
Algebraic Distance on Graphs

Jie Chen∗ Ilya Safro†

Abstract

Measuring the connection strength between a pair of vertices in a graph is one of the most
vital concerns in many graph applications. Simple measures such as edge weights may not be
sufficient for capturing the local connectivity. In this paper, we consider a neighborhood of
each graph vertex and propagate a certain property value through direct neighbors. We present
a measure of the connection strength (called the algebraic distance) defined from an iterative
process based on this consideration. The proposed measure is attractive in that the process is
simple, linear, and easily parallelized. A rigorous analysis of the convergence property of the
process confirms the underlying intuition that vertices are mutually reinforced and that the local
neighborhoods play an important role in influencing the vertex connectivity. We demonstrate
the practical effectiveness of the proposed measure through several combinatorial optimization
problems on graphs and hypergraphs.

1 Introduction

Measuring the connectivity between two vertices in a graph is one of the central questions in
many theoretical and applied areas in computer science. Sometimes, the edge weights are artificial
quantities assigned to each edge to distinguish how close the vertices are to each other. However,
such assignments may not always be possible or sufficient because of practical limitations, including
a lack of other than Boolean information and the difficulty in determining all pairwise vertex
relationships. In many graph algorithms, we often need to choose a best suitable pair of vertices
(e.g., the heaviest edge). In such situations, a greedy strategy might have to arbitrarily break the
ties due to equal edge weights (without a better choice). A better performance might be possible if
the strategy could recognize a pair of vertices that are not connected by an edge but pose a strong
indirect connection (e.g., for node merging).

Because of the practical significance of vertex connectivity, many algorithms have been proposed
to model it. Examples include the length of the shortest path, the number of simple paths between
a pair of vertices, maximum flows, and minimum edge cuts/vertex separators. In a random-walk
approach [10, 24], the average first-passage time/cost and average commute time were used. A
similarity measure between nodes of a graph integrating indirect paths, based on the matrix-forest
theorem, was proposed in [4]. Effective resistance [13] was used to model a connectivity with

∗Department of Computer Science and Engineering, University of Minnesota at Twin Cities, MN 55455. Email:
jchen@cs.umn.edu. Work of this author was supported by NSF grant DMS-0810938, a University of Minnesota
Doctoral Dissertation Fellowship, and the CSCAPES institute, a DOE project.

†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. Email:
safro@mcs.anl.gov. This work was funded by the CSCAPES institute, a DOE project, and in part by DOE
Contract DE-AC02-06CH11357.

1

electrical circuit conductance. A convergence of the compatible relaxation [1] was measured in
algebraic multigrid (AMG) schemes [2] in order to detect strong connections between fine and coarse
points. A similarity method based on a probabilistic interpretation of a diffusion was introduced
in [20]. Our goal is to design a family of algorithms (and measures) that are fast and easy to
implement and parallelize and that can be applied locally to the data.

The proposed family of measures is called the algebraic distance. We will give a formal definition
in Section 2; for now we note that the algorithm is a stationary iterative process that propagates
some information about every node to its neighborhood. After a few iterations, the propagated
values define a distance between all pairs of nodes. Conceptually, a small distance means a strong
connection because, by the propagation, closely connected vertices will converge to similar values.

The definition of the algebraic distance is motived by the bootstrap AMG (BAMG) method [3]
for solving a symmetric positive definite system Ax = b. In this method, a Gauss-Seidel (GS)
process is run on the matrix A in order to expose the slow-to-converge variables xi allow a better
interpolation of the low residual errors. In our definition, hence the iterative process is essentially
a Jacobi overrelaxation (JOR) process run on the graph Laplacian matrix. Recently, the algebraic
distance was used as a component of an AMG-based coarsening scheme for graph linear ordering
problems [21]. Despite considerable empirical evidence of success in multilevel linear ordering
algorithms, however, the concept of algebraic distance is still not well understood and has not been
used widely in combinatorial optimization problems. This paper studies some properties of this
relaxation process and interprets the algebraic distances under a mutually reinforcing environment
model, where the neighborhood connectivity information governs the connectivity of the vertices.
In particular, two vertices are strongly connected if they are surrounded by similar neighborhoods.
With this interpretation, the applications of this measure are no longer restricted to multilevel
algorithms. Whenever the concept of vertex connectivity is applicable, we can use the algebraic
distances to measure the connection strengths between vertices. We show a few such applications
in this paper.

An advantage of the proposed measure is its computational efficiency. The other possible
heuristics mentioned earlier are, in general, more expensive to compute. For example, the problem
of counting the number of simple paths connecting a pair of vertices is #P-complete [23], the
Floyd-Warshall algorithm for computing all pairs shortest paths has a cubic time complexity, and
the computation of the commute times involves the pseudo-inverse of the graph Laplacian matrix.
In contrast, since our method is a JOR process, its time complexity is linear in the number of
iterations and the number of graph edges. This is a significant reduction, especially for sparse
graphs. Further, the JOR iterations are easy to parallelize because, unlike other iterative processes
such as GS, the update of an entry xi does not require the most recent value of xi−1. Thus, the
proposed strategy has a strong potential for large-scale distributed computing.

The rest of the paper is organized as follows. In Section 2 we present a formal definition of
algebraic distance and review some important properties of the graph Laplacian matrix, which will
be used throughout the paper. In Section 3, we study some general convergence properties of the
proposed measure; and in Section 4, we present further results specifically for the JOR process.
Based on our theoretical analysis, we revisit the intuition behind the definition of algebraic distance,
and in Section 5, discuss a mutually reinforcing environment model. In Section 6, we demonstrate
the effectiveness of the proposed measure through a variety of graph applications. We conclude in
Section 7.

2

2 Notation and Preliminaries

Let G = (V, E) denote a weighted simple connected graph, where the set of nodes (vertices) V is
{1, 2, ..., n} and E is the set of edges. Denote by wij the non-negative weight of the undirected
edge ij between nodes i and j; if ij /∈ E, then wij = 0. Let W be the weighted adjacency matrix
of G, where W = {wij}. Algorithm 1 updates a vector x from a random initialization x(0). We use
superscripts to distinguish successive iterates and subscripts to mean vector entries.

Algorithm 1 Computing algebraic distances for graphs

Input: Parameter ω, initial vector x(0)

1: for k = 1, 2, . . . do

2: x̃
(k)
i ←∑

j wijx
(k−1)
j /

∑

j wij , ∀i.
3: x(k) ← (1− ω)x(k−1) + ωx̃(k)

4: end for

We define s
(k)
ij , the algebraic distance between vertices i and j, at the kth iteration, to be

∣

∣

∣
x

(k)
i − x

(k)
j

∣

∣

∣
. (1)

With R initial vectors x(0,r), r = 1, . . . , R, each vector is independently updated by using Algo-

rithm 1, and the extended p-normed algebraic distance ̺
(k)
ij is defined as

(

R
∑

r=1

∣

∣

∣
x

(k,r)
i − x

(k,r)
j

∣

∣

∣

p
)1/p

, (2)

where the superscript (k,r) refers to the kth iteration on the rth initial random vector. For p =∞,
by convention,

̺
(k)
ij = max

r=1,...,R

∣

∣

∣
x

(k,r)
i − x

(k,r)
j

∣

∣

∣
.

The graph Laplacian matrix, denoted as L, is defined as

D −W,

where D is the diagonal matrix with diagonal elements dii equal to
∑

j wij . Then, Algorithm 1 is

essentially the JOR method for solving1 the linear system

Lx = 0, (3)

using the relaxation parameter ω. The normalized Laplacian, denoted as L, is

D−1/2LD−1/2 .

Then the JOR method converges for any 0 < ω < 2/ρ(L), where ρ(·) means the spectral radius of
a matrix. In practice, we usually fix ω at 1/2, which guarantees convergence and many other nice
properties discussed later.

1However, we are not interested in actually solving this system, which has infinitely many solutions.

3

2.1 Laplacian and Normalized Laplacian

In this section we review some important properties of L and L that are necessary for the conver-
gence analysis of system (3) (for details see, e.g., [5]). The Laplacian L is positive semi-definite;
therefore, L is diagonalizable and has n nonnegative eigenvalues. Let (λi, ui) denote the eigen-pairs
of L ordered in nondecreasing order of λi:

Lui = λiui, i = 1, 2, . . . , n . (4)

The spectrum of L has the following properties:

(i) By the Gershgorin circle theorem, the largest eigenvalue λn ≤ 2 maxi dii.

(ii) The smallest eigenvalue(s) of L is zero, since L1 = 0, where 1 is the vector of all ones. The
multiplicity of λ1 = 0 is c if and only if the graph has c connected components. In particular,
if the graph is connected, then λ1 is simple. In this case, span{u1} = span{1}.

(iii) When the graph is connected, by the Courant-Fischer minimax theorem, λ2 has a bound

0 < λ2 ≤
xT Lx

xT x
, ∀ x 6= 0, xT1 = 0.

This eigenvalue, λ2, is called the algebraic connectivity of the graph, and the corresponding
(normalized) eigenvector u2 is called the Fiedler vector.

The normalized Laplacian L is also positive semi-definite. Let (µi, vi) denote the eigen-pairs of
L ordered in the nondecreasing order of µi:

Lvi = µivi, i = 1, 2, . . . , n . (5)

The equivalence of the following three systems

Lvi = µivi,

Lv̂i = µiDv̂i, v̂i = D−1/2vi, (6)

(D−1L)v̂i = µiv̂i, v̂i = D−1/2vi, (7)

indicates that the spectral properties of L can often be derived from those of the matrix D−1L or
the pencil (L, D), and vice versa. The spectrum of L has the following properties.

(i) The spectral radius ρ(L) equals µn ≤ 2. In particular, µn = 2 if and only if there exists a
connected component that is bipartite. Indeed, when all the connected components of the
graph are bipartite, the eigenvalues µi’s are distributed symmetrically around 1:

µi = 2− µn+1−i, for i = 1, . . . , n.

(ii) The multiplicity of the eigenvalue zero of L is the same as that of L. We have always µ1 = 0,
and D1/21 is a corresponding eigenvector.

4

(iii) When the graph is connected, we have a bound for µ2:

0 < µ2 ≤
xTLx

xT x
, ∀ x 6= 0, xT D1/21 = 0.

A simple immediate result is that µ2 ≤ 1 if the graph is not complete, which is derived by
choosing a suitable x.

We summarize the eigen-systems (4), (5), (6), and (7) in Table 1 for future references. The
iteration matrix H will be introduced in the next section. When necessary, the eigenvectors have a
“unit” length, that is the vectors ui, vi, and φi have a unit 2-norm, and the vectors v̂i have a unit
D-norm.

Table 1: Matrices and eigen-systems appeared in this paper.
Matrix Eig. val. Eig. vec. Ordering

Laplacian L λi ui 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

Normalized Laplacian L µi vi 0 = µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 2
Matrix pencil (L, D) µi v̂i same as above
Matrix D−1L µi v̂i same as above
Iteration matrix H σi φi 1 = σ1 ≥ |σ2| ≥ · · · ≥ |σn|

3 Iterative Methods for Graph Laplacians

Algorithm 1, on which the definition of the algebraic distance s
(k)
ij is based, is the JOR method for

solving the linear system (3). There being rich results for nonsingular systems, however, here the
matrix L is singular, and thus we need to first study the convergence properties for this particular
system. In this section, we establish some general results for the convergence of several classical
iterative methods (including JOR) for the matrix L. The special case for JOR automatically
applies.

Standard iterative methods by matrix splitting for solving a linear system can be written in a
general form

x(k+1) = Hx(k), k = 0, 1, 2, . . . , (8)

where H is the iteration matrix. Let the Laplacian L = D−WL−WU , where WL and WU are the
strict lower and upper triangular parts of W , respectively. Then the iteration matrices for Gauss
Seidel, Jacobi, SOR, and JOR are, respectively,

HGS = (D −WL)−1WU , HSOR = (D/ω −WL)−1 ((1/ω − 1)D + WU) ,

HJAC = D−1(WL + WU), HJOR = (D/ω)−1 ((1/ω − 1)D + WL + WU) .

When ω = 1, GS is equivalent to SOR, and Jacobi is equivalent to JOR. We will use the notation H
when the discussions are general or apply to all the iterative methods; we will add subscripts when
an individual method is emphasized. In the next subsection, we first study the eigen-structure of
H.

5

3.1 The Iteration Matrix H

A matrix A ∈ R
n×n is said to be convergent if limk→∞ Ak exists.2 Let αi denote the eigenvalues of

A, where i = 1, . . . , n. Then, A is convergent if and only if (i) |αi| ≤ 1, (ii) |αi| = 1 implies αi = 1,
and (iii) the algebraic multiplicity of the eigenvalue 1 equals its geometric multiplicity. In other
words, the Jordan canonical form of a convergent matrix looks like the following:

[

It×t 0
0 J

]

,

where t ≥ 0 is the algebraic/geometric multiplicity of the eigenvalue 1, and J consists of Jordan
blocks for all the other eigenvalues |αi| < 1. The following theorem implies that unless the graph
has a bipartite connected component and Jacobi iterations are used (or equivalently JOR with
ω = 1), the iteration matrix H for the system (3) is always convergent.

Theorem 1. The iteration matrix H for the linear system (3) has the following properties.

(i) The matrices HGS, HSOR (with 0 < ω < 2), and HJOR (with 0 < ω < 2/ρ(L)) are convergent.

(ii) The matrix HJAC is convergent if and only if none of the connected components of the graph

is bipartite. When the graph has a bipartite connected component, HJAC has an eigenvalue

−1.

(iii) The multiplicity of the eigenvalue 1 of H is the same as that of the eigenvalue 0 of L.

(iv) If the graph is connected, then the eigenvalue 1 of H is simple.

(v) The spectral radii of HGS, HJAC , HSOR, and HJOR are all 1.

Proof. For the proof of the first property, see [8]. Property (ii) is easy to verify, by noting that

Lv̂ = µDv̂ ⇐⇒ HJAC v̂ = (1− µ)v̂

and that the largest eigenvalue of (L, D) is strictly less than 2 if and only if none of the connected
components of the graph is bipartite. Property (iii) follows from

Lu = 0 ⇐⇒ u = Hu.

Property (iv) immediately follows from property (iii). For GS, SOR, and JOR, the fact that the
spectral radius of H is 1 follows from properties (i) and (iii). For Jacobi, by using the Gershgorin
circle theorem, it is clear that the eigenvalues of HJAC all have a modulus less than or equal to 1.
Thus, by property (iii), ρ(HJAC) = 1.

2Some authors (e.g., [17]) use the term convergent for a matrix A where the limit A
k is zero. However, the

interesting case in this paper is that the limit is nonzero. Thus, we make a broader inclusion in the definition here.

6

3.2 Convergence of the Iterative Process (8)

When H is convergent, we denote its similarity transform to the Jordan canonical form as

PHP−1 =

[

It×t 0
0 J

]

,

where P is nonsingular. The initial vector x(0) can be uniquely decomposed as the sum of a vector
in range(I −H) and a vector z in null(I −H):

x(0) = (I −H)y + z.

Since z ∈ null(I −H), we have Hz = z. Therefore,

x(k) = Hkx(0)

= Hk(I −H)y + Hkz

= P−1

[

It×t 0
0 Jk

] [

0 0
0 I − J

]

Py + z.

Note that the limit of Jk is zero. Thus,

lim
k→∞

x(k) = z.

This result is summarized in the following theorem.

Theorem 2. When the iteration matrix H for the linear system (3) is convergent, the iterative

process (8) converges. In such a case, the iterate x(k) converges to zero if the initial vector x(0) ∈
range(I −H), otherwise x(k) converges to a vector in null(I −H).

In particular, if the eigenvalue 1 of H is simple, the subspace null(I − H) is spanned by the
vector 1. Hence we have the following corollary.

Corollary 3. If the graph is connected and the iteration matrix H for the linear system (3) is

convergent, then the iterate x(k) converges to zero if the initial vector x(0) ∈ range(I−H); otherwise

x(k) converges to a nonzero scalar multiple of 1.

An immediate consequence of the above corollary is that the algebraic distance vanishes as k
goes to infinity.

Corollary 4. Under the conditions of Corollary 3, the quantity s
(k)
ij defined in (1) converges to

zero for all i and j.

Corollary 4 seems to suggest that the definition of the algebraic distance as a measure of the
strength of connection is inappropriate. However, we are actually interested in comparing the

relative magnitudes of s
(k)
ij for different (i, j) pairs. In other words, a concurrent scaling of the

quantity s
(k)
ij for all i and j will not compromise the measure. In the following, we will discuss such

a quantity, denoted as ŝ
(k)
ij .

7

To this end, we consider a connected graph and make an additional mild assumption that H is
diagonalizable. Let (σi, φi) denote the eigen-pairs of H:

Hφi = σiφi, i = 1, . . . , n, (9)

where the eigenvalues are labeled in the order

1 = σ1 > |σ2| ≥ |σ3| ≥ · · · ≥ |σn|

according to Theorem 1. The eigenvectors φi’s are linearly independent, and

span{φ1} = span{1} = null(I −H),

span{φℓ | ℓ = 2, . . . , n} = range(I −H).

Let the initial vector x(0) be expressed as a linear combination of the eigenvectors:

x(0) = a1φ1 + a2φ2 + · · ·+ anφn. (10)

Then, the kth iterate x(k) is

x(k) = Hkx(0) = a1φ1 + a2σ
k
2φ2 + · · ·+ anσk

nφn. (11)

We first have the following simple result on the convergence rate of x(k).

Theorem 5. Under the conditions of Corollary 3, assume that H is diagonalizable with eigen-pairs

(σi, φi) labeled in nonincreasing order of the magnitudes of the eigenvalues. Then the iterate x(k)

approaches the limit in the order O(|σ2|k), and the quantity s
(k)
ij defined in (1) approaches zero in

the same order.

The algebraic distance is now expressed as

s
(k)
ij =

∣

∣

∣
(ei − ej)

T x(k)
∣

∣

∣
=

∣

∣

∣

∣

∣

(ei − ej)
T

n
∑

ℓ=2

aℓσ
k
ℓ φℓ

∣

∣

∣

∣

∣

,

where ei is the ith column of the identity matrix. Note that the summation starts from ℓ = 2.

Since σk
2 is a common factor for all the (i, j) pairs, we define the quantity ŝ

(k)
ij as

s
(k)
ij /σk

2 (12)

and are interested in its behavior as k increases. It turns out that, in contrast to s
(k)
ij , the scaled

quantity ŝ
(k)
ij does not always converge. When it does, however, it converges to some interesting

value other than zero. We consider two cases:

(i) σ2 = σ3 = · · · = σt, and |σt| > |σt+1|, for some t ≥ 2. This case implies that σ2, . . . , σt are all
real, since otherwise the complex conjugate of σ2 is also an eigenvalue of H. In practice, this
case occurs for most real-life graphs, with t = 2; in other words, σ2 is real and |σ2| > |σ3|.

(ii) |σ2| = |σ3| = · · · = |σt| > |σt+1| for some t ≥ 3, and σ2, . . . , σt are not all the same. In
this case, σ2, . . . , σt are not necessarily all reals. The iteration matrices HGS and HSOR for
random graphs frequently yield |σ2| = |σ3| > |σ4|, where σ2 and σ3 are conjugate complex
numbers.

8

Theorem 6. Under the conditions of Theorem 5, let the initial vector x(0) be expanded in the

eigenbasis of H as in (10).

(i) If σ2 = σ3 = · · · = σt and |σt| > |σt+1| for some t ≥ 2, and if a2, . . . , at are not all zero, then

the quantity ŝ
(k)
ij defined in (12) approaches the limit

∣

∣(ei − ej)
T ξ
∣

∣ in the order O
(

|σt+1/σt|k
)

,

where ξ is an eigenvector corresponding to the eigenvalue σ2 (with multiplicity t− 1).

(ii) If |σ2| = |σ3| = · · · = |σt| > |σt+1| for some t ≥ 3, where σ2, . . . , σt are not all the same, a2,

. . . , at are not all zero, and if there exists an integer m such that (σℓ/σ2)
m = 1 for ℓ = 3, . . . , t,

then the pth subsequence {ŝ(mk+p)
ij }k=0,1,2,... approaches the limit

∣

∣(ei − ej)
T ηp

∣

∣ in the order

O
(

|σt+1/σt|mk
)

, where ηp = a2φ2+a3(σ3/σ2)
pφ3+· · ·+at(σt/σ2)

pφt for p = 0, 1, . . . , (m−1).

Proof. Case (i): Equation (12) becomes

ŝ
(k)
ij =

∣

∣

∣
(ei − ej)

T ξ(k)
∣

∣

∣
,

where

ξ(k) = a2φ2 + · · ·+ atφt +
n
∑

ℓ=t+1

aℓ

(

σℓ

σ2

)k

φℓ.

When k tends to infinity, the summation term in ξ(k) vanishes. Let ξ = a2φ2 + · · · + atφt, then

limk→∞ ŝ
(k)
ij =

∣

∣(ei − ej)
T ξ
∣

∣, and ŝ
(k)
ij converges in the order O(|σt+1/σ2|k) = O(|σt+1/σt|k).

Case (ii): Equation (12) becomes

ŝ
(k)
ij =

∣

∣

∣
(ei − ej)

T η(k)
∣

∣

∣
,

where

η(k) = a2φ2 + a3τ
k
3 φ3 + · · ·+ atτ

k
t φt +

n
∑

ℓ=t+1

aℓ

(

σℓ

σ2

)k

φℓ,

and τℓ = σℓ/σ2 for ℓ = 3, . . . , t. If there exists a positive integer m such that τm
ℓ = 1 for all ℓ, then

η(k) has m limit points η0, . . . , ηm−1.

Remark 1. Case (ii) of the above theorem indicates that the quantity ŝ
(k)
ij oscillates at the “limit”.

However, we may not often have a positive integer m such that τm
ℓ = 1 for ℓ = 3, . . . , t. Thus,

we consider a case where τm
ℓ = eiǫℓ for a small |ǫℓ| for each ℓ (here e is the base of the natural

logarithm and i is the imaginary unit). In such a case, we still can derive some similar results
indicating oscillations. Note that when k is large enough, the summation term in η(k) is negligible.
Therefore,

∣

∣

∣
ŝ
(k)
ij − ŝ

(k+m)
ij

∣

∣

∣
=
∣

∣

∣

∣

∣

∣
(ei − ej)

T η(k)
∣

∣

∣
−
∣

∣

∣
(ei − ej)

T η(k+m)
∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
(ei − ej)

T (η(k) − η(k+m))
∣

∣

∣

≈
∣

∣

∣
(ei − ej)

T [a3τ
k
3 (1− eiǫ3)φ3 + · · ·+ atτ

k
t (1− eiǫt)φt]

∣

∣

∣

≤
t
∑

ℓ=3

∣

∣1− eiǫℓ
∣

∣ ·
∣

∣(ei − ej)
T (aℓφℓ)

∣

∣

9

≤
t
∑

ℓ=3

|ǫℓ| ·
∣

∣(ei − ej)
T (aℓφℓ)

∣

∣ .

The above bound means that when k is large enough, the value of ŝ
(k)
ij will be close to the one

in m iterations later. In other words, when k tends to infinity, ŝ
(k)
ij approximately oscillates with

a period m, similar to the case where we have an m such that τm
ℓ = 1 for all ℓ (case (ii) of the

theorem).
The following example shows such an oscillation. The weighted adjacency matrix is

W =













0 0.8235 0.6948 0.3171 0.9502
0.8235 0 0.3816 0.7655 0.7952
0.6948 0.3816 0 0.6463 0.7094
0.3171 0.7655 0.6463 0 0.1626
0.9502 0.7952 0.7094 0.1626 0













.

The second and third eigenvalues of HGS are σ2 = −0.0501 + 0.0637i and σ3 = −0.0501− 0.0637i.
Thus, τ3 = σ3/σ2 = −0.2348 + 0.9721i, and τ7

3 = e0.0881i. Hence, ǫ3 = 0.0881 which can be

considered small enough. Therefore, it is expected that the quantity ŝ
(k)
ij approximately oscillates

with a period 7. Figure 1 shows a visualization of the matrix [ŝ
(k)
ij] as k increases. Note the

repetition of the appearance of the matrix every 7 iterations.

(a) k = 10 (b) k = 11 (c) k = 12 (d) k = 13 (e) k = 14 (f) k = 15 (g) k = 16

(h) k = 17 (i) k = 18 (j) k = 19 (k) k = 20 (l) k = 21 (m) k = 22 (n) k = 23

Figure 1: Visualization of the matrix [ŝ
(k)
ij]. Dark color means small value and bright color means

large value.

4 Algebraic Distances and Jacobi Overrelaxations

In this section, we discuss the implications of the theorems in the preceding section for the JOR
iterations. Specifically, the eigenvalues and vectors of the iteration matrix HJOR are closely related
to those of the matrix pencil (L, D). Further, because of the distributions of the eigenvalues, the
convergence of Algorithm 1 often is slow. Hence, we also study the behavior of the iterations at an
early stage.

10

4.1 Algebraic Distances at the Limit

An immediate result is that HJOR is diagonalizable and all the eigenvalues of HJOR are real, since

HJOR φi = σiφi ⇐⇒ Lφi =
1− σi

ω
Dφi.

This equivalence implies that if µj is an eigenvalue of (L, D), then µj = (1 − σi)/ω for some i.
In general, we may not have µi = (1 − σi)/ω for all i, since the eigenvalues of HJOR are sorted
in the order of their absolute values, whereas the eigenvalues of (L, D) are sorted in their natural
order. Figure 2 pictorially shows the relative positions of the eigenvalues σi of HJOR. It is clear
that σ1 = 1− ωµ1 = 1 regardless of the value ω, since µ1 = 0. However, σ2 can be either 1− ωµ2

or 1 − ωµn, depending on the value of ω. A special case is that 1 − ωµ2 = −(1 − ωµn). In this

case, σ2 = −σ3, and case (ii) of Theorem 6 indicates that the scaled algebraic distance ŝ
(k)
ij will not

converge; rather, it oscillates when k is large. Otherwise, we enumerate all the other possible cases
for ω, and we have the following theorem as a corollary of case (i) of Theorem 6.

−1 0 1

1− ωµn 1− ωµ3 1− ωµ2 1− ωµ1· · ·

Figure 2: Eigenvalues of HJOR.

Theorem 7. Given a connected graph, let (µi, v̂i) be the eigen-pairs of the matrix pencil (L, D),
labeled in nondecreasing order of the eigenvalues, and assume that µ2 6= µ3 6= µn−1 6= µn. Unless

ω = 2/(µ2 + µn), the quantity ŝ
(k)
ij defined in (12) will always converge to a limit |(ei − ej)

T ξ| in
the order O(θk), for some ξ and 0 < θ < 1.

(i) If 0 < ω < 2/(µ3 + µn), then

ξ ∈ span{v̂2} and θ =
1− ωµ3

1− ωµ2
;

(ii) If 2/(µ3 + µn) ≤ ω < 2/(µ2 + µn), then

ξ ∈ span{v̂2} and θ = −1− ωµn

1− ωµ2
;

(iii) If 2/(µ2 + µn) < ω < min{2/(µ2 + µn−1), 2/µn}, then

ξ ∈ span{v̂n} and θ = − 1− ωµ2

1− ωµn
;

(iv) If 2/(µ2 + µn−1) ≤ ω < 2/µn, then

ξ ∈ span{v̂n} and θ =
1− ωµn−1

1− ωµn
.

11

2

µ2+µn

2

µ3+µn

2

µ2+µn−1

0

1

θ

ω

1− ωµ3

1− ωµ2

−1− ωµn

1− ωµ2 − 1− ωµ2

1− ωµn

1− ωµn−1

1− ωµn

Figure 3: The θ as a function of ω. Note that the value 2/µn can be less than, equal to, or greater
than 2/(µ2 + µn−1).

A graphical illustration of the dependence of θ on ω is shown in Figure 3.

Proof. In case (i), −(1− ωµn) < (1− ωµ3) < (1− ωµ2); therefore

σ2 = 1− ωµ2 > 0, σ3 = 1− ωµ3 > 0.

In case (ii), (1− ωµ3) < −(1− ωµn) < (1− ωµ2); therefore

σ2 = 1− ωµ2 > 0, σ3 = 1− ωµn < 0.

In case (iii), −(1− ωµn−1) < (1− ωµ2) < −(1− ωµn); therefore

σ2 = 1− ωµn < 0, σ3 = 1− ωµ2 > 0.

In case (iv), (1− ωµ2) < −(1− ωµn−1) < −(1− ωµn); therefore

σ2 = 1− ωµn < 0, σ3 = 1− ωµn−1 < 0.

The theorem is established by following case (i) of Theorem 6.

Remark 2. Sometimes µ2 = µ3 or µn−1 = µn for graphs from real-life problems. Thus, Theorem 7
does not apply. However, we can use the same technique as in the proof to analyze the convergence

of ŝ
(k)
ij , by checking the possible values of σ2 and σ3.

Theorem 7 shows two possible limits for ŝ
(k)
ij depending on the value of ω, which in turn depends

on the relative sizes of the eigenvalues µi. In practice, the eigenvalues are not numerically computed,
but we can analytically derive some upper/lower bounds for the cutting point 2/(µ2 + µn) and
estimate which of the cases in Theorem 7 is applied. A simple bound exploits the fact that µ2 ≤
µn ≤ 2; thus

2/(µ2 + µn) ≥ 1/2,

which indicates that for any ω < 1/2, the quantity ŝ
(k)
ij will converge to some value proportional to

|(ei − ej)
T v̂2|. A slightly better bound is

2/(µ2 + µn) ≥ 2/3,

12

for a graph that is not complete, since in such a case µ2 ≤ 1. For more sharper bounds of µ2 and
µn, see, for example, [5]. Since in practice we deal with sparse graphs and set ω = 1/2, the quantity

ŝ
(k)
ij always converges to |(ei − ej)

T ξ| with ξ ∈ span{v̂2}.

4.2 Algebraic Distances at Early Iterations

For real-life graphs, the θ corresponding to ω = 1/2 is so close to 1 that the theoretical convergence

of ŝ
(k)
ij is of little practical use—it takes an enormous number of steps before it gets close enough

to the limit. (As observed, θ often can be as high as 0.999.) However, an interesting phenomenon
is that in practice x(k) soon becomes “stable”; that is, the two iterates x(k+1) and x(k) are almost
parallel even when k is small.

To make the above statement precise, we want to measure the angle between two consecutive
iterates. Specifically, we are interested in how close

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

is to zero (this is the squared sine of the angle between x(k) and x(k+1)). Note that even though
x(k) and x(k+1) become close to parallel at early iterations, it does not necessarily mean that x(k)

has converged, nor has the quantity s
(k)
ij or ŝ

(k)
ij .

Theorem 8. Given a graph, let (µi, v̂i) be the eigen-pairs of the matrix pencil (L, D), labeled in

nondecreasing order of the eigenvalues. Denote V̂ = [v̂1, . . . , v̂n]. Let x(0) be the initial vector of

the JOR process, and let a = V̂ −1x(0) with a1 6= 0. If the following two conditions are satisfied:

1− ωµn ≥ 0, (13a)

fk :=
αrk

2k(1− rk)
2

1 + αrk
2k(1 + rk)2

≤ 1

κ
, (13b)

where α =
(

∑

i6=1 a2
i

)

/
(

4a2
1

)

, rk is the unique root of the equation

2αr2k+2 + 2αr2k+1 + (k + 1)r − k = 0 (14)

on the interval [0, 1], and κ is the condition number of D, then

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

≤ 4κfk

(1 + κfk)2
. (15)

Since the proof of the above theorem is long and technical, it is deferred to the Appendix.
We note several important issues in this theorem. First, since we use ω = 1/2, condition (13a)
is satisfied. Second, fk is defined as a rational polynomial of rk, which is the unique root of the
polynomial (14) on the interval [0, 1]. Therefore, fk can be easily evaluated and it is typically close
to zero. For example, when α = 100 and k = 50, we have rk = 0.9475, which gives fk = 4.6× 10−4.
Third, the condition number κ of D is usually not large. For many graphs arising from application
areas such as VLSI design and finite-element meshes, if the graph edges have a uniform weight equal
to 1, then dii is the degree of a vertex, and thus for the whole graph the vertex degrees may not

13

vary too much.3 All this means is that condition (13b) is not a strong requirement. The final bound
in (15), for k = 30 or 50, typically drops to the order of 10−4. Note that sin2(π/180) = 3.05×10−4.

Of course, not every graph with an arbitrary initialization will yield x(k) close to parallel to
x(k+1) for a small k. Hence, some assumptions, such as these in Theorem 8, are needed. On closing
this subsection, we present a “bad” example. In this example, if the relaxation parameter ω is not
small, then for any k we can construct a corresponding initialization such that x(k) and x(k+1) are
far from parallel.

Example 1. Consider a graph with only two vertices and an edge between them. The JOR iteration
matrix for this graph is

HJOR =

[

1− ω ω
ω 1− ω

]

.

Its two eigenvalues are σ1 = 1 and σ2 = 1− 2ω. Given an initialization

x(0) =

[

1 + δ
−1 + δ

]

,

the iterations generate the iterates

x(k) =

[

+(1− 2ω)k + δ
−(1− 2ω)k + δ

]

=

[

+σk
2 + δ

−σk
2 + δ

]

.

Then,

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

=
(1− σ2)

2

1 + σ2
2 +

(

σ2k+2
2

δ2
+

δ2

σ2k
2

) .

If we choose
δ = σk+0.5

2 = (1− 2ω)k+0.5,

then the above equation becomes

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

=
(1− σ2)

2

(1 + σ2)2
=

(

ω

1− ω

)2

.

When ω approaches 1/2, the angle between x(k) and x(k+1) can be arbitrarily close to 90◦. In other
words, when the relaxation parameter ω is not small, for any k, we can choose an appropriate δ
such that x(k) and x(k+1) are far from parallel. An example set of such parameters is

ω = 1/8, k = 20, δ = 0.7520.5 ≈ 0.0027.

Hence, the angle between x(20) and x(21) is 8.21◦.

3This may not be true for power-law graphs.

14

5 Mutually Reinforcing Model

We have defined the algebraic distance s
(k)
ij based on an iterative process and have proved that the

scaled quantity, ŝ
(k)
ij , converges to some value that depends solely on the second eigenvector v̂2 of

the matrix pencil (L, D). We have also shown that even though the convergence is slow, the iterate
x(k) stabilizes quite early. In this section, we present a model that incorporates the local structure
of the graph for quantitatively evaluating the vertex connectivity. We use the vectors v̂2 and x(k),
as an (approximate) solution to the model, to explain that the algebraic distance defined in this
way well agrees with the model.

Consider a mutually reinforcing environment, where entities are influenced by their neighbors.
Intuitively, for an abstract property that is characteristic in such an environment, a part of the
property value for an entity should be a weighted average of the influences from its neighbors in some
way. Two entities are said to be close, or similar, if they are placed in two similar environments,
or consequently, their property values are close. If we consider the graph itself as an integral
environment and vertices as individual entities each of which is surrounded by a neighborhood (the
neighboring vertices), then two vertices have a strong connection if they have similar values for an
afore mentioned abstract property. Let each vertex i be associated with a real number xi. Except
for a µ portion of itself, i is influenced by its neighbors, which is quantitatively a weighted average:

xi = µxi +
∑

j∼i

pijxj , (16)

where j ∼ i means j is a neighbor of i. Here, the portion 0 ≤ µ ≤ 1 is an indicator of how
strongly an environment acts on a vertex. When µ tends to zero, the neighborhood plays a major
role, whereas when µ tends to one, a vertex is so stubborn that its neighbors cannot have a strong
impact on it. The coefficient µ does not need to be explicitly specified; it is an internal property
of the entire environment (i.e., the graph). For such a mutually reinforcing environment, a small
µ is more desired. The weight of the influence by a neighbor j, pij , should be nonnegative, and all
the pij related to the same i should sum to 1. The weight pij reflects how strongly a neighbor can
influence i, and therefore a natural choice is pij = wij/

∑

j wij . Thus, (16) is formally written in
the following form

xi = µxi +
∑

j

wij

dii
xj 0 ≤ µ ≤ 1. (17)

The coupling of two vertices i and j is measured by |xi − xj |. A small value means a strong
connection, which equivalently means that their neighborhoods have a similar influence on the two
vertices.

In the matrix form, (17) becomes

x = µx + D−1Wx,

which is equivalent to Lx = µDx. Clearly, x is an eigenvector of the matrix pencil (L, D), and µ
is its corresponding eigenvalue. Unless the graph is complete, we have at least two sets of x and
µ that satisfy this system. In the first set, µ is zero, and x is a scalar multiple of 1. In this case,
since µ is 0, the value of each vertex is entirely determined by its neighbors. This would have been
the most desirable situation for a mutually reinforcing environment because it means that every
entity is influenced only by its neighborhood. However, this situation leads to the result that every

15

entity is the same (xi constant for all i), and therefore no discriminating power is presented. In
the second set, µ is equal to µ2, the second smallest eigenvalue of (L, D), and x = v̂2. When the
graph is not complete, µ2 ≤ 1. Indeed, frequently µ2 is close to zero in practice. This is naturally a
desirable solution for our problem. The neighborhood has a strong impact on a vertex, and vertices
have different values such that the strengths of the connectivity for different vertex pairs can be
distinguished.

Algorithm 1 computes the above solution. According to Theorem 7, in the limit, the scaled

algebraic distance ŝ
(k)
ij converges to a value proportional to

∣

∣(ei − ej)
T v̂2

∣

∣. Regardless of the fact

that the iterate x(k) converges to a scalar multiple of 1, we are actually interested in the entry
differences of x(k), and so it is legitimate for us to say informally that x(k) “converges” to v̂2. On
the other hand, even when far from convergence, Theorem 8 indicates that the (normalized) iterate
x(k) approximately satisfies the model:

x̂(k) ≈ µ2x̂
(k) + D−1Wx̂(k), where x̂(k) = x(k)/‖x(k)‖,

since consecutive iterates are close to parallel. In a word, from either point of view, Algorithm 1
computes an approximate solution to the model (17).

We remark that for small k, the iterate x(k) can be quite different from its “limit” v̂2, and for
different initializations, x(k) will be different. However, they all satisfy (or approximately satisfy)
the mutually reinforcing model (17). This feature gives us the flexibility, yet not the arbitrariness,
to estimate the connectivity for different vertex pairs. Readers may question why an iterate x(k)

is preferred over the eigenvector v̂2 as the measure. A major reason is that the JOR method
with a few iterations is computationally much less expensive than computing an eigenvector, even
when the matrix L is sparse. Solving a large-scale sparse eigenvalue problem for a symmetric
matrix, say, by using the Lanczos method [19, 22, 14], involves frequent convergence tests, each of
which needs to solve an eigenvalue subproblem for a tridiagonal matrix. On the other hand, inside
each JOR iteration is nothing but weighted averages. Therefore, the JOR process is particularly
inexpensive compared with computing an eigenvector. Besides, the simplicity of Algorithm 1 makes
it particularly attractive, and thus it is advocated as the preferred algorithm for the proposed
measure in this paper.

6 Applications

Before demonstrating the use of algebraic distances in applications, we first show a simple ex-
periment to help one understand how the algebraic distances represent the local connectivity and
neighborhoods. In this experiment we used two unweighted graphs generated from finite-element
instances (airfoil and 3elt [7]). For every edge ij we define the quantity lij , which is the length of a
shortest path between i and j if ij is deleted. Intuitively, an edge is “critical” if lij is large, since
by the removal of this edge, i and j have to be connected by a long path. In the experiment, we
extended the graph by creating 10% of additional random unweighted edges, where the new edges
all satisfied 2 < lij < 11. The goal of the experiment was to check whether the algebraic distance
would give some indications on noisy random edges on well structured instances.

The results of the extended 2-normed algebraic distance with 15 iterations (̺
(15)
ij) calculated for

all edges are presented in Figure 4(a) and 4(b). In both figures, each tick on the x-axis corresponds
to one edge, and the edges are ordered from the longest algebraic distance to the shortest. The

16

respective y-coordinate of every point (i.e., edge ij) is lij . Clearly, almost all edges with lij 6= 2 are
concentrated at the very left of the figures. This result shows that random/noise edges in general
have a connection strength much weaker than those of the original edges. The example shows that
the algebraic distance can serve as a separator between strongly and weakly connected pairs of
vertices in well structured instances that have good local connectivity.

To demonstrate the practical potential of the algebraic distance measure, we show four appli-
cations: maximum weighted matching, maximum independent set, and minimum τ -partitioning of
graphs and of hypergraphs. In all these cases, existing fast and widely used in practice baseline al-
gorithms were modified by taking into account quantities based on the algebraic distances instead of
the original graph edge weights. The experimental graphs had different sizes (103 < |E| < 107) and
structures and were selected from the UF sparse matrix collection [7] based on their nontriviality
for several state-of-the-art solvers for NP-hard optimization problems. The algebraic distances for
graph partitioning, maximum matching, and maximum independent set problems were calculated
by using the standard JOR relaxation with ω = 1/2. For the hypergraph partitioning problem, we
extended the definition of algebraic distance for hypergraphs and demonstrate the results for both
GS and JOR relaxations.

The implementation of stationary iterative processes and their running time are well studied
issues. These topics are out of scope of this paper and we refer the reader to the following books in
which one can find the discussions about sequential and parallel matrix-vector multiplications and
general relaxations [15, 16]

6.1 Maximum Weighted Matching

A matching M of a graph is a subset of the graph edges such that no vertex is incident to more
than one edge in M . A matching M is said to be maximum if |M | ≥ |M ′| for any other matching
M ′. Similarly, a matching M is said to be maximum weighted if w(M) ≥ w(M ′) for any other
matching M ′, where w(M) =

∑

ij∈M wij .
Although the maximum weighted matching problem admits a polynomial time solution, often

two well-known 2-approximation methods, which have a linear time complexity (without sorting),
are used in practical applications. One is a textbook greedy algorithm, which successively adds a
next legal heaviest edge to the existing matching; the other is an improved version of the greedy
algorithm, based on a path-growing principle. Both algorithms are presented in [9].

In both algorithms, there exists a greedy step in which the next heaviest edge (one that has
the largest weight) has to be chosen. The criterion for choosing an edge was changed according
to the following heuristic observation: a better matching can be found in a dense graph with less
effort than in a sparse graph. Hence, we give preference to matching two nodes that are not well
connected with other nodes from their neighborhood, to give a chance to the less connected nodes
to participate in the matching. We define a value s′ij for each graph edge ij based on the extended

algebraic distance ̺
(k)
ij and use it to replace the edge weight wij in greedy choice steps (and sorting

if applicable). The quantity s′ij has a meaning opposite that of the edge weight: A small value
means weak connection. Hence, in the greedy steps, instead of choosing an edge with the largest
weight, we choose one that has the smallest s′ij . A heuristic for defining such a quantity s′ij is first

to define for each vertex a quantity ai =
∑

ij∈E 1/̺
(k)
ij that captures the connectivity between this

vertex and its neighborhood. Then, s′ij is the weighted average between ai and aj . The first three
lines of Algorithm 2 clearly show the computation of this quantity.

17

0 1500 3000 4500 6000 7500 9000 10500 12000
edges ordered from the longest algebraic distance to the shortest

2

4

6

8

10

12

sh
or

te
st

 p
at

h
le

ng
th

 a
ft

er
 e

dg
e

de
le

tio
n

(a) airfoil

0 1500 3000 4500 6000 7500 9000 10500 12000 13500
edges ordered from the longest algebraic distance to the shortest

2

4

6

8

10

12

sh
or

te
st

 p
at

h
le

ng
th

 a
ft

er
 e

dg
e

de
le

tio
n

(b) 3elt

Figure 4: Algebraic distances of the noisy edges.

18

Algorithm 2 Greedy maximum weighted matching with algebraic distance preprocessing

1: For all edges ij ∈ E calculate ̺
(k)
ij for some k, R and p. ⊲ Preprocessing

2: For all nodes i ∈ V compute ai =
∑

ij∈E 1/̺
(k)
ij .

3: For all edges ij ∈ E compute s′ij = ai/δi + aj/δj , where δi is the degree of i.
4: M ← ∅. ⊲ Start of greedy algorithm
5: while E 6= ∅ do

6: e← lightest edge in E (edge with smallest s′ij).
7: Add e to M .
8: Remove e and all its incident edges from E.
9: end while

10: return M

The experimental results are presented in Figure 5, which shows for each graph the ratio of the
sizes of the matchings between our algorithm (a greedy matching with algebraic distance prepro-
cessing) and the textbook greedy matching (without preprocessing). All ratios were higher than
1, which indicated that our algorithm yielded a better matching than does the baseline greedy
algorithm. Almost identical results were obtained by improving a greedy path growing algorithm
from [9]. These particular results were obtained with k = 20, R = 10, and p = 1. However,
results of almost the same quality have been obtained with many different combinations of R ≥ 5,
10 ≤ k ≤ 100, and p = 2,∞.

6.2 Maximum Independent Set

An independent set I is a subset of V in which no two vertices are incident. An independent set I is
said to be maximum if |I| ≥ |I ′| for any other independent set I ′. Finding the maximum independent
set (MIS) in a graph is an NP-complete problem [12], and fast and qualitative approximations are
of great interest for many applications.

Although many existing approximation algorithms for MIS have been proposed, a popular one
in practice is still a textbook greedy algorithm [6]. In this algorithm, the vertices are examined in
increasing order of their degrees, and the greedy step consists of choosing the next available vertex
that does not contradict the current independent set. We exploit a similar heuristic to the one in
maximum weighted matching. That is, for each vertex i, we define a quantity bi that indicates the
connection strength between the vertex itself and its neighborhood. To be precise, a small bi means
a weak connection, and we sort the vertices in the increasing order of bi. Hence, we give preference
to including a vertex that is weakly connected to its neighbors. The first four lines of Algorithm 3
show the computation of this quantity.

The experimental results are presented in Figure 6, which shows for each graph the ratio of the
sizes of the independent sets between our algorithm (sorting the vertices according to connection
strengths) and the textbook greedy algorithm (sorting the vertices according to vertex degrees).
A ratio higher than 1 means that our algorithm computes a larger independent set. As can be
seen from the figure, for almost all the graphs our algorithm yielded a better result than did the
textbook algorithm.

19

0 20 40 60 80 100
experimental graphs ordered in a ratio-increasing order

1

1.1

1.2

1.3

1.4

1.5

ra
tio

s
be

tw
ee

n
ou

r
al

go
ri

th
m

 a
nd

 te
xt

bo
ok

 g
re

ed
y

al
go

ri
th

m

Figure 5: Comparison of greedy algorithms for matching with (Algorithm 2) and without algebraic
distance preprocessing. Each point corresponds to the average of ratios between matching weights
produced by Algorithm 2 and the textbook greedy algorithm for one graph. The average was
calculated over 20 different executions with different random initial vectors. The total number of
experimental graphs is 105.

6.3 Graph Partitioning

Graph partitioning is a well known NP-hard problem [11]. The goal is to find a partitioning of V
into a family of τ disjoint nonempty subsets (πp)1≤p≤τ , restricted to the following:

minimize
∑

i∈πp⇒j 6∈πp

wij

such that ∀p, |πp| ≤ (1 + α) · |V |
τ

,

(18)

where α is a given imbalance factor. In this paper, we consider the 2-partitioning, τ = 2.
HMetis2 [18] is one of the fastest and most successful modern solvers for the partitioning prob-

lem. We define its simple extension “HMetis2+ for graphs” in Algorithm 4. In this algorithm we

substitute the edge weights with the inverses of algebraic distance s
(k)
ij and use HMetis2 to produce

the 2-partitioning. Figure 7 shows for each graph the ratio of the cut costs (the objective value
in (18)) between our extension and the original HMetis2. For most of the graphs our extension
yielded a smaller cut, and for the best case the cut cost was reduced by more than 30%.

Indeed, HMetis2 is a multilevel algorithm. A better way to improve HMetis2 and other similar
multilevel heuristics is to use the algebraic distances at all levels of the hierarchy, rather than

20

Algorithm 3 Greedy MIS with algebraic distance preprocessing

1: For all edges ij ∈ E calculate s
(k)
ij for some k. ⊲ Preprocessing

2: For all nodes i ∈ V compute ai =
∑

ij∈E 1/s
(k)
ij .

3: For all edges ij ∈ E compute s′ij = s−1
ij /(ai + aj).

4: For all nodes i ∈ V compute bi =
∑

ij∈E s′ij .
5: (Sorting) Relabel the vertices i in the increasing order of bi. ⊲ Start of greedy algorithm
6: I ← ∅.
7: for i = 1, 2, . . . , n do

8: If {i} ∪ I is an independent set, add i to I.
9: end for

10: return I

substituting the edge weights only at the top level. However, even when we use it as a black-box
only, the obtained improvement is quite systematic and non-negligible.

Algorithm 4 HMetis2+ for graphs

1: For all edges ij ∈ E calculate s
(k)
ij for some k (typically 50).

2: For all edges ij ∈ E modify the weight wij = 1/s
(k)
ij .

3: Produce the graph cut using HMetis2 with modified edge weights.
4: Return the cut weight with original edge weights

6.4 Hypergraph Partitioning

With encouraging results for the graph problems, the next natural step is to generalize the notion
of algebraic distances for hypergraphs. We will give a similar definition for the hyperedges and
demonstrate its application for the hypergraph partitioning problem.

LetH = (V, E) be a hypergraph, where V is the set of nodes and E is the set of hyperedges. Each
h ∈ E is a subset of V. The hypergraph partitioning problem is a well-known NP-hard problem
(see [11] for its graph version). Its goal is to find a partitioning of V into a family of τ disjoint
nonempty subsets (πp)1≤p≤τ , restricted to the following:

minimize
∑

h∈E s.t. ∃i,j∈h and

i∈πp⇒j 6∈πp

wh

such that ∀p, |πp| ≤ (1 + α) · |V |
τ

,

(19)

where α is a given imbalance factor. In this paper, we deal with τ = 2.
While for graphs we use the algebraic distance in place of the weight of an edge, which involves

only a pair of vertices, for hypergraphs we have to define similar concepts that can act on a
hyperedge, which consists of a subset of vertices. To this end, we consider a bipartite graph model
for hypergraphs. We create a bipartite graph G = (V, E) with the vertex set V = V⋃ E and ih ∈ E
if i ∈ V appears in hyperedge h ∈ E . After running k iterations with R random initial vectors on

21

0 50 100 150
experimental graphs ordered in ratio-incrasing order

0.95

1

1.05

1.1

1.15

1.2

1.25

ra
tio

s
be

tw
ee

n
ou

r
al

go
ri

th
m

 a
nd

 r
eg

ul
ar

 g
re

ed
y

al
go

ri
th

m
 w

ith
 p

re
or

de
ri

ng

Figure 6: Comparison of greedy algorithms for maximum independent set with (Algorithm 3) and
without algebraic distance preprocessing. Each point corresponds to the average of ratios between
set sizes produced by Algorithm 3 and the simple textbook greedy algorithm for one graph. The
average was calculated over 20 different executions with different random initial vectors. The total
number of experimental graphs is 150.

this bipartite model of H, we define ̺
(k)
S , the extended p-normed algebraic distance for a subset of

nodes S in H, as
(

R
∑

r=1

max
i,j∈S

∣

∣

∣
x

(k,r)
i − x

(k,r)
j

∣

∣

∣

p
)1/p

. (20)

We can use any reasonable relaxation process to compute the iterates x(k,r). Here we consider GS
and JOR with ω = 1/2.

Using this definition and similarly to the graph partitioning problem, we can design a heuristic
for the hypergraph partitioning (see Algorithm 5). First, the algebraic distances for all hyperedges
are computed, and, second, the original hyperedge weights are substituted by the inverse of the
algebraic distances. In other words, we use a small algebraic distance to replace a heavy hyperedge
weight. Finally, we use HMetis2 as a black-box solver and partition the hypergraph with the
modified hyperedge weights. We call Algorithm 5 “HMetis2+ for hypergraphs”.

Figure 8 shows for each hypergraph the ratio of the cut costs (the objective value in (19))
between our extension and the original HMetis2. For most of the hypergraphs our extension
yielded a smaller cut, and for the best case the cut cost was reduced by around 90%. We also
see that a GS relaxation process in general yields slightly better results than does the standard

22

0 20 40 60 80 100
experimental graphs ordered in ratio-decreasing order

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ra
tio

s
be

tw
ee

n
ou

r
al

go
ri

th
m

 a
nd

 H
M

et
is

2

Figure 7: Comparison of Algorithm 4 and HMetis2. Each point corresponds to the average of ratios
between cut costs produced by Algorithm 4 and one V-cycle of HMetis2 for one graph. The average
was calculated over 20 executions with different random seeds. The total number of experimental
graphs is 100.

JOR process. Note that similar to the case of graph partitioning, a more correct way to apply
the algebraic distances is to use them at all levels, as was demonstrated in [21]. However, even
though we apply them to only the top level, we see here a significant improvement. To the best of
our knowledge, this is the first evidence that the multilevel hypergraph partitioning scheme admits
such a great improvement.

7 Conclusion

We have presented an iterative process for propagating random initial values on graph nodes through
direct neighbors, and defined a notion of algebraic distances between vertices when the process
stabilizes. The distances thus defined represent the local connectivity of a pair of vertices; that is,

Algorithm 5 HMetis2+ for hypergraphs

1: For all hyperedges h ∈ E calculate ̺
(k)
h for some k.

2: For all hyperedges h ∈ E modify the weight wh = 1/̺
(k)
h .

3: Produce the hypergraph cut using HMetis2 with modified hyperedge weights.
4: Return the cut weight with original hyperedge weights

23

0 50 100 150 200
experimental hypergraphs ordered in the ratio-decreasing order

0

0.2

0.4

0.6

0.8

1
ra

tio
s

be
tw

ee
n

ou
r

al
go

ri
th

m
 a

nd
 H

M
et

is
2

GS relaxation
JOR relaxation

Figure 8: Comparison of Algorithm 5 and HMetis2. Each point corresponds to the average of
ratios between cut costs produced by Algorithm 5 and one V-cycle of HMetis2 for one hypergraph.
The average was calculated over 20 executions with different random seeds. The total number of
experimental hypergraphs is 200 and k = 50.

two vertices are strongly connected if their algebraic distance is small. This measure remedies the
insufficiency of using solely the edge weights to determine the vertex connection strengths, since
neighborhood information is considered.

The proposed iterative process is motivated by the bootstrap AMG method for solving a linear
system, where a GS relaxation is used on a positive definite matrix to expose slow-to-converge
variables. On the other hand, the process studied in this paper is a JOR relaxation run on the
graph Laplacian matrix L, which is only positive semidefinite (i.e., singular). An analysis shows
that the algebraic distance between two vertices i and j converges to a value proportional to the
difference between the ith and the jth entry of the second smallest eigenvector of the pencil (L, D).
Also, it reveals that the convergence is usually slow. However, the changes between consecutive
iterations soon become very small, and thus we can run the proposed process using only a few
iterations and obtain a good connectivity measure.

By noting that the algebraic distance well represents the local connectivity, we show several
applications to demonstrate how it can be used to define quantities that replace the graph edge
weights in algorithms for combinatorial optimization problems. The experiments show that with an
algebraic distance preprocessing, the quality of several baseline algorithms can be greatly improved.
Furthermore, the computation of the algebraic distances occupies only a small fraction of the overall
solution time. Thus, its easy parallelization makes it particularly attractive for dealing with large-
scale graphs and problems.

24

A Proof of Theorem 8

The proof requires two lemmas.

Lemma 9. Define a series of column vectors (indexed by k)

ζ(k) := [a1σ
k
1 , a2σ

k
2 , . . . , anσk

n]T ∈ R
n,

where σ1 = 1, 0 ≤ σi ≤ 1 for i = 2, . . . , n, and a1 6= 0. If

fk :=
αrk

2k(1− rk)
2

1 + αrk
2k(1 + rk)2

≤ 1,

where α =
(

∑

i6=1 a2
i

)

/
(

4a2
1

)

and rk is the unique root of the equation

2αr2k+1(1 + r) = k − (k + 1)r

on the interval [0, 1], then

1−
〈

ζ(k)

∥

∥ζ(k)
∥

∥

,
ζ(k+1)

∥

∥ζ(k+1)
∥

∥

〉2

≤ 4fk

(1 + fk)
2 . (21)

Proof. Let

bi =
1 + σi

2
and ci =

1− σi

2
.

Then,

1−
〈

ζ(k)

∥

∥ζ(k)
∥

∥

,
ζ(k+1)

∥

∥ζ(k+1)
∥

∥

〉2

= 1−

(

∑

a2
i σ

2k+1
i

)2

(
∑

a2
i σ

2k
i

)

(

∑

a2
i σ

2k+2
i

)

= 1−
(
∑

a2
i σ

2k
i (b2

i − c2
i)
)2

(
∑

a2
i σ

2k
i (bi + ci)2

) (
∑

a2
i σ

2k
i (bi − ci)2

)

=
4
(
∑

a2
i σ

2k
i b2

i

) (
∑

a2
i σ

2k
i c2

i

)

− 4
(
∑

a2
i σ

2k
i bici

)2

(
∑

a2
i σ

2k
i (b2

i + c2
i)
)2 − 4

(
∑

a2
i σ

2k
i bici

)2

≤ 4
(
∑

a2
i σ

2k
i b2

i

) (
∑

a2
i σ

2k
i c2

i

)

(
∑

a2
i σ

2k
i (b2

i + c2
i)
)2 . (∗)

Denote t =
(
∑

a2
i σ

2k
i c2

i

)

/
(
∑

a2
i σ

2k
i b2

i

)

, then,

(∗) =
4

(1 + t)(1 + 1/t)
.

We would like to find an upper bound for t.
Note that σ1 = 1; it is not hard to see that t achieves maximum only when σ2 = σ3 = · · · = σn.

Let them all be equal to r. Then t becomes
(

∑

i6=1 a2
i

)

r2k(1− r)2

4a2
1 +

(

∑

i6=1 a2
i

)

r2k(1 + r)2
=: fk(r).

25

The stationary points of fk(r) satisfy the first-order condition:

2αr2k+1(1 + r) = k − (k + 1)r.

In this expression, the left-hand side is a monotonically increasing function of r, and the right-hand
side is a monotonically decreasing function for any k ≥ 1. Therefore, it’s not hard to see that
the above expression has a unique root on the interval [0, 1]. Compared with the boundaries, we
conclude that this root is the global maximum of fk(r).

Thus, t ≤ fk ≤ 1, and therefore

(∗) ≤ 4

(1 + fk) (1 + 1/fk)
=

4fk

(1 + fk)
2 .

Lemma 10. Let the squared sine of the angle between two unit vectors x, y ∈ R
n be

1− 〈x, y〉2 = ǫ,

and let a diagonal matrix D ∈ R
n×n have condition number κ. If ǫ and κ satisfy

κ2

(

1−
√

1− ǫ

1 +
√

1− ǫ

)

≤ 1, (22)

then

1−
〈

Dx

‖Dx‖ ,
Dy

‖Dy‖

〉2

≤ 4
[

1 + κ2

(

1−
√

1− ǫ

1 +
√

1− ǫ

)][

1 +
1

κ2

(

1 +
√

1− ǫ

1−
√

1− ǫ

)] . (23)

Proof. Let

z =
x + y

2
and δ =

x− y

2
.

Then,

1−
〈

Dx

‖Dx‖ ,
Dy

‖Dy‖

〉2

= 1− (yT D2x)2

(yT D2y)(xT D2x)

= 1− [(z − δ)T D2(z + δ)]2

[(z − δ)T D2(z − δ)][(z + δ)T D2(z + δ)]

=
4(zT D2z)(δT D2δ)− 4(δT D2z)2

(zT D2z + δT D2δ)2 − 4(δT D2z)2

≤ 4(zT D2z)(δT D2δ)

(zT D2z + δT D2δ)2
. (∗∗)

Denote t = (δT D2δ)/(zT D2z). Then,

(∗∗) =
4

(1 + t)(1 + 1/t)
.

If xT y ≥ 0, then we have

t =
δT D2δ

zT D2z
≤ d2

max ‖δ‖2

d2
min ‖z‖2

= κ2

(

1− xT y

1 + xT y

)

= κ2

(

1−
√

1− ǫ

1 +
√

1− ǫ

)

≤ 1,

26

otherwise

t =
δT D2δ

zT D2z
≥ d2

min ‖δ‖2

d2
max ‖z‖2

=
1

κ2

(

1− xT y

1 + xT y

)

=
1

κ2

(

1 +
√

1− ǫ

1−
√

1− ǫ

)

≥ 1,

where dmax and dmin are the maximum and the minimum of the absolute values of the diagonal
elements of D, respectively. For both cases, we have

(∗∗) =
4

(1 + t)(1 + 1/t)
≤ 4
[

1 + κ2

(

1−
√

1− ǫ

1 +
√

1− ǫ

)][

1 +
1

κ2

(

1 +
√

1− ǫ

1−
√

1− ǫ

)] .

Proof of Theorem 8. Since for JOR the eigenvectors of the iteration matrix are the eigenvectors v̂i

of (L, D), we write
x(k) = V̂ ζ(k),

where ζ(k) = [a1σ
k
1 , a2σ

k
2 , . . . , anσk

n]T . Note that condition (13a) implies that σi = 1− ωµi, and all
the σi’s satisfy 0 ≤ σi ≤ 1. Then by Lemma 9,

1−
〈

ζ(k)

∥

∥ζ(k)
∥

∥

,
ζ(k+1)

∥

∥ζ(k+1)
∥

∥

〉2

≤ 4fk

(1 + fk)
2 . (24)

To simplify the notations, let x′ = ζ(k)/
∥

∥ζ(k)
∥

∥ and y′ = ζ(k+1)/
∥

∥ζ(k+1)
∥

∥. Then,

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

= 1−

〈

V̂ x′, V̂ y′
〉2

∥

∥

∥
V̂ x′

∥

∥

∥

2 ∥
∥

∥
V̂ y′

∥

∥

∥

2 = 1−

(

y′T V̂ T V̂ x′
)2

(

y′T V̂ T V̂ y′
)(

x′T V̂ T V̂ x′
) .

Let V̂ T V̂ have the eigen-decomposition UT ΣU , where U is orthogonal and Σ is positive definite
diagonal, then

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

= 1−
(

y′T UT ΣUx′
)2

(y′T UT ΣUy′) (x′T UT ΣUx′)
= 1−

〈

Σ1/2Ux′, Σ1/2Uy′
〉2

∥

∥Σ1/2Ux′
∥

∥

2 ∥
∥Σ1/2Uy′

∥

∥

2 .

Let x = Ux′ and y = Uy′. Then

1−
〈

x(k)

∥

∥x(k)
∥

∥

,
x(k+1)

∥

∥x(k+1)
∥

∥

〉2

= 1−
〈

Σ1/2x
∥

∥Σ1/2x
∥

∥

,
Σ1/2y
∥

∥Σ1/2y
∥

∥

〉2

.

Denote the right-hand side of the inequality (24) ǫk. We have four facts. First, ‖x‖ = ‖y‖ = 1.
Second,

1− 〈x, y〉2 = 1−
〈

Ux′, Uy′
〉2

= 1−
〈

x′, y′
〉2 ≤ ǫk.

Third, by noting that V̂ is D-orthogonal, that is, V̂ T DV̂ = I, we have

κ2(Σ1/2) = κ(Σ) = κ(V̂ T V̂) = κ(V̂ V̂ T) = κ(D−1) = κ.

Fourth, since ǫk and fk satisfy the relation

1−√1− ǫk

1 +
√

1− ǫk
= fk,

27

we have

κ2(Σ1/2)

(

1−√1− ǫk

1 +
√

1− ǫk

)

= κfk ≤ 1.

Therefore, by Lemma 10, we conclude that

1−
〈

Σ1/2x
∥

∥Σ1/2x
∥

∥

,
Σ1/2y
∥

∥Σ1/2y
∥

∥

〉2

≤ 4

(1 + κfk)(1 + 1/(κfk))
.

References

[1] A. Brandt. General highly accurate algebraic coarsening. Electronic Trans. Num. Anal., 10:1–
20, 2000.

[2] A. Brandt and D. Ron. Multigrid solvers and multilevel optimization strategies. In J. Cong
and J. R. Shinnerl, editors, Multilevel Optimization and VLSICAD. Kluwer, 2003.

[3] Achi Brandt. Multiscale scientific computation: review 2001. In Multiscale and multiresolution

methods, volume 20, pages 3–95. Springer Verlag, 2002.

[4] P. Chebotarev and E. Shamis. On proximity measures for graph vertices. Automation and

Remote Control, 59(10):1443–1459, 1998.

[5] Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. McGraw-Hill, 2nd edition, 2001.

[7] T. Davis. University of Florida sparse matrix collection. NA Digest, 97(23), 1997.

[8] Achiya Dax. The convergence of linear stationary iterative processes for solving singular
unstructured systems of linear equations. SIAM Rev., 32(4):611–635, 1990.

[9] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett., 85(4):211–213, 2003.

[10] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-walk com-
putation of similarities between nodes of a graph with application to collaborative recommen-
dation. IEEE Transactions on Knowledge and Data Engineering, 19(3):355–369, 2007.

[11] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237–267, 1976.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory

of NP-Completeness. Freemann And Company, 1979.

[13] Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph.
SIAM Rev., 50(1):37–66, 2008.

[14] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 1996.

28

[15] Ananth Grama, George Karypis, Anshul Gupta, and Vipin Kumar. Introduction to Parallel

Computing: Design and Analysis of Algorithms. Addison-Wesley, 2003.

[16] Michael T. Heath. Scientific Computing. McGraw-Hill, Inc., New York, NY, USA, 2002.

[17] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[18] G. Karypis and V. Kumar. Metis A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. University
of Minnesota, Department of Computer Science and Engineering, Army HPC Research Center,
Minneapolis, MN, September 1998.

[19] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. Research of the National Bureau of Standards, 45:255–282, 1950.

[20] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps,
spectral clustering and eigenfunctions of Fokker-Planck operators. In Advances in Neural

Information Processing Systems, volume 18, pages 955–962. MIT Press, 2005.

[21] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation based coarsening for combinatorial opti-
mization problems. submitted, 2009.

[22] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, 1992.

[23] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on

Computing, 8(3):410–421, 1979.

[24] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Structural
Analysis in the Social Sciences. Cambridge University Press, 1994.

The submitted manuscript has been created
in part by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce,
prepare derivative works, distribute copies to
the public, and perform publicly and display
publicly, by or on behalf of the Government.

29

