Algebraic Curves and Riemann Surfaces

Rick Miranda

Graduate Studies in Mathematics

Volume 5

American Mathematical Society

Contents

.

Preface	xix
Chapter I. Riemann Surfaces: Basic Definitions	1
1. Complex Charts and Complex Structures	1
Complex Charts	1
Complex Atlases	3
The Definition of a Riemann Surface	4
Real 2-Manifolds	5
The Genus of a Compact Riemann Surface	6
Complex Manifolds	6
Problems I.1	7
2. First Examples of Riemann Surfaces	7
A Remark on Defining Riemann Surfaces	7
The Projective Line	8
Complex Tori	9
Graphs of Holomorphic Functions	10
Smooth Affine Plane Curves	10
Problems I.2	12
3. Projective Curves	13
The Projective Plane \mathbb{P}^2	13
Smooth Projective Plane Curves	14
Higher-Dimensional Projective Spaces	16
Complete Intersections	17
Local Complete Intersections	17
Problems I.3	18
Further Reading	19
Chapter II. Functions and Maps	21
1. Functions on Riemann Surfaces	21
Holomorphic Functions	21
Singularities of Functions; Meromorphic Functions	23
Laurent Series	25
The Order of a Meromorphic Function at a Point	26

\mathcal{C}^{∞} Functions	27
Harmonic Functions	27
Theorems Inherited from One Complex Variable	28
Problems II.1	30
2. Examples of Meromorphic Functions	30
Meromorphic Functions on the Riemann Sphere	30
Meromorphic Functions on the Projective Line	31
Meromorphic Functions on a Complex Torus	33
Meromorphic Functions on Smooth Plane Curves	35
Smooth Projective Curves	36
Problems II.2	38
3. Holomorphic Maps Between Riemann Surfaces	38
The Definition of a Holomorphic Map	38
Isomorphisms and Automorphisms	40
Easy Theorems about Holomorphic Maps	40
Meromorphic Functions and Holomorphic Maps to the Riemann	
Sphere	41
Meromorphic Functions on a Complex Torus, Again	42
Problems II.3	43
4. Global Properties of Holomorphic Maps	44
Local Normal Form and Multiplicity	44
The Degree of a Holomorphic Map between Compact Riemann Sur-	
faces	47
The Sum of the Orders of a Meromorphic Function	49
Meromorphic Functions on a Complex Torus, Yet Again	50
The Euler Number of a Compact Surface	50
Hurwitz's Formula	52
Problems II.4	53
Further Reading	54
Chapter III. More Examples of Riemann Surfaces	57
1. More Elementary Examples of Riemann Surfaces	57
Lines and Conics	57
Glueing Together Riemann Surfaces	59
Hyperelliptic Riemann Surfaces	60
Meromorphic Functions on Hyperelliptic Riemann Surfaces	61
Maps Between Complex Tori	62
Problems III.1	65 66
2. Less Elementary Examples of Riemann Surfaces	66 66
Plugging Holes in Riemann Surfaces Nodes of a Plane Curve	66 67
	67 60
Resolving a Node of a Plane Curve	69 69
The Genus of a Projective Plane Curve with Nodes	09

x

Resolving Monomial Singularities	71
Cyclic Coverings of the Line	73
Problems III.2	74
3. Group Actions on Riemann Surfaces	75
Finite Group Actions	75
Stabilizer Subgroups	76
The Quotient Riemann Surface	77
Ramification of the Quotient Map	79
Hurwitz's Theorem on Automorphisms	82
Infinite Groups	82
Problems III.3	83
4. Monodromy	84
Covering Spaces and the Fundamental Group	84
The Monodromy of a Finite Covering	86
The Monodromy of a Holomorphic Map	87
Coverings via Monodromy Representations	88
Holomorphic Maps via Monodromy Representations	90
Holomorphic Maps to \mathbb{P}^1	91
Hyperelliptic Surfaces	92
Problems III.4	93
5. Basic Projective Geometry	94
Homogeneous Coordinates and Polynomials	94
Projective Algebraic Sets	95
Linear Subspaces	95
The Ideal of a Projective Algebraic Set	96
Linear Automorphisms and Changing Coordinates	97
Projections	98
Secant and Tangent Lines	99
Projecting Projective Curves	101
Problems III.5	102
Further Reading	103
Chapter IV. Integration on Riemann Surfaces	105
1. Differential Forms	105
Holomorphic 1-Forms	105
Meromorphic 1-Forms	106
Defining Meromorphic Functions and Forms with a Formula	107
Using dz and $d\overline{z}$	108
\mathcal{C}^{∞} 1-Forms	109
1-Forms of Type $(1,0)$ and $(0,1)$	110
\mathcal{C}^{∞} 2-Forms	110
Problems IV.1	111
2. Operations on Differential Forms	112

•

CONTENTS

Multiplication of 1-Forms by Functions	112
Differentials of Functions	113
The Wedge Product of Two 1-Forms	113
Differentiating 1-Forms	114
Pulling Back Differential Forms	114
Some Notation	115
The Poincaré and Dolbeault Lemmas	117
Problems IV.2	117
3. Integration on a Riemann Surface	118
Paths	118
Integration of 1-Forms Along Paths	119
Chains and Integration Along Chains	120
The Residue of a Meromorphic 1-Form	121
Integration of 2-Forms	122
Stoke's Theorem	123
The Residue Theorem	123
Homotopy	124
Homology	126
Problems IV.3	126
Further Reading	127
Chapter V. Divisors and Meromorphic Functions	129
1. Divisors	129
The Definition of a Divisor	129
The Degree of a Divisor on a Compact Riemann Surface	129
The Divisor of a Meromorphic Function: Principal Divisors	130
The Divisor of a Meromorphic 1-Form: Canonical Divisors	131
The Degree of a Canonical Divisor on a Compact Riemann Surface	132
The Boundary Divisor of a Chain	133
The Inverse Image Divisor of a Holomorphic Map	133
The Ramification and Branch Divisor of a Holomorphic Map	134
Intersection Divisors on a Smooth Projective Curve	135
The Partial Ordering on Divisors	136
Problems V.1	137
2. Linear Equivalence of Divisors	138
The Definition of Linear Equivalence	138
Linear Equivalence for Divisors on the Riemann Sphere	140
Principal Divisors on a Complex Torus	140
The Degree of a Smooth Projective Curve	142
Bezout's Theorem for Smooth Projective Plane Curves	143
Plücker's Formula	143
Problems V.2	145
3. Spaces of Functions and Forms Associated to a Divisor	145

xii

CONTENTS

The Definition of the Space $L(D)$	145
Complete Linear Systems of Divisors	147
Isomorphisms between $L(D)$'s under Linear Equivalence	148
The Definition of the Space $L^{(1)}(D)$	148
The Isomorphism between $L^{(1)}(D)$ and $L(D+K)$	149
Computation of $L(D)$ for the Riemann Sphere	149
Computation of $L(D)$ for a Complex Torus	150
A Bound on the Dimension of $L(D)$	151
Problems V.3	152
4. Divisors and Maps to Projective Space	153
Holomorphic Maps to Projective Space	153
Maps to Projective Space Given By Meromorphic Functions	154
The Linear System of a Holomorphic Map	155
Base Points of Linear Systems	157
The Hyperplane Divisor of a Holomorphic Map to \mathbb{P}^n	158
Defining a Holomorphic Map via a Linear System	160
Removing the Base Points	160
Criteria for ϕ_D to be an Embedding	161
The Degree of the Image and of the Map	164
Rational and Elliptic Normal Curves	165
Working Without Coordinates	166
Problems V.4	166
Further Reading	167
Chapter VI. Algebraic Curves and the Riemann-Roch Theorem	169
1. Algebraic Curves	169
Separating Points and Tangents	169
Constructing Functions with Specified Laurent Tails	171
The Transcendence Degree of the Function Field $\mathcal{M}(X)$	174
Computing the Function Field $\mathcal{M}(X)$	177
Problems VI.1	178
2. Laurent Tail Divisors	178
Definition of Laurent Tail Divisors	178
Mittag-Leffler Problems and $H^1(D)$	180
Comparing H^1 Spaces	181
The Finite-Dimensionality of $H^1(D)$	182
Problems VI.2	184
3. The Riemann-Roch Theorem and Serre Duality	185
The Riemann-Roch Theorem I	185
The Residue Map	186
Serre Duality	188
The Equality of the Three Genera	191
The Riemann-Roch Theorem II	192

xiii

CONTENTS

Problems VI.3	193
Further Reading	193
Chapter VII. Applications of Riemann-Roch	195
1. First Applications of Riemann-Roch	195
How Riemann-Roch implies Algebraicity	195
Criterion for a Divisor to be Very Ample	195
Every Algebraic Curve is Projective	196
Curves of Genus Zero are Isomorphic to the Riemann Sphere	196
Curves of Genus One are Cubic Plane Curves	197
Curves of Genus One are Complex Tori	197
Curves of Genus Two are Hyperelliptic	198
Clifford's Theorem	198
The Canonical System is Base-Point-Free	200
The Existence of Meromorphic 1-Forms	200
Problems VII.1	202
2. The Canonical Map	203
The Canonical Map for a Curve of Genus at Least Three	203
The Canonical Map for a Hyperelliptic Curve	203
Finding Equations for Smooth Projective Curves	204
Classification of Curves of Genus Three	205
Classification of Curves of Genus Four	206
The Geometric Form of Riemann-Roch	207
Classification of Curves of Genus Five	209
The Space $L(D)$ for a General Divisor	210
A Few Words on Counting Parameters	211
Riemann's Count of $3g - 3$ Parameters for Curves of Genus g	212
Problems VII.2	215
3. The Degree of Projective Curves	216
The Minimal Degree	216
Rational Normal Curves	216
Tangent Hyperplanes	217
Flexes and Bitangents	219
Monodromy of the Hyperplane Divisors	221
The Surjectivity of the Monodromy	222
The General Position Lemma	224
Points Imposing Conditions on Hypersurfaces	225
Castelnuovo's Bound	228
Curves of Maximal Genus	230
Problems VII.3	232
4. Inflection Points and Weierstrass Points	233
Gap Numbers and Inflection Points of a Linear System	233
The Wronskian Criterion	234

Higher-order Differentials	236
The Number of Inflection Points	238
Flex Points of Smooth Plane Curves	241
Weierstrass Points	241
Problems VII.4	243
Further Reading	245
Chapter VIII. Abel's Theorem	247
1. Homology, Periods, and the Jacobian	247
The First Homology Group	247
The Standard Identified Polygon	247
Periods of 1-Forms	247
The Jacobian of a Compact Riemann Surface	248
Problems VIII.1	249
2. The Abel-Jacobi Map	249
The Abel-Jacobi Map A on X	249
The Extension of A to Divisors	250
Independence of the Base Point	250
Statement of Abel's Theorem	250
Problems VIII.2	250
3. Trace Operations	251
The Trace of a Function	251
The Trace of a 1-Form	252
The Residue of a Trace	253
An Algebraic Proof of the Residue Theorem	253
Integration of a Trace	254
Proof of Necessity in Abel's Theorem	255
Problems VIII.3	256
4. Proof of Sufficiency in Abel's Theorem	257
Lemmas Concerning Periods	257
The Proof of Sufficiency	260
Riemann's Bilinear Relations	262
The Jacobian and the Picard Group	263
Problems VIII.4	264
5. Abel's Theorem for Curves of Genus One	265
The Abel-Jacobi Map is an Embedding	265
Every Curve of Genus One is a Complex Torus	265
The Group Law on a Smooth Projective Plane Cubic	266
Problems VIII.5	267
Further Reading	267
Chapter IX. Sheaves and Čech Cohomology	269
1. Presheaves and Sheaves	269

xv

CONTENTS

Presheaves	269
Examples of Presheaves	269
The Sheaf Axiom	272
Locally Constant Sheaves	273
Skyscraper Sheaves	273
Global Sections on Compact Riemann Surfaces	275
Restriction to an Open Subset	276
Problems IX.1	276
2. Sheaf Maps	278
Definition of a Map between Sheaves	278
Inclusion Maps	278
Differentiation Maps	279
Restriction or Evaluation Maps	279
Multiplication Maps	280
Truncation Maps	281
The Exponential Map	281
The Kernel of a Sheaf Map	282
1-1 and Onto Sheaf Maps	282
Short Exact Sequences of Sheaves	284
Exact Sequences of Sheaves	286
Sheaf Isomorphisms	286
Using Sheaves to Define the Category	288
Problems IX.2	289
3. Čech Cohomology of Sheaves	290
Čech Cochains	291
Čech Cochain Complexes	291
Cohomology with respect to a Cover	292
Refinements	293
Čech Cohomology Groups	295
The Connecting Homomorphism	297
The Long Exact Sequence of Cohomology	298
Problems IX.3	300
4. Cohomology Computations	301
The Vanishing of \check{H}^1 for \mathcal{C}^∞ Sheaves	302
The Vanishing of \check{H}^1 for Skyscraper Sheaves	303
Cohomology of Locally Constant Sheaves	304
The Vanishing of $\check{H}^2(X, \mathcal{O}_X[D])$	304
De Rham Cohomology	305
Dolbeault Cohomology	306
Problems IX.4	308
Further Reading	308

Chapter X. Algebraic Sheaves

xvi

309

CONTENTS	

1. Algebraic Sheaves of Functions and Forms	309
Algebraic Curves	309
Algebraic Sheaves of Functions	309
Algebraic Sheaves of Forms	310
The Zariski Topology	311
Problems X.1	312
2. Zariski Cohomology	312
The Vanishing of $\check{H}^1(X_{Zar},\mathcal{F})$ for a Constant Sheaf $\mathcal F$	313
The Interpretation of $H^1(D)$	314
GAGA Theorems	315
Further Computations	316
The Zero Mean Theorem	317
The High Road to Abel's Theorem	319
Problems X.2	320
Further Reading	321
Chapter XI. Invertible Sheaves, Line Bundles, and \dot{H}^1	323
1. Invertible Sheaves	323
Sheaves of \mathcal{O} -Modules	323
Definition of an Invertible Sheaf	324
Invertible Sheaves associated to Divisors	325
The Tensor Product of Invertible Sheaves	326
The Inverse of an Invertible Sheaf	328
The Group of Isomorphism Classes of Invertible Sheaves	329
Problems XI.1	330
2. Line Bundles	331
The Definition of a Line Bundle	331
The Tautological Line Bundle for a Map to \mathbb{P}^n	333
Line Bundle Homomorphisms	334
Defining a Line Bundle via Transition Functions	335
The Invertible Sheaf of Regular Sections of a Line Bundle	337
Sections of the Tangent Bundle and Tangent Vector Fields	340
Rational Sections of a Line Bundle	342
The Divisor of a Rational Section	343
Problems XI.2	344
3. Avatars of the Picard Group	345
Divisors Modulo Linear Equivalence and Cocycles	345
Invertible Sheaves Modulo Isomorphism	348
Line Bundles Modulo Isomorphism	351
The Jacobian	356
Problems XI.3	357
4. \check{H}^1 as a Classifying Space	357
Why $\check{H}^{1}(\mathcal{O}^{*})$ Classifies Invertible Sheaves and Line Bundles	357

xvii

-

Locally Trivial Structures	359
A General Principle Regarding H ¹	360
Cyclic Unbranched Coverings	360
Extensions of Invertible Sheaves	361
First-Order Deformations	364
Problems XI.4	368
Further Reading	369
References	371
Index of Notation	377