most of the coefficients axe small for a small integration

time and grow slowly in the course of time if the flow vector field of

the ODE is polynomial and if the ODE has fixed poin_ in the origin.

Approximations of different orders respectively of the rest term are

investigated for several nonlinear systems.

,.lP-



I

t e.
r

1 Introduction

The motion of the driven Helmholtz oscillator [II. of a van der Pol oscil-

lator ['2],and many other nonlinear dynamical systerns sllow complex long

time behavior, but smooth short time dynamics. In this case the topologi-

cal structure of the trajectories of the continuous and the discrete -,v,,:tetn is

equivalent [:3]. Also the motion of the planets can be described in a goo, l

approximation by a fast rotation around the sun on elliptic orbits, where the

eccentricity and the point of culmination change comparatively slowly but

with a complex long time dynamics. Is the motion of the point of culmina-

tion chaotic, periodically oscillating, stable or unstable, the whole dynamics

possesses this property. Poincar4 and others [4,5,6] have shown that the pa-

rameter dependence of those dynamical systems can be described easier by"

means of iteration functions, which describes e.g. the dynamics of the point

of culmination of a trajectory, than by the original differential equation. Es-

pecially if the amplitude frequency coupling (AF-coupling) [7] of a nonlinear

oscillator is complicated, a Poincard map may be comparatively simple, since

it is insensitive to the AF-coupling, if the Poincard surface is properly chosen.

Recently, stroboscopic maps have become important, since it has been shown

that they are insensitive on the AF-coupling too after an appropriate rescal-

ing of the flow vector field of the corresponding ODE, and since they can

be calculated by some algebraic methods. [5,6,9] Ali these methods start

from the assumption that the strength of the nonlinearity is expressed by

a parameter e. In perturbation theory the exact solution is expanded with

respect to e for small e. The resulting solutions are valid for a large class of

initial states but only for small e. Recently it has been shown [5,8,9,10] that

even for large e stroboscopic maps may be approximated with high accuracy

by a polynomial of low degree for initial states in the neighborhood of an

attractor. Feigenbaum [12] and others [13,14,16] have demonstrated that

the parameter dependence of those maps may have universal properties if

the higher order contributions are small enough. Therefore it s_ms useful

to expand the exact solution of the ODE with respect to the initial states

in the neighborhood of an attractor and calculate the leading coefficients of

the expansion algebraically. If the resulting contributions of higher orders

are small, a stroboscopic map which just takes into account the leading co-

efficients should qualitatively reproduce the parameter dependence of the

dynamics of the ODE. Additionally a method for just the opposite way, to

construct a class of suspensions and autonomous differential equations for

diffeomorphisms in the plane is already known [15]. In this paper we present

a rigorous algebraic method to calculate the relation between coefficients of

a Taylor expansion of a stroboscopic map and the parameters of the ODE

,Q_
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in closed form. In Sec.2 we present the algorithm and argue that the I'arlot"

expansion of the stroboscopic map converges quickly for short intervals of

integration time if the flow vector fieid of the ODE is a polynomial and has a

fixed point in the origin. These conditions are fulfilled e.g. by the oscillators

of Lorenz [1.7], R6ssler [1SI. ,'an der Pol [2] etc.. In sec. :_ we compare the

bifurcation sets of forced Helmholtz's oscillator respectively the limit cycle

behavior of van der Pol's oscillator resulting from a numerical integration

and from the algebra, lc algorithm using a first order approximation. [-',lrther-
more in sec. 4,5 we demonstrate some results in the case of van der Pol',,, an_[

RSssler's svstem using approximations of higher orders or approximations or'

the rest term, ca,used bv truncation of the Taylor series. In sec.6 we discuss

the connection between mathematical properties of the algebraic method and

physical properties of dynamical systems. Finally in sec.7 we present sotne

concluding remarks and suggestions for future directions.
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2 Algebraic Calculation of Stroboscopic

Maps

Consider a ,,ystem of ordinary differential equations in R"

,i,= f(z(t)) _1)

where x(t) E R" is called state vector and J_'" R _ --* R_,.c _-_ f(x) is the

corresponding n dimensional flow vector field, assumed to be a polynomial.

Therefore the j-rh component of the flow vector field f_ can be represented

4j fl t,L=_c,,_ x, j=1 ..... n (2)
t=o_. ,=t

where/_ E Na is an index vector and the components of the vector dj E Na

fulfill the condition: _ di, = gj = degree of the polynomial fj.
i=1

Assuming f(O) = 0. This is no restriction as we can demonstrate for many

cases [21]. There exists a transformation in an equivalent system of this form

(for example Helmholtz's oscillator(chapt.3) or the Rbssler system (chapt.5) ).

Definition 2.1: Let x(t) represent a solution to the ODE under investigation.

Then for fixed T E R a mapping

ST :R" ---,R",_(t) _-, zJt + T) (3)

is called stroboscopic map of strobe time T.

Using Eq.(1) and (3) we obtain a differential equation for the dynamics of

the stroboscopic map.

d d

a-_(T) = _,£r(_):= _-r(_) = Z(5-r(_)) (4)
where

&(z0)= _0:= z(0) (5)

is the initial condition of the system. Thus we can formulate the identity:

50(-)=
Recently it has been demonstrated that the stroboscopic map of some non-

linear systems can be approximated with high accuracy by a polynomial of

,,$
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low order ill the initial values of the system [8..5].Therefore we take a Taylor

expansion as an ansatz for each ,,on_ponent j of tile _trol)oscopic map:

' .I ,I 0,-, _ " .....

n_=O_ ,_= 1

where ,ro,, E R are the coml)onents of the initial state vector x_o. The dy-

namics of the system is now represented by the time dependence of the mode

amplitudes a_.__(T) E R.

Definition 2.2: The order of a mode aj.m E R is given by lira = E ,,,,.

Remark 2.1: Constant, linear respectively nonlinear modes are of order

llmtll = 0, l. respectively > 1.

Lernma 2.1: Let f2.(._r)E R be analytical functions in the state variables

.r, E R for i.j = 1,2 ..... n

then Sj,T(,r_o) = rj are analytical functions of their arguments, in some neigh-
borhood of each value and therefore there exists a T > 0 such, that Sj.r(x_o)

converges

For a proofsee [19] and [20].

Theorem 2.1: Let f_,Sr E R _ be polynomials as defined in Eq.(2,6), let

(i, 3) E N x No be an index of the index vector _k E N_, let m E N_, then

the dynamics of aj.m(T) E R,j = 1,2 .... , n is given by

aj.m_(T) = Y_ tj, t ai._C,_,(T (T)

/.:o_ g',_),,o.,=l 3:o h
_2,.m

o<_<_.l, =
1<,<n

pro@ Using Eq.(3), Eq.(7) can be derived from Eq.(4) by equating the coet'-

ficients of like powers in the initial values. See [211 for details.

Remark 2.2: Because li = 0 is possible, the running index '3 E No starts

with 3 = 1 -6o,t,. This involves the requirement for/3 = 0:k_.0'°1 := 0 and

a,.k2,.o_"= 1 to get the right general formula for the mode amplitudes. There-
fore in consideration of this requirement _ E No can always start with J = 0.

In the following we argue that Eq.(6) is determined by only a few coefficients

for small T. Afterwards we will solve Eq.(7) in a closed form.

Lamina 2.2: Let _.o(') E R" be the identity operator, then the radius of

convergence of the stroboscopic map ST E R" is infinite for T = 0.

proofi Due to Eq.(5) we obtain

aj.m(O) = 61.,.,,, II 6O._o v a,j = 1, .... n (8)

*II-
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Remark 2.3: For a n-dimensioIlal _vstem only n linear modes aj,_ E R (1o
not vanish for T' = 0.

Lemma 2.3: For T = 0 the radius of convergence of the time derivative Of

the stroboscopic map ._-_0t,_-_)E R" map is infinite for T = 0.

t)s'oo}! Eq.I7/ leads to

4_j

l_:o_. _ = L

Thus. caused by the Kronecker-delta in Eq.(.9), h_,_(0) -J: 0 for ali m which

correspond to such index vector rn = l with ¢./,,,_ 0.

Due to Eq.(S) nearly ali modes vanish at time T = 0 and due to Eq.(9) only

a few modes change their amplitude at time T = 0. So Eq.(9) indicates that

ali other modes remain small for small strobe times T. Therefore we have

the following definition:

Definition 2.3: Let aj,__ E R be characterized by a non changing amplitude

at T = 0:hi,._(0 ) :fi 0 for some j = i. 2 .... , n, then aj,__E P.. is called impor-
tant mode V j = 1,2 ..... n.

Definition 2.4: The stroboscopic map Sr E Ft", consisting of ali linear

modes and only the important nonlinear modes is called first order approxt-
-, .-,(1), ,

marion Of _r: _r _-_.ol

For n > 1 a n-rh order approximation: S(T_)(_) consists of ali modes of order

Ilmll,--
rL

Lemma 2.4: Let ai,_ E R be an important mode and gj = E dj, E R the
i--1

degree of the flow vector field fj E R, then the maximum order of a_,. and
i.j = 1,2 ..... n is given by: ]l/_[I,,.,=_= max{g3[j = 1.... ,n}

proof. Due to Eq.(9) each nonlinear term with coefficient cj,z.E R of the flow

vector field f corresponds definitely to one important mode aj,z.(T).
Finally we argue that the relation between the coefficients of the flow vector

field cj,l_E R and the coefficients of the Taylor expansion of a stroboscopic

map aj,,,_ E R can be calculated in closed form.

Definition 2.5: The structure of modes a_,zaE R i,_ called hierarchically, if a

mode aj,za only depends on modes a_,_g,,m,where 'Al components of the index

vector k (i'O}E N_ are less or at most equal th_.n the corresponding compo-

nents of the vector m E N_. Or in other wor,]s, if modes of higher order can
iteratively be calculated from the lower ones with a recursion formula.

Lemms 2.5 evt. Theorem 2.2: Eq.(7) is a hierarchical system of differen-

tim equations.

proof. With k(_i'/3) E No the 6-function in Eq.(7) leads to k(i,z) < m_
V ez = 1,2 .... ,n

Lemma 2.6 evt. Theorem 2.3: Consider Eq.(1,2) and let cj,9 = 0 k/ j =

6
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t,'2 ..... n which is equivalent to the fixed point behavior f(0_) = 0_the11
Eq.( 7/ becomes a linear differential equation with constant coefficients

G.i. E Ii.

p,'oo.fi Due to Eq.(?,8) the assumption q,.0_ = 0 leads to aa.o_(T) - 0

V j = 1.'2..... tt By this Ect.(7) is a linear differential equation with con-

,,.rant coefficients and an inhomogeneity consisting of products of modes of

only lower order than IIm__ll .which are known caused by the hierarchic prin-

ciple of the mode equations. For a more detailed proof, see [21].

In this chapter the differential equations of modes are reduced to a linear.

inhomogeneous, n-dimensional system of differential equations with constant

coefficients, which is analytically solvable ['22]. In the next sections this

method will be applied to calculate the bifurcation set of Helmholtz's oscil-

lator or the phase space dynamics of van der Pol's and R6ssler's system.
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3 _irst Order Approximations of the Stro-

boscopic Map

3.1 The stroboscopic map of Helmholtz's oscillator

Consider forced oscillatiolts in the potential _:,(x) of the form

+ _ + dt:,(x)= f cos(_,t) (tO)

where _ > 0 is the damping constant. "/ E R quantifies the form of the

potential and f._.' frequency and amplitude of external forcing.

The special potential of Helmholtz's system

l-x3
t_,(x) = 7)_2+ 5 (tr)

shows oscillatory behavior in the case of e2 - 4"y< 0 (complex eigenvalues).

Eq. (10) can be transformed in a system of first order differential equations

_2 = -7 -e 1 0 x2 - (12)
&3 0 0 0 1 z3

,_4 0 0 _w2 0 x4 0

In this representation the flow vector field f. E R 4 of Eq. (12) is a polynomial

with a fixed point in the origin, as provided in the last chapter.
With the ansatz

sj,r(_o)= :E :j,:(r):_,:_::_::_,. (13)
m I ,m2

rn 3 ,Tri, 4 --0

we obtain a linear hierarchic system of differential equations with constant

coefficients describing the dynamics of the mode amplitudes.

• / °0a2,ra = --"/ --e 1 0 a2,ra _ l.,k=fi_aI'Lal'_6m'l'+_ (14)
a3,,,_ 0 0 0 1 a3,m. 0

a4,m 0 0 __2 0 a4,m. ] 0

qb-
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,7_.l./,. 6 N_

Applying the identity of _r E R" respectively tile corresponding condition

for t he modes (Eq.(S })

a:,=(0) = b.t,.,, l'I 5o,m_ (t St

the ¢oeffaciettl._ %._ E R I of the stroboscopic map ZT E R 4 are determined.

[:ig.(1) demon.,,trates that for small T only few modes do not vanish alld

only the amplitude of the important nonlinear mode is not small, which

corresponds to Lemma "2.'2and Eq.(9) in chapt.2. Thus a first order approx-

imation of the stroboscopic map _T for the Helmholtz system is successive

for about T _< _,.

Therefore the algebraic expression for this first order approximation includ-
ing only the linear and important nonlinear modes m_.= (2.0, 0, 0) is derived,

provided that # = 1.

S {!1 _ D2 eDIT - DIED2 T cD2 T _eDl T

1.T 2g'O) = D_ Di X01 + 02 -DI X02

+ ( ['-vaI'-tq*Dtr+t-'+DI('-z'l'o2T_o2 -DI).V + 2_,,+-,"r-ll + ,_, -,--- ]"-' r" ,,))X03

((Vr_,_.+t).Otr_,Ot.+._t,.D=r ,.,r ,e-,r )X04+ ( D 2 - D l IN 2(*t + "f - II + 2('_ ----[ ----,_)

3D_ - 2D21 - D I D 2 D2 T

+ .l (3D_-2D2-DID2eDIT+ D2(aD"7-D2) •
{ D2 DI _2 k DI(2D2 -- DI )

2e(D! +D2)T - D_ e2D1T - D_ eaD2T_ X0 _
+

DI(2D1 - D2) D2{2D2 - DI ) ] 1_

8(1) .._e . D2D . T D_ eD2T - D_ eDIT

_2_'l teD1 _ eD2T)X01 " + ,.2,T t_O) = D2-D_ 02 D_ X0 2

( 'e'T ,e-'r )Xo3[¢--D_("-l)]DleOtr +[-*+ D_'('t-1)]D:_eD2T' + 2(s*+'T I)+ (D2 - DI)_" - a(_--;--- ,,)

( "" )xo,+ (D2¢._-I)DleDIT-(DI_+w-I)DaeD2T + 2(_¢+'v- ) + --(D2 - Dz),v _ a('_--- ,,_

1 {'3D_-2D_ -DID 2 .DI. r ,D]-2D_-DID 2 eD2T- D I + D2
+ _,_ DI(2D2 D 1 ) D2I:*D I D2 )( D2 D1 )2 . ,_ .... -- •

D2)e(Dt+D2)T -- 2D_ e2Ol r - 2Dr, e2D2 T_ X0 _
+ 2(D I +

2D1 -- D2 2D2 -- DI ] 1

S_Z_
3,T(2_0 ) - co,r +,i,rX0_ X0 4

S_I) r x03 x044,T(2[,0) = -,i- + ,o, r

N = ('t - 1)a + ea and D_i_ =-e/2 + iv'4"t -ca/2 are two eigenvalues of the

linearized system.

The complicated dependence of the oscillation parameter e, ? becomes evi-

dent in this map. Note, this is already true for the driven harmonic oscillator.

as seen in the linearized map above.
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In Fig.(2) we ._how a n_imerical comparison of the bifurcation sets of this

algebraic map ',-t_l(.t._) and tile bifurcation set of Eq.(10), calculated with a

Rutige-Kutta luethod [2.5]. Note that only the nonlinear modes with index

vemor tT_= /'2.0, 0, 0) have been included for this good qualitative agreement.

Figure 1: Time dependence of the mode amplitudes a2.m,(T) of Helmholtz's

oscillator ('I = 0.5, e = 0.3, Ilrnllt <_ 2) whereby the coefficients of the first

order approximation are specially signed:( linear ones: [l] : a2.it.o.o.m,[2] :

a2.1o.,.o.ol,[3]: a2.(o,o,l.0},[4]: a2.{o.o,oaland the important one: [5]: a2,12,o.o.o)

Figure 2: Bifurcation diagrams of Helmholtz's oscillator (7 = 0.5, w = 1)"

First component of S2,n(_o) as a function of the force parameter f for var-

ious damping coefficients e. (n E N, xo_ = -0.5, xo_ = 0.1,zo3 = f, xo_ = O)

a) Runge- Kutta-method b) algebraic, first order approximation: S_I_(_o)

10
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3.2 Stroboscopic Map of van der Pol's Oscillator

The differential eql:ation of van ,l,-'r PoPs oscillator describes a nonlinear

system with an alnplitude-depending dampitlg ,'oeliq,cient.

,?-e(l-,r:).i._,r=O 0<e<'2 II6J

Eq.(t6) call be written as a first order system, where f(0_) = 0 is automati-
cally fulfilled.

,i'l 1 zt

Again the corresponding equations describing the motion of the omplitudes

a3,,_m E R a are hierarchic, linear with constant coefficients and inhomoge-
rleous.

[12 nrn "-- -- 1 _ a2.nm _ a l,kla l,_Ja._.::___k m-a-i
' i,j,k,l--O

As a result we will compare numerically calculated limit cycles [24] with the

corresponding algebraic calculated phase plots: for the algebraic calculation

a map of first order is iterated; where first order means in the case of van

der Pol's oscillator a map consisting of ali linear modes and the important

nonlinear modes m = (2, 1). For several strobe times T > 0 the periodic

motion is demonstrated in Fig. (3,4). Even for larger damping constants

the qualitative limit cycle behavior can be reproduced with this low order

approximation, for example e = 1.7 in Fig. (4).

For special strobe times T we get good agreement of approximated limit

cycles and numerical ones. Further, as will be shown below for the van der

Pol system and R&sler's system these quantitative discrepances disappear if

higher order contributions are used or if ali higher order modes are estimated

by a linear rest term.

11
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Figure :3: Limit cycles of van der Pol's oscillator (x0, = 0.. Xo: = 2) for a)e =

0.3, b)e = 0.5, numerically calculated [0], algebraic: first order approximation

_)(X_.o) for different T, using the symbols" [1]" T = 0.I,[2]" T = 0.3, [3]"

r = 0.5,[4]: r = 0.7,[51: V = 0.9

(in case a) the limit cycles [0 ], [1 ]cannot be separated; in case b) there is

small disagreement).

Figure 4: Limit cycles of van der Pol's oscillator (e = 1.7, xo, = 0., xo_ = 2):

numerically calculated [0], first order approximation • _)(_,o) for several

strobe timesT: a) [1]'T=0.1,[2]'T=0.2 b) [3]'T=0.3

12
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4 Higher Order Approximations of the Stro-

boscopic Map

In the last chapter we demonstrated that already in first order approxima-

tion typical nonlinear behavior can be reproduced qualitatively. The next

question is. what happens if one goes to higher order approximations. (2'an

one derive a good quantitative solution, too. using this algebraic method'?

In practice the modes of higher orders cannot be calculated by hand because

tile higher the order, the larger is the inhomogeneity of the linear differential

equations of these modes in Eq.(7). This is the problem for calculating the

stroboscopic map to any order. [:sing algebraic manipulation programs like

reduce [27], macsyma [26] few more modes of higher order can be derived.

But because the algebraic manipulation programs are based on standard

analysis solving methods for linear differential equations, they are not effi-

cient enough to do this to any order. For example with macsyma one is able

to get all mode amplitudes to fifth order for the van der Pol oscillator.

Already using this fifth order approximation of van der Pol's oscillator we

investigate the algebraic method in more detail.

Remark 4.1: In the case of van der Pol's oscillator we have the additional

symmetry property f(-x_) = -f(x_). This causes that ali modes aj.,,, E R of

even order vanish. Therefore we investigate the k - th order approximation

for k = 1,3,5.

There exists numerical evidence for the following statements:

Statement 4.1: For a given order k = 1,3, 5 there exists a maximum pa-

rameter eIk} such, that for ali e > eIk} the iteration diverges for ali T > 0.W1,Q,_ rn, QZ

Here we have used the abbreviation S_. := S_ -t o Sr = S-_-I(ST(_)), Sgr :=

/d, n is called number of iterations and k is the order of the Taylor series in

the initial values of Sr.

numericalinvestigationwe have]k ]I 3 5 !
By

_=12[ 2[ 0.0[I

for T > 0 (whereby T is varyed in steps of AT = 0.1) and 0 < e < 2 (_

is vaxiied in steps of Ae = 0.l). e,_= = 2[ corresponds to the unrestricted
interval e < 2.

Of course there exists a convergent iteration for k = 5, T < 0.1 and e > 0.6,

but we investigated this iteration behavior due to convergence by varying

AT in steps of AT = 0.1.

Statement 4.2: For a given order k _< k,,,_=(= 5) and a fixed e <_ e(k)_=there

13



"vi _:) .T(t-) to each e with _.,._:_ > O. suchexists a maximum stroboscopic tittle _._._,_

that for T > T (j') the iteration diverges.

>-r._ _) _._ _c

Fig.(5) shows the results of this numerical investigations (_ and T is varied

in steps of 0.1).

• For e = 0 is T(k)• _-.0 = _c V k = 1.3,5, because in this case Eq.(/6)

is reduced to the differential equation of the harmonic oscillator.

"rtk) . for• For a given order k = 1.3..5 we get: the larger _ the smaller L,_._ a

converging iteration. This seems understandable, because the algebraic

expression for the mode amplitudes and therefore for the stroboscopic

map depends on the expression e"r. Therefore the individual modes

%,__are increasing with e and T.

Figure 5: Maximum stroboscopic time T_k2=._which corresponds to a converg-

ing iteration [filled box ]and a diverging iteration [unfilled box ]for n = 104

iterations, z0_ = 0., z02 = 0.1 and several orders a) k = 1, b) k = 3, c) k = 5

In addition to Fig.(5) the iteration converges in the case k = 3 for a few

more special paxameter values: For e = 0.1 there is convergence, too for

T E [6.0, 19.9] O {20.6} and for e = 0.2 when T E [6.0, 7.7] U {9.0} Thus in
the case of e = 0.1 and e = 0.2 we are able to derive an algebraic expression

_3.)(_,_) as the Poincard map, which reflects the periodic motion as seen in

Fig.(6)

14



Further numerical results involve that the convergence-_{ivergence-I)ehavior

does not depend sensitive olt the number of iterations. In about 3 x 20 x

70 different used parameter values /¢. e. T we get ott[v 1,cases in which the

iteration converges _'or _z = .500 iterations and diverges for n = 1.0l. This

retlecls a kind oi stability of this algebraic method in long-time-predictions.

What is the best stroboscopic time. lhr a given e _< _,z,-_*'_T _< TI_l__,,_:._to

describe the limit cycle behavior using this algebraic integration method?

Definition 4.1: Let .k'r(_) E R a be a numerically calculated iteration point

cq_l, R aof Eq.(16) and ,Z.r _.v_o)fi a k- th order approximation for the map. then

the quantity < rtk) > is defined as the aeeraged difference between numerical

and algebraic limit egcle.

n ,=i

(Again as defined in statement 4.1 index i corresponds to the i -- th iterate

of _-_T) Caused by Comparison of Fig.(7) and (S) we argue that < r (_) >

is a possible quantity to describe the agreement of numerical and algebraic
results.

As general behavior for e _< e(_1._=.,T _< T¢_)._==._and different orders k = I, 3, 5
we derive:

• For k = 1,3,5 • Except for the oscillating effects < r(k) > increases

with T which corresponds to a decreasing agreement cf numerical and

algebraic limit cycles for all calculated orders.

• For k = 3,5 • d';;tT_" > d<;_¢_;'aT. This means that for larger T and higher

orders the time dependence of the approximation quality changes slower

respectively the algebraic solution seems to be a better approximation

for k = 3, 5 compared with k = 1.

• For 0.3 < T < T (k) :< r (s) ><< rTM ><< r (I) >. This seems in

agreement with the plots in Fig.(7) that a fifth order map causes a

better approximation than a third order and than a first order map.

• For T = 0.2 the approximation of ST is for k = I better than for

k = 3, 5. Perhaps in this case < rlk) > is too small to derive quantitative

predictions.

Nevertheless< r(kl> isan approximativequantityto describethe agree-

ment of numericaland algebraiclimitcycle.To derivequantitativepredic-

tionsI < r(i) > -- < r(J) > I should be not too small.
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As seen in Fig.(9.10) we obtain this _eneral behavior also for e = 0..5. In this

case we observe a kind or' resonance in Fig.(t0) for th_, fifth order solution

.:.. ,q,I.-5),in the interval of T E [0. t" 0.31] where the it,_ration of ,.,.-r_.r._) diverges.

Currently we do not understand this. Nevertheleas we get the besl: approx-

imation using _,_._5._(.7:o)as ,ecn by conlparison of Fig.(9),(t0). In this case

there is good agreement between numerical and algebraic limit cycle except

2 places in phase space. A few comments on this will be given in chapt.6.

[n the example of van der Pol's oscillator we ,lenlonstrated that using ap-

proximations of higher than first order for stroboscopic maps a really good

quantitative agreement between numerical and algebraic solution can be de-

rived. The observation that for a given T. ¢ E R a higher order approximation

do not have to be a better approximation is not a typical effect of this alge-

braic method: it also corresponds to numerical methods as for example the

Runge-Kutta-algorithm where a higher order do nct has to involve a higher

accuracy to the solution [24].

As numerical results demonstrate, there is no difference whether the numer-

ical iteration point Xr(z._0) is calculated by a Stgr-Bulirsch method or by an

Euler integration procedure (step-size = 0.01). Therefore an estimation of the

optimal stroboscopic time T E R can be derived independend on numerical

solving packages.

16



t

Figure 6: Periodic motion of van der Pol's oscillator (e = 0.2) ' Ix] alge-

braically described by the Poincar_ map: q_._,_)(_), as a comparison to the

numerically calculated limit cycle [ solid line ].

Figure 7: Comparison of limit cycles of van der Pol's system (e = 0.3)' [0]

numerically, [1 ]algebraic S_)(_), [3 ]algebraic S_I(_), [.5]algebraic S_)(z_o)

for different T. a) T = 0.2, b) T = 0.5, c) T = 0.7

17
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Figure 8: Van der Pol's system (e = 0.3)" Averaged difference between nu-

merically and algebraic calculated limit cycle < T"(_)> (T) for different orders

k • ([1] • k = 1,[3] • k = :3,[5] • k = 5) and n = L03 iterations.

Figure 9: Comparison of limit cycles of van der Pol's system (e = 0.5)" [0]

numerically, [1 ]algebraic S_)(_), [3 ]algebraic _)(Z_o), [5 ]algebraic S_)(z_o)

for different T. a) T = 0.2, b)T = 0.4, c) T = 0.5

18
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Figure 10: Time dependence of < rCk)> for e = 0.5 and given orders k =

1,3,5, corresponding to [1],[3],[5] and n = 103 iterations.

19



5 Estimation of the Rest Term

With a kind of hybrid ausatz we take into account ali zl_oclesof higher than

first order to in:prove rbe r(,,ult_ oi" first order al)proxinlations of .q:(_).

Definition 5.1' The differellce between the exact stroboscopic nlap _T(.JLo) E

R _ (defined by Eq.(3)) and the first order approximation ".'_)(_-:o) e R"

(defined by definition 2.3) i._called rest term _r(.r_o) e R":

In the case of van der ?ol's oscillator we demonstrate e×piicitly that the rest

term caused by truncation of the power series ia the initial values can be

approximated by a differential equation for _T(X__0)E R 2. Inserting Eq.(18)

in Eq.(17) leads to this nonlinear differential equation for the components

of ',__T(X_.O) e R 2

(,_) ( 0 1 ) ( _k_ )+Z(_o,T)+_(_ T)
--'-- ,_ c,(1)2 O(1)

'k2 --(1+"_I _2 ) _(i--S__2) --X2
(19)

-_(._.o-T) E R 2 is the nonlinear part of the differential equation:

( o )
_(z_.o, T) E R 2 is the inhomogeneity of the equation:

0 ) (21)_(_.o, T) = - eo,-°(1)2c(t}o2+ ex2o,xo2(a:,ma2.o12 + 2a1._oa_,o_a2.m)

As initial condition we get from the identity Eq.( 5, 18)

_,0(_0) = ,-%.0(_)= 0 (22)

With the use of A_ =: _ and after linearizing Eq. (19) we obtain an au-

tonomous differential equation of the form

+ c_(,_,T)/X + c2(_o, T)A = _(_, T) (23)
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where el, c2, O2 E PLdepend on .zo, but also on T in a complicated way.

Note that _T correspot_ds to the linearized rest term in the [ollowing.

In a general case the time depei_dence of the coefficients cl(z_o, P) and

c2(_, T) involves that Eq.(2:]) cannot be solved analytically. There[ore as

a first approximation we iiitegrate Eq.(:23) by a Ilulnerical solving method

[2_,]. After each iteration step this linearized rest term &r(.3_) is added to

the first order approximation _P)(._-:o)of the stroboscopic map.

This correction causes additional good quantitative agreement of algebraic

and numerical limit cycles as Fig.( l I) demonstrates.

Figure 11: Limit cycles of van der Pol's oscillator (e = 0.3) for different

approximation methods: [0] :numerically, [l] :algebraic first order approxima-

tion: _.st_J,'_lz_',[2]:using numerically calculated rest term: q_(_). + =_-o.s(_)

In this approximation we cannot neglect numerical solving methods. Thus

to be independent of numerical algorithms we replace in the coefficients

cl(Z_.o,T),c2(_._,T) and the inhomogeneity #2(_,T) of Eq.(23) T by an

effective stroboscopic time T::! as a further approximation.

c_(_,T) _ _(_,T, II),c2(_,T) _ _2(_,T,II),'_2(_,T)--',_2(_,T,/:)

For convenience',_'isneglectedinthefollowing.

ThisreplacementsinvolvethatEq.(23)becomesa lineardifferentialequation

withconstantcoef[icientsand theform ofa drivenharmonicoscillator.

:x+ + ca( ,T,/r)/',= L/l) )

Thisequationcan be soiv_ a_alyticalIy

D +
D- eD+T + eD- T

AT(_'°'TelI)-"'_2(D + -- D- D- - D + + I) (25)
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Thus irl this last approximation of the rest term. tile t_laI) '-q'rE R a can be
written as

r.  sl)

T..I:appears as an additional parameter in Eq.(26). which can be chosen

such way, that we get best agreement in numerical and algebraic calculated

limit cycles. Fig.(F2) demonstrates that a variation of the parameter T_SS

corresponds to a variation of the size of the limit cycle. Therefore the best

parameter value of Tell (in the sense of best agreement) can be fig_ .d out

as Tr:.:= 0.3.

In the following we describe the mathematical determination of the be,- T,I/.

Definition 5.2" Let z_"a := _r(_-o, T, II) be an algebraic calculated iteration

point of Eq.(26) and ,_.r'v - -__.r(x_0)be a numerically calculated iteration

point [24]: then the quantity r "= I:£"4-.£'v I depending on Tell describes the

difference of numerical and algebraic solution.

We argue that the minimum value of r as a function of T,If corresponds to

this parameter value of Tel! with best agreement in numerical and algebraic

solution. Compare Fig. (12) and (I3).

Again there is no difference if _.u is calculated by an Euler method (step-size

= 0.01) or by a St6r-Bulirsch method [24,]. This important feature involves

the independence of the determination of the best Tell on numerical solving

packages for ODE' s.

We have done analogous calculations with R&sler's system [18]:

(0= 0 0.2 0 lt + 0 (27)

i 0 0 -_ z b+ xz

b,#ER

By the introduction of the parameter b as an additional variable, with b(O) =

b, the origin is fixed point of the transformed system of the ODE

o 0.2 o o Y + (2s)
= 0 0 -t_ I

o o o o ; o

22
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In Fig. (14) and (1.5) we compare rlumerical results (a) with algebraic otl,'_

for periodic and chaotic behavior, which depends on th,_ parameter# E It.

We demonstrate (b,c). that even tbr c-haotic beha_ior the qualitative system

behavior can be reproduced in low order approxilllation._. IIi c'orlsideratiozl of

the test term (d), which is calculated from the liueat'ix_,,l ditt'erential equa-

tion of the rest term .._kr(_) the algebraic iteration poitlrs are lying on the

numerically calculated phase trajectories.

In the case of R6ss[er's system we integrated the lit_earized rest term

_r(a._o) E 1_'_ numerically [94]. In principle the time dependence of the

coefficients in the differential equation of the rest term tau be approximated

by an effective time step T,I/, as it, is done explicitly iu the case of van der

Pol's system. To solve this resulting differential equation with constant coef-

ficient:s one have t,,., find out the zero-points of the characteristic polynomial,

which is of third order. In the case of Rfssler's system this expression for

the zero-points is so complicated, that we could not apply the second kind

of approximation of the rest term, yet.

23
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Figure 12" Variation of T,/I causes variation of the size of the limit cycles

of van der Pol's oscillator (e = 0.3): numerically [0] and algebraic, using

.s,_--0, + _;._o.s(X--o,T,/.:)for [t IT,// 0.1 [2 IT,// = 0.2, [3 IT, I/ = 0.3,

[4IT,.::= o.4,[5IT,.::= 0.,5

Figure 13: Determination of best T_//for the rest term approximation in the

case of van der Pol's system (e = 0.3, T = 0.5)
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Figure 14: Periodic behavior of R6ssler's system (# = 1.5,_ = (1,0,1))'
_.tt),

[0]" numerically, [1]. first order approximation: _.l_.r_o), [2]" second order

_.l(_.o), [3] using z_.o)+ m_o.l(._-_o),where LT E R a is theapproximation -.I2_ " _o.__s"__)t

linearized rest term, numerically calculated.

Figure 15: Chaotic behavior of R6ssler's system (p = 5.7,_ = (1,0, 1)),

, whereby the transient response is not neglected: a) numerically, b) first or-

der approximation: ,_._l._(_r,o)c)second order approximation _._z_(X_.o)d) using

_7._x._(i_o)+ _o.x(_,o), where _r E R 4 is the linearized rest term, numerically
calculated.
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6 Correlation of the Algebraic Method with

the Local Divergence Rate of a Dynamical

System

Definition 6.1' Let .';'y(X_o)-- ._.r(T)E R" be the stroboscopic map as defined

in Eq.(:3) then

..¢r_+r2(.r0) = _¢r2(_cr,(z_o)) (29)

is called semi group condition.

Lemma 6.1: Let Sr E R '_ be given as a power series in the initial values

x__o of the system, like Eq.( 6), then Eq.(29) is satisfied exactly only if .-qT"is

linear in the components of x_.o or Sr is given as an infinite power series.

proof: Inserting Eq.(6) in Eq.(29).

Therefore we make the following definition:

Definition 6.2: For a stroboscopic map Sr(z_o) E R '_, 6,_. E RtT is called

semi group violation, for

_,,,_,= I$.r,,r,(-x.o)- _r2($-r,(_))l (30)

Lemma t5.2: 6,_, = 0 for linear differential equations (11/111<-1).
proof.. The basis for this proof is the known statement: The solution of linear

differential equations is always linear in the initial values.(this can also be

derived from Eq.( 7, 8) proceeding a linear differential equation (li/lit < 1)).

As demonstrated in chapt.2, the solution of nonlinear systems can be rep-

resented as an infinite power series in the initial values. But in reality only

a finite number of coef_cients ai.ro(T) E R can be calculated. This is the

reason why the semi group condition is only satisfied approximatively re-

spectively 6,_.,_i > 0 for nonlinear systems. Of course 6,_,_i depends on the

several kinds respectively orders of approximations of the stroboscopic map

ST E 1_.'_, demonstrated in chapt.(2-5).

In the case of van der Pol's oscillator we demonstrate the mutual dependency

of the semi-group-violation di,e,_i, the local divergence rate Atocof the physi-

cal system and the agreement between numerically and algebraic calculated

limit cycle.

The local divergence rate describes how fast nearby trajectories separate lo-

cally and is defined in [30].

1

Atoc.,(x) = _ * Eigenvalue[n_ + D_f_t'] and z_E R n (31)
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For the van der Pol oscillator Eq.(16) leads to

In Fig.(16) there 6,,,,, and Aioc:= ma.r{Ato,:,. Ato¢2}is plotted for each point

of the limit cycle. At this "2edges of the limit cycle, where the difference

l)etween numerical and algebraic solution is maximal• there a nonvanishing

eg,,m, is related to a nearly vanishing local divergence rate.

So it seems: For a given integration time 0 < T <_ T_a_. a vanishing local

divergence rate amplifies the difference between numerical and algebraic so-

lution whereby a nonvanishing local divergence rate reduces the error. In

other words: the place on the limit cycle where 6,_i is maximal does not

correspond to the maximum difference between numerical and algebraic so-
lution.

Perhaps we can explain by this the property, seen in Fig.(3.4). By enlarging

the strobe time T > 0 we get typically this maximum disagreement in nu-

merically and algebraic calculated limit cycle at this two edges in the form

of sharp peaks.

Fig.(17) and (18) demonstrate, that going to higher order approximations re-

spectively using the linearized rest term .as a correction of S_)(x_.o), 6,,,,, can

be reduced (for the same parameter values). This involves a better approxi-

mation for the limit cycle at places in phase space where the local divergence

rate vanishes•

Figure 16: Van der Pol oscillator (e = 0.5): [1 ]local :livergence rate ,\lo_

, [2 ]semi group violation 6,_,u and difference between numerically [0] aud

algebraic ,_._1._(_)[3] calculated limit cycle are correlated.
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Figure 17: Van der Po[ oscillator (e = 0.5): [0] numerical limit cycle, [3] fifth

q,151 , [2order algebraic limit cycle: _o.s(z_o), [1 ]A,o¢ ]6,,,_,

Figure 18: Van der Pol oscillator (e = 0.5): [0] numerical limit cycle, [3]

,_.s(_) + =_o.s(_.o,O.3), [1 ]local divergence rate Alocalgebraic limit cycle: ¢_

28
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7 Conclusion

In typical cases dynan_ical systems which should model physical system be-

havior describe the experimentally found behavior not exactly. Often some

additional, for example not known terms are neglected in the model. Then it

seems sufficient to sitnulate for instance the topological structure of dynami-

cal systems respectively qualitative dynamical effects. In this sense the main

interest in this paper was not to derive extremely quantitative agreement

between algebraic and numerical solving routines. This question should be

answered by choosing really small integration time (T < 0.1). But it should

be demonstrated that even for not necessarily small strobe times T an al-

gebraic expression is derivable, which describes the dynamical system in a

finite, but not infinitesimal neighborhood of the initial state.

The advantage of algebraic integration procedures is, that the whole parame-

ter dependence of the stroboscopic map related to the parameters of the ODE

is given in closed form. Therefore the investigation of dynamical system be-

havior as a function of these parameters is facilitated [23]. Since nonlinear

systems tend to have many parameters, a systematic numerical investigation

of the solution of the ODE on the parameters seems impossible. The algo-

rithm presented in this paper is closely related to a straight forward algebraic

integration by Euler's method. If ali the transformations of the resulting al-

gebraic formula are done in order to spare computation time an evaluation

using this algebraic formula is quicker than for example Runge-Kutta's algo-

rithm [25].

As Lorenz observed [29], chaotic behavior sometimes occurs when differ-

ence equations used as approximations to ODE are solved numerically with

an excessively large time increment T. Fig.(19) demonstrates that this com-

putational route to chaos can also appear for some special parameter val-

ues for van der Pol's oscillator by iterating the algebraic stroboscopic map.

To describe this transition we calculated the largest Ljapunov exponent )_

as a function of strobe time T and got following results: a)T = l l,,k =

-0.59b)T = 13,)_ = -0.38c)T = 15,£ = 0.22d)T = 16,)_ = 0.07e)T =

16.5,)_ = 0.46f)T = 18,)_ = 0.43. But it turnsed out that also for T < 11

there exists ,k > 0 in cases where the limit cycle approximation is very good.

Therefore in this case the maximum Ljapunov exponent )_ is not a proper

quantity to classify this route to computational chaos. For further discussion

the paper of Lorenz [29] is a motivation for more detailed investigation of

the correspondence of computational chaos and algebraic integration method

as a comparison to other solving routines of ODEs.

A generalization of the presented method to ODEs where the flow vector

field is just assumed to be an analytic function seems to be straight for-
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ward, if the flow vector field is approximated bv a polynomial. Discrete maps

can be much more easily extracted from experimental systems [lt,31] than

ODEs. Since the eqtiations of motion of many physical systems are ODEs

it is essential to know the stroboscopic map in a closed form in order to

make a quantitative comparison between experiment and theory. The appli-

cation of stroboscopic maps to controlling experimental systems [28] may"

have important consequences.

Figure 19: Demonstration of the computational route to chaos for large strobe

times T of van der Pol's oscillator (k = 3, e = 0.1,Xo_ = 0, zo2 = .1): a)

T=ll, b) T=13, c) T=lS, d) T=16, e) T=16.5, f) T=t8

3O



ACKNOWLEDGEMENTS

Thanks to W. Eberl t'or interesting discussiotls and to the ('enter for Non-

linear Systems of LANL for tile really nice time in Los .-kl_tmos and the

possibility to do parts of this research there. Also to the [nstitut E13 at the

Technical University of .Munich for supporting this work.

31



References

[l] H.Helmholtz, Die Lehre von den Tonempfindungen (Vieweg, lSTO)

[2] B.van der Pol. Forced Oscillatons in a Circuit with .Vonlinear Resistance

(London• Phil.Xlag. 3,65.1927)

reprinted in: R.Bellman.R.Kalaba.(eds), Selected Papers on Mathemat-

ical Trends on Control Theory (Dover:New York,t964)

[:3] P.Collet,J.P.Eckmann, [terated Maps on the Interval as Dynamical Sys-

tems (Birkhg, user, 1980)

[4] J.Guckenheimer,P.Holmes, Nonlinear Oscillations.Dynamical Systems

and Bifurcation of t'ector Fields (Springer, New York,1983)

[5] M.Kuchler, W.Eberl, A.Hfibler, E.Lfischer, The Description of Complex

Dynamical Systems by Simple Maps (H.P.A. 6i,232,1988)

[6] A.Wandelt, W.Eberl, A.HCibler, E.Lfischer, Transformation to Normal

Time for the: Calculation of Poincard Maps in a Closed Form (H.P.A.

62,1989) ;

[7] A.Nayveh, tl.Mook, Nonlinear Oscillations (John Wiley, New York,

1979)

[8] W.Eberl, M.Kuchler, A.Hfibler, E.Lfischer, M.Maurer, P.Meinke, Ana-

lytical Representation of Stroboscopic Maps of Ordinary Nonlinear Dif-

ferential Equations (Z.Phys.B-Condensed Matter 68,253,1987)

[9] R. Wackerkauer, W.Eberl, A.Hfibler, E.LCischer, Analytical Representa-

tion of St_pic Maps of Ordinary Nonlinear Differential Equations

(H.P.A. 61,__1988)

[10] M.Berz, Differential Algebraic Treatment of Beam Dynamics to Very

High Orders _!ng Applications to Space Charge (preprint,1988)

[11] H.L.Swinffe__O$l_tions of Order and Chaos in Nonlinear Systems

(Phyaica 7D:_3,'i-983)_._

[12] M.J.Feigenbattt_; U__._,avior in Nonlinear Systems (Physica

_._ :-.- - -- 2 _"" ": ,,.,g'_.-, ''a_':_''_-_':" ;_._:.'-,,,ml:_°_:...

[13] Mandelbrot, The Fracta_rVe.ometry of [ga{ure (Fre&ndn,_an Fran-

cisco,1983)

32



lt4] H.-O. Peit gen. P.H.Richter, The Beauty oi'Fractals (Springer. New York.

t986)

[15] G.Mayer-Kress. H.Haken..4n E,rplicit (_"onstruction of a Class of Sus-

pension and Autonomous Dtfferential Equations for Diffeomorphisms in

the Plane (Cotumun.Y, lath.Phys 111,63.1987)

[16] G.Mayer-Kress. Zur Persisten: von Chaos und Ordnung in nichtlin-

earen, dyn.arr_ischen .Systemen (Ph.D.thesis, University of Stuttgart,

1984)

[17] E.N.Lorenz, D_terministic Nonperiodic Flow (J.Atmos.Sci 2o.130,1963)

[IS] O.E.R6ssler, _4n Equation for Continuous Chaos (Phys.Lett.

57A,397,197_

[19] A.A.Andronowa, A.A.Witt, S.E.Chaikin, Theorie der Schwingungen

(Akademievert_g, Berlin, 1965,chapt.5. l )
. :_:';

[201 I.X.Bronstei_,_.A.Semendjajew, Taschenbuch der Mathematik (Vertag

Harry D_utsah;Ftranjtfurt/Main,1978) p422ff
. ":... "'*'7• "

R.Wackerb:_e i, Thesis for Diploma (Technical University of Mu-[.,1]
nich,1988) .

• : ;=." -

["el '-'(Vieweg,Braunschweig,1981)
.... ,"a_a,

W.Eberl;,__rbauer, A.Hfibler, Bifurcation sets of Helmholtz's os-

[23] cillatov (1__} ".. £-57r: %:....

[24]W.H.Pr_¢'_:_lannery, S.A.Teukolsky, W.T.Vetterling, Numerical
o t_ ___rRecipe .... _::t ..... :! -'versity Press, Cambridge,1988, chapt. 15)

I251 750 Hou -
ton,T _ ":" "'"

[26] L.Harten, Introductory Macsyma (Paridigm Associates, Inc. for
Lawrence Livermore National Laboratory,1987)

[27] A.C.Hearn, Reduce-Users-Manual (Rand Publication CP 78, Santa

Monica, 1983)

[28] E.L{ischer, A.Hiibler, Resonant Stimulation of Complez Systems (H.P.A.

62,1989)

[29] E.N.Lorenz, Computational Chaos - Prelude to Computational Instabil-

ity (Physica 35D,299,1989)

33

,,Q_



i

i30] J.S.Nicolis, (;.Xlayer-Kress, G.Haubs..\'on-Lniform Chaotic Dgnamics

_cith [mplicatio_.s to l_./'o_'mation Proce.s.sing (Z. Naturforsch. 38A,1157-

t t 69.198:1 )

[31] .\.Chao, D..IolLn_,on. et al, E.rperimer_tal Int'_,.._tigatton of .\'onli,ear' D!/-
r_al,,ic.s in the t'_rmilab Yecatrolt

. J

..... _

_ _-,

34



4

°. °°
° °

• .
° °

° °
°

• °

°

2 [21 [[1 [41 . ..X.....-. ..i:.-..

°°°..°°°°.°..o°°O°°°

-4

0 2 T 4 6







__-_._z.__

'm'4 T 1 f

-4 -2 0 2 4
2;1





-3 XI -1 0 1 3



.... I , , , , f .... i . , . , I , , , , I . . • ,
u

-3 -1 0 1 3
•X 1



2

1

0.1
1

0 0.5 c 1.5 1.9



6

mm,

4

T(3)
3

2

0.1 I

0 0.5 1.5 1.9
g.



_J



3

1

0

-I

X2

-3 , , , , l _ , , , I , , , , I. , , , , I .... ...l, , , ,

-3 -1 0 1 3
271



-3 ,,, , , , , '

-3 x_ -i 0 I 2 3



I I

-3 - . , _,_ o i 3
-3 x_



3

o)

1 . .. .

i

0

-I

X2

-3"

-3 xl -I 0 1 3



1

[3]

o.5 ,/ [o] ,,, \,,
I ! '_

/ \/,, ,,,
A / ",,11 ", /,"" "

- / /,,,' ,,,
V / ,," '? '

.. _,1 I

0 0 T I 1.5 2



-3
-3 -1 0 1 3

2;1



-3 -I 0 1 3
-3 _I



--3 .... I i J i I I l i l i .I I I ' ' l , _ _ J l ....

-1 0 1 3
-3 Xl



]

m

0.5 - ,,
o

I

A ,
- I

g.. -

V : ..

O I..... i .... I .... I .... l,,,,I. .... l ,, , , l,, , , , ,,.,

o T 0.5



3

%%

X2 ""

-m 3 I " I I I !

-3 -I 0 I 3
Xl



3 _ , | . , ,,, . t ,, • ( ,,,,L ,,

-'1 _"
-3 _I 0 1



o o T_ff o.3 o.5 o.8



-4

-4 -2 Z1 0 2 4



_o a)

0

-15 Xl 0 I0 20



J_ J

b)
15

0



15

0

X2

-15

0 I0 20
-15 Xl



d)

0

-5

i i s I I I I I I I * i , I [ I l I I I ' ¢ ' ' i i ¢ I l I , i * i J , •

-15 Xl. 0 I0 20



1.5 _.

,/"

°°

t,•

1< [1] ..."

_ " E2, 'emi c ] / ..
• '" ."

loc . , , • .,./_

0 ,_ la] -



1.5

I< ,;' \.. I

.... I

6 [a] '. :" / \\ ,semi c _ /-7\ ," , i

,Xlo_" [2],
_, r31_
", _ ]'V Z__'_., '-._ I

0 ._ iu.I-----f / 'x ', \ ,
-_. _ , ,..',..\!--'_ I / ', ',,

-2 -2 Zl





1.5

'"---- &l
s

s

I "
• %

/

I _"
%

I _,
/

/

I

A

! !

0 _ I
I I
I

I I

I I

I I

"0 '_ I• %

% /
% J

/

% /

% •

N2 " -"% •

_ o j

"ll 15 I ! I

-1.5 -0.5 0 1 1..5
Xl



1.5

.................... b)
..°° ,o,° °*_°°°°'°'°°°' "°'°°*'"°°'°°_*°,,°o°°,°°,°.°,,°_° °%'°°,

"°,t/"

°o°O°,,°.°°°°o°**°°**'_" " ° •

.°.o'°
°

°o.°°° '*

0

• /

-0.5 .
..'

..,.°...*'""

Z2 "" "................. .,
• ,.%.,. .."

-1.5 -_ .... _-
-1.5 -0.5 0 1 1.5

Xl



• 1.5

c/
o...

°.

/

1 o" • .o "B
o,

• ' .o .

j, • _.

/

L

eJS ."

.'_- .

B

/

/
l

• _._

8

'. /

0 jo

05• oo

, !
to" (o

...J

• • • a'"

_Aj_ • m_ "_ ,• ,,o
_.._ Q.,.I

-" .5 Xl -0.5 0 1 1.5



-1.5

-1.5 Xl -0.5 0 I I.._



-1.5 ---
-1.5 Zl -0.5 0 1 1.5



0

-0.5

-1.5

-1.5 Xl _0.5 0 I 1.5






