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Abstract. Understanding and finding of general algebraic constant mean
curvature surfaces in the Euclidean spaces is a hard open problem. The
basic examples are the standard spheres and the round cylinders, all
defined by a polynomial of degree 2. In this paper, we prove that there
are no algebraic hypersurfaces of degree 3 in R

n, n ≥ 3, with nonzero
constant mean curvature.
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1. Introduction

There are plenty of examples of algebraic zero mean curvature (i.e. minimal)
hypersurfaces: the classical Enneper degree 9 and Henneberg degree 15 minimal
surfaces [7] in R

3, the minimal cones of degree 2 over the Clifford tori Sk ×S
m

in R
n+m+1 and isoprametric cones of degrees 2, 3, 4, 6 in R

n, to name only few;
see also [1,5,8,11–13] and references therein.

On the other hand, the problem of finding nonzero constant mean curvature
(CMC) algebraic hypersurfaces in the Euclidean space is a hard open problem.
The standard spheres S

n and the round cylinders S
k × R

n−k are the only
algebraic hypersurfaces in the Euclidean space Rn+1 with constant (�= 0) mean
curvature known so far. All these hypersurfaces are given by a polynomial
equation of degree 2.

Understanding of general algebraic CMC surfaces in the Euclidean spaces is
a basic question that has very little progress. For the three dimensional space
R

3, the first author showed in [9] that there are no degree 3 algebraic CMC
surfaces. Also, for surfaces in the Euclidean space R

3, Do Carmo and Barbosa
proved [2] that if M = f−1(0) with f a polynomial and, ∇f never vanishes
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on M , then M cannot have CMC unless M is a plane, a cylinder or a sphere.
On the other hand, very little is known on the classification of all immersed
algebraic surfaces in R

3 or the classification of algebraic CMC hypersurfaces
in R

n; see, however, a recent classification of semialgebraic CMC surfaces in
R

3 with isolated singularities in [10].

In this paper we will establish that the class of CMC hypersurfaces in R
n

given by a polynomial equation of degree 3 is empty. In [9] it was proven that
if φ : M → R

n is an immersion with constant mean curvature H �= 0 and
φ(M) = f−1(0) where f is an irreducible polynomial, and, for at least one
point x0 ∈ φ(M), ∇f(x0) does not vanishes, then

4(n − 1)2H2|∇f |6 − (
2|∇f |2Δf − ∇f t ∇|∇f |2)2 = pf (1)

with p a polynomial.

We will say that an irreducible polynomial f defines an algebraic CMC hyper-
surface if f satisfies condition (1) with some H �= 0.

Notice that f−1(0) may have singular points. If x0 is a regular point of f
then (1) implies that f−1(0) is a CMC hypersurface in a neighbourhood of
x0. With this definition in mind we show that there are not algebraic CMC
hypersurfaces in the Euclidean n-dimensional space of degree 3.

Theorem 1.1. If f : Rn → R is an irreducible polynomial of degree three, then,
the zero level set of f cannot be an algebraic CMC hypersurface. That is, f
cannot satisfy Eq. (1) with H �= 0.

Some further remarks are worth making at this point. Recall that

Δpf := |∇f |2Δf +
p − 2

2
∇f t ∇|∇f |2 = 0 (2)

is called the p-Laplace equation. Then for H = 0, the CMC Eq. (1) is closely
related to the 1-Laplace equation, which appears very naturally in the context
of minimal cones, see section 6 in [6]. The assumption H �= 0 is crucial, because
otherwise, when n > 3, there exists irreducible algebraic minimal (H = 0)
hypersurfaces of any arbitrarily higher degree, see for instance [13].

On the other hand, it is interesting to compare Theorem 1.1 with a similar
situation for polynomial solutions of the general p-Laplacian equation, p �= 2. It
follows from [3] and the recent results in [4,14] that there are no homogeneous
polynomial solutions to (2) in R

n of degree d = 2, 3, 4 for any n ≥ 2, of degree
5 in R

3 and also of any degree in R
2.

2. Proof of the main result

Before proving the Theorem 1.1, let us prove some lemmas.

Lemma 2.1. If g : R
n → R is a polynomial of degree 3 and |∇g| vanishes

anytime g vanishes, then g = l3 where l is a linear function.
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Proof. Lemma 2.5 in [13] states that if g is a cubic irreducible polynomial
then g−1(0) contains at least one regular point. Therefore, we conclude that
our g cannot be irreducible and then, for some polynomial u of degree 2,
we have that g = uv where v is linear. Since ∇v never vanishes and ∇g =
u∇v + v∇u we conclude that u(x) = 0 whenever v(x) = 0. From the real
nullstellensatz theorem we conclude that u = wv for some polynomial w. Thus
g = wv2. Applying the same argument that we did above, using the polynomial
w instead of the polynomial v, we conclude that v2 must be a multiple of w.
Therefore the lemma follows. �
Proof of Theorem 1.1. Without loss of generality we can assume that the ori-
gin is in an element in the hypersurface, in other words, we assume that
f(0, . . . , 0) = 0. Let us write

f = f3 + f2 + f1 and p = p9 + · · · + p1 + p0

where fi = fi(x) and pi = pi(x) are homogeneous polynomials of degree i.
Comparing the degree 12 homogeneous part in both sides of equation (1), we
conclude that

H̃2|∇f3|6 = p9f3, where H̃ = 2(n − 1)H �= 0. (3)

Using Lemma 2.1, we conclude that f3 = l3 where l is linear. Since f(0) =
0, then l(0) = 0. By doing a rotation and a dilation of the coordinates, if
necessary, we can assume that l = x1. For notation sake, let us denote the
coordinates in R

n as x = x1 and y = (y1, . . . , yn−1)t = (x2, . . . , xn)t. With
this notation we have the for the homogenous parts in f = f3 + f2 + f1:

f3 = x3

f2 = ytAy + k0x
2 + ytr x

f1 = k1x + yts, (4)

where A is a symmetric (n − 1) × (n − 1) matrix, r = (r1, . . . , rn−1)t and
s = (s1, . . . , sn−1)t.

At this moment we would like to point out that to finish the theorem it is
enough to show that the matrix A is zero. The reason for this is that if A
is the zero matrix and we relabel the axis so that the vectors r and s are in
the plane spanned by the vectors (1, 0, . . . , 0)t and (0, 1, 0, . . . , 0)t, them, the
function f would be a function that depends only on the three variables x, y1
and y2 and, by [9] we already know that there are not algebraic CMC surfaces
in R

3.

Let us continue the proof by showing that the matrix A must be the zero
matrix. A direct computation yields the following decomposition into homo-
geneous parts:

|∇f |2 = h0 + h1 + h2 + h3 + h4, (5)
where hk is a homogeneous polynomial of degree k given explicitly by

h0 = k2
1 + |s|2

h1 = 4stAy + 4k0k1x + 2k1(rty) + 2x rts
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h2 = 4x rtAy + 4|Ay|2 + 4k0x rty + (rty)2 + x2(4k2
0 + 6k1 + |r|2)

h3 = 12k0x
3 + 6x2 rty

h4 = 9x4

Using this representation, we obtain

Δ1f := 2|∇f |Δf − ∇f t∇|∇f |2
= 4|∇f |2 Tr A + 16(k0 + 3x)(stAy + |Ay|2) − 8rtAy

(
k1 + rty − 3x2

)

− 8x stAr − 4x2 rtAr − 16x rtA2y − 16stA2y − 4stA.s − 16ytA3y

− 4x(k0x + k1 + rty)|r|2 + 4(k0 + 3x)|s|2 − 4rts
(
k1 + rty − 3x2

)
,

which implies that

Δ1(f) ≡ 4Tr A|∇f |2 mod Pol3,

where we follow an agreement to write

A ≡ B mod Polk

if A − B is a polynomial of degree k or less.

It also follows from (5) that

|∇f |4 ≡ 81x8 mod Pol7

Thus, using the made observations, equation (1) becomes

(p0 + p1 + · · · + p9)(f1 + f2 + f3) ≡ H̃2|∇f |6 − 64(Tr A)2x8 mod Pol7. (6)

Our next goal is by using the decomposition for |∇f |2 in terms of the hi’s and
and the expression for (Δ1f)2 − 4(n − 1)2H2|∇f |6 in terms of the |∇f |2 up
to order 8, deduce that the matrix A should be the zero matrix. To this end,
we consider (6) as a polynomial identity with respect to a variable x over the
ring R[y].

A key observation is that since h4 = Q0x
4 and h3 = Q2x

2, where Qi is a
homogeneous polynomial of degree i, one immediately obtains from (5) the
following homogenous decomposition:

H̃2|∇f |6 − 64(Tr A)2x8 = L0x
12 + L1x

10 + L2x
8

+L3x
6 + L4x

4 mod Pol7. (7)

Here Li are homogeneous polynomials of degree i. In particular,

L0 = 36H̃2 �= 0. (8)

Next, identifying the homogeneous parts of degrees k, 8 ≤ k ≤ 12, in both
sides of (6) one obtains respectively

p9f3 = L0x
12

p8f3 + p9f2 = L1x
10

p7f3 + p8f2 + p9f1 = L2x
8
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p6f3 + p7f2 + p8f1 = L3x
6

p5f3 + p6f2 + p7f1 = L4x
4. (9)

The first two equations yield

p9 = L0x
9

and

p8 = S2x
6,

where S2 = L1x
2 − L0f2. Arguing similarly, one easily finds that

p7 = S4x
3,

p6 = (L3 − S2f1)x3 − S4f2,

where S4 = L2x
2 − L0f1Sx3 − S2f2. Thus, evaluating the last identity of (9)

for x = 0 and taking into account that f3(0) = p7(0) = 0 we obtain

p6(0)f2(0) = 0.

Since

p6(0) = −S4(0)f2(0) = S2(0)f2
2 (0) = −L0f

3
2 (0),

it follows by (8) that f2(0) = 0, therefore using (4) we obtain

f2(0) = ytAy = 0 for any y ∈ R
n−1.

Since A is symmetric, we have A = 0. As explained before, after sowing that
A vanishes we have that f essentially depends on three variable and therefore
it cannot define an algebraic hypersurface with constant mean curvature. The
theorem is proved. �
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