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RAPID COMMUNICATION

Algebraic classification of the Weyl tensor in higher

dimensions based on its “superenergy” tensor

José M M Senovilla

F́ısica Teórica, Universidad del Páıs Vasco, Apartado 644, 48080 Bilbao, Spain

E-mail: josemm.senovilla@ehu.es

Abstract. The algebraic classification of the Weyl tensor in arbitrary dimension n is
recovered by means of the principal directions of its “superenergy” tensor. This point
of view can be helpful in order to compute the Weyl aligned null directions explicitly,
and permits to obtain the algebraic type of the Weyl tensor by computing the principal
eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with
states of intrinsic gravitational radiation can then be explored. The underlying ideas
are general, so that a classification of arbitrary tensors in general dimension can be
achieved.

PACS numbers: 04.20.Cv, 04.50.-h, 02.40.Ky

The Petrov classification (e.g. [31, 24, 5]) of 4-dimensional spacetimes can be

reformulated by using the principal directions of the Bel-Robinson tensor. These are the

causal vectors whose contraction with the Bel-Robinson tensor vanishes. The underlying

ideas go back to [4, 5, 12, 21], are implicit in [24] and were fully exploited in [6] by using

spinors. The result follows because the principal directions of the Bel-Robinson tensor

coincide with the principal null directions of the Weyl tensor. To summarize, let [2, 9, 28]

Tαβλµ = CαρλσCβ
ρ
µ

σ + CαρµσCβ
ρ
λ

σ − 1

8
gαβgλµCρτσνC

ρτσν , if n = 4 (1)

be the Bel-Robinson tensor of a 4-dimensional spacetime, where Cαρλσ is the Weyl tensor

and gλµ the metric tensor. Tαβλµ is completely symmetric and traceless. The Petrov

classification can be described as follows [6]: there exists a null vector `µ such that

(i) Tαβλµ`µ = 0 ⇐⇒ Petrov type N

(ii) Tαβλµ`λ`µ = 0 but Tαβλµ`µ 6= 0 ⇐⇒ Petrov type III

(iii) Tαβλµ`β`λ`µ = 0 but Tαβλµ`λ`µ 6= 0 ⇐⇒ Petrov type II or D

(iv) Tαβλµ`α`β`λ`µ = 0 but Tαβλµ`β`λ`µ 6= 0 ⇐⇒ Petrov type I

Furthermore, one can distinguish types II and D by means of

(v) there exist two linearly independent null vectors `µ and kµ such that Tαβλµ`β`λ`µ = 0

and Tαβλµkβkλkµ = 0 ⇐⇒ Petrov type D .
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Actually, one can drop the assumption that the vectors are null by just assuming that

they are causal (i.e., timelike or null).

In recent years, the algebraic classification of the Weyl tensor in higher dimensions

has been constructed based on the existence of WANDs (Weyl aligned null directions)

and their alignment order [11, 22], see [10] for a review. Criteria to characterize

the (multiple) WANDs, analogous to the classical Bel-Debever criteria [4, 5, 13, 14],

have been also recently obtained by Ortaggio [23]. In 4-dimensonal spacetimes, these

criteria are known to be equivalent to the number of times one has to contract with

the Bel-Robinson tensor, and thereby they provide an alternative view of the Petrov

classification. I am going to show that the same happens in arbitrary dimension.

To that end, one only needs the correct generalization of the Bel-Robinson tensor

to higher dimensions. As argued in [28], this is the so-called ‘superenergy’ tensor T{C}
of the Weyl tensor‡, whose explicit expression in arbitrary dimension n is

Tαβλµ ≡ CαρλσCβ
ρ
µ

σ + CαρµσCβ
ρ
λ

σ − 1

2
gαβCρτλσCρτ

µ
σ

− 1

2
gλµCαρστCβ

ρστ +
1

8
gαβgλµCρτσνC

ρτσν (2)

from where one deduces the symmetry properties

Tαβλµ = T(αβ)(λµ) = Tλµαβ. (3)

However, Tαβλµ is completely symmetric only in dimensions n ∈ {4, 5} [28]. Similarly,

unlike in the case n = 4, all traces of the tensor (2) are (generically) different from zero

for all n > 4. Expression (2) reduces to the original expression (1) if n = 4 due to a

4-dimensional identity [28, 16].

As any other superenergy tensor, the generalized Bel-Robinson tensor (2) is a future

tensor, that is to say, it satisfies the dominant property [28]

Tαβλµvα
1 vβ

2 vλ
3vµ

4 ≥ 0, (4)

for arbitrary future-pointing vectors vα
1 , vβ

2 , vλ
3 and vµ

4 . Inequality (4) is strict if vα
1 , vβ

2 , vλ
3

and vµ
4 are all timelike [28, 7]. Thus, any possible causal vector vµ with the property

Tαβλµvαvβvλvµ = 0 (5)

must be null. Causal vectors satisfying (5) define the principal directions of Tαβλµ

[7, 18, 19]. As shown in [25] with full generality –for the superenergy tensor T{A}
of any tensor A and in arbitrary dimension—, these are precisely the principal null

directions of the Weyl tensor, that is to say, those null vectors satisfying

v[βCα]ρσ[λvµ]v
ρvσ = 0.

This is, in fact, the characterization of WANDs [22, 26].

‡ Given any tensor A the super-energy construction [28] is a general method to build a —essentially
unique— tensor T{A} quadratic in A and future. Future tensors are those satisfying the dominant
property (e.g. (4)); see [28] section 4, section 2 in [7], or the Appendix in [19] for further details. Due
to historical reasons [1, 2, 3, 4, 5, 12, 13, 14, 21, 28], T{A} is called the super-energy tensor of A.
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Proposition 1. At any point of a causally orientable n-dimensional Lorentzian manifold

where the Weyl tensor does not vanish, a causal vector `µ satisfies:

(i) Tαβλµ`α`β`λ`µ = 0 if and only if `[βCα]ρσ[λ`µ]`
ρ`σ = 0, that is `µ is a WAND.

(ii) Tαβλµ`α`β`λ = 0 if and only if `[βCα]ρ[σλ`µ]`
ρ = 0.

(iii) Tαβλµ`α`β = 0 if and only if `[βCα]ρσλ`
ρ = 0.

(iv) Tαβλµ`α`λ = 0 if and only if `[βCαρ][σλ`µ] = 0.

(v) Tαβλµ`α = 0 if and only if `[βCαρ]σλ = 0.

In all cases `µ is necessarily null.

Proof. As stated above, the first point (i) is a consequence of a fully general result for

superenergy tensors T{A} [25]: once one has sorted out the number of antisymmetric

blocks of the seed tensor A, the principal directions of T{A} are precisely the null

directions such that their contraction (or inner product) followed by the exterior product

on all skew-symmetric blocks of A vanishes. However, I am going to include an

elementary proof here for the case of the Weyl tensor as this will be illustrative and

because it will be useful in the rest of the cases.

Take any null `µ. Contracting with (2) one gets

Tαβλµ`α`β`λ`µ = 2CρσCρσ

where I have defined

Cαβ(`) ≡ Cαρβσ`
ρ`σ. (6)

Taking into account the obvious properties Cαβ = Cβα and Cαβ`β = 0 it follows that

CαβC
αβ = 0 is equivalent to (for instance by decomposing on a basis)

Cαβ = `αvβ + `βvα (7)

for some vβ (such that `ρvρ = 0). But this means that `[λCα][β`µ] = 0, proving (i).

To prove (ii), suppose that Tαβλµ`α`β`λ = 0, so that in particular (7) must hold,

due to (i). Then a direct computation using (6) and (7) repeatedly gives

0 = Tαβλµ`α`β`λ = −`µ

(
−2vρv

ρ +
1

2
CρτσC

ρτσ

)
(8)

where I have set

Cβλµ(`) ≡ Cαβλµ`α

with the obvious properties Cβλµ = Cβ[λµ], C[βλµ] = 0, `βCβλµ = 0, `λCβλµ =

Cβµ = `βvµ + `µvβ. Choose another null vector kµ such that `µkµ = 1, define

Fλµ ≡ kρCρλµ = F[λµ] and put a hat on any tensor orthogonal to the timelike plane

spanned by `µ and kµ. Then a typical decomposition proves

Cβλµ = `βFλµ + `λAβµ − `µAβλ + Ĉβλµ (9)
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with `ρAρσ = kρAρσ = kρAσρ = 0, `σAρσ = −vσ + (kρvρ)`σ and `ρFρσ = vσ + (kρvρ)`σ.

A direct calculation shows that (8) becomes

`µ

(
−vρv

ρ − 1

2
ĈρτσĈρτσ

)
= 0

which implies Ĉρτσ = 0 and vµ = A`µ. Then, (7) simplifies to Cµν = A`µ`ν and (9) to

Cβλµ = `βFλµ + `λÂβµ − `µÂβλ (10)

from where `[αCβ][λµ`ν] = 0, proving (ii). Observe that C[βλµ] = 0 implies now

F̂µν = 2Â[µν] where Fµν = `µpν − `νpµ + F̂µν (11)

for some pµ.

Assume now Tαβλµ`α`β = 0 so that in particular (10) and (11) hold. Using (10) a

direct computation gives

0 = Tαβλµ`α`β = `λ`µÂρσÂρσ

so that Âρσ = 0 hence Cβλµ = `βFλµ (with F̂λµ = 0). Thus `[αCβ]λµ = 0 proving (iii).

If on the other hand Tαβλµ`α`λ = 0, and using repeatedly (10) and (11) which

remain valid in this situation, the calculation provides

0 = Tαβλµ`α`λ = `β`µ

(
F̂ρσF̂ ρσ − ÂρσÂσρ +

1

8
CρτσνC

ρτσν

)
(12)

so one needs to compute the last term. At this stage, the Weyl tensor takes the form

Cαβλµ = (`αkβ − `βkα)(`λpµ − `µpλ) + (`αpβ − `βpα)(`λkµ − `µkλ)

+(`αkβ − `βkα)F̂λµ + F̂αβ(`λkµ − `µkλ) + 4k[λÂµ][β`α] + 4k[αÂβ][µ`λ]

+2`[αÛβ]λµ + 2`[λÛµ]αβ + 4`[αV̂β][µ`λ] + Ĉαβλµ

for some Ûβλµ = Ûβ[λµ], V̂βµ = V̂µβ and Ĉαβλµ with the same symmetry properties as the

Weyl tensor. It follows that

CαβλµCαβλµ = 4(`ρp
ρ)2 − 8F̂ρσF̂ ρσ + 8ÂρσÂσρ + 4ĈαβλµĈαβλµ

so that (12) leads to

(`ρp
ρ)2 + ĈαβλµĈ

αβλµ = 0

implying `ρp
ρ = 0 and Ĉαβλµ = 0. This means `[βCαρ][σλ`µ] = 0 (and furthermore

Cµν = 0, as A = −`ρp
ρ = 0), proving (iv).

Finally, assume that Tαβλµ`α = 0 so that everything that has been derived in (iii)

and (iv) also holds, that is, Âµν = 0, F̂µν = 0, `ρp
ρ = 0 (so that pρ = p̂ρ) and Ĉαβλµ = 0.

One easily gets

0 = Tαβλµ`α = −`β`λ`µ

(
p̂ρp̂

ρ + ÛρτνÛ
ρτν

)

providing pµ = 0 and Ûβλµ = 0 so that the Weyl tensor adopts the very simple form

Cαβλµ = 4`[αV̂β][µ`λ] and thus `[νCαβ]λµ = 0 which ends the proof.
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Combining this proposition with the results in [23] one immediately obtains the

algebraic classification of the Weyl tensor using the notation of [11, 10]. If Cαβλµ|x 6= 0,

then its algebraic type can be characterized according to whether there exists a null

vector `µ at x such that:

N ⇐⇒ Tαβλµ`α = 0. In this case, `µ is the unique null vector (up to proportionality

factors) with this property, and it defines the unique WAND.

III ⇐⇒ Tαβλµ`α`β = Tαλβµ`α`β = 0 but Tαβλµ`α 6= 0.

II or D ⇐⇒ Tαβλµ`α`β`λ = 0 but at least one of Tαβλµ`α`β and Tαβλµ`α`λ is non-zero for all

such `µ.

I ⇐⇒ Tαβλµ`α`β`λ`µ = 0 but Tαβλµ`α`β`λ 6= 0 for all such `µ.

G ⇐⇒ Tαβλµ`α`β`λ`µ 6= 0 for all null `µ.

In addition, one can distinguish between types D and II using the following

D ⇐⇒ there exist two linearly independent null vectors `µ and kµ satisfying

Tαβλµ`α`β`λ = Tαβλµkαkβkλ = 0 and at least one of Tαβλµ`α`β, Tαβλµ`α`λ or at

least one of Tαβλµkαkβ, Tαβλµkαkλ is different from zero.

For these cases D and II, one can further characterize some of their subcases as follows.

If Tαβλµ`α`β = 0, then the types are IIabd or Dabd, in the latter case Tαβλµkαkβ = 0

actually holds too. While if Tαβλµ`α`λ = 0, then the types are IIabc or Dabc, in the latter

case Tαβλµkαkλ = 0 actually holds too. The cases with Tαβλµ`α`β = 0 and Tαβλµkαkλ = 0

are impossible.

Finally, for types I, II (IIabd and IIabc) and III there exist secondary subtypes Ii,

IIi (IIiabd and IIiabc) and IIIi which are simply characterized by the existence of another

simple WAND kµ, that is, a null vector kµ which is linearly independent of the given `µ

and such that Tαβλµkαkβkλkµ = 0.

One can now explore the algebraic types compatible with a state of intrinsic

gravitational radiation at any point x. Following Bel [4, 5] this will happen whenever

Tαβλµuαuβuλ is a non-zero null vector for all timelike vector uµ. This definition seems

satisfactory in arbitrary dimension because in static cases, when there exists a timelike

hypersurface-orthogonal Killing vector ξµ, there will never be intrinsic gravitational

radiation. To see this, use the result in [20] stating that for such ξµ, Tαβλµξαξβξλ = Fξµ

(in Ricci-flat cases for simplicity). This rules out types G, Ii and D according to [27].

Apart from its intrinsic interest, the previous characterization of the algebraic types

of the Weyl tensor can be useful in order to compute the WANDs and to actually classify

explicit spacetimes. To take full advantage of this alternative one must use some of the

general properties of future tensors, see [7, 19] for the needed details.

Using that Tαβλµ is a future tensor, first of all one can compute TρβλµT ρ
βλµ. If the

result is zero, then necessarily Tαβλµ = `αtβλµ for a null `µ [7] and thus `αTαβλµ = 0,

so that the Petrov type is N. Observe that one does not need to know anything about

WANDs to check this result. In order to know the unique WAND, simply contract with

an arbitrary timelike vector uµ thrice: `µ = Tαβλµuαuβuγ.
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Suppose then that TρβλµT ρ
βλµ does not vanish. For any timelike uµ define

Tλµ(u) ≡ Tαβλµuαuβ, which is a symmetric rank-2 future tensor. In order to know

its null eigenvectors only the principal eigenvalue, call it λ, is needed [7, 19]. Then, by

classical methods one can calculate λ —by power iteration and/or solving an algebraic

equation. If this corresponds to a double null eigenvector or if λ is degenerate then

[7, 19] Tλµ`λ = λ`µ for some null `µ, so that Tλµ`λ`µ = 0, and one derives Tαβλµ`λ`µ = 0.

In fact, all null vectors with this property are those in the eigenspace associated to λ.

If there are at least two of them linearly independent, then the Petrov type is Dabd. If

there is only one, the Petrov type is IIabd. The same procedure can be performed with

T̃βµ(u) ≡ Tαβλµuαuλ (for the same or any other timelike uµ), which together with the

previous, takes care also of types III, IIabc and Dabc. Observe that, for the iteration

procedure to actually finding λ and its eigenspace, one can use as many Tλµ(u), with

different uµ, as desired. Actually, one can even use tensors of type Tαβλµuαvβ for any

two timelike uµ and vµ.

If neither Tλµ(u) nor T̃βµ(u) have null eigendirections —which happens when λ

corresponds to a non-degenerate eigenvalue with timelike eigenvector — then one

knows that Tαβλµ`λ`µ 6= 0 and Tαβλµ`β`µ 6= 0 for all possible null `µ. Choose then

an arbitrary null `µ and construct Tλµ{`} ≡ Tαβλµ`α`β, which is non-vanishing and

future. Computing its principal eigenvalue —which depends on `µ—, if it happens to be

non-degenerate with timelike eigendirection, then there are no WANDs. If it is either

degenerate or corresponds to a double null eigenvector but does not (respectively does)

vanish, then one must check if the corresponding null eigenvector coincides with `µ for

some choice of the latter, in which case Tαβλµ`α`β`λ`µ = 0 (resp. Tαβλµ`α`β`µ = 0). This

takes care of types D, II, I and G. The calculations in these situations may be long.

It is also possible to provide characterizations of the different types by using tensors

and scalars obtained by taking powers of Tαβλµ and then contracting some or all of the

indices. In 4-dimensional spacetimes these results are known but not easy to derive, see

[8, 6, 17]. In higher dimensions they may be even more involved. Nevertheless, they

would be very important providing invariant ways of determining the Weyl algebraic

types. In a similar vein, the invariants and concomitants written in terms of a general

electric-magnetic decomposition could be used, see [1, 2, 5, 8, 9, 29].

Notice that the method outlined here applies, mutatis mutandis, to the Riemann

tensor, and actually to any double (2,2)-form without the symmetry between pairs of

indices. Actually, I would like to remark that an algebraic classification of any tensor

A can be achieved by the same method, on using its superenergy tensor T{A}. In

general this is a tensor with 2r indices, distributed in r symmetric pairs according to

the number r of anty-symmetric blocks of indices of the seed tensor A [28, 15]. The

number of different algebraic types depends on r. As a sufficient illustrative example,

consider the case of a rank-2 tensor Aµν (no symmetries assumed), whose superenergy

tensor is given by [28]

Tαβλµ{A} = AαλAβµ + AβλAαµ − gαβAρλA
ρ
µ − gλµAαρAβ

ρ +
1

2
gαβgλµAρσAρσ
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with the property Tαβλµ = T(αβ)(λµ) (if Aµν happens to be symmetric then Tαβλµ = Tλµαβ

holds too. In the skew-symmetric case the proper superenergy tensor has only a pair

of indices, and the tensor above is a generalization containing it [30]). An elementary

calculation provides the following equivalences (in all cases `µ is null):

• Tαβλµ`α`β`λ`µ = 0 ⇐⇒ Aµν`
µ`ν = 0

• Tαβλµ`α`β`λ = 0 ⇐⇒ `µAµ[ν`τ ] = 0

• Tαβλµ`β`λ`µ = 0 ⇐⇒ `[µAτ ]ν`
ν = 0

• Tαβλµ`α`β = 0 ⇐⇒ `µAµν = 0

• Tαβλµ`λ`µ = 0 ⇐⇒ Aµν`
ν = 0

• Tαβλµ`α`λ = 0 ⇐⇒ `[ρAµ][ν`τ ] = 0

• Tαβλµ`α = 0 ⇐⇒ `[τAµ]ν = 0

• Tαβλµ`λ = 0 ⇐⇒ Aµ[ν`τ ] = 0

As a final remark, I would like to mention that these classifications can be

refined, obtaining more information involving several null directions simultaneously,

by considering a generalization called the ‘mathematical energy tensor’ [30], but this is

out of the scope of this short communication.
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