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Abstract. In this paper we propose a new approach to investigate the
security of the McEliece cryptosystem. We recall that this cryptosystem
relies on the use of error-correcting codes. Since its invention thirty years
ago, no efficient attack had been devised that managed to recover the
private key. We prove that the private key of the cryptosystem satisfies
a system of bi-homogeneous polynomial equations. This property is due
to the particular class of codes considered which are alternant codes.
We have used these highly structured algebraic equations to mount an
efficient key-recovery attack against two recent variants of the McEliece
cryptosystems that aim at reducing public key sizes. These two compact
variants of McEliece managed to propose keys with less than 20,000 bits.
To do so, they proposed to use quasi-cyclic or dyadic structures. An
implementation of our algebraic attack in the computer algebra system
Magma allows to find the secret-key in a negligible time (less than one
second) for almost all the proposed challenges. For instance, a private
key designed for a 256-bit security has been found in 0.06 seconds with
about 217.8 operations.

1 Introduction

Alternative cryptography. Despite the fact that several hard problems have
been proposed as a foundation for public-key primitives, those effectively used are
essentially classical problems coming from number theory: integer factorization
(e.g. in RSA) and discrete logarithm (e.g. in Diffie-Hellman key-exchange). It is
well-known that, although polynomial-time algorithms for those problems have
not yet been found, they are not safe from a theoretic breakthrough that would
endanger the security of the corresponding schemes. For instance, the emergence
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of a new computer model such as quantum computers would make schemes based
on these classical number theory problems totally insecure.

The lack of diversity in public key cryptography has been identified as a major
concern in the field of information security. A good illustration of the potential
damage of such lack of diversity is hash zoo. The portfolio of hash functions used
so far in practice was mainly restricted to the same type of functions which are
now almost all broken. Although the American National Institute of Standards
and Technology (NIST) issued an international call1 to design a new standard
hash function, the cryptography community will remain in a fuzzy situation until
2012 (date of final decision).

One of the main issues in public key cryptography is to identify hard problems
that are not based on the classical ones coming from number theory. However, few
emerged until now as a viable alternative. As pointed in [2], promising candidates
include: the problem of solving multivariate equations over a finite field, the
problem of finding a short vector in a lattice and the problem of decoding a
linear code. Those problems known for being NP-hard are not concerned with
the quantum computer threat.

McEliece cryptosystem. Among those problems, code-based cryptosystems
seem to offer the most promising alternative. McEliece public key cryptosystem
[25] is one of the oldest public-key cryptosystems. Its security relies on the dif-
ficulty of decoding a linear code. The main advantage of this system is to have
very fast encryption and decryption functions. Depending on how the parame-
ters are chosen for a fixed security level, this cryptosystem is about five times
faster for encryption and about 10 to 100 times faster for decryption than RSA
[10]. Furthermore, it has withstood many attacking attempts. After more than
thirty years now, it still belongs to the very few public key cryptosystems which
remain unbroken.

Following McEliece’s pioneering work, several different public key cryptosys-
tems based on the intractability of decoding a linear code have been proposed
[28,20,31,23,7,6,4,3,5,27]. The original McEliece cryptosystem relies on Goppa
codes whereas its variants suggested to use different codes. The Sidelnikov sys-
tem [31] used Reed-Muller codes, the Janwa-Moreno system proposed to take
algebraic geometric codes [23] and the Gabidulin-Paramonov-Tretjakov (GPT)
cryptosystem considered Gabidulin codes devised for the rank-metric. LDPC
codes have also been repeatedly suggested for this use. Niederreiter is the first
in [28] to bring in a significant modification of the McEliece system. However
his suggestion to use Generalized Reed-Solomon codes turned out to be an inse-
cure solution [32]. Many of these schemes were broken [32,22,26,29,18,30,35]. All
these attacks result in a total break of the system (the secret key, or an equiva-
lent secret key is recovered from the knowledge of the public key). However, the
original McEliece remains unbroken. The fact that the best known attacks are
still exponential speaks for itself [33,8,9,19].

1 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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Despite its impressive resistance against a variety of attacks and its fast en-
cryption and decryption, McEliece cryptosystem has not stood up to RSA for
practical applications. This is most likely due to the large size of the public key
which is between several hundred thousand and several million bits. To overcome
this limitation, a new trend initiated in [21] manages to decrease the key size by
choosing the public matrix defining the code in a particular form; for instance
with a quasi-cyclic structure [21]. This enables to decrease significantly the key
size. The same idea was used in [4] with LDPC codes. Both schemes were broken
in [29]. It should be noted that both proposals did not use the Goppa codes of
the McEliece cryptosystem, and the attacks have no impact on its security.

This work was then followed by two independent proposals [5,27] that are
based on the same kind of idea of using quasi-cyclic [5] or dyadic structure [27].
Both use the same type of codes called the alternant code family which contains
Goppa codes. Actually the codes used in [27] are Goppa codes. This approach is
quite attractive because it results in a drastic improvement of the public key size.
In [5], the size ranges between 8, 000 and 20, 000 bits, whereas it lies between
4, 000 and 20, 000 bits in [27]. Until now, these new proposals seem to be immune
against the attack suggested in [29].

Our contribution. In this paper we show that both schemes have a serious
flaw that can be exploited to recover the private keys. We present an algebraic
cryptanalysis2 of the quasi-cyclic and dyadic schemes [5,27]. Algebraic cryptanal-
ysis is a general framework that permits to assess the security of theoretically all
cryptographic schemes. So far, such type of attacks has been applied successfully
against several multivariate schemes and stream ciphers. To our knowledge, it
is the first time that such an approach is used against code-based cryptosys-
tems. The basic principle of this cryptanalysis is to associate to a cryptographic
primitive a set of algebraic equations. The system of equations is constructed in
such a way to have a correspondence between the solutions of this system, and a
secret information of the cryptographic primitive (for instance the secret key of
an encryption scheme). In McEliece, the algebraic system that we have to solve
for recovering the secret-key has the following very specific structure:

{
gi,0Y0X

j
0 + · · · + gi,n−1Yn−1X

j
n−1 = 0

∣∣∣ i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , r − 1}
}

(1)

where the unknowns are the Xi’s and the Yi’s and the gi,j ’s are known coefficients
with 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n − 1 that belong to a certain field Fq with q = 2s.
We look for solutions of this system in a certain extension field Fqm . Here k is an

integer which is at least equal to n− rm. By denoting X def= (X0, . . . , Xn−1) and
Y def= (Y0, . . . , Yn−1) we will refer to such an algebraic system by McEk,n,r(X,Y).
The total number of equations is rk. The number of unknowns 2n and the
maximum degree r−1 of the equations can be extremely high when cryptographic

2 An independent and parallel work [34] took place that also proposed a cryptanalysis
of these two schemes.
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parameters are considered (e.g. n = 1024 and r − 1 = 49). Thus it is not clear
whether an algebraic attack can be mounted efficiently in general.

However, in the case of the tweaked McEliece schemes we have either quasi-
cyclic or dyadic [5,27]. It turns out that is possible to make use of this structure
in order to reduce considerably the number of unknowns in the algebraic system
(1). Moreover, it also appears that by using only the linear equations involving
the Yi’s gives a linear space of solutions which is of small dimension. We will
explain in Section 4 and Section 5 respectively how to solve the underlying alge-
braic systems. We will see how the public-key structure (quasi-cyclic or dyadic)
impacts on the difficulty of solving the algebraic system (1). In particular, the
structure induces an imbalance between the X and Y variables. From a prac-
tical point of view, we have been able to recover the secret-key via Gröbner
bases computations in a negligible time (less than one second) for most of the
parameters proposed in [5,27]. Before that, we briefly recall in the next section
the McEliece scheme and we explain in Section 3 how we derive the algebraic
system (1).

2 McEliece Public-Key Cryptosystem

We recall here how the McEliece public-key cryptosystem is defined.

Secret key: The triplet (S, Gs, P ) of matrices defined over a finite field Fq over q
elements, with q being a power of two, that is q = 2s. Gs is a full rank matrix of
size k ×n, with k < n, S is of size k × k and is invertible, and P is permutation
matrix of size n×n. Moreover Gs defines a code (which is the set of all possible
uGs with u ranging over F

k
q ) which has a decoding algorithm which can correct

in polynomial time a set of errors of weight at most t. This means that it can
recover in polynomial time u from the knowledge of uGs + e for all possible
e ∈ F

n
q of Hamming weight at most t.

Public key: The matrix product G = SGsP .

Encryption: A plaintext u ∈ F
k
q is encrypted by choosing a random vector e in

F
n
q of weight at most t. The corresponding ciphertext is c = uG + e.

Decryption: c′ = cP−1 is computed from the ciphertext c. Notice that c′ =
(uSGsP +e)P−1 = uSGs+eP−1 and that eP−1 is of Hamming weight at most
t. Therefore the aforementioned decoding algorithm can recover in polynomial
time uS. This vector is multiplied by S−1 to obtain the plaintext u.

This describes the general scheme suggested by McEliece. From now on, we
say that G is the public generator matrix and the vector space C spanned by its
rows is the public code i.e. C

def=
{
uG | u ∈ F

k
q

}
. What is generally referred to

as the McEliece cryptosystem is this scheme together with a particular choice
of the code, which consists in taking a binary Goppa code. This class of codes
belongs to a more general class of codes, namely the alternant code family ([24,
Chap. 12, p. 365]). The main feature of this last class of codes is the fact that
they can be decoded in polynomial time.
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3 Algebraic Approach

Setting up the algebraic system. We explain more precisely how we con-
struct the algebraic system described in (1). As explained in the previous section,
the McEliece cryptosystem relies on Goppa codes which belong to the class of
alternant codes and inherit from this an efficient decoding algorithm. We will
describe this class of codes in more details since both cryptosystems that we
cryptanalyze use such codes. It is convenient to describe them through a parity-
check matrix. This is an r × n matrix H defined over an extension Fqm of the
field over which the code is defined, which is such that

{uGs | u ∈ F
k
q} = {c ∈ F

n
q | HcT = 0}. (2)

r satisfies in this case the condition r ≥ n−k
m . In the case of alternant codes, there

exists a parity-check matrix with a very special form related to Vandermonde
matrices. More precisely there exist two vectors x = (x0, . . . , xn−1) and y =
(y0, . . . , yn−1) in F

n
qm such that V r(x, y) is a parity-check matrix , with

V r(x, y) def=

⎛
⎜⎜⎜⎝

y0 · · · yn−1

y0x0 · · · yn−1xn−1

...
...

y0x
r−1
0 · · · yn−1x

r−1
n−1

⎞
⎟⎟⎟⎠ . (3)

We use the following notation in what follows

Definition 1. The alternant code Ar(x, y) of order r over Fq associated to x =
(x0, . . . , xn−1) where the xi’s are different elements of Fqm and y=(y0, . . . , yn−1)
where the yi’s are nonzero elements of Fqm is defined by

Ar(x, y) = {c ∈ F
n
q | V r(x, y)cT = 0}.

It should be noted that the public code in the McEliece scheme is also an alter-
nant code. We denote here by the public code, the set of vectors of the form

{uG | u ∈ F
k
q} = {cSGsP | c ∈ F

k
q}.

This is simple consequence of the fact that the set {uSGsP | u ∈ F
k
q} is obtained

from the secret code {uGs | u ∈ F
k
q} by permuting coordinates in it with the

help of P , since multiplying by an invertible matrix S of size k × k leaves the
code globally invariant. The key feature of an alternant code is the following fact

Fact 1. There exists a polynomial time algorithm decoding an alternant code
once a parity-check matrix H of the form H = V r(x, y) is given.

In other words, it is possible to break the McEliece scheme, if it is possible to
find x∗ and y∗ in F

n
qm such that

{xG | x ∈ F
k
q} = {y ∈ F

n
q | V r(x∗, y∗)yT = 0}. (4)
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From the knowledge of this matrix V r(x∗, y∗), it is possible to decode the public
code, that is to say to recover u from uG + e. Finding such a matrix clearly
amounts to find a matrix V r(x∗, y∗) such that V r(x∗, y∗)GT = 0. By bringing
in 2n variables X0, . . . , Xn−1 and Y0, . . . , Yn−1 where Xi corresponds to x∗

i and
Yi to y∗

i we see that this is equivalent to solve the following system:
{

gi,0Y0X
j
0 + · · · + gi,n−1Yn−1X

j
n−1 = 0

∣∣∣ i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , r − 1}
}

(5)

where the gi,j ’s are the entries of the known matrix G with 0 ≤ i ≤ k − 1 and
0 ≤ j ≤ r − 1.

The cryptosystems proposed in [5,27] follow the McEliece scheme [25] with the
additional goal to design a public-key cryptosystem with very small key sizes.
They both require to identify alternant codes having a property that allows
matrices to be represented by very few rows. In the case of [5] circulant matrices
are chosen whereas the scheme [27] focuses on dyadic matrices. These two families
have in common the fact the matrices are completely described from the first
row. The public generator matrix G in these schemes is a block matrix where
each block is circulant in [5] and dyadic in [27].

We shall see that the algebraic approach previously described leads to a key-
recovery in nearly all the parameters proposed in both schemes. The crucial point
that makes the attack possible is the fact that we have a system with much less
unknowns than in the case of the McEliece cryptosystem. This is due to both
the particular structure of the matrices and their block form that describe the
public alternant codes. We finally end this section with a simple remark which
explains that we can basically set one of the Yi’s and two values of the Xi’s to
an arbitrary value in the algebraic system (1).

Proposition 1 ([24, Chap. 10, p. 305]). Let (X0, . . . , Xn−1), (Y0, . . . , Yn−1)
be a solution of (1) and a �= 0, b, c �= 0 be elements of Fqm . Then (aX0 +
b, . . . , aXn−1 + b) and (cY0, . . . , cYn−1) is also a solution of (1).

Solving the Algebraic System. We describe now a general technique to solve
the algebraic systemMcEk,n,r(X,Y) usingGröbner bases techniques [11,12,13,14].
Although the particular characteristics of the cryptosystems [5,27] studied here
will further influence the shape of McEk,n,r(X,Y) (number of variables, number of
equations, . . .), we have designed a special strategy for taking advantage as muchas
possible of the intrinsic structure.We havemade an implementation of the strategy
described here. We will present the experimental results, as well as the improve-
ments which are possible due to the quasi-cyclic and dyadic structures, in Section
4 (quasi-cyclic case) and Section 5 (dyadic case).

As a first general remark, it is readily seen that McEk,n,r(X,Y) is highly
structured. For instance, it is very sparse as the only monomials occurring in the
system are of the form YiX

j
i , with 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 1. It can also

be noticed that each block of k equations is bi-homogeneous, i.e. homogeneous
if the variables of X (resp. Y) are considered alone. Note that such structure
already appears in the cryptanalysis of the MinRank problem [15].
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Due to the particular structure of the system, it makes sense to design a
specific strategy for solving McEk,n,r(X,Y). A simple way for solving this system
would consist in generating the equations and try to solve it directly with a
generic algorithm (for instance, the Gröbner basis algorithm available in the
Magma computer algebra software). This approach fails for most challenges
proposed in [27]. However, it is interesting to remark that this direct approach
has been successful in practice for all challenges of [5]. We only mention that it
takes between few minutes to 24 hours of computation using a negligible amount
of memory. As a comparaison, the improved strategy that we will describe now
permits to solve (almost) all the challenges of [5,27] in few seconds using also a
negligible amount of memory.

The first fundamental remark is that there are k linear equations in the n
variables of the block Y in McEk,n,r(X,Y). This implies that all the variables
of the block Y can be expressed in terms of d ≥ n − k variables. From now on,
we will always assume that the variables of the block Y′ only refer to these d
free variables. The first step is then to rewrite the system (1) only in function of
the variables of X and Y′, i.e. the variables of Y \ Y′ are substituted by linear
combinations involving only variables of Y′. For the cryptosystems considered
in this paper [5,27], the number of free variables d in Y′ can be rather small
(typically 1 or 2 for some challenges). Furthermore, the quasi-cyclic and dyadic
structures provide additional linear equations in the variables of X and Y′ which
can be also used to rewrite/clean the system. In the sequel, we will denote by
McEk,n,r(X′,Y′) the system obtained from McEk,n,r(X,Y) by removing all the
linear equations in X and Y.

The second crucial point is that as soon as the the projection of the solutions
on the variables Y′ are known, the system (1) simplifies to:

{
g′i,0X

j
0 + · · · + g′i,n−1X

j
n−1 = 0

∣∣∣ i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , r − 1}
}
.

This system is readily solved by keeping only the equations in this system which
correspond to powers of the Xi’s which are powers of two. In other words we
consider only the equations of the form g′i,0X

2j

0 + · · · + g′i,n−1X
2j

n−1 = 0 for j in
{0, . . . , �log2(r − 1)�} and i in {0, . . . , k − 1}. Hence, we obtain a quasi bi-linear
system because the system is always defined over a field of characteristic two.
Moreover, it has very few monomials per equation and can be easily solved in
practice by computing a Gröbner basis.

The most difficult part of the computation is to find a projection of the so-
lutions with respect to the variables of the block Y′. Notice that an exhaus-
tive search on the d free variables of Y′ leads to a practical attack for some
of the challenges proposed in [5,27]. We will present below an even more ef-
ficient strategy to recover Y′. More formally, let I be the ideal generated by
McEk,n,r(X′,Y′) and V be the corresponding variety i.e. the set of solutions.
The goal is to compute the projection of V , denoted by V ′, on the variables of
Y′. This can done by computing a Gröbner basis (w.r.t. a degree order) Gdeg of
I ∩Fqm [Y′]. This is a classical problem in computer algebra which can be solved
by using standard elimination techniques (for instance see [1, Chap. 2.3, p. 69]
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or [12, Chap. 3, p. 112]. In the appendix, we briefly recall basic facts about
elimination theory. In our context, we have used a slightly modified version of
F4 [13] for computing a Gröbner basis Gdeg of I ∩ Fqm [Y′]. Roughly speaking,
the idea is to adapt the algorithm for performing the Gröbner basis compu-
tation in Fqm [X′][Y′], i.e. the set of polynomials in Y′ whose coefficients are
polynomials in Fqm [X′]. As for the usual F4, we process degree by degree. How-
ever, we consider only the degree of the polynomials w.r.t. the variables of X′.
We stop the computation as soon as we have sufficiently many equations in
Y′, in other words, as soon as we detect that V ′ has a finite number of solu-
tion. Below, we describe more precisely the procedure which allows to compute
a Gröbner basis Gdeg of I ∩ Fqm [Y′]. As already explained, this is the most
difficult part.

Algorithm 1. ComputeProjection

Input : The system McEk,n,r(X
′, Y′)

Output: A Gröbner basis Gdeg of I ∩ Fqm [Y′]
Let F be the equations of degree 2i, 1 ≤ i ≤ r − 1 of McEk,n,r(X

′,Y′)
Let F ′ be the system obtained from F by fixing “randomly” some variables of X′

Compute a Gröbner basis Gdeg of I ∩ Fqm [Y′] using the tweaked version of F4

Return Gdeg

Furthermore, to be sure that the variety V ′ associated to I ∩Fqm [Y′] has few
solutions, we have to remove parasite solutions corresponding to Xi = Xj or to
Yj = 0. A classical way to do that is to introduce new variables uij and vi and
add to McEk,n,r(X′,Y′) equations of the form:

uij · (Xi − Xj) + 1 = and vi · Yi + 1 = 0.

In practice, we have not added all theses equations; but only few of them namely
4 or 5. The reason is that we do not want to add too many new variables. In
addition, including few of such equations already permits to remove trivial so-
lutions. We also have to remove some degree of freedom in the algebraic system
by fixing randomly few variables of X’ as explained in Proposition 1. It is im-
portant to notice that since we are removing component of high dimension the
new system is indeed much faster to solve.

Finally, we have not considered all the equations of McEk,n,r(X′,Y′) to com-
pute Gdeg. This system being naturally over-defined, we can “safely” remove
some equations. Typically, it makes sense to consider the smaller subset of equa-
tions such that V ′ is zero-dimensional and for which we can efficiently compute
Gdeg. The variety V ′ having few elements it is not difficult to recover this set
from the knowledge of Gdeg.
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4 Algebraic Cryptanalysis of the Quasi-Cyclic Variant

The scheme presented in [5] suggests to use block matrices where each block
is a circulant matrix. The public code C suggested in [5] is defined on a field
Fq = F2s which is considered as a subfield of Fqm for a certain integer m. Let α
be a primitive element of Fqm . Let � and N0 be such that qm−1 = N0� and let β
be an element of Fqm of order �. Although this is not explicitly stated in [5], it is
readily checked that C is defined from an r×n parity-check matrix H over Fqm

which is the juxtaposition of n0 (n = �n0) matrices H(0), · · · , H(n0−1) of size
r × �. Each H(b) = (h(b)

i,j ) with 0 ≤ b ≤ n0 − 1, 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ � − 1
is given by

h
(b)
i,j = γbβ

(db+j)e
(
αwbβdb+j

)i
(6)

where γb is a nonzero element of Fqm , db is an integer of {0, . . . , � − 1}, e is an
integer of {0, . . . , �−1} and the wb’s are distinct integers of {0, . . . , N0−1}. From
this, it is now clear that C is an alternant code Ar(x, y) of order r associated to
x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) which satisfy for any j in {0, . . . , �−1}

xb�+j = αwbβdb+j (7)

yb�+j = γbβ
(db+j)e, (8)

It can be checked (see [5]) that C has a public generating matrix G which is
block circulant of size k×n with k of the form k = k0� for some integer k0 (recall
that k ≥ n − rm).

We present now an algebraic attack against the quasi-cyclic variant proposed
in [5] that recovers x and y by setting up an algebraic system of the form
McEk,n,r(X,Y) from the equation HGT = 0. This would also give a system
with 2n unknowns. We can obtain a huge reduction of the number of unknowns
by using Equations (7) and (8) which induce some linear relations between the
xi’s and the yi’s. From these two equations we deduce that

xb�+j = xb�β
j (9)

yb�+j = yb�β
je, (10)

for any j in {0, . . . , � − 1} and j in {0, . . . , n0 − 1}. Furthermore, since in the
cases considered in [5], e is small because it lies in the range {0, . . . , � − 1} and
� is less than 100, we may assume that:

Assumption 2. The secret integer e such that 0 ≤ e ≤ � − 1 is known.

This enables to simplify the description of the system McEk,n,r(X,Y). By setting
up the unknown Xb for xb� and the unknown Yb for yb� we obtain the following
algebraic system.

Proposition 2. Let G = (gi,j) be the k×n public generator matrix with k = k0�
and n = n0�. For any 0 ≤ w ≤ r − 1 and any 0 ≤ i ≤ k − 1, the unknowns
X0, . . . , Xn0−1 and Y0, . . . , Yn0−1 should satisfy:
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n0−1∑
b=0

g′i,b,wYbX
w
b = 0 where g′i,b,w

def
=

�−1∑
j=0

gi,b�+jβ
j(e+w). (11)

Proof. We observe that

n−1∑
j=0

gi,jyjx
w
j =

n0−1∑
b=0

�−1∑
j=0

gi,b�+jyb�+jx
w
b�+j =

n0−1∑
b=0

�−1∑
j=0

gi,b�+jyb�x
w
b�β

jeβjw

=
n0−1∑
b=0

yb�x
w
b�

⎛
⎝

�−1∑
j=0

gi,b�+jβ
jeβjw

⎞
⎠

By setting Xb for xb� and Yb for yb� we obtain the aforementioned system.

Theoretically by Proposition 1, we would be able to fix two variables, say X0 and
X1, and one variable Yj , for instance Y0, to arbitrary values as long as X0 �= X1

and Y0 �= 0. However, if we do it, we then lose the linear relations between
the xi’s given in (9). Therefore we can only fix one Xi and one Yi as stated in
Lemma 1 that is straightforward to prove.

Lemma 1. Let (X0, . . . , Xn0−1), (Y0, . . . , Yn0−1) be a solution of (11). Then
(aX0, . . . , aXn0−1) and (cY0, . . . , cYn0−1) is also a solution of (11) for any a �= 0
and c �= 0 of Fqm .

Hence, the total number of unknowns is 2(n0 − 1). Furthermore there are many
redundant equations in Proposition 2. This comes from the block circulant form
of G. From this form we know that gi�+u,b�+j = gi�,b�+((j−u) mod �) for all u in
{0, . . . , � − 1} and i in {0, . . . , k0 − 1}. We also have:

g′i�+u,b,w =
�−1∑
j=0

gi�+u,b�+jβ
j(e+w) =

�−1∑
j=0

gi�,b�+((j−u) mod �)β
j(e+w)

=
�−1∑
j=0

gi�,b�+jβ
j(e+w)βu(e+w) = g′i�,b,wβu(e+w)

We used the fact β�(e+w) = 1. So for a given i, when u describes {0, . . . , �−1}, the
equations

∑n0−1
b=0 g′i�+u,b,wYbX

w
b = 0 are all equivalent. This means that instead

of having rk equations we have only rk
� = k0r algebraic equations.

Proposition 3. The system (11) has (n0 − 1) unknowns Yi and (n0 − 1) un-
knowns Xi. Furthermore, it has k0 linear equations involving only the Yi’s and
(r − 1)k/� = (r − 1)k0 polynomial equations involving the unknowns YiX

w
i with

w > 1.

From now on, we will always assume that redundant equations have been re-
moved and the variables X0 and Y0 are fixed. Finally, note that there are
d

def= n0 − 1 − k0 free variables for the Yi’s.
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Table 1. Cryptanalysis results for [5] (m = 2)

Challenge q � n0 d Security [5] Unknowns Equations Time (Operations, Memory)

A16 28 51 9 3 80 16 510 0.06 sec (218.9 op, 115 Meg)
B16 28 51 10 3 90 18 612 0.03 sec (217.1 op, 116 Meg)
C16 28 51 12 3 100 22 816 0.05 sec (216.2 op, 116 Meg)
D16 28 51 15 4 120 28 1275 0.02 sec (214.7 op, 113 Meg)

A20 210 75 6 2 80 10 337 0.05 sec (215.8 op, 115 Meg)
B20 210 93 6 2 90 10 418 0.05 sec (217.1 op, 115 Meg)
C20 210 93 8 2 110 14 697 0.02 sec (214.5 op, 115 Meg)

QC600 28 255 15 3 600 28 6820 0.08 sec (216.6 op, 116 Meg)

We now present experimental results obtained when solving the system de-
scribed in (11) using the strategy described in Section 3. The experimental re-
sults have been obtained with several Xeon bi-processor 3.2 Ghz, with 16 Gb
of Ram. The instances of our problem have been generated using the Magma
software. We used the Magma version 2.15 for our computations. The F5 [14]
algorithm has been implemented in C language in the FGb software. We used
this implementation for computing the first Gröbner basis (i.e. which is used in
Algorithm 1). All the other computations are performed under Magma includ-
ing factorizing some univariate polynomials and computing Gröbner bases using
the F4 [13] algorithm. The most important observation is that we have been
able to solve all the challenges of [5] in a negligible time because the dimension
d = n0 − 1 − k0 of the vector space solution for the Yi’s is very small. We also
proposed a challenge QC600 for showing the behaviour of our attack for high
security levels.

5 Algebraic Cryptanalysis of the Dyadic Variant

The cryptosystem presented in [27] considers particular alternant codes called
quasi-dyadic Goppa codes. Goppa codes form an important subclass of alternant
codes. Goppa codes are defined by means of a polynomial G(X) of degree � with
coefficients in Fqm and for which the sequence x is assumed not to contain any
root of G(X). The alternant code defined by the parity-check matrix V �(x, y)
with yi = G(xi)−1 is called a Goppa code over Fq and is denoted by G (x, G).
A detailed description of the key generation is given in Appendix B. We only
provide important facts that are useful for recovering the private key. We first
state an important result that shows that G defines actually an alternant code.
The proof is given in Appendix C. The last important fact to know about G is
that it is a k × n matrix over Fq such that n = n0� and k ≥ n− m� where n0, �
are given integers.

Proposition 4. The code defined by the public generator matrix G is an alter-
nant code A�(x, y) where for any 0 ≤ j ≤ n0 − 1 and 0 ≤ i, i′ ≤ � − 1, we have
the following equations:
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⎧
⎨
⎩

yj�+i = yj�

xj�+i + xj� = xi + x0

xj�+(i⊕i′) = xj�+i + xj�+i′ + xj�

(12)

where ⊕ is the bitwise exclusive-or on the binary representation of the indices.

The cryptanalysis of the system consists in defining n0 unknowns Y0, . . . , Yn0−1

that play the role of the yj’s and n unknowns X0, . . . , Xn that represent the
xj ’s. We know specify the system of equations that we obtain directly from
Proposition 4.

Proposition 5. For any w, j, i and i′ such that 0 ≤ w ≤ �− 1, 0 ≤ j ≤ n0 − 1
and 1 ≤ i, i′ ≤ � − 1, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n0−1∑
j=0

Yj

�−1∑
l=0

gi,j�+lX
w
j�+l = 0

Xj�+i + Xj� + Xi + X0 = 0

Xj�+(i⊕i′) + Xj�+i + Xj�+i′ + Xj� = 0

(13)

It is possible to simplify System (13) by observing, thanks to the third equation,
that actually many variables Xi’s can be expressed in function of some few
variables, namely X2j with 0 ≤ j ≤ log2(� − 1) and Xb with 0 ≤ b ≤ n0 − 1.

Corollary 1. For any 1 ≤ i ≤ � − 1, if we write the binary decomposition of
i =

∑log2(�−1)
j=0 ηj2j then the following equation holds:

Xi = X0 +
log2(�−1)∑

j=0

ηj(X2j + X0).

We are also able to provide the exact number of unknowns we can fix to arbitrary
values.

Lemma 2. Let (X0, . . . , Xn−1), (Y0, . . . , Yn−1) be a solution of (13) and a �= 0,
b,c �= 0 be elements of Fqm . Then (aX0 + b, . . . , aXn−1 + b) and (cY0, . . . , cYn−1)
is also a solution of (13).

Proof. The only fact to prove is that (X0 + b, . . . , Xn−1 + b) is also a solution of
the last two equations in (13). It is readily checked since Fqm is of charateristic
two.

We can now completely give the effective number of equations after elimination
of redundant equations.

Proposition 6. The system (13) has n0 − 1 unknowns Yi and n0 − 2 + log2(�)
unknowns Xi. Furthermore, it has n0 − m linear equations involving only the
Yi’s, and (� − 1)�(n0 − m) polynomial equations involving the unknowns YiX

w
i

with w > 1.
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Proof. The number of variables Yj is (n0−1) since we can choose Y0 = 1. As for
the variables Xj , we observe that they can all be expressed only in function of X2j

and Xi� with 0 ≤ j ≤ log2(�−1) and 0 ≤ i ≤ n0−1. So the number of unknowns
Xj is log2(�−1)+1+n0−2 since we can fix two different arbitrary values for two
variables, say X0 and X� (Lemma 2). Using the fact that log2(�−1) = log2(�)−1
since � is a power of 2, we get the claimed number of unknowns. Furthermore,
because of the dyadicity of G, the equations obtained with w = 0 are identical
when g describes all the rows of a dyadic block of G. This does not appear when
w > 1. So we have k/� = n0 − m linear equations that involve the Yi’s and
(� − 1)k = (� − 1)�(n0 − m) polynomial equations that contain variables of the
form YiX

w
i where w > 1.

We now present in Table 2 the experimental results we obtained when we solve
the system described in (13) using the strategy described in Section 3. As previ-
ously, the experimental results have been obtained with several Xeon bi-processor
3.2Ghz, with 16 Gb of Ram. The instances of our problem have been generated
using the Magma software. We used the Magma version 2.15 for our compu-
tations. The F5 [14] algorithm has been implemented in C language in the FGb
software. We used this implementation for computing the first Gröbner basis
(i.e. which is used in Algorithm 1). All the other computations are performed
under Magma including factorizing some univariate polynomials and computing
Gröbner bases using the F4 algorithm [13]. Table 2 also shows the impact of
the degree extension m. Indeed, computation times indicate that the solutions
are easy to find if m is small. This phenomenon is directly related to the size
of the solution space of the variables Yi. We have seen in Section 3 that such
variables satisfy a system of linear equations. From Proposition 6, the number
of linear equations is k0 = n0 −m whereas the number of unknowns Yi is n0−1.
Thus the dimension of the vector space solution for the Yi’s is m − 1. We also
give in Table 2 new parameters (Dyadic256 and Dyadic512) that are generated
by “extrapolating” challenges given in [27]. We observe that this solution space
is manageable in practise as long as m < 16 because we did not succeed to find
an efficient way to solve the challenges of [27] when m = 16.

Table 2. Cryptanalysis results for [27]

Challenge q m � n0 Security Unknowns Equations Time (Operations, Memory)

Table 2 22 8 64 56 128 115 193, 584 1, 776.3 sec (234.2 op, 360 Meg)
Table 2 24 4 64 32 128 67 112, 924 0.50 sec (222.1 op, 118 Meg)
Table 2 28 2 64 12 128 27 40, 330 0.03 sec (216.7 op, 35 Meg)

Table 3 28 2 64 10 102 23 32, 264 0.03 sec (215.9 op, 113 Meg)
Table 3 28 2 128 6 136 16 65, 028 0.02 sec (215.4 op, 113 Meg)
Table 3 28 2 256 4 168 13 130, 562 0.11 sec (219.2 op, 113 Meg)

Table 5 28 2 128 4 80 12 32, 514 0.06 sec (217.7 op, 35 Meg)
Table 5 28 2 128 5 112 14 48, 771 0.02 sec (214.5 op, 35 Meg)
Table 5 28 2 128 6 128 16 65, 028 0.01 sec (216.6 op, 35 Meg)
Table 5 28 2 256 5 192 15 195, 843 0.05 sec (217.5 op, 35 Meg)
Table 5 28 2 256 6 256 17 261, 124 0.06 sec (217.8 op, 35 Meg)

Dyadic256 24 4 128 32 256 68 455, 196 7.1 sec (226.1 op, 131 Meg)
Dyadic512 28 2 512 6 512 18 1, 046, 532 0.15 sec (219.7 op, 38 Meg)
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6 Conclusion

We described in this paper a new algebraic approach to assess the security of
the McEliece cryptosystem. We showed that the private key of this scheme is
a solution of a very structured system of bi-homogeneous polynomial equations
in two sets of unknowns Yi and Xi. The solutions belong to a finite field Fqm

whereas the coefficients of the system are in Fq for some known integers m
and q. This system comes from the particular structure of alternant codes used
in McEliece. Indeed, the Goppa codes as proposed in [25] form a subfamily of
alternant codes. Furthermore, the system is composed of two parts of equations:
one part that consists of linear equations that involve only the unknowns Yi and
a second part where the equations involve terms of the form YiX

j
i .

We applied this approach to two new cryptosystems [27,5] that are variants
of the McEliece scheme. Both aim at reducing the public keys by using very
structured block matrices (cyclic matrices in [5] and dyadic matrices in [27]).
We show that our new cryptanalytic point of view is very efficient for all the
parameters proposed in [5]. An implementation in Magma validates our attack
and shows that the private key can be found in a negligible time. For the scheme
[27], we are also able to fully recover the private key in almost all cases. An
implementation in Magma shows that this can be done in time comparable to
[5] as long as the dimension m of the solution vector space of the Yi’s is small.

Thanks to a very recent development [16] on the solving of bihomogeneous
bilinear systems, it is very likely that the solving technique presented here can
be replaced by a new version of F5 dedicated to bi-linear systems. In our case, we
can obtain a (quasi) bilinear system when we consider the equations involving
terms of the form YiX

2j

i . Moreover, this will permit to precisely estimate the
complexity of the attack presented in this paper and will provide a concrete
criteria to evaluate the security of future compact McEliece’s variants.

Finally, it would be interesting to study if this algebraic approach followed
here can be improved in order to mount an attack on the original McEliece
cryptosystem. In this case however, there are much more unknowns than in the
cases considered here and there is much more freedom left on the Yi’s by looking
at the linear equations involving only the Yi’s.
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dimensional gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344
(1993)

18. Faure, C., Minder, L.: Cryptanalysis of the McEliece cryptosystem over hyperel-
liptic curves. In: Proceedings of the eleventh International Workshop on Algebraic
and Combinatorial Coding Theory, Pamporovo, Bulgaria, June 2008, pp. 99–107
(2008)

19. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based crypto
systems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

20. Gabidulin, E., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative
ring and their applications to cryptography. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)

21. Gaborit, P.: Shorter keys for code based cryptography. In: Ytrehus, Ø. (ed.) WCC
2005. LNCS, vol. 3969, pp. 81–91. Springer, Heidelberg (2006)

22. Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public key
cryptosystem. Design Codes and Cryptography 6(1), 37–45 (1995)



294 J.-C. Faugère et al.

23. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Designs Codes and Cryptography 8(3), 293–307 (1996)

24. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 5th
edn. North-Holland, Amsterdam (1986)

25. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–
116. Jet Propulsion Lab. (1978); DSN Progress Report 44

26. Minder, L., Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg
(2007)

27. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

28. Niederreiter, H.: A public-key cryptosystem based on shift register sequences. In:
Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 35–39. Springer, Heidel-
berg (1985)

29. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of McEliece cryptosystem based
on quasi-cyclic ldpc codes. In: Proceedings of First International Conference on
Symbolic Computation and Cryptography, Beijing, China, April 28-30, pp. 69–81.
LMIB Beihang University (2008)

30. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptology 21(2), 280–301 (2008)

31. Sidelnikov, V.M.: A public-key cryptosytem based on Reed-Muller codes. Discrete
Mathematics and Applications 4(3), 191–207 (1994)

32. Sidelnikov, V.M., Shestakov, S.O.: On the insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–
444 (1992)

33. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen,
G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg
(1988)

34. Gauthier Umana, V., Leander, G.: Practical key recovery attacks on two McEliece
variants (2009), http://eprint.iacr.org/2009/509

35. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on
GRS subcodes. eprint 452 (2009), http://eprint.iacr.org/2009/452.pdf

http://eprint.iacr.org/2009/509
http://eprint.iacr.org/2009/452.pdf


Algebraic Cryptanalysis of McEliece Variants with Compact Keys 295

A Gröbner Basics

The classical approach for computing a Gröbner basis of I ∩ Fqm [Y′] can be
described as follows. A reader already familiar with polynomial system solving
can skip this part. We have to choose a suitable ordering on the monomials (for
a definition of such orders, see for instance [12, Chap. 2, p. 52]). In particular,
we have to select an elimination ordering ([1, Chap. 2.3, p. 69]) on the blocks
X′, Y′ such that the variables occurring in X are greater that those of Y′

(denoted by X′ >> Y′). According to [1, Theo. 2.3.4, Chap. 2.3, p. 69], this
elimination ordering will permit to compute a Gröbner basis Gdeg of I ∩Fqm [Y′]
with respect to a degree order on the variables of Y′ (i.e. this is the order induced
when “removing” the variables of the block X′ in the elimination ordering). In
theory, to compute the variety V ′ associated to I ∩Fqm [Y′], we have to perform
a change of ordering on Gdeg to compute Gröbner basis Glex of I ∩ Fqm [Y′]. If
we assume that V ′ is zero-dimensional (i.e. has a finite number of solutions so
that #V ′ < ∞), then an efficient tool to perform the change of ordering is the
FGLM algorithm [17]. The complexity of computing Glex from Gdeg with FGLM
is polynomial in the size of V ′, i.e. O(

(#V ′)3
)
. In our case, the size of V ′ is very

small (< 10).
We have used a slightly modified version of F4 [13] for computing a Gröbner

basis Gdeg of I ∩ Fqm [Y′]. The idea is to adapt the algorithm for performing
the Gröbner basis computation in Fqm [X′][Y′], i.e. the set of polynomials in Y′

whose coefficients are polynomials in Fqm [X′]. As for the usual F4, we process
degree by degree. However, we consider only the degree of the polynomials w.r.t.
the variables of X′. We stop the computation as soon as we have sufficiently
many equations in Y′ (for instance, as soon as we detect that V ′ has a finite
number of solution, i.e. of dimension zero ). The modified version is defined
below.

Input:

⎧⎨
⎩

X’ and Y’
F a finite subset of Fqm [X′,Y′]
< a monomial admissible order

Output: a finite subset of Fqm [Y′].
G := F and P :=

{
CritPair(f, g) | (f, g) ∈ G2 with f �= g

}
while P �= ∅ and dim(G ∩ Fqm [Y′]) > 0 do

d := min {degX′ (p) | p ∈ P} minimal partial degree of critical pairs
Extract from P, Pd the list of critical pairs of degree d
R :=Matrix Reduction(Left(Pd) ∪ Right(Pd), G)
for h ∈ R do

P := P ∪ {CritPair(h, g) | g ∈ G}
G := G ∪ {h}

return G ∩ Fqm [Y′]

Fig. 1. Algorithm F4 (modified version)
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For the definition of Matrix Reduction, and CritPair, we refer to [13].
Briefly, the first function performs the usual polynomial reduction of Buch-
berger’s algorithm [12] using linear algebra. The second function selects critical
pairs with respect to a defined strategy.

B Description of the Variant Based on Dyadic Goppa
Codes

The cryptosystem presented in [27] considers particular alternant codes called
quasi-dyadic Goppa codes. Goppa codes form an important subclass of alternant
codes. Goppa codes are defined by means of a polynomial G(X) of degree � with
coefficients in Fqm and for which the sequence x is assumed not to contain any
root of G(X). The alternant code defined by the parity-check matrix V �(x, y)
with yi = G(xi)−1 is called a Goppa code over Fq and is denoted by G (x, G). It
has dimension n − m� and minimum distance d ≥ � + 1 [24, Chap. 12, p. 340].
In the special case where the roots z = (z0, . . . , z�−1) of G(X) are distinct and
all belong to Fqm then G (x, G) admits a parity-check matrix C(z, x) in Cauchy
form [24, p. 345].

The scheme in [27] considers a Goppa code that admits a parity-check matrix
that is both a Cauchy matrix and a block matrix where each block is dyadic. An
�×� matrix Δ = (Δi,j) with 0 ≤ i ≤ �−1 and 0 ≤ j ≤ �−1 is dyadic if and only
if Δi,j = hi⊕j where ⊕ is the bitwise exclusive-or on the binary representation of
the indices and h = (h0, . . . , h�−1) is the first row of Δ. Let h = (h0, . . . , hN−1)
be a vector of F

N
qm with � ≤ N . We denote by Δ�(h) = (Δi,j) the � × N matrix

such that Δi,j = hi⊕j . One can easily observe that Δ�(h) is the juxtaposition of
N0 dyadic matrices of size �×� when N = N0� for some integer N0. Proposition 7
proved in [27, Theorem 2] characterizes dyadic Cauchy matrices.

Proposition 7. A necessary and sufficient condition for Δ�(h) to be a Cauchy
matrix C(z, x) is that Fqm is of characteristic 2 and for any i, j in {0, . . . , N−1}
we have:

1
hi⊕j

=
1
hj

+
1
hi

+
1
h0

. (14)

Furthermore, for any θ ∈ Fqm and for any z∗i = 1/hi+θ and x∗
j = 1/hj+1/h0+θ,

the Cauchy matrix C(z∗, x∗) is equal to Δ�(h).

Indeed, the public generator matrix G is a k × n block matrix where each
block is an � × � dyadic matrix with � being a power of 2. The entries of G
belong to Fq and the integers k and n are chosen such that n = n0� and
k = n − m� = �(n0 − m) where n0 is some integer and m defines the exten-
sion Fqm . The matrix G is obtained from a secret � × n block parity-check
matrix H =

(
Δ�(f0)| · · · |Δ�(fn0−1)

)
where each block Δ�(f j) is an � × �

dyadic matrix and for any 0 ≤ j ≤ n0 − 1, f j is a vector of F
�
qm such that

f j = γj

(
hωj�⊕dj , h(ωj�+1)⊕dj

, . . . , h((ωj+1)�−1)⊕dj

)
where h = (h0, . . . , hN−1) is

a random vector of F
N
qm that satisfies Equation (14) and such that N = N0� for
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some integer N0 � n0. The integers ωj , dj are chosen such that 0 ≤ ωj ≤ N0−1
and 0 ≤ dj ≤ � − 1. The coefficients γj are non zero elements of Fqm . Note that
the integers ωj ’s are different. The secret key consists then of the vectors h,
ω = (ω0, . . . , ωn0−1), d = (d0, . . . , dn0−1) and γ = (γ0, . . . , γn0−1).

C Proof of Proposition 4

Lemma 3. Let N = N0� with � = 2e for some integer e and let h be a vector
in F

N
qm that satisfies Equation (14). Let G (a∗, G) be the Goppa code such that

a∗ = (a∗
0, . . . , a

∗
N−1) is defined by a∗

j = 1/hj + 1/h0 for 0 ≤ j ≤ N − 1 and
G(X) =

∏�−1
i=0 (X − zi) with zi = 1/hi. Then for any i, j in {0, . . . , N − 1} we

have a∗
i⊕j = a∗

i + a∗
j and for any 0 ≤ j ≤ N0 − 1 and 0 ≤ i, i′ ≤ � − 1

G(a∗
j�+i)

−1 =
(j+1)�−1∏

l=j�

hl

Proof. The property that a∗
i⊕j = a∗

i +a∗
j comes from Equation (14). Furthermore,

we have:

G(a∗
j�+i)

−1 =
�−1∏
�=0

(z� − a∗
j�+i)

−1 =
�−1∏
�=0

(1/h� + 1/hj�+i + 1/h0)−1 =
�−1∏
�=0

hj�+�

which terminates the proof.

We remark in particular that we have G(a∗
j�+i) = G(a∗

j�) for any 0 ≤ j ≤ n0 − 1
and 0 ≤ i ≤ �− 1. The next lemma we give without proof shows that the action
of a dyadic permutation can be simply characterized as a translation.

Lemma 4. Let t and d two integers such that 0 ≤ d ≤ � − 1. For any vector
v = (v0, . . . , v�−1), we have:

v × Δ�(bd) = (vd, v1⊕d, . . . , v(�−1)⊕d) (15)

where the vector bd = (bd,0, . . . , bd,�−1) is such that bd,j = 0 if j �= d and bd,d = 1.

We are now prepared to prove Proposition 4. Let (h, ω, d, γ) be the private key
and let G be the public generator matrix. We shall see that a parity-check matrix
for the code generated by G is V �(a, λ) with aj�+i = a∗

(ωjt+i)⊕d�
and λj�+i =

γj G(a∗
ωjt)

−1 where a∗ and G(X) are defined as in Lemma 3. Indeed, we know
that the code defined by the parity-check matrix Δ�(h) is also defined by the
parity-check matrix V �(a, λ) where λj = G(aj)−1 for any 0 ≤ j ≤ N −1. Recall
from Lemma 3 that G(aj�+i) = G(aj�) for any 0 ≤ j ≤ N0−1 and 0 ≤ i ≤ �−1.
The role of ω is to pick n0 dyadic blocks from Δ�(h). These blocks correspond
to the columns a∗

ωj�, . . . , a
∗
(ωj+1)�−1 of V �(a, λ) when j describes {1, . . . , n0}.

These columns are then multiplied by a dyadic permutation matrix Δ�(bd�
)

which leads to reorder the columns as aωj�⊕dj , . . . , a((ωj+1)�−1)⊕dj
according to
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Lemma 4. Finally, each dyadic block is scaled by γj which means that if we set
λj�+i = γj G(aωj�)−1 then V �(a, λ) is another parity-check matrix of the code
generated by G. We are now going to show that for any 0 ≤ j ≤ n0 − 1 and
0 ≤ i, i′ ≤ � − 1, we have the following equations:

⎧
⎨
⎩

λj�+i = λj�

aj�+i + aj� = ai + a0

aj�+i⊕i′ = aj�+i + aj�+i′ + aj�

(16)

It is clear from Lemma 3 that λj�+i = λj�. On the other hand, aj�+i = a(ωj�+i)⊕dj

= 1/h(ωj�+i)⊕dj
+ 1/h0. From Equation (14) we thus have:

aj�+i =
1

hωj�+i
+

1
hdj

=
1

hωj�
+

1
hi

+
1
h0

+
1

hdj

=
1

hωj�⊕dj

+
1
hi

+
1
h0

= aj� +
1
hi

+
1
h0

.

We observe in particular that ai +a0 = 1/hi +1/h0 and since this quantity does
not depend on �, this is equivalent to say that aj�+i+aj� = ai+a0. Before proving
the third equation, we can first see that aj�+i⊕i′ +aj� = ai⊕i′ +a0. So if we know
that ai⊕i′ = ai +ai′ +a0 then we would get ai⊕i′ = aj�+i +aj� +ai′ which finally
implies ai⊕i′ = aj�+i +aj�+i′ +a0 that leads to the expected result. Now we have
ai⊕i′ = a(ω1�+i+i′)⊕d1 = aω1�+i+i′ + ad1 = aω1�+i + ai′ + ad1 = a(ω1�+i)⊕d1 + ai′ .
Therefore we obtain:

ai⊕i′ = ai + ai′ + aω1� + ad1 + aω1� + ad1 = ai + ai′ + a0.
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