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1 Introduction

In this survey, I am going to try and describe the algebraic complexity framework originally
proposed by Leslie Valiant [Val79, Val82], and the insights that have been obtained more
recently. This entire article has an “as it appeals to me” flavour, but I hope this flavour
will also be interesting to many readers. The article is not particularly in-depth, but it is
an invitation to read [BCS97, Bür00a] and many recent papers on the topic, and to start
attacking the open problems in the area.

Valiant started out with the mission of understanding the core essence of reductions
and completeness, as witnessed in both recursive function theory and in computational
complexity theory. He provided an algebraic framework in which to interpet the clustering
of natural problems into completeness classes, even for problems of an algebraic rather than
combinatorial nature. He had a remarkable hypothesis:

Linear algebra offers essentially the only fast technique for computing multivari-
ate polynomials of moderate degree.

Clearly, then, we are going to talk about polynomials, not languages or functions.

2 Valiant’s original framework

Let F be any field, and let F[x1, . . . , xn] be the ring of polynomials over indeterminates
x1, . . . , xn with coefficients from F. Consider a family (f) of polynomials (fn)n≥1, where
each fn is in F[x1, . . . , xs(n)] for some function s : N −→ N. When should we say that
(f) is tractable? Clearly, if there are too many variables to keep tack of, there cannot
be tractability. So we will henceforth demand that s is a polynomially bounded function
(∃c,∀n, s(n) ≤ c+ nc); then the nth polynomial fn has at most nc variables. But that is of
course not enough.
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There are many ways in which we can set the bar for tractability. Here’s a first attempt.
Can (f) be computed by a formula of reasonable size? To elaborate further, a formula is an
expression defined recursively:

1. for each c ∈ F, “c” is a formula of size 0 computing the polynomial c,

2. for each indeterminate xi, “xi” is a formula of size 0 computing the polynomial xi, and

3. if F1, F2 are formulas computing polynomials f1 and f2, then “(F1+F2)” and “(F1×F2)”
are formulas of size size(F1) + size(F2) + 1 each, computing the polynomials f1 + f2

and f1 × f2 respectively.

Notice that size(F ) is just the number of ring/field operations used to construct F .
Instead of such a recursive definition, we could have a more intuitive picture: a formula

is a rooted binary tree where internal nodes are labeled + or × and leaf nodes are labeled
from the set F ∪ X, where X is the set of indeterminates. The size is just the number of
non-leaf nodes.

Now, for tractability, we could require that there is a polynomially bounded function
t : N −→ N and a family of formulas (Fn)n≥1 such that each Fn computes fn and has size
at most t(n). Let us use the notation VF to denote families of polynomials tractable in this
sense. (VF: Valiant’s Formulas — of course, Valiant didn’t use this name! This class is also
referred to as VPe: Valiant’s Polynomial-sized Expressions. Personally, I prefer VF.)

Here’s a second attempt: Can (f) be computed by a straight-line program of reasonable
size? As before, we will declare polynomial size to be reasonable. Straight-line programs
are programs where instructions involve adding or multiplying previously computed poly-
nomials, no divisions and no conditionals (no if-then-else). In the more intuitive picture,
they correspond to directed acyclic graphs where each node is a source node (indegree 0)
labeled from the set F∪X, or has indegree 2 and is labeled + or ×. A designated sink node
(outdegree 0) is the output node. Each node computes a polynomial in the obvious way, and
the graph computes the polynomial at the output node. (The acyclicity constraint ensures
that each node, or instruction, only uses previously computed polynomials) The size is the
number of non-source nodes; again, this corresponds to the number of ring/field operations
required. Such graphs are in fact exactly algebraic circuits, and we now look for polynomial
size circuit families.

Clearly, this model generalises formulas. The catch is that it generalises it too much!
To see why, consider the following circuit family: Cn has n+ 1 nodes v0, v1, . . . , vn, and the
labeling is v0 = x1, vi+1 = vi × vi for i ∈ [n]. The family of polynomials (fn) computed
by (Cn) is fn = x2n

1 . Even for small integer values of x1, writing down the value of fn(x1)
is going to require exponentially many bits. How can we say that such a family (fn) is
tractable?

So we need to impose some additional restrictions. The obvious parameter to restrict
is the degree of the polynomial. Say that the family (fn) has moderate degree if for some
polynomially bounded function d : N −→ N, the degree of each polynomial fn is at most
d(n). If degree(fn) = D is polynomially bounded, then on integer arguments with b-bit
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representations, the value of fn requires no more than poly(n, b) bits. (In general, it needs
no more than poly(n,D, b) bits.) Henceforth, to qualify for the label tractable, a family (fn)
must have polynomially bounded degree.

(Why didn’t we face this problem when considering V F? Simply because a formula of
size t cannot compute a polynomial of degree more than t+ 1. Don’t just believe me; check
this by induction on formula size.)

Now we have our second possible definition of tractability: (fn) is tractable if the sequence
degree(fn) is polynomially bounded, and there is a polynomially bounded function t : N −→
N and a family of straight-line programs, or algebraic circuits, (Cn)n≥1, such that each Cn
computes fn and has size at most t(n). Let us use the notation VP to denote families of
polynomials tractable in this sense. (VP: Valiant’s analogue of the Boolean complexity class
P. Valiant called these families p-computable [Val82].)

The well-studied polynomial family from linear algebra, the determinant of a matrix
of indeterminates, is known to be tractable in this second sense. (To define the family
(Detn), imagine an n × n matrix An with a new indeterminate xij at each position (i, j),
and let Detn be the polynomial that represents the determinant of An. Thus Det1 = x11,
Det2 = x11x22 − x12x21, and so on. Clearly, this family satisfies the mandatory conditions:
Detn has n2 variables and is of degree n.) This is not surprising; we know that the determi-
nant can be computed efficiently (in polynomial time) over instantiated matrices using, say,
Gaussian elimination. But to compute the symbolic determinant via a straight-line program,
Gaussian elimination is apparently not directly of use because we can’t search for non-zero
pivots and eliminate them (remember, no divisions and no conditionals). However, Strassen
[Str73] gave a generic method of converting any straight-line program with divisions to a
division-free straight-line program; the resulting program’s size is polynomially bounded in
the original size, the number of variables, and the degree. Thus we can conclude that there
are polynomial-sized straight-line programs for the symbolic determinant. There are more
direct algorithms as well; Samuelson, Berkowitz, Csanky, ... . See [MV97] for an explicit
description of circuits of size O(n4) (my favourite one – no surprise!).

Whether the determinant can be computed efficiently by formulas (is Detn in VF?) is
still famously open. We know that it needs formula size at least Ω(n3), see [Kal85]. But
we do know that it can be computed by formulas of sub-exponential size 2O(log2 n). This can
be shown in many different ways, one of which we will look at a bit later, but the earliest
demonstration of this follows from Csanky’s algorithm [Csa76], which uses binary arithmetic
operations and O(log2 n) parallel time. Thus if we use quasi-polynomial (2logc n for some
constant c) formula-size as the defining property for tractability (giving a class that we can
call VQF), then again the family (Detn) has long been known to be tractable. We could
also use quasi-polynomial circuit size as the defining property for tractability, giving a class
that we can call VQP. But VQP obviously contains VP and VQF, so (Detn) is in VQP;
nothing new there. (Note: in defining VQF and VQP, the quasi-polynomial limit on formula
or circuit size is over and above the requirement that the degree and number of variables are
polynomially bounded.)

Does VP include essentially all interesting and natural polynomial families? We do not
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know. In fact, there is a large list of such polynomial families not known to be in VP.
The most natural one is the permanent family (Permn) where Permn is the polynomial
representing the permanent of an n × n matrix An of indeterminates. It is tantalisingly
similar to the determinant; just the sign term is missing.

Detn =
∑
σ∈Sn

sign(σ)
n∏
i=1

xiσ(i) Permn =
∑
σ∈Sn

n∏
i=1

xiσ(i)

Yet, it does not seem to be tractable. How “intractable” is it?
Mirroring the definitions of the Boolean complexity classes P and NP, Valiant proposed

a notion of p-definability in [Val79]. A polynomial family (fn) is p-definable if it can be
written as an exponential sum, over partial Boolean instantiations, of another tractable
family. Formally, a family (fn) over s(n) variables and of degree d(n) is p-definable if s(n)
and d(n) are polynomially-bounded, as always, and further, there exist a polynomially-
bounded function m, and a family of polynomials (gn) in VF, such that gn has s(n) +m(n)
variables denoted {x1, . . . , xs(n), y1, . . . , ym(n)}, and

fn(x̃) =
1∑

y1=0

1∑
y2=0

. . .
1∑

ym(n)=0

gn(x̃, ỹ).

This looks like an algebraic analogue
∑
·VF of the boolean class ∃ · F , where F is the class

of languages decided by polynomial-size formulas. But it is well-known that ∃ · F = NP, so
this should be algebraic NP. Later, Valiant redefined p-definability (no, that is not a circular
definition!) as exponential sums of families in VP, rather than VF; that is, VNP =

∑
·VP.

For clarity, let us agree to temporarily refer to these two definitions as VNF (or VNPe) and
VNP. However, Valiant [Val82] showed that these two classes are in fact the same, so just
VNP will do. The proof involves showing that VP is contained in

∑
·VF. And it is of course

easier to show upper bounds with the definition of VNP rather than VNF.
Now Valiant observed that not only (Detn), even (Permn) is p-definable. This should be

similar to showing that the 0-1 permanent is in #P, right? Almost. We are dealing with
symbolic polynomials, so we do not have the liberty of looking at an input value and deciding
what to do next. Still, the basic idea is the same. For a statement S, let [S] denote the 0-1
valued Boolean predicate that takes value 1 exactly when S is true. Then

Permn =
∑
σ∈Sn

n∏
i=1

xiσ(i) =
∑

Y ∈{0,1}n×n
[Y is a permutation matrix] ·

n∏
i=1

(
n∑
j=1

Yijxij

)
[Y is a permutation matrix] = [Y has at least one 1 in each row]×

[Y has at most one 1 in each line (=row or column)]

=

(
n∏
i=1

n∑
j=1

Yij

)( ∏
i=k or j=m

(1− YijYkm)

)
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Clearly, the polynomial family

gn =

(
n∏
i=1

n∑
j=1

Yij

)( ∏
i=j or j=m

(1− YijYkm)

)
n∏
i=1

(
n∑
j=1

Yijxij

)

has formulas of size O(n3), and Permn(x̃) =
∑

Y ∈{0,1}n×n gn(x̃, Y ), so (Permn) is in VNP.

So we have some families in VP (even VF), and some in VNP but maybe not in VP. How
do we compare families? For comparing languages, we have many-one reductions and Turing
reductions – what is the algebraic analogue? Valiant proposed projections, a most restrictive
kind of reduction when dealing with Boolean classes, but completely natural in the algebraic
context. We say that g ∈ F[y1, . . . , ym] is a projection of f ∈ F[x1, . . . , xn] if substituting
a value in F ∪ Y for each variable in X and simplifying the polynomial resulting from f
yields exactly g. (For instance, if f = x1x2 + x3x4, then the following are all projections
of f : y1 + y2, y1y2 + 5, y1y2 + y2y3. But y2

1y2, y1 + y2 + y3 are not, because a projection
cannot increase the degree or number of monomials.) Further, we say that a family (gn) is a
p-projection of a family (fn) if each gn is a projection of some fm for an m not too far from
n. That is, there is a polynomially bounded function t, and each gn is a projection of ft(n).
If we allow t to be quasi-polynomially bounded, we obtain qp-projections.

Using these notions of reductions, we have the usual notions of hardness and completeness
for algebraic classes. Here’s what Valiant showed:

1. (Detn) is hard for VF under p-projections (and is known to be in VP).

2. (Detn) is complete for the class of quasi-polynomial size formulas VQF under qp-
projections.

3. Over fields with characteristic other than 2, (Permn) is complete for VNP under p-
projections. Over fields of characteristic 2, Permn equals Detn and hence is in VP and
VQF.

4. Polynomial families associated with a number of NP-complete languages are complete
for VNP under p-projections.

The first two follow from a proof that a polynomial computed by a size s formula is a
projection of Dets+2. (It uses the combinatorial definition of determinant. as the signed
weighted sum of cycle covers in an associated graph.) The hardness of (Permn) for VNP
mirrors the hardness of the Boolean permanent for the counting class #P . As in the case
of the upper bound, additional care is needed to take into account non-access to an input
instance and fully symbolic computations; in particular, the proof requires a multiplicative
inverse of 2 and hence fails over fields of characteristic 2. See [Val79, BCS97, Bür00a] for
various versions of these proofs.
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3 The current status

We now know much more about the classes VF, VP, VQP, VNP defined above, and about
other similarly defined classes. Let’s review these results one by one.

Say that a family of polynomials (fn) is a p-family if the number of variables in fn and
the degree of F are polynomially bounded functions of n. We only consider p-families.

Recall that VP consists of p-families with polynomial-sized circuits. Also note that
algorithmically, circuit size roughly corresponds to number of processors needed in a parallel
algorithm (associate one processor per gate), while circuit depth – the length of a longest
path from the output node to an input node – corresponds to parallel time.

A clever construction due to Hyafil [Hya79] shows that any polynomial of degree D in
N variables, computable by a circuit of size t, can be computed in parallel time O(logD ×
log(D2t + N)). This is a depth-reduction of the circuit, and generalises Csanky’s result
which was specifically tailored for the determinant. Further, this algorithm has parallel
multiplicative depth only O(logD); this is worth noting since multiplication seems a more
costly operation than addition or subtraction. Unfortunately, the resulting circuit, while
shallow and depth-reduced, is rather large, roughly tlogD. Applying this construction would
take us from polynomial-size circuits to shallow quasi-polynomial size circuits. Soon after
this, an improved construction was presented by Valiant, Skyum, Berkowitz and Rackoff
[VSBR83]; they achieved the same depth-reduction (and also O(logD) multiplicative depth)
with size polynomial in tD. In particular, applying this construction to a circuit family (Cn)
witnessing that a polynomial family (fn) is in VP, we see that (fn) is in VSAC1 ⊆ VNC2.

Wait, what exactly are these new classes? Again, we can think of them as analogues of
Boolean classes. The Boolean circuit class NCi has circuits of polynomial size and O(logi n)
depth. The class SACi is similarly defined, polynomial size, O(logi n) ∧-depth, and negations
only at inputs. That is, if ∨ nodes are allowed to have unbounded in-degree, but ∧ nodes
must have in-degree 2, then these circuits have depth O(logi n). (Hence the name SAC, for
semi-unbounded alternation.) Clearly, NCi ⊆ SACi ⊆ NCi+1. Now define the classes VNCi

and VSACi as algebraic analogues of these, with × and + playing the roles of ∧ and ∨
respectively. In the Boolean world, we know that NC1 ⊆ SAC1 ⊆ NC2 ⊆ . . . ⊆ NC ⊆ P. In
the algebraic world, however, VNC1 ⊆ VSAC1 = VNC2 = . . . = VNC = VP.

An important consequence of the depth reduction result of [VSBR83] is that the (Detn) ∈
VQF result generalises to all of VP; VP ⊆ VQF. Another important consequence is that
at quasi-polynomial size, formulas are as powerful as circuits; VQF equals VQP. Such an
equivalence is not known for p-families at polynomial size. (It holds at exponential size,
because polynomials in any p-family have only exponentially many monomials. An explicit
sum-of-monomials expression gives an exponential sized formula.)

Even before the results of [Hya79, VSBR83], Spira [Spi71] and Brent [Bre74] had shown
that depth-reduction is possible for VF. Any formula F can be rebalanced by identifying in
it a suitably chosen node N and rewriting F as a linear form in N , say AN + B. If N is
properly chosen, then the polynomials A and B are computed by small sub-formulas (size at
most half of F ) of F , and can be recursively rebalanced. The appropriate N is identified by
using the tree separator lemma. This process yields a O(log size(F )) depth formula. Thus
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we conclude VF = VNC1.
The depth reduction for VP from [VSBR83] proceeds similarly, but works on “proof-

trees” or parse trees. Unfolding a circuit into a formula by systematically duplicating reused
nodes may yield an exponential sized formula (recall the example X2n .) Let us nonetheless do
so. Now, a minimal sub-formula that includes the output node, both children of an included
× node, and exactly one child of an included + node, computes a potential monomial
whose degree is the number of leaf nodes in the sub-formula. Call such a sub-formula a
proof tree. For a circuit computing a p-family of polynomials, we can ignore proof trees
of super-polynomial size. For each polynomial-sized proof tree, the balancing technique
described above should work. The catch is, there can be too many proof trees (there can
be exponentially many monomials), and each proof tree could require cutting at a different
node. The clever twist is the following: in the formula depth-reduction, A can be computed
recursively because it is the partial derivative of F with respect to N . If F is now a circuit
rather than a formula, then F may not be linear in N , so computing the partial derivative
will not help. But if N is chosen to have degree more than half the degree of F , then this
is indeed the case. So the algorithm of [VSBR83] computes, for each pair of nodes N,N ′,
a new polynomial F (N,N ′); these polynomial are recursively constructed, and whenever
2degree(N) > degree(N ′), F (N,N ′) equals the partial derivative of N ′ with respect to N .
Putting this together carefully gives the depth-required circuit. For details, see [VSBR83]
itself. Also see [AJMV98a] and [Vol99] for uniform versions, where the task of describing
the depth-reduced circuit given the original circuit is achieved using limited computational
resources.

A couple of things slipped by almost unnoticed. We know what is meant by the degree of a
polynomial, but what do we mean by degree(N)? This should be the degree of the polynomial
computed at the node N , and indeed [VSBR83] use degree in this sense. But the uniform
versions cannot do so, because computing the degree of a specified node in a given circuit is
a completely non-trivial task! See the discussion about DegreeSLP in [ABKPM09, Kay10].
Fortunately, we can equally easily work with an upper bound on the degree of each node.
And an upper bound u(N) on the degree at each node N is easy to obtain: u(N) = 1 if
N is a leaf, u(N1 + N2) = max{u(N1), u(N2)}, u(N1 × N2) = u(N1) + u(N2). This upper
bound is referred to as the complete formal degree of the circuit (as opposed to the degree
of the polynomial it computes). However, just because the output node of C computes a
polynomial of degree d, this does not imply that each node computes a polynomial of degree
at most d. Higher degree monomials may get computed along the way, and get cancelled
finally. Is it necessary, in terms of efficiency, to compute them? No! If C is of size s and
computes a polynomial f of degree d, then we can construct a circuit C ′ of size O(sd2)
computing the same polynomial and with each node computing a polynomial of degree at
most d: just compute the homogeneous parts of f separately in the obvious way. Now C ′ will
have complete formal degree O(d3s). (See [MP08] for details.) Thus we could have defined
VP in terms of circuits of polynomial size and polynomially bounded complete formal degree
as well.

There is a much simpler proof of the fact that VP is contained in VNC. This proof
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yields a weaker upper bound of VSAC2 rather than VSAC1, but is still beautiful, and is
still enough to conclude that VP ⊆ VQF. I first saw this proof in a survey talk by Pascal
Koiran at Dagstuhl [Koi10], and I wish I had come up with it myself! Let (fn) be in VP,
as witnessed by a circuit family (Cn) with complete formal degree bounded by (dn). To
depth-reduce Cn, partition the nodes into 1 + dlog dne parts; part k has nodes with formal
degree in [2k−1, 2k). Treating the polynomials from parts i < k as variables, the nodes in
part k form a skew circuit, where each × node has at most one child that is not an input
node. (Multiplying two nodes both in part k would create high degree, giving rise to a node
in part k + 1.) Now, skew circuits can be depth-reduced to VSAC1 rather easily, using a
divide-and-conquer argument dating back to Savitch [Sav70]. Doing this separately for each
part gives a VSAC2 circuit.

We just introduced a new kind of circuit there: skew circuits. Are they as powerful as
general circuits? We do not know! Let’s define VPskew; p-families of polynomials computed
by polynomial-sized skew circuits. It turns out this is a great class to study, because it
exactly characterises the complexity of the determinant. Recall what we have already seen;
(Detn) is hard for VF = VNC1 and is in VP. The upper bound proof from [MV97] actually
gives a skew circuit of size O(n4), but skew circuit constructions were known much earlier:
in [Ven92], Venkateswaran first defined Boolean skew circuits to capture nondeterministic
circuits, and subsequently many authors independently extended that study to arithmetic
rings, [Dam91, Tod92, Vin91, Val92]. And the lower bound proof from [Val79] shows that
polynomials computed by skew circuits are p-projections of the determinant, though it is not
stated this way. Valiant showed that a formula can be converted to a certain kind of graph
that we nowadays call an algebraic branching program or ABP (more about this below), and
that polynomials computed by ABPs are p-projections of (Detn). And we now know that
ABPs are essentially skew circuits.

Time to define ABPs. These are directed acyclic graphs, with a designated source node
s and a designated target sink node t (sometimes there may be multiple target nodes), and
with edges labeled from F∪X (similar to input nodes in a circuit). For any directed path ρ,
the weight of ρ is the product of the labels of the edges on ρ. The polynomial pv computed
at a node v is the sum of the weights of all directed sv paths. The polynomial computed by
the ABP is just pt. Families computed by polynomial-size ABPs form the class VBP. (In
some parts of the literature, edge labels are allowed to be linear forms in X. This does not
significantly change the properties of ABPs as we discuss here. We’ll stick to the convention
that labels are in F ∪X.)

So why are ABPs and skew circuits essentially the same? ABPs to skew circuits: clearly,
ps = 1, and for any other source node (in-degree 0) s′, ps′ = 0. Look at an edge u→ v of the
ABP with label `. Then pv has a contribution from pu × `. Summing this over all incoming
edges at v gives a small circuit computing pv from previously computed values, and this
circuit is skew. For the reverse simulation, reverse this construction: (1) introduce a source
node s, (2) for each input node u labeled `, add an edge s→ u labeled `, (3) for each node
v = u+ u′, create edges u→ v and u→ v labeled 1, and (4) for each node v = u× `, create
an edge u→ v labeled `.
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So now we can add to the list of results at the end of Section 2: (Detn) is complete for
VBP = VPskew under p-projections.

In fact, we can add more. What makes the simulation from skew circuits to ABPs
possible is the fact that at each × gate, one argument is easy. Toda [Tod92] took this
argument further – it is enough if one argument is independent of the rest of the circuit.
That is, for each × node α = β × γ, the entire sub-circuit rooted at either β or γ has no
connection to the rest of the circuit except via this edge to α. (Equivalently, one of the edges
into α is a bridge in the circuit.) Call such circuits weakly skew circuits. Toda showed that
weakly skew circuits can be converted to skew circuits with linear size blow up. See also
[MP08], where Malod and Portier made the size bounds in the conversions even more precise.
So now we can say VBP = VPskew = VPws, where the subscript ws stands for weakly skew.

Taking this idea further, Malod and Portier provide a brilliant characterization of the
class VP. Say that a circuit is disjoint if at every node α = β ◦ γ, where ◦ could be + or ×,
the sub-circuits rooted at β and γ are disjoint. This is just a fancy (convoluted?) way of
saying that the circuit is a formula. But now relax this constraint a bit. Say that a circuit
is multiplicatively disjoint or MD if at every × node α = β × γ, the sub-circuits rooted
at β and γ are disjoint. No restrictions apply to + nodes. Like formulas, MD circuits of
size s have complete formal degree bounded by s. But the MD restriction seems to allow
more computation than formulas; for instance, weakly skew circuits are MD, and so MD
circuits can compute (Detn) in polynomial size. Malod and Portier showed that in fact
polynomial-size MD circuits can compute everything in VP, but nothing more. That is,
VP = VPMD. While this fact can also be deduced once we have depth-reduction to VSAC1,
Malod and Portier give a completely self-contained combinatorial proof which is very neat.
Basically, imagine that each node in the VP circuit is labeled with its formal degree. Now
make multiple copies of each node, inversely proportional to the formal degree. By carefully
deciding which copies of its children to use to construct a copy of a node, multiplicative
disjointness can be achieved with only polynomial blow-up in size.

A nice consequence of this characterisation of VP is a simpler proof of the fact that
VP is contained in

∑
·VF. The key observation used is that a circuit is multiplicatively

disjoint exactly when every proof tree is already a sub-graph of the circuit (even without
any unfolding into a formula). See [MP08] for details.

Before we move on, we note another surprising relation between ABPs and formulas: VF
equals the class of p-families computed by polynomial-size ABPs of constant width. What is
this resource “width”? Recall that an ABP is a DAG with edges going “in the direction from
s to t”. Suppose we impose a layering constraint. The nodes of the DAG must be laid out at
the vertices of a rectangular w×` grid, the node s must be at position (S, 1) for some S ∈ [w],
the node t must be at position (T, `) for some T ∈ [w], and edges can only go across one layer,
from (i, k) to (j, k+ 1) for some i, j ∈ [w], k ∈ [`− 1]. Of course, any ABP can be converted
to one of this form: just sub-divide edges when necessary and label the sub-division path so
that its weight is the original edge’s label (use lots of 1s). Now we say that w is the width of
the layered ABP and ` is the length. A bounded-width branching program family (Bn) is one
where for some absolute constant c, each Bn has width at most c. Seems quite a squeeze – if
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we view moving from s towards t as an incremental computation, then at each stage we can
carry forward just c intermediate polynomials. We shouldn’t be able to do much this way,
right? Wrong! Ben-Or and Cleve [BOC92] showed, in a proof cleverly extending Barrington’s
famous characterisation [Bar89] of NC1 by Boolean bounded-with branching programs, that
every formula of depth D has an equivalent bounded-width branching program (that’s quite
a mouthful; let’s agree to call it BWBP) of length 4D and width just 3! Since we already
know that formulas can be depth-reduced and VF equals VNC1, we see that VF is contained
in a class that we can name VBWBP: polynomial-sized constant-width ABPs. The converse
inclusion is easily seen to hold, again using a Savitch-style divide-and-conquer. Thus we
have another characterisation of VF.

As a matter of curiosity, one may want to know: is the width-3 upper bound tight?
Allender and Wang [AW11] recently settled this question affirmatively: they show that a very
simple polynomial cannot be computed by any width-2 ABP. On the other hand, width-3
ABPs are universal, since every polynomial family has some formula family computing it.
The question is one of efficiency: which families have polynomial-size width 3 ABPs?

OK, so we’ve had a plethora of class definitions, but just a handful of distinct classes:
VF = VPe = VNC1 = VBWBP, VBP = VPskew = VPws, VP = VPMD, VQF = VQP,
VNF = VNP.

As stated in [Bür00a], Valiant’s hypothesis says that VNP 6⊆ VP, and Valiant’s
extended hypothesis says that VNP 6⊆ VQP. Over fields of characteristic not equal to 2,
these imply: Permn is not a p-projection of Detn, and Permn is not a qp-projection of Detn,
respectively.

Some miscellaneous results, in no specific order:

1. Let SymDetn be the polynomial that represents the determinant of a symmetric n ×
n matrix of indeterminates Bn. (For instance, SymDet2 = x11x22 − x2

12.) Clearly,
(SymDetn) is a p-projection of (Detn). The converse is also almost true. As shown by
Grenet, Kaltofen, Koiran and Portier in [GKKP11], over any field of characteristic other
than 2, Detn is a projection of SymDetn3 . Characteristic 2 is a problem: symmetric
matrices correspond to undirected graphs, so each undirected cycle gives rise to two
directed cycles, and so to get a projection we need division by 2. The best that we can
currently say in characteristic 2 is that (Detn)2 is a projection of SymDet2n3+2; this is
also shown in [GKKP11].

2. VQP is also characterized by quasi-polynomial-size weakly skew circuits of polynomial
degree. (From [VSBR83] it follows that VQP = VQF; hence the above charcacteriza-
tion. A direct proof is presented in [MP08].) Several natural polynomials are complete
for this class under qp-reductions: the (Detn) family, of course, but also, the trace
of iterated matrix product and the trace of a matrix power. These families are all
complete for VBP under p-reductions.

3. While we do not know the exact relationship betweenVQP and VNP, (they both con-
tain VP), we do know that VQP does not equal either VP or VNP. Bürgisser ([Bür00a],
Section 8.2) has shown that there is an explicit family of polynomials (fn) in VQP that
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is provably not in VNP, let alone in VP. This family is defined as follows: Consider
numbers in base n. Let µ range over all such numbers with m(n) = dlog ne digits. More
precisely, let µ range over length-m(n) sequences over the alphabet {0, 1, . . . , n − 1},
and let kn(µ) denote the value of this sequence, kn(µ) =

∑m(n)
j=1 µjn

j−1. Define fn as:

fn(x1, . . . , xm(n)) =
∑

µ∈{0,...,n−1}m(n)

22kn(µ)

m(n)∏
j=1

x
µj
j

Exploiting the fact that the distinct double exponentials appear as coefficients in fn,
Bürgisser shows that fn cannot be in VNP.

Furthermore, using m(n) = dlogi ne gives a family of polynomials f i in VQP with size
O(nlogi n) but provably not in size O(nlogi−1 n), so within VQP there is a strict hierarchy.

4. From the qp-completeness of (Detn) for VQP, and the p-completeness of (Permn)
for VNP, it follows that VNP ⊆ VQP if and only if (Permn) is a qp-projection of
(Detn). This is a very long-standing open question. Originally the question of whether
(Detn) and (Permn) are p-equivalent was posed by Pólya [P1́3], who also showed that
there is no way of expressing the permanent as the determinant by only changing the
signs of selected entries (except for n = 2; flip the sign of a12 to get matrix B with
Det(B) = Perm(A)). (I haven’t myself seen Pólya’s note, but have seen it referred to
in various places.) Marcus and Minc [MM61] showed that there is no size-preserving
transformation (Permn to Detn), even if we relax the notion of projections to allow
linear form substitions for each variable. For many years, a linear lower bound was
the best known (Ω(

√
2n) due to [vzG87, Cai90, Mes89]), until Mignon and Ressayre

[MR04] showed that over the fields of characteristic 0 (eg real or complex numbers),
even if linear form substitutions are allowed in projections, to express Permn as a pro-
jection of Detm, we need m ≥ n2/2. The same lower bound was obtained for fields of
characteristic other than 2 by Cai, Chen and Li [CCL10]. From Ryser’s work [Rys63] it
follows that Permn is a projection of Detm for some m < n22n. More recently, Grenet
showed [Gre12] via a very simple and neat construction that Permn is a projection of
Detm for m = 2n− 1. This is the best known so far. Thus there is a huge gap between
the lower and upper bounds on what is called the determinantal complexity of the
permanent.

5. It is natural to believe that the complexity of a p-family (fn) in this framework is closely
related to the computational complexity of evaluating fn for a given instantiation of its
variables. In [Bür00b], Bürgisser gave this belief a firm footing. Consider a p-family
(fn) where fn depends on n variables. Define its Boolean part BoolPart(f) as a string
function mapping x ∈ {0, 1}n to the binary encoding of fn(x). Note that we have
considered only Boolean values. Even so, evaluation may seem difficult, because the
circuits for (fn) can involve arbitrary constants from the field. Bürgisser showed that
assuming the generalised Reimann hypothesis GRH, over fields of characteristic zero,
BoolPart(VP) has non-uniform multi-output NC3 circuits. Furthermore, assuming
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GRH, if Valiant’s hypothesis is false over such a field, then the entire polynomial
hierarchy has (non-uniform) NC circuits.

6. An extreme depth-reduction result is given by the highly influential paper of Agrawal
and Vinay [AV08]. To first see the context, note that any polynomial in n variables with
degree d has an unbounded fan-in depth-2 circuit of size 2O(d+d log n

d
). (If d ∈ Ω(n), then

2O(d) suffices, otherwise the second term in the exponent makes up.) This is because
we can just explicitly compute all monomials of degree at most d, and add up the
required ones with suitable weights. Now, can we find circuits substantially better
than this, say even 2o(d+d log n

d
), if we allow depth to be increased a bit? Agrawal and

Vinay showed that indeed this is possible, even with depth 4, provided there is some
circuit (not necessarily depth-reduced) of that size to begin with. The idea is extremely
simple. Peform the depth-reduction from [VSBR83] or [AJMV98b], and ensure with
some additional care that degree provably drops at × gates. (The price for this is
small: a × gate may have fanin upto 6, instead of 2.) Now, choose a horizontal cut in
the depth-reduced circuit so that for the sub-circuit above it, and for the sub-circuits
below it rooted at gates on the cut, the “brute-force” construction described above is
small. Obviously there is a trade-off: if the cut is too high up, the lower sub-circuits
can have large explicit forms, but if it is too low down, the upper sub-circuit can have
large explicit forms. Cut in the right place, and everything works out!

This has significant implications for the quest for derandomizing algorithms for the
well-studied problem ACIT (arithmetic circuit identity testing) — checking if a given
circuit computes the identically-zero polynomial. But that is not directly connected
with this survey. One question it raises here is: what kind of extreme depth-reduction
can we achieve for VQP? Can we stay within quasi-polynomial size?

4 The syntactic multilinear world

Much of the study concerning VP and VNP involves the families (Detn) amd (Permn). The
polynomials in both families are multilinear. In principle, to compute a multilinear polyno-
mial via a circuit, we need never compute intermediate polynomials that are not multilinear.
Let us call such circuits, where the polynomial computed at each node is multilinear, multilin-
ear circuits. However, often it is the case that allowing non-multilinear terms at intermediate
stages, and eventually cancelling them out, allows more efficient computation (smaller cir-
cuits). This leads to the following quest: what kind of multilinear p-families have efficient
multilinear formulas, or even multilinear circuits, where each intermediate polynomial is re-
quired to be multilinear? Even for the (Detn) family, which we know is multilinear and in
VP, we do not know of polynomial-size multilinear circuits. That being the case, can we
prove lower bounds?

This question is trickier than it seems at first glance, because given a circuit, even checking
whether it is multilinear is non-trivial. Fournier, Malod and Mengel [FMM12] recently
observed that checking multilinearity of a given circuit is computationally equivalent to the
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well-studied problem ACIT (arithmetic circuit identity testing) — checking if a given circuit
computes the identically-zero polynomial.

So we may want a notion of certifiably multilinear circuits. One such notion is that
of syntactic multilinearity, SM. A circuit is said to be syntactically multilinear if at every
× node α = β × γ, the sub-circuits rooted at nodes β and γ operate on disoint sets of
variables. Note that this is much more restrictive than multiplicative disjointness. But
it certifies multilinearity, since no variable can ever get multiplied by itself. And syntactic
multilinearity is easy to check computationally: it is violated if there is some node α = β×γ,
some variable x, two input nodes I, I ′ labeled x, and paths from I to β and I ′ to γ.

If a family has efficient (polynomial-sized) SM circuits, then it has efficient multilinear
circuits. The converse may not be true. But it is true if we look at formulas. Given a multi-
linear formula, identify an SM violation α, β, γ, x as above. Then we know by multilinearity
of the polynomial p(α) that x does not appear in either p(β) or p(γ). In the appropriate
sub-formula, set all instances of x to 0; the polynomials computed at and above α remain
unchanged. Doing this systematically gives an SM formula of size no more than the original
multilinear formula.

In the first major breakthrough, Ran Raz [Raz09] showed that for computation by SM
formulas, and hence by multilinear formulas, both (Detn) and (Permn) need size nΩ(logn).
Clearly, this also means that they are not in SM-VNC1.

Since (Detn) is in VP and even in VBP, SM-VF is strictly weaker than VBP. But this is
hardly a fair comparison: we have restricted VF to be SM, but not VBP and VP. Can we say
that SM-VF is strictly weaker than SM-VBP or SM-VP? We do not know whether (Detn) is
in multilinear VP, let alone SM-VP, so a different family is needed as a separating example.
Such an example was provided soon thereafter, again by Ran Raz [Raz06]. He constructed
an explicit polynomial family that is in SM-VP and even in SM-VSAC1, and showed that
it needs SM-formula size nΩ(logn) and hence is not in SM-VNC1. Improved lower bounds
for constant-depth circuits and subclasses of formulas were subsequently obtained by Raz,
Shpilka and Yehudayoff (see for instance [RY09], [RSY08]).

Let’s step back a bit. Why did we say “in SM-VP, and even in SM-VSAC1“? Aren’t VP
and VSAC1 the same? Well, we know that VP and VF can be depth-reduced. But can we
assume that these depth-reduction tehniques preserve syntactic multilinearity? Fortunately,
they do; Raz and Yehudayoff [RY08] showed that the depth-reduction of [VSBR83] preserves
SM, so indeed SM-VP= SM-VSAC1. Similarly, in [JMR12] it is observed that the formula
depth-reduction of [Bre74] also does preserves SM, so SM-VF= SM-VNC1.

What about other relationhips between the algebraic classes? We had considered ABPs
– what certifies multilinearity there? It is easy to see that a read-once restriction, where
on each path in the ABP each variable appears as a label at most once, does so. Let
us therefore use read-once as the definition of syntactic multilinearity in ABPs. Then, as
observed in [JMR12], the Savitch-style divide-and conquer argument preserves SM. So does
the conversion from formulas to ABPs, [Val79]. But the conversion from formulas to width-3
ABPs, [BOC92], does not. In fact, Rao [Rao10] showed that even a significant generalisation
of Ben-Or and Cleve’s technique, using polynomially many registers instead of just 3, cannot
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preserve syntactic multilinearity. Of course, there may be other ways of going from SM-VF
to SM-VBWBP, but it could equally well be that the classes are distinct.

To get back perspective, in the SM world what we have seen so far is:

SM-VBWBP ⊆ SM-VF ⊆ SM-VBP ⊆ SM-VP

As mentioned earlier, Raz [Raz06] showed that the inclusion from SM-VF to SM-VP is
proper. Very recently, this was improved by Dvir, Malod, Perifel, and Yehudayoff [DMPY12].
They showed that in fact the inclusion SM-VF ⊆ SM-VBP is strict. Whether the first and
the last inclusion are strict is still open.

The proof of [DMPY12] is a clever adaptation of the original technique from [Raz06].
Let us briefly examine this.

The central ingredient in Raz’s proof is randomly partitioning the variables and analysing
the rank of the resulting partial derivatives matrix. Consider a polynomial f on 2n variables
X = {x1, . . . , x2n}, and consider a partition of X into equi-sized sets Y , Z. Consider a 2n×2n

matrix MY,Z
f where rows and columns are indexed by subsets of Y and Z (equivalently,

multilinear monomials over Y and Z respectively). The entry (my,mz) is the coefficient

of the monomial my · mz in f . Intuitively, if MY,Z
f has high rank, then f should be hard.

But high rank with respect to what partition? Raz showed that if multilinear f has small
SM-formula size, then for at least one partition (Y, Z) of X, MY,Z

f will have low rank. (The
existence of the partition witnessing low rank is proved using the probabilistic method;
choose a partition at random, and analyse the probability that the resulting matrix has
rank exceeding some threshold.) He also constructed an explicit family g in SM-VSAC1 and
showed that for every partition (Y, Z) of X, MY,Z

g has high rank; hence g is not in SM-VF.
The non-trivial adaptation done in [DMPY12] is to consider not all partitions, but a fairly

small set of what they call arc-partitions. They showed that if f is in SM-VF, then for at
least one arc-partition (Y, Z) of X, MY,Z

f will have low rank. They consider an explicit family

g in SM-VBP and show that for every arc-partition (Y, Z) of X, MY,Z
g has high rank. Hence

g is not in SM-VF. The low-rank proof is again probabilistic, but it has a very appealing
combinatorial flavour. So does the very definition of an arc-partition.

5 More on completeness

Assume that completeness is defined with respect to p-projections. If a family (fn) is com-
plete for a class, then understanding (fn) better allows us to understand the class better. If
a natural family is complete for a class, then this is evidence that the class itself is natural.

Valiant started off with a proof that Perm is VNP-complete. He also showed that poly-
nomial families associated with a number of NP-complete languages are complete for VNP
under p-projections. So let us agree that VNP is a natural class.

What about VP? The family that naturally contrasts with Perm is Det, but Det is
not yet known to be complete for VP (unless we allow qp-projections; that is not quite
satisfactory). If this turns out to be the case, it will solve a major open problem, showing
that polynomial-degree polynomial-size circuits are no more powerful than polynomial-size
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branching programs VBP. VBP seems a natural enough class, and Det and many other
families are complete for it.

So what problems are complete for VP? One can construct a canonical family complete
for VP. By canonical, I mean something similar to saying that

{〈M,x, 1t〉 | M is an NDTM that accepts x in t or fewer steps}

is NP-complete. Undoubtedly true, but it doesn’t give any new intution about what NP is
about. In the case of VP, the canonical family is not so trivial to construct (but not very
difficult either).

The first description, with a very general completenes result, appears in [Bür00a] (see
section 5.6, Cor 5.32(b)). Bürgisser shows that for every p-family h, the relativized classes
VPh and VNPh have complete families with respect to p-projections. Since VPh = VP and
VNPh = VNP whenever h itself is in VP, this gives families complete for VP and VNP as
well. (In fact, it shows the existence of VNP-complete families, independent of Valiant’s
original proof.) These complete families compute homogeneous components separately, to
keep the degree small, and then add up the required parts. They are constructed by first
defining generic polynomials, and then defining the appropriate projection / substitution.
The generic polynomials capture the canonical notion referred to above.

Later, a more direct construction tailored for VP (as opposed to VPh and VNPh for all h)
was described by Ran Raz [Raz10], and also appears in [SY10]. Here the proof of hardness
exploits the fact that we can perform depth-reduction on VP circuits. (This was not needed
in Bürgisser’s proof.) Roughly, here’s how it goes: For each natural number N , consider
a circuit CN with nodes arranged in 2 logN + 1 layers numberd 0, 1, . . . , 2 logN . All even
layers have exactly N nodes, and compute polynomials gi,j where i is the layer number,
j ∈ [N ]. Odd layers are used to build these polynomials. At layer 0, the polynomials
are just distinct variables, g0.j = xj. At higher layers, we have an inductive definition:
gi+1,j =

∑
k,`∈[N ] gi,k · gi,` · yi,j,k,`, where the yi,j,k,` are new variables. Thus the nodes at the

odd layers are the fanin-3 × nodes, and nodes at even layers (other than the 0 layer ) are +
nodes with large fanin. (We can reduce the fanins to 2 later; it won’t change the polynomial
computed.) The polynomial computed by this circuit at g2 logN,1 is pN . The total number
of variables is O(N3 logN), and the circuit is also of size O(N3 logN). The degree of pN
is 2N − 1. So (pN) is in VP. Why is it VP-hard? Take any family (fn) in VP. By the
depth-reduction of [VSBR83], it can be computed in VSAC1. The VSAC1 circuit Dn can
be normalised to have alternating + and × nodes, with all × nodes having fanin 2, and
all leaves at the same depth. Choose N at least as large as min{size(Dn), 2depth(Dn)}, and
also at least as large as the number of variables in Cn. Now, the computation of Dn can be
embedded into CN : Choose the right number of + nodes at each even layer, and by carefully
assigning 0,1 values to the y variables, ensure that they compute the required combinations
of polynomials from the previous even layer.

The circuits described above are called universal circuits in [SY10], because every circuit
is a projection of the universal circuit of appropriate size. And if we start with VP circuits,
the projections are p-projections.
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So now we know that VP has complete families under p-projections as well. But generic
polynomials, universal circuits, and the polynomials they compute, are rather artifical. Are
there other families that are defined independent of circuits and are VP-complete? Actually,
we know very few. Recently, Stefan Mengel [Men11] made further progress here, considering
polynomial families associated with constraint satsfaction problems CSPs. (This builds on
earlier work by Briquel, Koiran, Meer [BK09, BKM11], though they did not explicitly look
for VP-completeness.) Let’s first review what CSPs are. Think of them as generalising
CNF-SAT. In CNF-SAT, each clause forbids one assignment to the variables in it. (eg the
clause x1 ∨ x3 forbids x1 = 0, x3 = 1.) In a CSP, variables can take values from a larger
domain, not necessarily 0,1. Each contraint is like a clause; it has a set of variables, and
it forbids certain combinations of assignments to these variables. (eg on domain {a, b, c} a
constraint on x1, x2 could say that x1 6= x2. That is, assignments aa, bb, cc are forbidden, the
other 6 assignments satisfy this constraint.) As in SAT, we look for assignments satisfying
all constraints. If the domain has size 2, the CSP is Boolean. If each contraint involves 2 (or
less) variables, the CSP is binary. As usual, consider not just a CSP but a family of CSPs
(Φn), where Φn has domain Dn. For tractability, we will require that the CSP is p-bounded;
that is, the CSP has bounded arity (for some fixed constant c, each constraint in every Φn

looks at no more than c variables), and it has polynomial sized domains (in Φn, the variables
take values from a set Dn, where the size of Dn is p-bounded). Now associate with each such
CSP (Φn) a polynomial family (Qn = Q(Φn)), where Qn is on the variable set {Xd | d ∈ Dn}
and is defined as follows:

Q(Φn) =
∑

a:var(Φn)→Dn

[a satisfies Φn]
∏

x∈var(Φn)

Xa(x) =
∑

a:var(Φn)→Dn

[a satisfies Φn]
∏
d∈Dn

X
|a−1(d)|
d

(Recall, [S] is Boolean, 1 if and only if statement S is true.) Mengel has this wonderful char-
acterization of the complexity of the family (Qn). The characterization involves associating
with the CSP a graph G; this graph has a vertex for each variable and an edge between two
variables if they occur simultaneously in some constraint. Now the treewidth and pathwidth
of the graph (these parameters describe roughly how tree-like or path-like the graph is, if we
can consider blobs of vertices. The smaller the blobs, the better the similarity. See [Bod98]
for definitions and an overview.) relate to the complexity. It also involves an assignment
bound: a CSP is c-assignment-bounded if for each constraint ϕ and each variable x in the
constraint, the number of distinct values possible for x in assignments satisfying ϕ is bounded
by c, even though the domain may be much larger. This seems like a strong condition, but
recall that Boolean CSPs are by definition 2-assignment-bounded.

Enough of definitions! Here’s what Mengel shows:

1. For each p-bounded CSP (Φn), (Q(Φn)) is in VNP. Every family (fn) in VNP is a
p-projection of (Q(Φn)) for some p-bounded (Φn).

2. For each p-bounded CSP (Φn) where Gn has bounded treewidth, (Q(Φn)) is in VP.
Every family (fn) in VP is a p-projection of (Q(Φn)) for some p-bounded binary (Φn)
where G is a tree (treewidth 1).
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3. For each p-bounded CSP (Φn) where Gn has bounded pathwidth, (Q(Φn)) is in VBP.
Every family (fn) in VBP is a p-projection of (Q(Φn)) for some p-bounded binary (Φn)
where G is a path (pathwidth 1).

4. For each p-bounded c-assignment-bounded CSP (Φn) where Gn has bounded treewidth,
(Q(Φn)) is in VF. Every family (fn) in VF is a p-projection of (Q(Φn)) for some p-
bounded 2-assignment-bounded binary (Φn) where G has pathwidth at most 26.

The hardness proofs involve looking at the structure of parse trees for VP, witnessing paths
for VBP.

Note that as stated, this falls slightly short of providing a single complete family for VP.
However, applying the hardness reduction from universal circuits will yield a single CSP
family that is VP-complete. To the best of my knowledge, this is the first instance of a
VP-hardness result for a family defined (almost) independent of circuits.

All the above results require that the CSP has bounded arity. Unbounded arity seems to
immediately give rise to intractability. If arity is unconstrained, can other types of restric-
tions still result in families in VP? Some progress in this direction is reported in [DM11].

6 Computing integers

The questions concerning algebraic complexity classes are closely connected to another very
intriguing question. Let N > 1 be any natural number. Suppose we want to build up N from
1, using only +, − and ×. The most naive way of doing this would be N = 1 + 1 + . . .+ 1.
But depending on N there can be many other ways. Which is the most efficient way? That
is, which way uses the least number of + or × operations? To do anything non-trivial, we
must use + at least once, and the first time we use it we will generate 2. So let us not even
count this mandatory +. How many more operations are needed?

We can state this as a question about circuits. Each way of building up N is an arithmetic
circuit, or a straight-line program (SLP), that uses no constants other than 1 and 2. Let us
denote by τ(N) the size of the smallest such circuit computing N . (This is the τ complexity of
N). By definition, τ(1) = τ(2) = 0, and for all N > 2, τ(N) > 0. Algorithms for computing
N give upper bounds on τ(N). For instance, to compute N = 2k, here’s an SLP: g0 = 2,
gi+1 = 2× gi for 0 ≤ i ≤ k−2. Clearly, gi computes 2i+1, so τ(2k) ≤ k−1. But I’m sure you
can already see better ways of doing this. From the circuit viewpoint, an explanation of why
this is not the best is that the circuit corresponding to this SLP is skew. Surely we should
be able to use non-skew gates and compute large numbers faster. Here’s another SLP that
computes big numbers fast: f0 = 2, fi+1 = fi×fi for 0 ≤ i ≤ `−1. Clearly, fi computes 22i , so
τ(22`) ≤ `, a much better bound than the earlier 2`−1 at least for numbers of this form. Note
that the way we used non-skewness, we produced a circuit with exponential formal degree
(the degree at fi is 2i), but we’re not worried about that for now. Now, using these compact
circuits for 22` , we can build a better circuit for 2k by just using the binary expansion of k:
k =

∑t
i=0 bi2

i, where t = blog kc and bt = 1. So 2k = 2
∑t
i=0 bi2

i
=
∏t

i=0 2bi×2i =
∏

i:bi=1 22i .
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Compute all the double powers using t operations, and then multiply the required ones using
at most t operations. Overall, τ(2k) ≤ 2t = 2blog kc.

We can use the same binary expansion idea to compute any N , not just a power of 2.
Compute all powers of 2 upto logN , and add the required ones. This shows that for all N ,
τ(N) ≤ 2blogNc − 1.

So far we have not used any subtractions. But they can be very useful too. For instance,
τ(22` − 1) ≤ `+ 1; compute 22` and subtract 1.

What about a lower bound? We can actually formalise the intuition that the exponential
degree circuits we saw above for 22` produce the largest possible number in that size. Hence,
for any N , τ(N) ≥ log logN .

In particular, τ(22`) = `. That sounds impressive – we know the exact value of τ for
22` . But essentially just for that; for all other numbers, we still seem to have a pretty large
gap. If N = 2k, then log logN ≤ τ(N) ≤ 2blog kc = 2blog logNc, so we know τ(N) within a
factor of 2. But for general N , all we know is log logN ≤ τ(N) ≤ 2blogNc− 1. How can we
reduce this gap? An obvious search for an efficient way where the last operation is + or − is
to express N as M ± k, compute M , compute k = ±(N −M), and combine, and to choose
M that minimizes τ(M) + τ(k) + 1. (A similar approach can be used for factors of N and
a × as the last operation.) But in computing M and ±(N −M) (or N/M), the complexity
may be sub-additive since we can reuse intermediate numbers from the program for M while
computing ±(N −M) or N/M . (We are looking for circuits, not formulas.) It is identifying
the extent of this reuse that is a challenge.

Similar to Shannon’s bound for functions and circuits (most functions require exponential
sized circuits), Melo and Svaiter [dMS96] showed that most numbers N have τ(N) closer to
the upper bound. They showed that for every ε > 0, most N satisfy τ(N) ≥ logN

(log logN)1+ε
.

Moreira [Mor97] improved this by showing that this holds even for ε = 0. (He also showed

that for all ε > 0, there is an Nε such that for all N ≥ Nε, τ(N) ≤ (1+ε) logN
(log logN)

.) And yet,
showing such lower bounds for specific numbers seems quite hard – the classic “searching for
hay in a haystack” paradox.

Let’s move over from individual numbers to sequences of numbers. Let (an)n≥1 be some
sequence of natural numbers. When can we say that the sequence is easy to compute? Each
number in the sequence should be “easy” relative to its position in the sequence. That is, the
sequence (bn), where bn = τ(an), should not grow very fast. One possible definition is that
bn should be polynomially bounded in n. For instance, for an = 22n , we know that bn = n.
Is that not moderate growth? Not really. Consider a function that maps a position n to not
just the number τ(an) = bn but to an SLP of size bn computing an. For the sequence (22n),
this function takes an input n represented in Θ(log n) bits, and outputs a circuit of size n,
that is, exponential in the size of the input. That’s not moderate growth!

OK, so let’s say that a sequence (an) is easy to compute if for some polynomial p(.), for
each n, τ(an) ≤ p(log n), and otherwise it is hard to compute. We’ve set up this definition
so that (22n) is hard to compute, while the sequences (n), (2n) are easy to compute. Makes
sense? Now let’s ask, what other sequences are easy? And what sequences are hard?

A sequence with famously open status is (n!). The completely naive SLP that constructs
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the first n numbers with n−2 increments and then multiplies them shows that τ(n!) ≤ 2n−4.
But can this be improved significantly? Or is this sequence hard? The best we know is that
τ(n!) ∈ O(

√
n log2 n); see [BCS97]. Here is the interesting connection to algebraic circuit

complexity. Building on a sequence of constructions by Cheng [Che04] and Koiran [Koi05],
Bürgisser [Bür09] showed that if (n!) is hard to compute, then any algebraic circuit for the
(Permn) family that uses only the constants −1, 0, 1 must be of superpolynomial size. If we
can’t even compute the numbers n! easily, then we cannot compute the polynomials Permn

efficiently, unless we allow the use of constants that cannot themselves built up efficiently.
Analogous to the τ complexity of natural numbers, we can define the τ complexity of

polynomial families. Let τ(f) denote the size of the smallest algebraic circuit using only
the constants −1, 0, 1 – call such a circuit constant-free – and computing f . We say that
the family (fn) has polynomially bounded τ complexity if for some polynomial p(n), and for
each n, τ(fn) ≤ p(n). Bürgisser’s result can now be stated as: if τ(Permn) is polynomially
bounded, then (n!) is easy to compute.

Let’s examine this a bit closely. Why do we state the hypothesis as “τ(Permn) is polyno-
mial”? Is this not equivalent to saying (Permn) is in VP, and hence VNP = VP? Actually,
it may not be equivalent. It is possible that (Permn) has polynomial-sized circuits but no
polynomial-sized constant-free circuits. Conceivably, using other constants in intermediate
computation and then cancelling them out could help. Recall that the proof of VNP-hardness
of (Permn) uses constants other than −1, 0, 1; 1/2 is needed. (As another example, recall
how in showing that Detn is a projection of SymDetn, we needed the constant 1/2, even
though all coefficients in Detn are −1, 0, 1.) So we can define a subclass of VP: families with
constant-free circuits of polynomial size.

What can we say about such a subclass? As described above, Bürgisser has shown that
if this subclass contains (Permn), then (n!) is easy to compute. Under the same hypothesis,
he also shows that the sequences b2nec, b(3/2)nc and b2n

√
2c are easy to compute.

Malod [Mal03] observed that unlike in the case of VP, for constant-free circuits we may
not be able to bound complete formal degree. For VP, if the polynomial computed by a
circuit of size s had degree d, we could find an equivalent circuit with formal degree d, and
another with complete formal degree O(d3s), with only polynomial blow up in size. Not so
if constants aren’t freely avilable! Consider the polynomial family fn = 22n(x1 + . . . + xn).
With arbitrary constants, we have a circuit of size n. With only −1, 0, 1, we have a circuit
of size 2n + 1: build 2, build 22n , build the linear form, multiply. But this circuit has
exponential formal degree, and in fact, using only the constants −1, 0, 1, any circuit must
have exponential formal degree to build up 22n . So this polynomial is in VP, it has constant-
free circuits of polynomial size, but it does not have constant-free polynomial-size circuits
with polynomially-bounded complete formal degree.

This leads to a definition of a further subclass VP0, first defined in [Mal03]: polynomial
families computed by constant-free circuits with polynomially bounded complete formal de-
gree. Define VNP0 analogous to VNP as

∑
·VP0. Check back; our proof that (Permn) is in

VNP also shows that (Permn) is in VNP0.
The hypothesis (Permn) ∈ VP0 is stronger than saying that τ(Permn) is polynomially
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bounded. What does it imply? Can it lead to more sequences being easier to compute?
Firstly, note that (Permn) ∈ VP0 does not immediately imply VP0 = VNP0. All we can say
is the following, shown by Koiran [Koi05]: If (Permn) is in VP0, then for every family (fn) ∈
VNP0, there is some polynomially-bounded function p(n) such that the family (2p(n)fn) is
in VP0. That is, a “shifted” version of fn is in VP0. The precise shift can be described as
follows – we know that fn is a projection of Permq(n) for some polynomially bounded q(n), we
assumed that Permq(n) can be computed by a circuit Cn of size and formal degree bounded
by a polynomial function of n, we take p(n) to be the formal degree of Cn. Now Cn can be
massaged to compute 2p(n)fn instead of Permq(n).

This motivates another variant of easy-to-compute. Let’s say that a sequence (an) of
natural numbers is ultimately easy to compute if at least some shifted version of it is easy to
compute. That is, there is some other integer sequence An such that the sequence anAn is
easy to compute. Note that if (an) is not ultimately easy, then for infinitely many n, all non-
zero multiples of an have large τ complexity. Using this property, under the hypothesis that
n! is not even ultimately easy to compute, we can obtain a non-trivial derandomization of
the Arithmetic-Circuit-Identity-Testing problem; see the last section of [ABKPM09]. Earlier,
Koiran showed in [Koi05] that if n! is not even ultimately easy to compute, then we have some
separation: either VP0 6= VNP0, or P 6= PSPACE. This is curious: we have a consequence
involving Boolean classes as well. But it should not be so surprising. VP0 and VNP0 are
computed by (sums of) constant-free poly-formal-degree algebraic circuits, and these are the
arithmetic circuits that arise when consider counting classes like #P that count accepting
paths of Turing machines. This does not mean that VNP0 = #P; the former is a collection
of polynomial families whereas the latter is a collection of functions from strings to whole
numbers. But the complexity of evaluating polynomial families in the former collection, at
Boolean arguments, is closely related to what the latter collection refers to. Koiran’s proof
actually shows the contrapositive: he first shows that if VP0 = VNP0 and P = PSPACE,
then the sequence τ((2`)!) is polynomially bounded in `. So consider instead of each n! the
possibly larger factorial (2`(n))!, where 2`(n)−1 < n ≤ 2`(n). Then the sequence (bn) = ((2`(n))!)
is easy to compute, and each bn is a multiple of n!, so (n!) is ultimately easy to compute.

Since Permn is not known to be complete for VNP0, what is? It turns out that for
several other VNP-complete families, the hardness proofs use no constants other than −1, 0, 1
and the membership proofs use circuits with small formal degree; hence these families are
complete for VNP0 as well. As a concrete example, consider the Hamilton cycle polynomial
family HCn defined as follows: Let distinct variables xi,j label the edges of the complete
directed graph Dn. Let Cn denote the set of all directed Hamiltonian cycles in Dn; elements
of Cn can be described by cyclic permutations σ ∈ Sn. Then

HCn(x11, . . . , xnn) =
∑
σ∈Cn

∏
xi,σ(i)

This family is complete for VNP0; ([Mal03]).
Returning to the question “What does (Permn) ∈ VP0 imply?”; Koiran [Koi05] showed

that it implies the sequence b2n ln 2c is easy to compute. He also improved the earlier-
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mentioned result in two ways, from “[(VP0 = VNP0)∧ (P = PSPACE)]⇒ (n!) is ultimately
easy to compute” to “[(Permn ∈ VP0) ∧ (P = PSPACE)]⇒ (n!) is easy to compute”.

Under the stronger hypothesis that VP0 = VNP0, we can show more (again due to
[Koi05]). If VP0 = VNP0, then the sequences (

∑2n

i=1 2i
2−1), b22n ln 2c, b22n ln 3c, b22nπc, all

have polynomially bounded complexity, something that is not yet known unconditionally.
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