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Algebraic Discrete Tomography

L. Hajdu and R. Tijdeman

Summary. In this chapter we present an algebraic theory of patterns which can
be applied in discrete tomography for any dimension. We use that the difference
of two such patterns yields a configuration with vanishing line sums. We show by
introducing generating polynomials and applying elementary properties of polyno-
mials that such so-called switching configurations form a linear space. We give a
basis of this linear space in terms of the so-called switching atom, the smallest non-
trivial switching configuration. We do so both in case that the material does not
absorb light and absorbs light homogeneously. In the former case we also show that
a configuration can be constructed with the same line sums as the original and with
entries of about the same size, and we provide a formula for the number of linear
dependencies between the line sums. In the final section we deal with the case that
the transmitted light does not follow straight lines.

1 Introduction

One of the basic problems of discrete tomography is to reconstruct a function
f : A → {0, 1} where A is a finite subset of Zn (n ≥ 2), if the sums of the
function values (the so-called X-rays) along all the lines in a finite number of
directions are given. A related problem on emission tomography is to recon-
struct f if it represents (radio-active) material which is emitting radiation. If
f(i) = 1 for some i ∈ A, then there is a unit of radiating material at i, oth-
erwise f(i) = 0 and there is no such material at i. The radiation is partially
absorbed by the medium, such that its intensity is reduced by a factor β for
each unit line segment in the given direction (with some real number β ≥ 1).

As an illustration we include an example. In Figure 1 the row sums of
f (the number of particles in each row, from top to bottom) are given by
[4, 4, 2, 5, 1, 2], while the column sums (the number of particles in each col-
umn, from left to right) are [2, 3, 2, 1, 2, 3, 2, 3]. Further, taking the line sums
of f in the direction (1,−1), i.e. the sums of elements lying on the same
lines of slope −1, we get (from the bottom-left corner to the top-right corner)
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      1 0 1 0 1 0 1 0
      0 1 0 1 0 1 0 1
      0 1 0 0 0 1 0 0
f :   1 1 1 0 1 0 1 0
      0 0 0 0 0 0 0 1
      0 0 0 0 0 1 0 1

Fig. 1. The symbols • denote particles on a grid which are represented in the table f

on the right by 1’s. In the classical case the light is going horizontally and vertically,
resulting in row and column sums. In the emission case the particles emit radiation
which is partially absorbed by the material surrounding the particles. The intensity
of the radiation is measured by detectors, denoted by [ signs.

[0, 0, 1, 1, 2, 3, 1, 3, 3, 2, 0, 2, 0]. Finally, suppose that the particles emit radia-
tion in the directions (−1, 0) and (0, 1). If β is the absorption coefficient in
these directions, i.e. the absorption on a line segment of unit length is propor-
tional with β, then the ”absorption row sums ” (measured at the detectors)
from top to bottom are

[β−1 + β−3 + β−5 + β−7, β−2 + β−4 + β−6 + β−8, β−2 + β−6,

β−1 + β−2 + β−3 + β−5 + β−7, β−8, β−6 + β−8] ,

and the ”absorption column sums ” from left to right are given by

[β−1 + β−4, β−2 + β−3 + β−4, β−1 + β−4, β−2, β−1 + β−4,

β−2 + β−3 + β−6, β−1 + β−4, β−2 + β−5 + β−6] .

In the past decade considerable attention has been given to this type of
problems, see e.g. [5, 6, 14, 15], and especially [18] for a historical overview.
Many papers investigate the problem under which circumstances the line sums
determine the original set uniquely, see e.g. [1, 7, 8, 10, 24] for the non-
absorption and [19, 20] for the absorption case. However, in many cases there
are more than one configuration yielding the same line sums. Observe that
the ”difference” of two configurations with equal line sums has zero line sums.
Such a difference is called a switching configuration. In the case of row and
column sums they were already studied by Ryser [22] in 1957. We refer to
[16, 17] for the case of two general directions and for the investigation of so-
called switching chains. Shliferstein and Chien [24] studied switching configu-
rations in situations with more than two directions. Switching configurations
play a role in solution methods of e.g. [1, 12, 16, 17, 19, 20, 24]. Already
Ryser [22] showed in the case of row and column sums that every switching
configuration can be composed of simple switching components

(−1 1
1 −1

)

. An
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algebraic theory on their structure was developed by the authors [11, 13] based
on switching components of minimal size, so-called switching atoms. In order
to reconstruct the original itself, one can use additional known properties of
the original object to favour some inverse images above the others, such as
convexity (see e.g. [1]) or connectedness (see e.g. [2, 3, 12]). For an extensive
study on the computational complexity of discrete tomographical problems
see [9].

In this chapter we describe a general algebraic framework for switching
configurations. We collect and at certain points generalize some of our previous
results. We show that our method can be applied to more general problems
than only the classical ones in discrete tomography. We mention that, though
we focus on Zn only, the results presented below can be generalized to any
integral domain R such that R[x1, . . . , xn] is a unique factorization domain.
We recommend the book of Lang [21] as a general reference for algebra.

To formulate the above problems in a precise way, we introduce some
definitions and notation which we use throughout this chapter without any
further reference. Let n be a positive integer. The j-th coordinate of a point
v ∈ Zn will be denoted by vj (j = 1, . . . , n), that is v = (v1, . . . , vn). Let mj

(j = 1, . . . , n) denote positive integers, and put

A = {i ∈ Zn : 0 ≤ ij < mj for j = 1, . . . , n} .

Let d be a positive integer, and suppose that
k∼ are equivalence relations on

A for k = 1, . . . , d. (For example, points are equivalent if they are on a line in

some direction characterized by k.) Let H
(k)
1 , . . . , H

(k)
tk

denote the equivalence

classes of
k∼. Finally, let %k : A → R>0 be so-called weight functions for

k = 1, . . . , d, and set % =
d
∑

k=1

%k. Now the above mentioned problems can be

formulated in the following more general way.

Problem 1. Let ckl be given real numbers for k = 1, . . . , d and l = 1, . . . , tk.
Construct a function g : A→ {0, 1} (if it exists) such that

∑

i∈H
(k)
l

g(i)%k(i) = ckl (k = 1, . . . d; l = 1, . . . tk) . (1)

It is important to note that equation (1) is certainly underdetermined with
respect to functions g : A→ Z. Moreover, the same may be true for solutions
g : A→ {0, 1}. For example, the function g given by

g :

0 1 1 0 1 0 1 0
1 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0
1 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1



4 L. Hajdu and R. Tijdeman

has the same row and column sums as f from Figure 1. Consequently, h :=
f−g has zero row and column sums. Vice versa, having a function h : A→ Z

with zero line sums, the line sums of g + h will coincide with those of g. It
turns out that the study of switching configurations over Z is much simpler
than that over {0, 1}. It is therefore important to note that the solutions to
Problem 1 can be characterized as the solutions of the following optimization
problem over Z.

Problem 2. Construct a function g : A→ Z (if it exists) such that (1) holds,
and

∑

i∈A

g(i)
2
%(i) is minimal .

Remark 1. If g is a solution to Problem 1, then g is a solution to Problem 2.
To show this, let f : A→ Z be any other solution to (1). Then we have

∑

i∈A

g(i)
2
%(i) =

∑

i∈A

g(i)%(i) =
∑

i∈A

f(i)%(i) ≤
∑

i∈A

f(i)
2
%(i) .

The idea used here, that a binary solution has small ”length”, has been used
in several papers, see e.g. [2, 3, 12].

Remark 2. We also mention that when the equivalence relations
k∼ mean that

the corresponding points are on the same lines in given directions, and the
weight functions %k are defined as certain powers of some real numbers βk ≥ 1
then in view of Remark 1, our problems just reduce to the classical problem
of emission tomography with absorption. In particular, when βk = 1 (%k = 1
for every k) we get back the classical problem on discrete tomography.

As we indicated, we will study the structure of the set of integral solutions
of equation (1). It turns out that in case of line sums there exists a minimal
configuration (the so-called switching atom) such that every integral solution
of the homogenized equation (1) (i.e. with ckl = 0) can be expressed as a linear
combination of shifts of one of the switching atoms. For the case of row and
column sums the switching atom is

(−1 1
1 −1

)

. In this chapter we characterize
and derive properties of switching configurations.

The structure of this chapter is as follows. In the next section we briefly
outline the main principles of our method. In Section 3 we give a complete
description of the set of integral solutions of (1) in case of the classical problem
of discrete tomography, for arbitrary dimension (see Theorem 1). Theorem 2
shows that if Problem 2 admits a solution, then a relatively small solution can
be found in polynomial time. In Section 4 we derive similar results for the case
of emission tomography with absorption, also for any dimension n. Finally, in
Section 5 we consider a new type of tomographical problems. Instead of lines,
the X-rays (in Z2) are assumed to be parallel shifts of the graph of a function
G : Z→ Z. It turns out that our machinery is applicable in this case, as well.
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2 The main principles of the method

In this section we summarize the main principles of our approach. Our method
relies on the following four fundamental observations.

1) If both functions f, g : A → Z are solutions to equation (1), then the
difference h := f − g is a solution to (1) with ckl = 0 for all k, l, that is to

∑

i∈H
(k)
l

h(i)%k(i) = 0 (k = 1, . . . d; l = 1, . . . tk) . (2)

So to characterize the set of integral solutions of (1), it is sufficient to know
one particular solution g together with all the solutions of (2).

2) Suppose that H1, . . . , Ht is a partition of A. Let f : A → Z and
fl : Hl → Z (l = 1, . . . , t) be given functions and write χf (x) =

∑

i∈A

f(i)xi for

the generating polynomial of f . Suppose that χfl
(x) =

∑

i∈Hl

fl(i)x
i vanishes

for l = 1, . . . , t, and that χf (x) =
t
∑

l=1

χfl
(x). Then χf (x) vanishes.

3) If χf (x) is divisible by polynomials P1(x), . . . , Ps(x) ∈ Z[x], then χf (x)
is divisible by lcm(P1(x), . . . , Ps(x)) in Z[x].

4) Let f be a solution to equation (2). Then in the cases investigated in
this chapter we have χf (x) = P (x)Q(x), where P corresponds to a ”minimal”
solution M to (2), and Q indicates which combination of the translates of M
yields f .

To illustrate how these principles work, we exhibit some examples.

Example 1 (row sums). Let n = 2, A = {(i, j) : 0 ≤ i < m1, 0 ≤ j < m2}
and Hl = {(i, l) : 0 ≤ i < m1} for l = 0, . . . ,m2 − 1. Let f : A → Z be a
given function. Define fl : Hl → Z for l = 0, . . . ,m2 − 1 by fl(i, l) = f(i, l)
(i = 0, . . . ,m1 − 1). Then

χf (x, y) =

m2−1
∑

l=0

χfl
(x, y) and χfl

(x, y) = yl
m2−1
∑

l=0

fl(i, l)x
i .

(i) Suppose
m1−1
∑

i=0

f(i, l) = 0 for l = 0, . . . ,m2 − 1, so we have vanishing

row sums. Then

χfl
(1, y) = yl

m1−1
∑

i=0

fl(i, l) = yl
m1−1
∑

i=0

f(i, l) = 0 for l = 0, . . . ,m2 − 1 .

Hence

χfl
(x, y) =

∑

(i,j)∈Hl

fl(i, j)x
iyj = yl

m1−1
∑

i=0

fl(i, l)x
i
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is divisible by x − 1 for l = 0, . . . ,m2 − 1. Thus χf (x, y) =
m2−1
∑

l=0

χfl
(x, y) is

divisible by x− 1.

(ii) Let β ∈ C, and suppose that
m1−1
∑

i=0

f(i, l)βi = 0 for l = 0, . . . ,m2 − 1.

Then

χfl
(β, y) = yl

m1−1
∑

i=0

fl(i, l)β
i = yl

m1−1
∑

i=0

f(i, l)βi = 0 for l = 0, . . . ,m2 − 1 .

Hence χfl
(x, y) is divisible by x−β over C for l = 0, . . . ,m2−1. Then χf (x, y)

is divisible by x− β over C. Since χf (x, y) ∈ Z[x, y], this implies that χf = 0
if β is a transcendental number and that χf (x, y) is divisible by the minimal
defining polynomial of β if it is an algebraic number.

Example 2 (column sums). Let n and A be as in Example 1, but now let
Hl = {(l, j) : 0 ≤ j < m2} for l = 0, . . . ,m1 − 1. Let f : A → Z be a given
function. Define now fl : Hl → Z for l = 0, . . . ,m1 − 1 by fl(l, j) = f(l, j)
(j = 0, . . . ,m2 − 1). Then

χf (x, y) =

m1−1
∑

l=0

χfl
(x, y) and χfl

(x, y) = xl
m2−1
∑

j=0

fl(l, j)y
j .

If β ∈ C such that
m2−1
∑

j=0

f(l, j)βj = 0 for l = 0, . . . ,m1−1, then χf = 0 if β

is transcendental and χf (x, y) is divisible by the minimal defining polynomial
of β if it is algebraic.

On combining Example 1 with β1 and Example 2 with β2 we obtain that

if
m1−1
∑

i=0

f(i, l)βi
1 = 0 for l = 0, . . . ,m2 − 1 and

m2−1
∑

j=0

f(l, j)βj
2 = 0 for l =

0, . . . ,m1− 1 then χf = 0 if β1 or β2 is transcendental and that otherwise χf

is divisible by the product of the minimal defining polynomials P1(x, 1) of β1

and P2(1, y) of β2 (as P1(x, 1) and P2(1, y) are coprime).

Example 3 (line sums). Let n and A be as in Example 1 and a, b ∈ Z. Without
loss of generality we may assume that a > 0. Suppose first that we have b ≤ 0.
Put Hl = {(i, j) : aj = bi+ l} for l = 0, . . . ,m with m = (m1−1)b+(m2−1)a.
Hence A is the disjoint union of the Hl. Define the functions fl : Hl → Z for
the above values of l by fl(i, j) = f(i, j) ((i, j) ∈ Hl), where f : A → Z is a
given function. Then

χf (x, y) =

m
∑

l=0

χfl
(x, y) where χfl

(x, y) =
∑

(i,j)∈Hl

fl(i, j)x
iyj .

Let β ∈ C, and suppose that
∑

(i,j)∈Hl

fl(i, j)β
i = 0 for l = 0, . . . ,m. Then



Algebraic Discrete Tomography 7

χfl
(x, y) =

∑

(i,j)∈Hl

fl(i, j)x
iy(bi+l)/a = yl/a

∑

(i,j)∈Hl

fl(i, j)(xyb/a)i = 0

for x = βy−b/a and l = 0, . . . ,m. It follows that χf (βy−b/a, y) ≡ 0. Equiv-
alently, χf (βy−b, ya) = 0. We conclude that χf = 0 if β is transcenden-
tal and that otherwise χf is divisible by the minimal defining polynomial of
xa/d − βa/dy−b/d where d = gcd(a, b) if β is algebraic. Similarly we find in
case b > 0 that χf is divisible by the minimal polynomial of xa/dyb/d − βa/d.

Combine Example 1 with β = β1 and Example 3 with a = 1, b = −1, β =

β
√

2
1 . Suppose

m1−1
∑

i=0

f(i, l)βi
1 = 0 for l = 0, . . . ,m2−1 and

∑

j=−i+l

f(i, j)β
√

2i
1 =

0 for l = 0, . . . ,m1 + m2− 2. Then χf is divisible by both polynomials x− β1

and x − β
√

2
1 y over C. By the theorem of Gelfond-Schneider we know that if

β1 6= 0, 1, then β
√

2
1 is transcendental if β1 is algebraic. Hence either β1 = 0

and χf is divisible by x, or β1 = 1 and χf is divisible by (x − 1)(x − y), or
χf = 0.

Combine Example 3 with a = 1, b = −1, β 6= 0 arbitrary and Example
3 with a = b = 1, and β−1 in place of β. Suppose

∑

j=−i+l

f(i, j)βi = 0 for

l = 0, . . . ,m1 + m2 − 2 and
∑

j=i+l

f(i, j)β−i = 0 for l = −m1 + 1, . . . ,m2 − 1.

Then χf is divisible by both polynomials x−βy and xy−β−1 over C. Hence χf

is identically zero if β is transcendental. If β is algebraic, then χf is divisible
by the product of the minimal polynomials of x− βy and xy − β−1.

Finally, combine Example 3 with a = 1, b = −1, β 6= 0 arbitrary and
Example 3 with a = 1, b = −1, β−1 in place of β. (The latter condi-
tion is equivalent with a = −1, b = 1, absorption coefficient β.) Suppose
∑

j=−i+l

f(i, j)βi =
∑

j=−i+l

f(i, j)β−i = 0 for l = 0, . . . ,m1 + m2 − 2. Then

χf = 0 if β is transcendental. If β is algebraic then χf (x, y) is divisible by
the minimal polynomial of xy − β, and, if the minimal polynomial of β is
non-reciprocal, even by the product of the minimal polynomials of x−βy and
x− β−1y.

3 Discrete tomography in nD

In [11] we developed a theory on switching configurations in case n = 2. In
this section we generalize it to arbitrary n.

3.1 Some notation

Let a ∈ Zn with gcd(a1, . . . , an) = 1, such that a 6= 0, and for the smallest
j with aj 6= 0 we have aj > 0. We call a a direction. By lines with direction
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a we mean lines of the form b + ta (b ∈ Rn, t ∈ R) in Rn. Let A be as in
the Introduction. By the help of a direction a we can define an equivalence
relation on A as follows. We call two elements of A equivalent if they are on
the same line with direction a. If g : A → Q is a function, then the line
sum of g along the line T = b + ta is defined as

∑

i∈A∩T

g(i). Note that the

line sums are in fact the ”class sums” from (1), corresponding to the above
defined equivalence.

We will work with polynomials F ∈ Q[x1, . . . , xn]. For brevity we write

x = (x1, . . . , xn) and xi =
n
∏

j=1

x
ij

j (i ∈ Zn). The generating polynomial of a

function g : A→ Q is defined as

χg(x) =
∑

i∈A

g(i)xi .

A set S = {ak}dk=1 of directions is called valid for A, if
d
∑

k=1

|akj | < mj for

any j = 1, . . . , n. Suppose that S is a valid set of directions for A. For a ∈ S

put fa(x) = (xa − 1)
∏

aj<0
x
−aj

j and set FS(x) =
d
∏

k=1

fak
(x). Let

U = {u : 0 ≤ uj < mj −
d
∑

k=1

|akj | (j = 1, . . . , n)} .

For u ∈ U put F(u;S)(x) = xuFS(x) and define the functions M(u;S) : A→ Z

by
M(u;S)(i) = coeff(xi) in F(u;S)(x) for i ∈ A .

The M(u;S)’s are called the switching atoms corresponding to the direction
set S. By the minimal corner of the switching atom M(0;S) we mean the
element i∗ ∈ A for which M(0;S)(i

∗) 6= 0, but M(0;S)(i) = 0, whenever i ∈ A
lexicographically precedes i∗. That is, i∗ is lexicographically the first element
of A for which the function value of M(0;S) is non-zero. It follows from the
definitions of fa and FS that

M(0;S)(i
∗) = ±1 .

Since it corresponds with the minimal corner of M(0;S), for every u ∈ U we
define the minimal corner of M(u;S) as i∗ + u. Again, the minimal corner of
M(u;S) is lexicographically the first element of A for which the function value
of M(u;S) is non-zero, and we also have

M(u;S)(i
∗ + u) = ±1 .

It is clear that a function g defined on A can be considered as a vector (a
n
∏

j=1

mj-tuple). If we want to emphasize this, we write g instead of g. We always



Algebraic Discrete Tomography 9

assume that the entries of these vectors are arranged according to elements of

A in lexicographical order. The length of g (or g) is |g| = |g| =
√

∑

i∈A

g(i)
2
.

3.2 The structure of the switching configurations

Our main result shows that every switching configuration is a linear combi-
nation of translates of the switching atom M(0;S).

Theorem 1. Let A be as before, S = {ak}dk=1 a valid set of directions for A,
and let R be one of Z or Q. Then any function g : A → R with zero line
sums along the lines corresponding to S can be uniquely written in the form

g =
∑

u∈U

cuM(u;S)

with some cu ∈ R (u ∈ U). Moreover, every such function g has zero line
sums along the lines corresponding to S.

Remark 3. As one can easily see from the proofs, if S is not valid for A, then
the only function having all its line sums zero is the identically zero function
on A.

To prove the theorem, we need the following lemma.

Lemma 1. Assume that a is a valid direction for A, and let R be one of Z

or Q. Then a function g : A → R has zero line sums along the lines with
direction a if and only if fa(x) divides χg(x) in R[x].

Proof. We give the proof only when aj > 0 (j = 1, . . . , n), the proof is similar
in all the other cases. Put B = {b : : b ∈ A, b − a 6∈ A}, and for b ∈ B set
Ib = max{t ∈ Z : b + ta ∈ A}. Observe that we can write

χg(x) =
∑

b∈B

Ib
∑

t=0

g(b + ta)xb+ta =
∑

b∈B

xb

Ib
∑

t=0

g(b + ta)xta =

= (xa − 1)
∑

b∈B

xb

Ib
∑

t=0

g(b + ta)

t−1
∑

s=0

xsa +
∑

b∈B

xb

Ib
∑

t=0

g(b + ta) .

As fa(x) = xa − 1 and the line sums of g in the direction a are given by
Ib
∑

t=0
g(b + ta), the lemma follows. ut
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Proof (of Theorem 1). By definition, for every u ∈ U the function F(u;S) is
divisible by fak

for any k with 1 ≤ k ≤ d. Hence by Lemma 1, M(u;S) has
zero line sums along all the lines corresponding to S. This proves the second
statement of Theorem 1.

Let now

H = {f : A→ R | f has zero line sums corresponding to S} .

We first prove that the switching atoms generate H. Suppose that g ∈ H.
Lemma 3 (from Section 4) implies that the polynomials fak

(x) are pairwise
non-associated irreducible elements of the unique factorization domain R[x].
Hence by Lemma 1 we obtain

FS(x) | χg(x) in R[x] .

Hence there exists a polynomial h(x) =
∑

u∈U

cuxu in R[x] such that χg(x) =

h(x)FS(x). We rewrite this equation as

χg(x) =
∑

u∈U

cuF(u;S)(x) .

Now by the definitions of χg(x) and the switching atoms M(u;S) we immedi-
ately obtain

g =
∑

u∈U

cuM(u;S) ,

which proves that the functions M(u;S) generate H.
Suppose now that for some coefficients lu ∈ R (u ∈ U) we have

∑

u∈U

luM(u;S)(i) = 0 for all i ∈ A .

By the definitions of the switching atoms, at the minimal corner of M(0;S) all
the other switching atoms vanish. This immediately implies l0 = 0. Running
through the switching atoms M(u;S) with u ∈ U in increasing lexicographical
order, we conclude that all the coefficients lu are zero. This shows that the
switching atoms are linearly independent, which completes the proof of the
theorem. ut

The following result is a consequence of Theorem 1.

Corollary 1. Let A, S and R be as in Theorem 1. Let C be the set of those
elements of A which are the minimal corners of the switching atoms. Then for
any f : A → R and for any prescribed values from R for the elements of C,
there exists a unique g : A→ R having the prescribed values at the elements
of C and having the same line sums as f along the lines corresponding to S.
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Proof. As every switching atom takes value ±1 at its minimal corner, we
obtain that there are unique coefficients cu ∈ R (u ∈ U) such that

g := f +
∑

u∈U

cuM(u;S)

has the prescribed values at the element of C. By the second statement of
Theorem 1 the line sums of f and g corresponding to S coincide. ut

3.3 Existence of ”small” solutions

We provide a polynomial-time algorithm for finding an approximation to f
having the required line sums. We first compute a function q : A→ Q having
the same line sums as f in the given directions by solving a system of linear
equations. Subsequently we use the structure of switching configurations to
find a function g : A → Z which is not far from q and f . The general result
is given in Theorem 2. It follows that in case when f has {0, 1} values the
algorithm provides a solution g : A→ Z satisfying (1) with |g(i)| ≤ 2d−1+1 on
average, where d is the number of directions involved. The function obtained
by replacing all function values of q which are greater than 1/2 by 1 and all
others by 0 provides a good first approximation to f in practice. In [12] an
algorithm is given, relying on this principle.

Theorem 2. Let A, d and S be as in Theorem 1. Let all the line sums in the
directions of S of some unknown function f : A → Z be given. Then there
exists an algorithm which is polynomial in max

j=1,...,n
{mj}, providing a function

g : A → Z such that f and g have the same line sums corresponding to S,
moreover

|g| ≤ |f |+ 2d−1

√

√

√

√

n
∏

j=1

mj . (3)

Proof. Put Nj =
d
∑

k=1

|akj | for j = 1, . . . , n. First, compute some function

q : A → Q having the same line sums as f . It can be done by solving the
system of linear equations provided by the line sums. This step is known to
be polynomial in max

j=1,...,n
{mj} (see e.g. [4], p. 48). We construct a function

s : A → Z with the same line sums as f . We follow the procedure used in
the second part of the proof of Theorem 1 and start with the minimal corner
i∗ of M(0;S). With an appropriate rational coefficient r0 with |r0| ≤ 1/2, the
value (q + r0M(0;S))(i

∗) will be an integer. We now continue in increasing
lexicographical order in i and choose coefficients ri subject to |ri| ≤ 1/2 such
that the value of (q+

∑

i′≤i

ri′M(i′;S))(i) is an integer. (Here≤ under the
∑

refers

to the lexicographical ordering.) Observe that the values at i′ (i′ < i) are not
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changed in the i-th step. After executing this procedure for the whole set C
of the minimal corners of the switching atoms, we obtain a function s having
integer values on C. By a similar process (taking the switching atoms one-
by-one, in increasing lexicographical order) we get that there exist integers tu

(u ∈ U) such that the values of f +
∑

u∈U

tuM(u;S) and s coincide on C. As these

functions have the same line sums corresponding to S, applying Corollary 1
with R = Q, we conclude that they are equal, hence s takes integer values
on the whole set A. Clearly, this construction of s needs only a polynomial
number of steps in max

j=1,...,n
{mj}.

Consider now all the functions as vectors (
n
∏

j=1

mj-tuples), and solve over

Q the following system of linear equations

(s,M(v;S)) =
∑

u∈U

c∗u(M(u;S),M(v;S))

in c∗u, where (., .) denotes the inner product of vectors and v runs through
the elements of U . As the switching atoms are linearly independent according
to Theorem 1, this system of equations has a unique solution. This can be
computed again in time which is polynomial in max

j=1,...,n
{mj}. Put g = s −

∑

u∈U

||c∗u||M(u;S), where ||α|| denotes the nearest integer to α. Observe that

s − ∑

u∈U

c∗uM(u;S) is just the projection of f (but also of q and s) onto the

orthogonal complement of the linear subspace generated by the switching
atoms. This implies

|g| ≤ |f |+

∣

∣

∣

∣

∣

∣

∑

u∈U

(c∗u − ||c∗u||)M(u;S)

∣

∣

∣

∣

∣

∣

.

There are at most 2d switching atoms which contribute to the value of any
fixed point, each with a contribution at most 1/2 in absolute value in the

above equation. Thus we may conclude |g| ≤ |f |+ 2d−1

√

n
∏

j=1

mj .

Finally, notice that all the steps of the above algorithm are polynomial in
max

j=1,...,n
{mj}. Thus the proof of Theorem 2 is complete. ut

Remark 4. We mention that if we know that Problem 1 admits a solution,

i.e. f has {0, 1} values in the above theorem, then |f | =

√

tk
∑

l=1

ckl (for any

k = 1, . . . , d), whence we get |g| ≤ (2d−1 + 1)

√

n
∏

j=1

mj . Moreover, as noted in
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the proof of Theorem 2 we can replace |f | with |q| (or with |s|) in the upper
bound (3). Therefore an upper bound for |g| can be given which only depends
on the line sums and the directions.

3.4 Dependencies among the line sums

Obviously, the sum of all row sums of a function f : A → Z coincides with
the sum of all column sums of f . In this subsection we give a simple formula
for the number of dependencies among the line sums corresponding to S.

Let A, S and FS(x) be as above, and write Nj for the degree of FS in
xj (j = 1, . . . , n). Then by Theorem 1 the switching atoms form a basis

of a module of dimension
n
∏

j=1

(mj − Nj) over Z. Suppose that LS denotes

the number of line sums for A corresponding to the directions in S, and let
DS denote the number of dependencies among these line sums. Then as the

number of unknowns is
n
∏

j=1

mj , elementary linear algebra tells us that

DS = LS +

n
∏

j=1

(mj −Nj)−
n
∏

j=1

mj .

In particular, if n = 2 then there are akm2+|bk|m1−ak|bk| line sums belonging
to a direction (ak, bk) ∈ S. Hence in this case as ak ≥ 0 we have

DS = m2

d
∑

k=1

ak + m1

d
∑

k=1

|bk| −
d
∑

k=1

ak|bk|+

+

(

m1 −
d
∑

k=1

ak

)(

m2 −
d
∑

k=1

|bk|
)

−m1m2 =
d
∑

k=1

ak

d
∑

k=1

|bk| −
d
∑

k=1

ak|bk| .

4 Emission tomography with absorption

In this chapter we generalize the results from [13] which were presented for
dimension 2 to the case of general dimension.

To model the physical background of emission tomography with absorp-
tion, consider a ray (such as light or X-ray) transmitting through homogeneous
material. Let I0 and I denote the initial and the detected intensities of the
ray. Then

I = I0 · e−µx ,

where µ ≥ 0 denotes the absorption coefficient of the material, and x is the
length of the path of the ray in the material. We put β = eµ, and we call β the
exponential absorption coefficient. We mention that as µ ≥ 0, we have β ≥ 1.
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Note that by the absorption we have to work with directed line sums which do
not only depend on the line, but also on the direction of the radiation through
that line.

We further assume that g represents (radio-active) material which is emit-
ting radiation. If g(i) = 1, then there is a unit of radiating material at i,
otherwise g(i) = 0 and there is no such material at i.

As we have absorption, we attach some absorption coefficient to each di-
rection. Hence we slightly adjust our previous notation. Let d be a positive
integer, and let S = {(ak, βk) : k = 1, . . . , d} be a set, where ak ∈ Zn with
gcd(ak1, . . . , akn) = 1 for k = 1, . . . , d, and for the real numbers βk we have
βk ≥ 1. For k = 1, . . . , d put Bk = {b ∈ A : b + ak /∈ A}, and for any i ∈ A let
s(i,k) denote the integer for which i = b− (s(i,k) − 1)ak with some b ∈ Bk. By
the directed absorption line sum of g along the line T = b−tak (b ∈ Bk, t ∈ Z)
we mean

∑

i∈T∩A

g(i)β
−s(i,k)

k .

(Here there is a hidden assumption on the shape of the absorbing material,
but this is irrelevant for the switching configurations.) In Figure 1 in the
Introduction we illustrated how directed absorption line sums are interpreted.

Let i1
k∼ i2 for i1, i2 ∈ A and k = 1, . . . , d if and only if i1 − i2 = tak for

some t ∈ Z, and write H
(k)
1 , . . . , H

(k)
tk

for the equivalence classes of
k∼. Taking

arbitrary real numbers ckl (k = 1, . . . , d; l = 1, . . . , tk), equation (1) is just
given by

∑

i∈H
(k)
l

g(i)β
−s(i,k)

k = ckl (k = 1, . . . d; l = 1, . . . tk) . (4)

Thus in this case Problem 1 is the standard problem in emission tomography
with absorption. (See also the DA2D(β) reconstruction problem in [19] for the
two dimensional case.)

If the absorption is independent of the direction, then βk = eµ|a|, since |a|
is the distance between consecutive lattice points on the line b− ta. However,
we prefer to leave the possibility open that the absorption coefficient depends
on the direction in which the medium is passed. Our definition of s(i,k) makes
it possible to distinguish between two opposite directions. Thus b − ta and
b− t(−a) represent the same line, but opposite directions.

Finally, we mention that in case when βk = 1 (k = 1, . . . , d) the problem
reduces to the classical problem of discrete tomography.

4.1 The structure of the switching configurations

In this section we give a full description of the set of solutions g : A → Z

to (4). First we consider the case when ckl = 0 for all k = 1, . . . , d and
l = 1, . . . , tk, that is when all the directed absorption line sums of g are zero.
For this purpose we need some further notation.
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First we note that if any of the βk-s is transcendental, then f is uniquely
determined by its directed absorption line sums in the corresponding direction
ak. Hence from this point on we assume that all the exponential absorption
coefficients are algebraic.

Let a ∈ Zn be a direction (i.e. gcd(a1, . . . , an) = 1). Let β be a non-zero
algebraic number of degree r, and let Pβ(z) be the defining polynomial of β
having coprime integral coefficients. Put

f(a,β)(x) = Pβ(xa)
∏

aj<0

x
−raj

j .

Hence f(a,β)(x) ∈ Z[x].
In the proof we shall make use of a fundamental correspondence between

functions g : A→ Z and polynomials in n variables. Namely, to such a function
g we attach the polynomial

χg(x) =
∑

i∈A

g(i)xi .

Then into direction a the line sums of g are the coefficients of χg(x) ”modulo”
f(a,β). The polynomials are pairwise coprime except for some well-described
special cases, when they are conjugate. Therefore the polynomial FS defined
below represents the least common multiple of the polynomials f(ak,βk). Let
S = {(ak, βk) : k = 1, . . . , d} be a set, where for each k, ak is a direction and
βk is a real algebraic number with βk ≥ 1 of degree rk. Two elements (ak, βk)
and (ac, βc) of S are equivalent, if ak = ac and βk and βc are algebraically
conjugated elements, or ak = −ac and βk and 1/βc are algebraically conju-
gated elements. Let S∗ be a subset of S containing exactly one element of S
from each class of this equivalence relation. Put

FS(x) =
∏

(ak,βk)∈S∗

f(ak,βk)(x) .

We say that S is valid for A, if Nj := degxj
(FS(x)) < mj (j = 1, . . . , n).

Put U = {u ∈ Zn : 0 ≤ uj < mj − Nj (j = 1, . . . , n)}. For u ∈ U set
F(u;S)(x) = xuFS(x), and define the functions M(u;S) : A→ Z by

M(u;S)(i) = coeff(xi) in F(u;S)(x) for i ∈ A .

The functions M(u;S) are called the switching atoms corresponding to the set
S. By the minimal corner of the switching atom M(0;S) we mean the element
i∗ which is lexicographically the first element of A for which the function value
of M(0;S) is non-zero. The minimal corner of M(u;S) is i∗ + u.

Our main result in this section shows that switching configurations can be
obtained as combinations of shifts of the switching atom M(0;S) also in the
case of emission tomography.
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Theorem 3. Let A, S and M(u;S) be as above, with the assumption that S is
valid for A. Then any function g : A → Z with zero directed absorption line
sums corresponding to the pairs (ak, βk) of S can be uniquely written in the
form

g =
∑

u∈U

cuM(u;S)

with cu ∈ Z (u ∈ U). Moreover, every such function g has zero directed
absorption line sums corresponding to the elements of S.

Remark 5. Note that if S is not valid for A, then there is no non-trivial f
having zero directed absorption line sums in the directions given by S. This
fact simply follows from the proof of Theorem 3.

As an illustration, we give two examples (partly from [13]).

Example 4. First we consider a similar situation as Kuba and Nivat do in
[19], however, in Z3. Let S = {((−1, 0, 0), β), ((0, 1, 0), β), ((0, 0, 1), β)}, where
β = (1 +

√
5)/2. Then we have Pβ(z) = z2 − z − 1 and

f((−1,0,0),β)(x1, x2, x3) = −x2
1 − x1 + 1, f((0,1,0),β)(x1, x2, x3) = x2

2 − x2 − 1

and
f((0,0,1),β)(x1, x2, x3) = x2

3 − x3 − 1 .

Thus we obtain

FS(x1, x2, x3) = (x2
1x

2
2−x2

1x2−x2
1+x1x

2
2−x1x2−x1−x2

2+x2+1)(1+x3−x2
3)

and N1 = N2 = N3 = 2. So if A is of type m1×m2×m3 with m1,m2,m3 ≥ 3,
then S is a valid set for A. Now M(0;S) is given by

0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0
−1 1 1 0 . . . 0
1 −1 −1 0 . . . 0
1 −1 −1 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0
−1 1 1 0 . . . 0
1 −1 −1 0 . . . 0
1 −1 −1 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0
1 −1 −1 0 . . . 0
−1 1 1 0 . . . 0
−1 1 1 0 . . . 0

where these tables represent the values of M(0;S) on the ”slices” corresponding
to the coefficients of 1, x3, x

2
3 in FS , respectively. (All the other values are

zero.) The switching atoms M(u;S) (u ∈ U) form a basis of the set of functions
g : A→ Z having zero line sums corresponding to the three elements of S.

Example 5. Now we consider an example for n = 2 where both opposite di-
rections and different exponential absorption coefficients occur. Let

S = {((−1, 0), β), ((1, 0), β), ((0,−1), γ), ((0, 1), δ)}
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with β = (1 +
√

5)/2, γ = 2 +
√

2 and δ = γ/2. We obtain Pβ(z) = z2− z− 1,
Pγ(z) = z2 − 4z + 2 and Pδ(z) = 2z2 − 4z + 1. We have

f((−1,0),β)(x1, x2) = −x2
1 − x1 + 1, f((1,0),β)(x1, x2) = x2

1 − x1 − 1

and
f((0,−1),γ)(x1, x2) = f((0,1),δ)(x1, x2) = 2x2

2 − 4x2 + 1 ,

as γ and 1/δ are associated elements. We get

FS(x1, x2) = −2x4
1x

2
2 + 4x4

1x2 − x4
1 + 6x2

1x
2
2 − 12x2

1x2 + 3x2
1 − 2x2

2 + 4x2 − 1

and N1 = 4, N2 = 2. So if A is of type m1 ×m2 with m1 ≥ 5 and m2 ≥ 3,
then S is a valid set for A. Now M(0;S) is given by

0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0
−2 0 6 0 −2 0 . . . 0
4 0 −12 0 4 0 . . . 0
−1 0 3 0 −1 0 . . . 0

and the switching atoms M(u;S) (u ∈ U) form a basis of the set of functions
g : A→ Z having zero line sums corresponding to the four elements of S.

To prove Theorem 3, we need several lemmas. To keep this exposition
self-contained, we include their proofs. Lemma 2 shows the correspondence
between zero line sums and division by polynomials. Note that line sums of
functions A→ L are defined in the obvious way.

Lemma 2. Let A be as before, a a direction, and β a non-zero algebraic num-
ber. Let L be some field containing the splitting field of Pβ(z). Put

f̃(a,β)(x) = (xa − β)
∏

aj<0

x
−aj

j .

Then a function g : A→ L has zero line sums corresponding to the pair (a, β)
if and only if f̃(a,β)(x) divides χg(x) in L[x].

Proof. We prove the lemma only with aj > 0 (j = 1, . . . , n), as the other cases
can be treated similarly.

Put B = {b ∈ A : b + a /∈ A} and let Ib be the number of the points of A
on the line b− ta (b ∈ B, t ∈ Z). Observe that we may write

χg(x) =
∑

b∈B

Ib−1
∑

s=0

g(b− sa)xb−sa =
∑

b∈B

xb

Ib−1
∑

s=0

g(b− sa)x−sa .
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If xa−β divides χg(x) in L[x], then after substituting x1 ← β1/a1

n
∏

j=2

x
aj/a1

j

the polynomial χg(x) becomes identically zero. This yields that
Ib−1
∑

s=0
g(b −

sa)β−s vanishes for every b ∈ B, hence g has zero absorption line sums cor-
responding to (a, β). This proves the ‘if’ part of the statement.

To prove the ‘only if’ part, suppose that all the line sums

Ib−1
∑

s=0

g(b− sa)β−s−1 = β−Ib

Ib−1
∑

s=0

g(b− (Ib − s− 1)a)βs (b ∈ B)

of g corresponding to (a, β) vanish. This means that β is a root of the polyno-

mial Qb(z) :=
Ib−1
∑

s=0
g(b− (Ib− s− 1)a)zs for each b ∈ B. Thus for every b ∈ B

the polynomial Qb(x
a) is divisible by xa − β over L. Hence xa − β divides

χg(x) =
∑

b∈B

xb+(1−Ib)aQb(x
a) in L[x], and the lemma follows. ut

Lemma 3. Using the notation of Lemma 2, write r for the degree and β(c)

(1 ≤ c ≤ r) for the conjugates of β. Then the polynomials f̃(a,β(c))(x) (1 ≤
c ≤ r) defined in Lemma 2 are pairwise non-associated irreducible elements
in L[x].

Proof. As gcd(a1, . . . , an) = 1, the irreducibility of these polynomials is a
simple consequence of Corollary 2 of [23] p. 103. The statement that the
polynomials are pairwise non-associated, is trivial. ut

Corollary 2. The polynomials Pβ(xa)
∏

aj<0
x
−raj

j are irreducible in Z[x].

Proof. We prove the statement only for aj > 0 (j = 1, . . . , n), the other cases
are similar.

Let β(c) (1 ≤ c ≤ r) be the conjugates of β, and let L be the splitting field
of Pβ over Q. Then, in view of

Pβ(xa) = c0

r
∏

c=1

(xa − β(c))

where c0 is the leading coefficient of Pβ , the statement immediately follows
from Lemma 3. ut

In the next lemma we show that the divisibility property of χg over L in
Lemma 2 implies a stronger property over Z.

Lemma 4. Let a and β be as in Lemma 2. Using the previous notation, a
function g : A→ Z has zero line sums corresponding to the pair (a, β) if and

only if Pβ(xa)
∏

aj<0
x
−raj

j divides χg(x) in Z[x].
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Proof. The ‘if’ part of the statement easily follows from Lemma 2. We prove
the ‘only if’ part only for aj > 0 (j = 1, . . . , n), the other cases can be handled
similarly. In this case observe that by Lemma 2, xa−β divides χg(x) over any
field L which contains the splitting field of Pβ(z). However, by conjugation,
for every conjugate β(c) of β, xa − β(c) also divides χg(x) in L[x]. By Lemma
3 this assertion immediately implies the statement. ut

It follows from Corollary 2 and the following Lemma 5 that the division
polynomials in non-parallel directions are coprime, and in parallel directions
are coprime or associated.

Lemma 5. Let a, a∗ be directions, and β, β∗ be non-zero algebraic numbers
of degrees r and r∗, respectively. Then the polynomials Pβ(xa)

∏

aj<0
x
−raj

j and

Pβ∗(xa∗

)
∏

a∗

j
<0

x
−r∗a∗

j

j are associated in Z[x] if and only if either a = a∗ and β

and β∗ are conjugated, or a = −a∗ and β and 1/β∗ are conjugated.

Proof. The ‘if’ part of the statement is trivial. Suppose that Pβ(xa)
∏

aj<0
x
−raj

j

and Pβ∗(xa∗

)
∏

a∗

j
<0

x
−r∗a∗

j

j are associated. Then the degrees of β and β∗ must

be equal, i.e. r = r∗. For 1 ≤ c ≤ r let β(c) and β∗(c) be the conjugates of β
and β∗, respectively. Let L be any field which contains the splitting fields of
both Pβ and Pβ∗ . Then we have the factorizations

Pβ(xa)
∏

aj<0

x
−raj

j =
r
∏

c=1

f̃(a,β(c))(x)

and

Pβ∗(xa∗

)
∏

a∗

j
<0

x
−r∗a∗

j

j =

r
∏

c=1

f̃(a∗,β∗(c))(x)

in L[x], where the polynomials on the right hand sides are defined in Lemma
2. By our assumption and Lemma 3 we obtain that for each c1 with 1 ≤
c1 ≤ r there exists a c2 also with 1 ≤ c2 ≤ r, such that f̃(a,β(c1))(x) and

f̃(a∗,β∗(c2))(x) are associated elements in L[x]. By comparing the exponents
of xj (j = 1, . . . , n) in these polynomials, we get that a = ±a∗ holds, and

for the corresponding pairs (c1, c2), β(c1) = β∗(c2) or β(c1)β∗(c2) = 1 is valid,

respectively. This yields that {β(c) : 1 ≤ c ≤ r} = {β∗(c) : 1 ≤ c ≤ r} or

{β(c) : 1 ≤ c ≤ r} = {1/β∗(c) : 1 ≤ c ≤ r}, respectively, which establishes
the ‘only if’ part of the statement. The proof of the lemma is now complete.

ut

Proof (of Theorem 3). By definition, for every u ∈ U the function F(u;S) is
divisible by f(ak,βk) for any k with 1 ≤ k ≤ d. Hence by Lemma 2 M(u;S)
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has zero line sums corresponding to the pairs in S. This proves the second
statement of the theorem.

Let

H = {f : A→ Z | f has zero absorption line sums for the elements of S} .

We first prove that the switching atoms M(u;S) (u ∈ U) generate H. Combin-
ing Corollary 2 and Lemmas 4 and 5, for any g ∈ H we obtain

FS(x) | χg(x) in Z[x] .

Hence there exists a polynomial Q(x) =
∑

u∈U

cuxu with cu ∈ Z (u ∈ U) such

that Q(x)FS(x) = χg(x). We rewrite this equation as

χg(x) =
∑

u∈U

cuF(u;S)(x) .

Now by the definitions of χg(x) and the switching atoms M(u;S) we immedi-
ately obtain

g =
∑

u∈U

cuM(u;S) ,

which proves that the functions M(u;S) generate H.
Suppose now that for some coefficients lu ∈ Z we have

∑

u∈U

luM(u;S)(i) = 0 for i ∈ A . (5)

By the definitions of the switching atoms, at the minimal corner of M(0;S) all
the other switching atoms vanish. This immediately implies l0 = 0. Consid-
ering now M(u;S) with u ∈ U in increasing lexicographical order, we conclude
that all the coefficients lu are zero in (5). This shows that the switching atoms
are linearly independent, which completes the proof of the theorem. ut

Remark 6. Similarly as in case of the classical problem of discrete tomography
in Section 3, it would be possible to provide an algorithm that produces a
”small” integral solution to (1) in case of emission tomography. We omit the
details.

5 Tomography on curves

In this section we illustrate that our method is rather flexible in the sense
that variations to other sums than line sums are possible. In this more gen-
eral case there do not exist translation invariant switching atoms. However,
our polynomial method allows us to construct non-trivial configurations with
vanishing sums and characterize such configurations in Theorems 4 and 5.
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We shall illustrate the method in two dimensions by examples where sums
are taken over sets of the shape Hk = {(i, j) ∈ A : akj = bkG(i) + t}
where G : Z → Z, t ∈ Z and the (ak, bk) are distinct pairs of co-
prime integers for k = 1, . . . , d. The basic idea is that to the given function
g : A → Z we adjoin the ”generating” polynomial

∑

(i,j)∈A

g(i, j)xG(i)yj (in-

stead of
∑

(i,j)∈A

g(i, j)xiyj). Since akj = bkG(i)+ t the exponent pairs (G(i), j)

for (i, j) ∈ Hk are on the lines aky = bkx + t. So the sums over Hk turn into
line sums and we can apply the preceding theory. Doing so we find switch-
ing atoms. The problem is to return to the original situation, where there is
no linear structure. However, by constructing polynomials with exponents of
prescribed form which are multiples of the switching atom polynomial, we are
able to construct configurations with vanishing sums for all given Hk. We give
two examples.

Example 6 (broken line sums). We consider the situation where light (or X-
ray) entering from the left along the halfline ay = bx + t (x ≤ 0) is broken
when reaching the y-axis and continues along the halfline ay = cbx+t (x > 0),
where c is a given integer.

To describe this case, we slightly need to adjust our previous settings. Let
m1,m2 be positive integers and n1 a negative integer. Put

A = {(i, j) ∈ Z2 : n1 ≤ i < m1, 0 ≤ j < m2} ,

and let ak, bk (k = 1, . . . , d) and c be non-zero integers with gcd(ak, bk) = 1
and ak ≥ 0 (k = 1, . . . , d). Set

Tkt = {(i, j) ∈ Z2 : i ≤ 0, akj = bki + t} ∪ {(i, j) ∈ Z2 : i > 0, akj = cbki + t}

for k = 1, . . . , d and t ∈ Z. Let (i1, j1)
k∼ (i2, j2) for (i1, j1), (i2, j2) ∈ A and

k = 1, . . . , d if and only if these points belong to the same set Tkt for some

integer t. Write H
(k)
1 , . . . , H

(k)
tk

for the equivalence classes of
k∼ on A. These

classes are in fact the intersections of the broken lines Tkt with A. By the
broken line sums corresponding to (ak, bk) of a given function g : A→ Z we
mean the expressions

ckl :=
∑

(i,j)∈H
(k)
l

g(i, j) for k = 1, . . . , d; l = 1, . . . , tk . (6)

Note that (6) is a special case of equation (1), with unit weights %k = 1
(k = 1, . . . , d).

With the above modifications we can apply our machinery to the broken
line case as well. First we introduce some further notation.

Let S = {(ak, bk)}dk=1 with (ak, bk) as above, and write N1 =
d
∑

k=1

ak and

N2 =
d
∑

k=1

|bk|. We say that S is valid for A, if N1 < m1 − n1 and N2 < m2.
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For k = 1, . . . , d put

fk(x, y) =

{

xakybk − 1, if bk ≥ 0

xak − y−bk , if bk < 0 ,

and set FS(x, y) =
d
∏

k=1

fk(x, y).

In view of the broken lines, we define

χg(x, y) = x−n1





0
∑

i=n1

m2−1
∑

j=0

g(i, j)xiyj +

m1−1
∑

i=1

m2−1
∑

j=0

g(i, j)xciyj



 .

as the ”generating” polynomial of g : A → Z. Note that the factor x−n1 is
introduced only to keep the exposition inside Z[x, y].

For the solutions of (6) we have the following

Theorem 4. Let A and S be as above, with the assumption that S is valid
for A. Then a function g : A → Z has zero broken line sums corresponding
to S if and only if χg(x, y) is divisible by FS(x, y) in Z[x, y].

Proof. Let g : A→ Z be an arbitrary function and let (a, b) ∈ S. For simplicity
we assume that b ≥ 0, the case when b < 0 is similar. Observe that we can
write

χg(x, y) = x−n1

∑

t∈Z









0
∑

i=n1

∑

aj=bi+t

0≤j<m2

g(i, j)xiyj +

m1−1
∑

i=1

∑

aj=cbi+t

0≤j<m2

g(i, j)xciyj









=

x−n1

∑

b∈Z

yt/a









0
∑

i=n1

∑

aj=bi+t

0≤j<m2

g(i, j)(xyb/a)i +

m1−1
∑

i=1

∑

aj=cbi+t

0≤j<m2

g(i, j)(xyb/a)ci









.

Now just as previously (see e.g. the proof of Theorem 1) we obtain that g has
zero broken line sums corresponding to (a, b) ∈ S if and only if xayb−1 divides
χg(x, y) in Z[x, y]. Observing that the polynomials fk(x, y) (k = 1, . . . , d) are
pairwise coprime (in fact prime) elements of Z[x, y], the theorem follows. ut

We illustrate the above theory by the example when S = {(1, 1), (3, 1)}
and c = 2. In this case the broken line sums are calculated in accordance with
Figure 2. Moreover, we have

FS(x, y) = (xy − 1)(x3y − 1) = x4y2 − x3y − xy + 1 .

Theorem 4 gives that g : A→ Z has zero broken line sums corresponding to S
if and only if FS divides χg over Z. Hence to present a non-trivial example, we
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3y=x+t2

y=x+t1
3y=2x+t2

y=2x+t1

x

y

Fig. 2. Broken lines corresponding to S = {(1, 1), (3, 1)} and c = 2.

should find a non-zero multiple of FS in which all the exponents of x greater
than some non-negative integer are even. For switching configurations entirely
contained in {(x, y) : x ≤ 0} or in {(x, y) : x > 0} the theory of Section 3
applies. Suppose we want a switching configuration with ”minimal corner” at
(−3, 0). Then all exponents of x in χg greater than 3 should be odd. We have

(xy + 1)FS(x, y) = x5y3 − x3y − x2y2 + 1 = x3(x2y3 − y − x−1y2 − x−3) .

Hence if n1 ≤ −3, m1 ≥ 3 and m2 ≥ 4 then the function g : A → Z

represented by
0 ... 0 0 0 0 0 0 0 ... 0
...

...
...

...
...

...
...

...
...

...
...

0 ... 0 0 0 0 0 0 0 ... 0
0 ... 0 0 0 0 0 1 0 ... 0
0 ... 0 0 0 −1 0 0 0 ... 0
0 ... 0 0 0 0 −1 0 0 ... 0
0 ... 0 1 0 0 0 0 0 ... 0

↑

has zero broken line sums along the corresponding broken lines. Here ↑ indi-
cates the y-axis.

Example 7 (parabola sums). We consider the situation when the X-rays (or
light) pass along parabolas ay = bx2 + t (x ≥ 0).

Let A be as before, and let ak, bk be coprime non-zero integers with ak ≥ 0

(k = 1, . . . , d) . Let (i1, j1)
k∼ (i2, j2) for (i1, j1), (i2, j2) ∈ A and k = 1, . . . , d

if and only if bk(i21 − i22) = ak(j1 − j2) (i.e. for some integer tk we have
bki21 = akj1 − tk and bki22 = akj2 − tk, that is, these points lay on the same
vertical translate of the graph of the function aky = bkx2). Further, write

H
(k)
1 , . . . , H

(k)
tk

for the equivalence classes of
k∼ on A. Let a function g : A→ Z

be given. By the parabola sums of g corresponding to (ak, bk) we mean the
expressions
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ckl :=
∑

(i,j)∈H
(k)
l

g(i, j) for k = 1, . . . , d; l = 1, . . . , tk . (7)

Obviously, (7) is a special case of equation (1) with %k = 1 (k = 1, . . . , d).
As it will turn out, with the modifications indicated above we can apply

our previous results to this case. We need, however, some notation. Let S, N1,
N2, fk(x, y) and FS(x, y) be defined as in case of broken lines.

We choose
χg(x, y) =

∑

(i,j)∈A

g(i, j)xi2yj

as the ”generating” polynomial of g : A→ Z.
For the solutions of (7) we have the following

Theorem 5. Let A and S be as above, with the assumption that S is valid
for A. Then a function g : A → Z has zero parabola sums corresponding to
S if and only if χg(x, y) is divisible by FS(x, y) in Z[x, y].

Proof. Let g : A→ Z be an arbitrary function and let (a, b) ∈ S. For simplicity
we assume that b ≥ 0, the case when b < 0 is similar. Observe that we can
write

χg(x, y) =
∑

t∈Z

∑

aj=bi2+t

(i,j)∈A

g(i, j)xi2yj =
∑

t∈Z

yt/a
∑

aj=bi2+t

(i,j)∈A

g(i, j)(xyb/a)i2 .

Now similarly as e.g. in the proof of Theorem 1, one can easily verify that g has
zero parabola sums corresponding to (a, b) ∈ S if and only if xayb − 1 divides
χg(x, y) in Z[x, y]. As the polynomials fk(x, y) (k = 1, . . . , d) are pairwise
coprime elements of Z[x, y], the theorem follows. ut

We illustrate the example by analyzing two particular cases. We start with
S = {(1, 1), (1, 2)}, i.e. the parabolas are given by y = x2+t1 and y = 2x2+t2,
respectively. In this case we have

FS(x, y) = (xy − 1)(xy2 − 1) = x2y3 − xy2 − xy + 1 .

Theorem 5 gives that g : A → Z has zero parabola sums corresponding to
S if and only if FS divides χg over Z. The problem, however, is to find some
non-zero multiple of FS such that all the exponents of x are squares. Suppose
we want a switching configuration with ”minimal corner” at the origin. One
can readily verify that

(x2y4+xy3+xy2+y2+y+1)FS(x, y) = x4y7−xy4−xy3−xy2−xy+y2+y+1 .

Thus if m1 ≥ 2 and m2 ≥ 8 then the function g : A→ Z represented by
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0 0 0 0 ... 0
...

...
...

...
...

...
0 0 0 0 ... 0
0 0 1 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 −1 0 0 ... 0
0 −1 0 0 ... 0
1 −1 0 0 ... 0
1 −1 0 0 ... 0
1 0 0 0 ... 0
↑

provides a non-trivial configuration having zero parabola sums along the
parabolas y = x2 + t1 and y = 2x2 + t1 for any t1, t2 ∈ Z.

Finally, we consider S = {(1, 1), (1, 2), (1, 3)}, i.e. we have three parabolas
given by y = x2 + t1, y = 2x2 + t2 and y = 3x2 + t3, respectively. Now we
have

FS(x, y) = (xy − 1)(xy2 − 1)(xy3 − 1) =

= x3y6 − x2y5 − x2y4 − x2y3 + xy3 + xy2 + xy − 1 .

By Theorem 5 we know that g : A→ Z has zero parabola sums corresponding
to S if and only if FS divides χg over Z. The problem is again to find some
non-zero multiple of FS in which all the exponents of x are squares. One can
easily check that the polynomial

(y26 +y25 +2y24 +y23 +y22)x9− (y21 +y20 +2y19 +2y18 +3y17 +3y16 +4y15+

+4y14 + 4y13 + 3y12 + 3y11 + 2y10 + 2y9 + y8 + y7)x4 + (y15 + 2y14 + 4y13+

+6y12+8y11+9y10+10y9+10y8+10y7+9y6+8y5+6y4+4y3+2y2+y)x−(y12+

+2y11 + 4y10 + 5y9 + 7y8 + 7y7 + 8y6 + 7y5 + 7y4 + 5y3 + 4y2 + 2y + 1)

is a multiple of FS in Z[x, y]. Hence we obtain a non-trivial g : A→ Z having
zero parabola sums along the three parabolas by replacing x9 with x3 and x4

with x2 and making the corresponding table.
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