
Algebraic Flux Correction I

Scalar Conservation Laws

Dmitri Kuzmin

Abstract This chapter is concerned with the design of high-resolution finite ele-

ment schemes satisfying the discrete maximum principle. The presented algebraic

flux correction paradigm is a generalization of the flux-corrected transport (FCT)

methodology. Given the standard Galerkin discretization of a scalar transport equa-

tion, we decompose the antidiffusive part of the discrete operator into numerical

fluxes and limit these fluxes in a conservative way. The purpose of this manipulation

is to make the antidiffusive term local extremum diminishing. The available limiting

techniques include a family of implicit FCT schemes and a new linearity-preserving

limiter which provides a unified treatment of stationary and time-dependent prob-

lems. The use of Anderson acceleration makes it possible to design a simple and

efficient quasi-Newton solver for the constrained Galerkin scheme. We also present

a linearized FCT method for computations with small time steps. The numerical

behavior of the proposed algorithms is illustrated by a grid convergence study for

convection-dominated transport problems and anisotropic diffusion equations.

1 Introduction

A major bottleneck in finite element simulation of transport phenomena is the in-

ability of the standard Galerkin discretization to satisfy the relevant maximum prin-

ciples and/or maintain positivity on general meshes. This deficiency manifests itself

in spurious undershoots and overshoots that pop up in regions of insufficient mesh

resolution. Discontinuous weak solutions to hyperbolic conservation laws are par-

ticularly difficult to compute using continuous finite elements. The Galerkin “best

approximations” to elliptic and parabolic transport equations may also exhibit non-
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physical artifacts in proximity to unresolved small-scale features [51, 53]. An ef-

fective remedy to this problem must be found when it comes to the development of

general-purpose finite element codes for Computational Fluid Dynamics.

Many modern high-resolution schemes for the equations of fluid mechanics are

based on the flux-corrected transport (FCT) algorithm [6, 81] or use total variation

diminishing (TVD) limiters [29, 78] to enforce the discrete maximum principle.

The basic idea boils down to using a high-order scheme in smooth regions and a

nonoscillatory low-order scheme elsewhere. The implementation of FCT and TVD

in explicit finite element codes dates back to the late 1980s [3, 57, 58, 68, 71, 72].

The author and his coworkers developed the first implicit FCT schemes for con-

tinuous (linear and multilinear) finite elements [38, 48, 50, 42]. In the first edition

of this book, we introduced the algebraic flux correction paradigm [46], a general

framework for the design of multidimensional flux limiters. This approach leads to

many useful generalizations of FCT and TVD-like methods [39, 44, 45].

The recent comparative study by John and Schmeyer [35] indicates that FEM-

FCT is superior to mainstream stabilization techniques when it comes to solving

unsteady convection problems with linear finite elements. However, flux correction

of FCT type is inappropriate for steady-state computations since the results depend

on the pseudo-time step, and severe convergence problems may occur. Flux lim-

iters of TVD type [39, 40, 46, 49, 60] are free of these drawbacks but require mass

lumping. As an alternative to FCT and TVD, we developed a linearity-preserving

flux limiter that can handle stationary and time-dependent problems equally well

[45]. In this algorithm, the same strategy is used to constrain the convective term,

anisotropic diffusion, and the consistent mass matrix. Furthermore, linearity preser-

vation implies consistency and second-order accuracy for smooth data [10, 62].

The cost of algebraic flux correction depends on the number of iterations required

to obtain a converged solution. In our experience, this cost can be significantly re-

duced using a linearization of the antidiffusive term [42] or convergence accelera-

tion techniques for iterative solvers. In particular, we recommend Anderson mixing

[1, 18, 19, 80] (also known as Anderson acceleration) which combines a number of

iterates in a GMRES-like fashion. As shown by Eyert [18], the accelerated solver

belongs to the Broyden family of Jacobian-free quasi-Newton methods.

This chapter summarizes our work on algebraic flux correction schemes inspired

by Zalesak’s FCT algorithm [81]. Due to many recent developments, the presenta-

tion of this material differs considerably from the first edition of the book. In Sec-

tion 2, we briefly review the continuous maximum principles for linear convection-

diffusion equations. The discrete maximum principles and sufficient conditions of

positivity preservation are formulated in Section 3. In Sections 4 and 5, we analyze

the standard Galerkin discretization and explain the philosophy behind algebraic

flux correction. The generalized FCT algorithm and the linearity-preserving flux

limiter are presented in Sections 6 and 7, respectively. In Section 8, we address the

design and acceleration of iterative solvers for the nonlinear system. A grid conver-

gence study for 2D test problems is presented in Section 9. Finally, we summarize

the results and outline some promising directions for further research.
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2 Analysis of the Continuous Problem

The model problem that will serve as a vehicle for the presentation of our high-

resolution finite element schemes is the linear convection-diffusion equation

∂u

∂ t
+∇ · (vu−D∇u) = 0 in Ω (1)

which describes the transport of a conserved scalar quantity u(x, t) in a bounded

domain Ω ⊂ R
d , d ∈ {1,2,3}. The velocity v and diffusion tensor D are given.

If all terms are present, equation (1) is parabolic Also of interest are steady-state

solutions
(

∂u
∂ t

= 0
)

as well as the limiting cases of pure convection (D = 0) and

pure diffusion (v = 0). The PDE type for each model is listed in Table 1.

Parabolic type ∂u
∂ t

+∇ · (vu−D∇u) = 0 ∂u
∂ t

−∇ · (D∇u) = 0

Elliptic type ∇ · (vu−D∇u) = 0 −∇ · (D∇u) = 0

Hyperbolic type ∂u
∂ t

+∇ · (vu) = 0 ∇ · (vu) = 0

Table 1 Taxonomy of scalar transport equations.

In the case of unsteady transport, we prescribe an initial condition of the form

u(x,0) = u0(x), ∀x ∈ Ω . (2)

The Dirichlet-Neumann boundary conditions for our model problem are given by

u = uD on ΓD, (3)

n ·∇u = 0 on ΓN , (4)

where n is the unit outward normal to the boundary Γ = ∂Ω . In the presence of

diffusion, we have ΓD ∪ΓN = Γ . In the hyperbolic case, we have ΓN = /0 and

ΓD = {x ∈ Γ |v ·n < 0}.

Definition 1. Let Σ be the set of points where initial/boundary conditions are pre-

scribed, i.e., Σ := ΓD ∪ΓN in the steady case and Σ := {(x, t) | x ∈ ΓD ∪ΓN ∨ t = 0}
in the unsteady case. The (continuous) maximum principle holds if

min
Σ

u ≤ u ≤ max
Σ

u. (5)

If the initial and boundary conditions are nonnegative, then the maximum principle

implies that u ≥ 0. This yields another useful a priori estimate of u in terms of u|Σ .



4 D. Kuzmin

Definition 2. The solution of a scalar transport equation is positivity-preserving if

min
Σ

u ≥ 0 ⇒ u ≥ 0. (6)

At the continuous level, the solution of a scalar transport equation without

sources or sinks is always positivity-preserving but a proof of the maximum princi-

ple is available only for the case of an incompressible velocity field (∇ ·v = 0).

Theorem 1. The following a priori estimates hold for all PDEs listed in Table 1

(i) ∇ ·v = 0 ⇒ min
Σ

u ≤ u ≤ max
Σ

u (maximum principle)

(ii) u|Σ ≥ 0 ⇒ u ≥ 0 (positivity preservation)

A formal proof of this Theorem for each PDE type, its generalization to equations

with source terms, and some useful corollaries can be found, e.g., in [44].

The maximum principle and positivity preservation are important for several rea-

sons. On the one hand, the a priori bounds may represent certain physical con-

straints. For example, concentrations of chemical species are known to lie between

0 and 1. On the other hand, some useful information about the solutions of differ-

ential solutions becomes available, although these solutions are generally unknown.

Upper/lower bounds, uniqueness proofs, and comparison principles can be obtained

using elementary calculus. Last but not least, discrete maximum principles play an

important role in the development of numerical methods for transport equations.

3 Analysis of the Discrete Problem

Of course, a good numerical scheme must respect the known properties of exact

solutions. In this section, we review algebraic constraints which imply a discrete

maximum principle and/or ensure positivity preservation. In the next sections, we

will use these sufficient conditions to constrain the Galerkin discretization of the

unsteady convection-diffusion equation (1). We tacitly assume that one or two terms

in this equation may be missing, so that it represents all models listed in Table 1.

3.1 Semi-Discrete Problem

Any space discretization of (1) produces a system of differential algebraic equations

M
du

dt
= Qu, (7)

where u(t) is the vector of time-dependent nodal values, M = {mi j} is the so-called

mass matrix, and Q = {qi j} is the discrete transport operator. The properties of M

and Q depend on the computational mesh and on the discretization method.
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As in the continuous case, the unknown solution values are known to be bounded

under certain assumptions. The semi-discrete equation for ui reads

∑
j

(

mi j

du j

dt

)

= ∑
j

qi ju j. (8)

To prevent spurious undershoots/overshoots, we impose the following constraints

which imply a semi-discrete maximum principle and positivity preservation.

Theorem 2. Consider a semi-discrete scheme of the form (8). Suppose that

mii > 0, mi j = 0, qi j ≥ 0, ∀ j 6= i. (9)

Then the following a priori estimates hold for the solution value ui

(i) ∑
j

qi j = 0 ∧ ui ≥ u j, ∀ j 6= i ⇒ dui

dt
≤ 0 (semi-DMP)

(ii) u j(0)≥ 0, ∀ j ⇒ ui(t)≥ 0, ∀t > 0 (positivity preservation)

Proof. A comparison of Theorems 1 and 2 reveals that the zero row sum property

is a discrete version of the incompressibility constraint. If ∑ j qi j = 0, then

dui

dt
=

1

mii
∑
j 6=i

qi j(u j −ui). (10)

Suppose that ui = max j u j. By assumption, we have mii > 0 and qi j(u j − ui) ≤ 0,

∀ j 6= i. Thus dui
dt

≤ 0, i.e., a maximum cannot increase. This proves (i).

To prove (ii), suppose that ui(t) = 0 and u j(t)≥ 0 for all j 6= i. It follows that

dui

dt
=

1

mii
∑
j 6=i

qi ju j, (11)

where qi ju j ≥ 0, ∀ j 6= i. Thus, the solution value ui cannot become negative. �

Definition 3. A space discretization of the form (10) with mii > 0 and qi j ≥ 0 for all

i and j 6= i is called local extremum diminishing (LED).

The LED criterion was introduced by Jameson [32, 33] in the context of finite

volume methods for unstructured grids. It is consistent with the FCT philosophy [6]:

no new extrema can form and existing extrema cannot grow. The word local refers

to the fact that the coefficient matrices are sparse, so only the nearest neighbors of

node i make a nonzero contribution to (8) and define the bounds for ui.

It is easy to prove that a LED scheme is total variation diminishing (TVD) in 1D.

By the Godunov theorem [24], a linear positivity-preserving / LED discretization of

a hyperbolic transport equation can be at most first-order accurate. The order barrier

for a linear LED approximation of the diffusive term is 2 (see [31], pp. 118-120).

Hence, the conditions of Theorem 2 are very restrictive in the linear case but they

turn out to be a handy tool for the design of nonlinear high-resolution schemes.
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3.2 Fully Discrete Problem

The fully discrete counterpart of problem (7) is a sparse linear system of the form

(

AΩ AΓ

0 I

)(

uΩ

uΓ

)

=

(

BΩ BΓ

0 I

)(

gΩ

gΓ

)

, (12)

where I is the identity matrix and uΓ = gΓ is the vector of Dirichlet boundary values.

For a two-level time-stepping scheme, uΩ = un+1
Ω is the vector of unknowns and

gΩ = un
Ω is the vector of solution values from the last time step. For stationary

problems BΩ = 0 and BΓ = 0. The general form of the i−th equation reads

aiiui = biigi + ∑
j∈Si

(bi jg j −ai ju j), (13)

where Si := { j 6= i | ai j 6= 0 ∨ bi j 6= 0} is the set of nearest neighbors of node i.

Definition 4. The solution to (13) satisfies the local discrete maximum principle if

umin
i ≤ ui ≤ umax

i , (14)

where

umax
i := max{ max

j∈Si∪{i}
g j,max

k∈Si

uk}, (15)

umin
i := min{ min

j∈Si∪{i}
g j,min

k∈Si

uk} (16)

are the largest and smallest solution values that appear in the right-hand side of (13).

The so-defined local DMP implies that ui should not decrease as result of in-

creasing any other nodal value that contributes to the discretized equation for node i

[69]. Conversely, ui should not increase if another nodal value is decreased, all other

things being fixed. If the given solution values are all nonnegative, then so is ui.

Definition 5. The solution to (13) is said to be locally positivity-preserving if

umin
i ≥ 0 ⇒ ui ≥ 0. (17)

The following Theorem presents sufficient conditions of local positivity preser-

vation and an additional constraint which guarantees the validity of (14).

Theorem 3. Suppose that the coefficients of the discrete problem (13) satisfy

aii > 0, bii ≥ 0, ai j ≤ 0, bi j ≥ 0, ∀ j ∈ Si. (18)

Then the following a priori estimates hold for the solution value ui

(i) ∑
j

ai j = ∑
j

bi j ⇒ umin
i ≤ ui ≤ umax

i (local DMP)

(ii) umin
i ≥ 0 ⇒ ui ≥ 0. (positivity preservation)
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Proof. To prove (i), we define w j := u j −umax
i and v j := g j −umax

i such that

w j ≤ 0, ∀ j ∈ Si, v j ≤ 0, ∀ j ∈ Si ∪{i}. (19)

Using the row sum condition ∑ j ai j = ∑ j bi j, we can express (13) as follows:

aiiwi = biivi + ∑
j∈Si

(bi jv j −ai jw j). (20)

By (18) and (19), the right-hand side of (20) is nonpositive. Since aii > 0, we have

wi ≤ 0 or, equivalently, ui ≤ umax
i . The proof for ui ≥ umin

i is similar.

To prove (ii), suppose that umin
i ≥ 0, i.e., u j ≥ 0, ∀ j ∈ Si and g j ≥ 0, ∀ j ∈ Si∪{i}.

By (18), the right-hand side of (13) is nonnegative, so aii > 0 ⇒ ui ≥ 0. �

The Theorem implies that ui is bounded by the solution values in a neighborhood

of node i. If the local DMP holds for all nodes, then global maxima and minima

must occur on the Dirichlet boundary or at the previous time level. Likewise, local

positivity preservation for all nodes implies global positivity preservation.

Definition 6. The solution to (12) satisfies the global discrete maximum principle if

ming ≤ u ≤ maxg, (21)

where u denotes the vector of unknowns and g is the vector of given solution values.

Definition 7. The solution to (12) is said to be globally positivity-preserving if

g ≥ 0 ⇒ u ≥ 0. (22)

A typical proof of (21) and (22) is based on the theory of monotone matrices [79].

Definition 8. A regular matrix A is called monotone if A−1 ≥ 0 or, equivalently, if

u ≥ 0 ⇒ Au ≥ 0.

Definition 9. A monotone matrix A with ai j ≤ 0, ∀ j 6= i is called an M-matrix.

Theorem 4. Consider a fully discrete scheme of the form Au = Bg. Suppose that the

coefficients of A = {ai j} and B = {bi j} satisfy conditions (18) for all i.

If A is strictly or irreducibly diagonally dominant, then A is an M-matrix and

(i) the global DMP holds if ∑
j

ai j = ∑
j

bi j, ∀i

(ii) the scheme is globally positivity-preserving

Proof. We refer to Varga [79] for a proof of the M-matrix property. To prove the

global DMP, define the vectors w := u−maxg and v := g−maxg. Invoking (20),

we obtain a linear system of the form Aw = Bv, where A is monotone, B ≥ 0, and

v ≤ 0. Hence w = A−1Bv ≤ 0, which implies u ≤ maxg. Similarly, the solution to

Au = Bg proves positivity-preserving since u = A−1Bg ≥ 0 whenever g ≥ 0. �
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4 Galerkin Discretization

Some finite element approximations are known to satisfy the conditions of Theo-

rems 3 and 4 unconditionally or under mild restrictions on the geometric properties

of the mesh (no obtuse angles, no thin elements) [13, 21, 36, 37]. However, these

sufficient conditions become too restrictive in the case of high-order finite elements,

convection-dominated transport equations, and anisotropic diffusion problems. The

usual remedy is to add a certain amount of artificial diffusion in order to compen-

sate the contribution of matrix entries that have a wrong sign. Many shock capturing

techniques, including algebraic flux correction, are based on this approach.

We will explain the principles of algebraic flux correction in the finite element

context. To begin with, let us discretize the generic transport equation (1) using the

(continuous) Galerkin approximation which delivers optimal accuracy in smooth

regions but tends to produce spurious undershoots and overshoots elsewhere.

The variational form of our Dirichlet-Neumann boundary value problem reads

∫

Ω
w

(

∂u

∂ t
+∇ · (vu)

)

dx+
∫

Ω
∇w · (D∇u)dx = 0 (23)

for all admissible test functions w vanishing on the Dirichlet boundary ΓD. We as-

sume sufficient regularity without giving a formal definition of Sobolev spaces.

Let {ϕ j} be a finite set of piecewise-linear or multilinear basis functions. The

numerical solution uh ≈ u is defined as a linear combination thereof

uh = ∑
j

u jϕ j. (24)

The unknown degrees of freedom are the coefficients u j which represent the (possi-

bly time-dependent) values of uh at the vertices of the mesh.

Instead of differentiating the convective flux, we replace it with the interpolant

(vu)h = ∑
j

(v ju j)ϕ j, (25)

where v j denotes the velocity at node j. This approach is known as the group finite

element formulation [22, 23]. The divergence of (25) is given by

∇ · (vu)h = ∑
j

u j(v j ·∇ϕ j). (26)

The contribution of the diffusive flux is evaluated using the consistent gradient

∇uh = ∑
j

u j∇ϕ j. (27)

To obtain a semi-discrete equation for the solution value ui, substitute approxima-

tions (24), (26), and (27) into (23) with the test function wh := ϕi. This gives
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∑
j

(

∫

Ω
ϕiϕ j dx

)

du j

dt
= − ∑

j

v j ·
(

∫

Ω
ϕi∇ϕ j dx

)

u j

− ∑
j

(

∫

Ω
∇ϕi · (D∇ϕ j)dx

)

u j. (28)

The resultant semi-discrete problem can be written in the generic matrix form

MC

du

dt
= (K −L)u, (29)

where MC = {mi j} denotes the consistent mass matrix, K = {ki j} is the convec-

tive part of the discrete transport operator, and L = {li j} is the contribution of the

diffusive term. By (28) the coefficients of the three matrices are given by

mi j =
∫

Ω
ϕiϕ j dx, li j =

∫

Ω
∇ϕi · (D∇ϕ j)dx, (30)

ki j =−v j · ci j, ci j =
∫

Ω
ϕi∇ϕ j dx. (31)

In the case of an unsteady velocity field, the convective part K must be updated at

each time step. If the mesh is fixed, then the coefficients ci j of the discrete gradient

operator do not change and need to be evaluated just once. Hence, the group finite

element formulation makes it possible to update K in a very efficient way.

Let 0 = t0 < t1 < t2 < · · ·< tM = T be a sequence of discrete time levels for the

time integration of (29). For simplicity, we assume that the time step ∆ t := tn+1− tn

is constant so that tn = n∆ t. By the Fundamental Theorem of Calculus

MC(u
n+1 −un) =

∫ tn+1

tn
(K −L)udt.

The integral is approximated using a suitable quadrature rule. In particular, we will

consider the fully discrete problem for the standard θ -scheme

[MC −θ∆ t(K −L)]un+1 = [MC +(1−θ)∆ t(K −L)]un, (32)

where θ ∈ [0,1] is the degree of implicitness. The forward Euler (θ = 0) version

is unstable for convection-dominated transport problems and gives rise to severe

time step restrictions in the case of dominating diffusion. For this reason, we restrict

ourselves to the unconditionally stable Crank-Nicolson (θ = 1
2
) and backward Eu-

ler (θ = 1) time stepping. If a fully explicit treatment is desired, we recommend

the family of strong stability-preserving Runge-Kutta methods [25, 26] which guar-

antee the local and global DMP if the underlying space discretization is LED and

the time steps are sufficiently small. Other explicit schemes can generate spurious

oscillations even if the space discretization satisfies the conditions of Theorem 2.
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5 Algebraic Flux Correction

The fully discrete scheme (32) is a linear system of the form Aun+1 = Bun. The

diagonal entries of the matrices A and B are positive, at least for sufficiently small

time steps ∆ t. However, a violation of the DMP conditions (18) may be caused by

• positive off-diagonal entries of the consistent mass matrix MC;

• negative off-diagonal entries of the discrete convection operator K;

• positive off-diagonal entries of the discrete diffusion operator L.

In the process of algebraic flux correction, we constrain the contribution of these

entries trying to stay as close as possible to the original Galerkin discretization.

The “good ” part of the Galerkin scheme (29) is an ODE system of the form

ML

du

dt
= (K̃ − L̃)u, (33)

where ML and K̃ − L̃ satisfy the conditions of Theorem 2. We define these matrices

in Section 5.1. The “bad” antidiffusive part of (29) is given by

f (u) = (ML −MC)
du

dt
+(K − K̃)u− (L− L̃)u. (34)

To prevent a possible violation of the (semi-)discrete maximum principle, we de-

compose the antidiffusive term f (u) into numerical fluxes and limit the magnitude

of these fluxes in regions where they threaten to create an undershoot or overshoot.

To this end, each flux is multiplied by a solution-dependent correction factor. In con-

trast to mainstream stabilization techniques for finite elements, there are no free pa-

rameters. The constrained Galerkin scheme is guaranteed to be positivity-preserving

and satisfy the DMP if it holds for the solution of the continuous problem.

In this section, we review the design philosophy behind algebraic flux correction.

Some generalizations [42, 48, 50] of the multidimensional FCT algorithm [81] and

a new linearity-preserving flux limiter [45, 51] are presented in the next section.

5.1 Artificial Diffusion Operators

The derivation of (33) begins with row-sum mass lumping. In explicit finite element

codes, the mass matrix MC is frequently replaced with the diagonal approximation

ML := diag{mi}, mi = ∑
j

mi j. (35)

For linear finite elements, this conservative modification is equivalent to inexact

evaluation of MC with a low-order Newton-Cotes quadrature rule [28].

The negative off-diagonal entries of the (nonsymmetric) convection operator K

are eliminated by adding a suitably designed artificial diffusion operator D.
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Definition 10. A symmetric matrix D = {di j} is called a discrete diffusion operator

if D has zero row and column sums [48]. That is,

di j = d ji, ∑
j

di j = ∑
i

di j = 0. (36)

To make sure that K̃ := K +D has no negative off-diagonal entries, we define

di j := max{−ki j,0,−k ji}, ∀ j 6= i. (37)

Remark 1. Artificial diffusion coefficients that enforce positivity in this way were

used to construct low-order schemes for FCT as early as in the mid-1970s [8].

Definition (37) implies di j = d ji. To comply with the zero row sum condition, let

dii :=−∑
j 6=i

di j. (38)

By symmetry, the column sums are also equal to zero, so D satisfies conditions (36).

In practice, there is no need to assemble the global matrix D. Instead, artificial

diffusion can be built into K in a loop over the edges of its sparsity graph. By def-

inition, each edge is a pair of nodes {i, j} that corresponds to a pair of nonzero

off-diagonal coefficients ki j and k ji. The required update is as follows:

kii := kii −di j, ki j := ki j +di j,
k ji := k ji +di j, k j j := k j j −di j.

(39)

Without loss of generality, the edges of the sparsity graph are oriented so that

ki j ≤ k ji. (40)

This orientation convention implies that node i is located ‘upwind’ and corresponds

to the row number of the negative off-diagonal entry to be eliminated.

Physical diffusion can be taken into account before or after the assembly of D. If

some off-diagonal entries of L are strictly positive, we split it into the antidiffusive

part L+ = {l+i j } and the remainder L̃ := L−L+. The entries of L+ are given by

l+ii :=−∑
j 6=i

l+i j , l+i j := max{0, li j}, ∀ j 6= i. (41)

The conservative elimination of l+i j can also be performed edge-by-edge

lii := lii + l+i j , li j := li j − l+i j ,

l ji := l ji − l+i j , l j j := l j j + l+i j .
(42)

If all off-diagonal entries of L are nonpositive, then L+ = 0 and L̃ = L. However,

the standard Galerkin approximation may fail to satisfy the DMP conditions if the

mesh and/or the diffusion tensor are highly anisotropic [53]. In this case, L̃ is a
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monotone but possibly inconsistent approximation to L. The lack of consistency

must be compensated in the course of flux correction (see Section 7).

Example 1. To clarify the implications of (39), consider the 1D convection equation

∂u

∂ t
+ v

∂u

∂x
= 0 in Ω = (0,1), (43)

where v is a positive constant. The inflow boundary condition is given by

u(0) = g.

On a uniform mesh of linear finite elements, the standard Galerkin method yields

K =
1

2











. . .
v 0 −v

v 0 −v

v 0 −v

. . .











.

For any interior node, mi = ∆x, where ∆x is is the constant mesh size. Hence, the

lumped-mass version of (29) is equivalent to the central difference scheme

dui

dt
+ v

ui+1 −ui−1

2∆x
= 0.

Since ki j =− v
2

for j = i+1, the artificial diffusion coefficient (37) is di j =
v
2

and

K̃ =











. . .
v −v 0

v −v 0

v −v 0

. . .











,

which corresponds to the first-order accurate upwind difference approximation

dui

dt
+ v

ui −ui−1

∆x
= 0.

Thus, the elimination of negative off-diagonal entries from a skew-symmetric op-

erator K can be interpreted as discrete upwinding [46]. For any pair of nodes i and

j = i+1 numbered in accordance with (40), the grid point xi lies upstream of x j.

After the discretization in time by the standard θ−scheme, the upwind difference

method proves positivity-preserving under the CFL-like condition [48]

v
∆ t

∆x
≤ 1

1−θ
, 0 ≤ θ < 1. (44)

According to this formula, there is no time step restriction for the backward Euler

method (θ = 1) which corresponds to first-order ‘upwinding’ in time.
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5.2 Conservative Flux Decomposition

The replacement of the high-order Galerkin scheme (29) by the perturbed system

(33) ensures positivity preservation but creates a lot of numerical diffusion. The next

ingredient of an algebraic flux correction scheme is a decomposition of (34) into a

sum of numerical fluxes. These antidiffusive fluxes enable us to remove artificial

diffusion in regions where the Galerkin solution is sufficiently smooth.

The antidiffusive term (34) represents the difference between the residuals of

systems (29) and (33). By definition of the matrices ML, K̃, and L̃, we have

f (u) = (ML −MC)
du

dt
−Du−L+u. (45)

By construction, the matrices MC −ML, D, and L+ are discrete diffusion operators

in the sense of Definition 10. Using the zero row sum property, we obtain

(MCu−MLu)i = ∑
j

mi ju j −ui ∑
j

mi j = ∑
j 6=i

mi j(u j −ui), (46)

(Du)i = ∑
j

di ju j = ∑
j 6=i

di ju j +diiui = ∑
j 6=i

di j(u j −ui), (47)

(L+u)i = ∑
j

l+i j u j = ∑
j 6=i

l+i j u j + l+ii ui = ∑
j 6=i

l+i j (u j −ui). (48)

The right-hand sides of (47)–(48) resemble that of a LED scheme. By symmetry,

the components of the sums over j 6= i can be interpreted as numerical fluxes that

describe a conservative mass exchange between a pair of nodes. Let

fi j =

(

mi j

d

dt
+di j + l+i j

)

(ui −u j), ∀ j 6= i (49)

denote the raw antidiffusive flux from node j into node i. In the fully discrete version,

the time derivative is replaced with a finite difference.

The net antidiffusion received by node i admits the following decomposition

fi = ∑
j 6=i

fi j, f ji =− fi j. (50)

Since fi j+ f ji = 0 by definition, the antidiffusive term does not change the total mass

of the discrete solution. The mass added to node i is subtracted from its neighbors.

5.3 Limited Antidiffusive Correction

Some of the raw antidiffusive fluxes fi j are harmless but others may create an un-

dershoot or overshoot. The contribution of these “bad” fluxes must be limited so as

to keep the antidiffusive term local extremum diminishing for a given solution.
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The flux-corrected counterpart of (29) is a semi-discrete problem of the form

ML

du

dt
= (K̃ − L̃)u+ f̄ (u), (51)

where the (nonlinear) term f̄ (u) stands for the sum of limited antidiffusive fluxes

f̄i = ∑
j 6=i

f̄i j, f̄ ji =− f̄i j. (52)

A well-designed flux limiter produces f̄i j = fi j in smooth regions and f̄i j = 0 in in-

terior or boundary layers. The unconstrained Galerkin scheme (29) and its nonoscil-

latory part (33) correspond to f̄ = f and f̄ = 0, respectively.

In general, the best definition of f̄i j satisfying the LED constraint is given by the

solution of a constrained optimization problem [5]. A nonoptimal but cost-effective

alternative is the multiplication by a solution-dependent correction factor

f̄i j := αi j fi j, 0 ≤ αi j ≤ 1. (53)

This kind of flux correction traces its origins to the FCT algorithm and forms the

basis for the construction of our algebraic flux correction schemes.

The following criterion guarantees that the antidiffusive term (52) is LED

∑
j 6=i

qi j min{0,u j −ui} ≤ ∑
j 6=i

αi j fi j ≤ ∑
j 6=i

qi j max{0,u j −ui} (54)

for a given set of bounded nonnegative coefficients qi j. The upper and lower bounds

may consist of a single term associated with a local maximum or minimum

umax
i := max{ui,max

j∈Si

u j}, (55)

umin
i := min{ui,min

j∈Si

u j}. (56)

Introducing qi := ∑
j 6=i

qi j, we can replace (54) with the weakened LED constraint

qi(u
min
i −ui)≤ ∑

j 6=i

αi j fi j ≤ qi(u
max
i −ui). (57)

If ui is a local maximum, then (54) and (57) imply the cancellation of all positive

fluxes. Similarly, all negative fluxes are cancelled if ui is a local maximum. Hence,

the sum of f̄i j := αi j fi j cannot create an undershoot or overshoot at node i.

The above criteria provide a general framework for the design of algebraic flux

correction schemes that differ in the definition of the LED bounds for the sum of

limited antidiffusive fluxes. The best choice of qi j and qi is dictated by accuracy and

efficiency considerations. Obviously, increasing the value of these parameters makes

the bounds less restrictive. However, this may cause divergence of iterative solvers

for the resultant nonlinear system. For accuracy reasons, it is essential to guarantee
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that αi j = 1 is acceptable whenever the solution varies linearly in a neighborhood

of node i. This design principle is called linearity preservation [5, 10, 62].

We use a generalization of Zalesak’s FCT algorithm [81] to calculate αi j satisfy-

ing (57). The same limiting strategy is used to enforce the LED bounds defined by

(54) in algebraic flux correction schemes of TVD type [40, 44, 49]. In the following

sections, we address the design of multidimensional flux limiters and the iterative

solution of nonlinear systems produced by the constrained Galerkin schemes.

6 Generalized FCT Algorithms

FCT was the first nonlinear high-resolution scheme to be equipped with a flux lim-

iter. The classical FCT algorithms of Boris, Book, and Hain [6, 8, 9] belong to the

class of diffusion-antidiffusion (DAD) methods [14] that involve two steps:

1. Advance the solution in time with an explicit low-order scheme containing

enough numerical diffusion to suppress undershoots and overshoots.

2. Correct the solution using antidiffusive fluxes limited in such a way that no new

maxima or minima can form and existing extrema cannot grow.

The numerical diffusion of the low-order method makes it possible to maintain pos-

itivity and improves the phase accuracy of an explicit appoximation to the convec-

tive term. The limited antidiffusive correction reduces the amplitude errors in a LED

manner. In contrast to TVD methods [29, 78], the upper and lower bounds for the

FCT limiter are defined in terms of the low-order predictor and designed to accept

as much antidiffusion as possible without violating the positivity constraint.

Zalesak’s fully multidimensional FCT algorithm [81] is based on blending ex-

plicit high- and low-order approximations so as to constrain the maximum and min-

imum increments to each nodal value. The work of Zalesak has formed the basis

for the development of all algebraic flux correction schemes to be presented in this

Chapter. The combination of FCT with finite elements and unstructured meshes

dates back to the explicit algorithms of Parrott and Christie [68] and Löhner et al.

[57, 58]. A number of implicit FEM-FCT schemes were published by the author

and his coworkers [38, 42, 48, 50]. The rationale for the use of an implicit time

discretization stems from the fact that the CFL stability condition becomes too re-

strictive in the case of nonuniform velocity fields and locally refined meshes.

In this section, we begin with a presentation of predictor-corrector FCT algo-

rithms in which the antidiffusive fluxes are linearized about a provisional low-order

solution. The linearized FCT scheme [42] is recommended for evolutionary prob-

lems that call for the use of small time steps. We also present the nonlinear version

of this scheme which requires iterative flux correction. In particular, we describe

an algorithm for ‘recycling’ the rejected antidiffusion step-by-step [50]. Finally, we

summarize the pros and cons of the FCT approach to algebraic flux correction.
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6.1 Linearized FCT Scheme

After the discretization in time by the two-level θ -scheme, the constrained Galerkin

discretization (51) produces a nonlinear algebraic system of the form

Aun+1 = Bun + f̄ , (58)

where f̄ = f̄ (un+1,un) denotes the limited antidiffusive term. The matrices

A =
1

∆ t
ML −θ(K̃ − L̃) (59)

and

B =
1

∆ t
ML +(1−θ)(K̃ − L̃) (60)

represent the nonoscillatory low-order part of the original Galerkin scheme. If the

governing equation is nonlinear or the velocity field is time-dependent, then the

coefficients of A and B may change as the solution evolves.

If the time step ∆ t is relatively small, it is worthwhile to linearize (58) using a

predictor-corrector strategy. At the first step of the linearized FCT algorithm [42],

we disregard the antidiffusive term f̄ and solve the linear system

AuL = Bun. (61)

By construction, the off-diagonal entries of K̃ and L̃ are nonnegative and non-

positive, respectively. The diagonal coefficients of these matrices have the opposite

sign (except in the case of a strongly compressible velocity field). By Theorem 4,

our low-order scheme (61) is positivity-preserving under the CFL-like condition

∆ t ≤ 1

1−θ

mi

l̃ii − k̃ii

, ∀i. (62)

Furthermore, the discrete maximum principle holds if A and B have equal row sums.

Remark 2. Van Slingerland [75, 76] proposed a variable-order θ -scheme in which

(62) is used to determine the optimal degree of implicitness θi j ∈ [0,1] individually

for each pair of nodes. This approach requires a conservative flux decomposition

not only for the antidiffusive term but also for the low-order operator.

Remark 3. The two-level θ -scheme can be replaced with any other time integration

scheme, e.g., a strong stability-preserving (TVD) Runge-Kutta method [25, 26].

Clearly, the time step restriction will depend on the time integration method.

The low-order predictor uL is used to evaluate the raw antidiffusive fluxes

fi j = mi j(u̇
L
i − u̇L

j )+di j(u
L
i −uL

j ), j 6= i (63)

where u̇L is an approximation to the vector of time derivatives at the time level tn+1.
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For example, the semi-discrete low-order scheme (33) with u := uL yields

u̇L = M−1
L [(K̃ − L̃)uL]. (64)

The so-defined approximation is smooth but diffusive. Another option is

u̇L = M−1
C [(K −L)uL]. (65)

This formula follows from (29). The well-conditioned mass matrix MC can be ‘in-

verted’ with 3-5 cycles of the preconditioned Richardson iteration [17, 42].

The raw antidiffusive fluxes fi j are passed to the multidimensional FCT limiter

(see Section 6.4) which returns a set of correction factors αi j. This gives

f̄i = ∑
j 6=i

αi j fi j, 0 ≤ αi j ≤ 1. (66)

After flux limiting, the final solution un+1 is obtained with the explicit correction

MLun+1 = MLuL +∆ t f̄ . (67)

Remark 4. Due to the linearization about uL, the unconstrained (αi j := 1) version of

the above algorithm is no longer equivalent to the original Galerkin scheme.

6.2 Nonlinear FCT Scheme

Linearization errors are avoided if the nonlinear system (58) is solved in an iterative

fashion. This approach leads to a FEM-FCT algorithm in which the antidiffusive

fluxes fi j and the corresponding correction factors αi j are updated step-by-step until

the residuals or relative changes become smaller than a prescribed tolerance.

Let {u(m)} be a sequence of successive approximations to the flux-corrected

Galerkin solution un+1. A reasonable initial guess is u(0) = un or u(0) = 2un −un−1.

These settings correspond to the constant and linear extrapolation in time, respec-

tively. Given the current iterate u(m) and the vector of approximate time derivatives

u̇(m) :=
u(m)−un

∆ t
, (68)

we recalculate the implicit part of the raw antidiffusive fluxes given by

f
(m)
i j = mi j(u̇

(m)
i − u̇

(m)
j )+θ(di j + l+i j )(u

(m)
i −u

(m)
j )

+ (1−θ)(di j + l+i j )(u
n
i −un

j), j 6= i. (69)

Then we apply the FCT limiter (see Section 6.4) and solve the linear system

Au(m+1) = Bun + f̄ (m). (70)
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Each solution update of the form (70) can be split into three steps [38, 42]

1. Compute an explicit low-order approximation to un+1−θ by solving

MLũ(0) = Bun. (71)

2. Apply limited antidiffusive fluxes to the intermediate solution ũ

MLũ(m+1) = MLũ(0)+∆ t f̄ (m). (72)

3. Solve the linear system for the new approximation to un+1

Au(m+1) = MLũ(m+1). (73)

Note that the auxiliary solution ũ(0) is independent of the iteration number m, so it

needs to be determined just once per time step (for m = 0). For its computation to be

positivity-preserving, the time step ∆ t must satisfy (62). The flux limiting procedure

presented in Section 6.4 guarantees that ũ(0) ≥ 0 ⇒ ũ(m+1) ≥ 0. The last solution

update is positivity-preserving by the M-matrix property of A. Thus

u(0) ≥ 0 ⇒ ũ(0) ≥ 0 ⇒ ũ(m+1) ≥ 0 ⇒ u(m+1) ≥ 0 (74)

provided that the CFL-like condition (62) holds for the given ∆ t and θ ∈ (0,1].

6.3 Iterative FCT Scheme

The implicit FCT scheme (71)–(73) ‘forgets’ the history of previous flux correction

steps when it comes to the assembly of f̄ (m). Hence, it tends to reject more anti-

diffusion than necessary to enforce the positivity constraint. As shown by Schär and

Smolarkiewicz [66], an iterative ‘recycling’ of the rejected antidiffusive fluxes may

significantly improve the accuracy of an FCT algorithm in some cases.

An iterative limiting strategy for maximizing the amount of accepted antidiffu-

sion in implicit FCT schemes was developed in [50]. Replacing (72) with

MLũ(m+1) = MLũ(m)+∆ t f̄ (m), (75)

we perform flux limiting in terms of ũ(m) rather than ũ(0). The sum of all previous

corrections is built into ũ(m), so only the remainder of f
(m)
i j needs to be limited

f
(m)
i j := f

(m)
i j −

m−1

∑
k=0

α
(k)
i j f

(k)
i j (76)

for all m > 0. This simplifies the job of the flux limiter and enables it to accept more

antidiffusion. For a detailed description of the algorithm, we refer to [50].
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Iterative FCT is more accurate than (71)–(73) but converges very slowly. For

this reason, we do not recommend its use unless it is justified by unusually strin-

gent accuracy requirements. For many problems of practical interest, the predictor-

corrector approach presented in Section 6.1 offers the best cost/accuracy ratio.

6.4 Zalesak’s FCT Limiter

In this section, we present Zalesak’s limiter [81] that we use to calculate the correc-

tion factors αi j for all FCT schemes. Consider a solution update of the form

miui = miũi +∆ t ∑
j 6=i

αi j fi j, (77)

where ũ is a nonoscillatory intermediate solution. Let umax
i and umin

i denote the local

extrema of ũ. The objective is to find the best value of αi j such that

umin
i ≤ ui ≤ umax

i . (78)

This condition implies that (77) satisfies the local discrete maximum principle.

6.4.1 Prelimiting Step

The process of flux correction begins with the optional elimination of fluxes that

have the same sign as ũ j − ũi. Such fluxes flatten the solution profile instead of

steepening it. As a consequence, the flux-corrected solution may exhibit spurious

ripples within the bounds allowed by the limiter [15]. In the original Boris-Book

limiter [6], a wrong sign is reversed, and the magnitude of the antidiffusive flux is

limited in the usual way. This fix works well for discontinuities but may distort a

smooth profile. A safer remedy is to cancel the “diffusive” fluxes by setting

fi j := 0, if fi j(ũ j − ũi)> 0. (79)

This optional adjustment is called prelimiting because it must be performed before

the computation of the correction factors αi j and flux limiting [15, 81].

Zalesak [81] argued that the effect of (79) is marginal and cosmetic in nature

since the vast majority of antidiffusive fluxes have the right sign. This remark might

have led many readers to disregard equations (14) and (14′) in [81]. Two decades

later, the need for prelimiting of the form (79) was emphasized by DeVore [15] who

explained its ramifications and demonstrated that it may lead to a marked improve-

ment of accuracy. In our experience, prelimiting is particularly useful in the context

of finite element approximations because the contribution of the consistent mass

matrix may change the sign of the raw antidiffusive flux and render it diffusive. The

cancellation of such outliers is essential for keeping the solution free of ripples.
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6.4.2 Limiting Strategy

In accordance with the LED criterion (57), the choice of the correction factors αi j

should ensure that positive antidiffusive fluxes cannot create an overshoot, while

negative ones cannot create an undershoot. Assuming the worst-case scenario, we

enforce condition (78) using Zalesak’s multidimensional FCT algorithm [81]:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

P+
i = ∑

j 6=i

max{0, fi j}, P−
i = ∑

j 6=i

min{0, fi j}. (80)

2. Determine the distance to a local maximum/minimum and the bounds

Q+
i =

mi

∆ t
(umax

i − ũi), Q−
i =

mi

∆ t
(umin

i − ũi). (81)

3. Evaluate the nodal correction factors for the net increment to node i

R+
i = min

{

1,
Q+

i

P+
i

}

, R−
i = min

{

1,
Q−

i

P−
i

}

. (82)

4. Check the sign of the raw antidiffusive flux fi j and multiply it by

αi j =

{

min{R+
i ,R

−
j }, if fi j > 0,

min{R−
i ,R

+
j }, if fi j < 0.

(83)

Remark 5. It is worthwhile to set R±
i := 1 if a Dirichlet boundary condition is im-

posed at node i and, therefore, the value of ui does not depend on αi j.

The above definition of αi j guarantees that sum of limited antidiffusive fluxes

satisfies (57) with qi =
mi
∆ t

. The LED property (78) follows from the estimate

umin
i = ũi +

∆ t

mi

Q−
i ≤ ui ≤ ũi +

∆ t

mi

Q+
i = umax

i .

The presence of the time step ∆ t in the denominator of Q±
i is a blessing or a

curse, depending on the purpose of simulation. On the one hand, the LED constraints

become less restrictive and, consequently, a larger portion of the raw antidiffusive

flux fi j is retained as the time step is refined. This makes FCT the method of choice

for transient computations. On the other hand, the use of large ∆ t results in a loss of

accuracy, and severe convergence problems may occur in the steady state limit.

6.4.3 Edge-Based Implementation

The practical implementation of Zalesak’s FCT limiter depends on the employed

data structures, storage techniques, and software development concepts. In the fol-

lowing pseudo-code (Algorithm 1), we take advantage of the fact that f ji = − fi j
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and α ji = αi j. The flux sums P±
i and the corresponding bounds Q±

i are assembled

in a loop over all neighbors j ∈ Si such that j > i. The values of P∓
j and Q∓

j are up-

dated in the same j-loop. The nodal correction factors R±
i are evaluated in the next

i-loop. When it comes to the assembly of the antidiffusive term, flux limiting is per-

formed in another loop over j > i. The flux f̄i j := αi j fi j is added to f̄i and subtracted

from f̄ j. This implementation of FCT calls for the use of edge-based data structures

[4, 70, 73] which operate with pairs of nodes, just like finite volume schemes.

Algorithm 1: Edge-based implementation of FCT.

P± := 0, Q± := 0, f̄ := 0

For all i do

For all j ∈ Si, j > i do

P±
i := P±

i + max
min

{0, fi j}
P±

j := P±
j + max

min
{0,− fi j}

Q±
i := max

min

{

Q±
i ,

mi
∆ t
(u j −ui)

}

Q±
j := max

min

{

Q±
j ,

m j

∆ t
(ui −u j)

}

For all i do

R±
i := min

{

1,
Q±

i

P±
i

}

For all i do

For all j ∈ Si, j > i do

αi j := min{R±
i ,R

∓
j }

f̄i j := αi j fi j

f̄i := f̄i + f̄i j

f̄ j := f̄ j − f̄i j

The advantages of edge-based finite element solvers include algorithmic simplic-

ity, low memory requirements, and a major reduction in indirect addressing [55, 56].

Moreover, edge-based data structures are well-suited for large-scale parallel com-

puting [11, 54, 61]. Last but not least, the equivalence between linear finite elements

and vertex-centered finite volumes can be exploited to develop a unified framework

for edge-based flux/slope limiting on unstructured meshes [60, 74].

Of course, algebraic flux correction schemes can also be implemented in an ex-

isting finite element code based on traditional element-by-element matrix assembly.

In our code, we use edge-based data structures for limiting purposes only.
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6.4.4 Clipping and Terracing

A well-known problem associated with flux correction of FCT type is clipping [7,

81]. Since the sum of limited antidiffusive fluxes is forced to be local extremum

diminishing, existing peaks lose a little bit of amplitude during each time step. To

alleviate peak clipping, Zalesak [81] defined umax
i and umin

i as the local extrema of

un or ũ. This adjustment is consistent with the local discrete maximum principle

(Definition 4). However, it may produce an overshoot or undershoot if the transport

equation contains source terms that change the definition of the local DMP.

In our experience, a nonclipping flux limiter can be designed using information

about the higher-order derivatives. In [43] we developed such a limiter for quadratic

finite elements within the framework of a discontinuous Galerkin (DG) method. In

the case of linear or multilinear finite element FCT schemes, the second derivatives

are not available, which makes it more difficult to distinguish between spurious

spikes (‘wiggles’) and smooth peaks. The use of Hessian recovery techniques pro-

duces a smooth approximation which is no longer a reliable shock detector.

Another infamous byproduct of FCT manifests itself in distortions of a smooth

profile. This phenomenon is known as terracing and represents ‘an integrated, non-

linear effect of residual phase errors’ [67] or, loosely speaking, ‘the ghosts of de-

parted ripples’ [7]. A particularly severe form of terracing is caused by the linear

instability of the high-order scheme. For this reason, we do not recommend the use

of the forward Euler time-stepping (θ = 0) even though the flux-corrected scheme

proves positivity-preserving under the CFL-like time step restriction (62).

Terracing can also be caused by the lack of information about the solution be-

havior in the exterior of Ω . Figure 1 displays a zoom of the FCT solution to the 1D

convection equation (43) with v = 1 an u0 = x in Ω = (0,1). The standard Galerkin

method would produce excellent results for a linear profile but the FCT version gives

rise to terracing in a neighborhood of the (artificial) open boundary x = 1. This hap-

pens because the solution value at the last node is treated as a peak, although it is

not a peak if we make Ω a little longer [63]. This example indicates that the FCT

limiter is not linearity-preserving, which makes it particularly prone to terracing.

6.5 Evaluation of FCT

In our experience, FCT produces excellent results for strongly time-dependent prob-

lems. The use of small time steps increases the amount of accepted antidiffusion and

justifies the linearization of the antidiffusive flux which leads to a simple and effi-

cient predictor-corrector algorithm. The cost of an implicit FCT scheme depends on

the choice of iterative methods, parameter settings, and stopping criteria. If the time

step is very small, then a good initial guess is available and the sparse linear system

can be solved with 1-2 iterations of the Jacobi or Gauß-Seidel method. Thus, the cost

per time step approaches that of an explicit finite difference or finite volume scheme.

As the time step increases, so does the number of iterations, and advanced linear al-
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Fig. 1 Terracing in the neighborhood of a hyperbolic outlet.

gebra tools (smoothers, preconditioners, convergence acceleration techniques) may

need to be employed. Moreover, the use of large time steps degrades the accuracy

of an FCT algorithm since Q±
i → 0 as ∆ t → ∞. Other potential drawbacks include

clipping, terracing, and the ad hoc nature of the prelimiting procedure.

We conclude that algebraic flux correction of FCT type is the method of choice

for evolutionary problems. No other shock capturing technique performs better

when it comes to solving an unsteady hyperbolic equation with linear finite elements

[35]. For steady-state computations, we recommend the linearity-preserving limiter

presented in the next section. It is similar to FCT in many ways but its derivation is

based on variational gradient recovery, and all high-order operators (MC, K, and L)

are constrained independently using the same general-purpose limiting strategy.

7 Linearity-Preserving Limiters

As an alternative to FCT, we developed several multidimensional flux limiters which

are independent of the time step and produce a TVD scheme in the 1D case [39, 40,

46]. As this methodology evolved and matured, we realized that the definition of

the upper and lower bounds for a generalized TVD scheme must guarantee linearity

preservation on arbitrary meshes. In other words, the constrained approximation

must reduce to the underlying Galerkin scheme if the solution is a linear function.

This property implies consistency and second-order accuracy for smooth data [10,

62]. In the context of algebraic flux correction, it can be enforced using variational

gradient recovery to obtain the LED bounds for the edge-based slope limiter [51].
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Another open problem in the design of TVD-like schemes for finite elements

was the treatment of the consistent mass matrix which is essential for maintain-

ing the high accuracy of the Galerkin scheme for time-dependent problems. Our

multidimensional limiters of TVD type were designed to constrain the entries of

the discrete convection operator, and our first attempts to limit the consistent mass

matrix independently were rather unsuccessful. This has led us to marry FCT and

‘TVD’ within the framework of a general-purpose flux limiter [39]. Unfortunately,

the resulting scheme inherited not only the advantages but also some drawbacks of

the two limiting techniques (dependence on the time step, lack of linearity preser-

vation, artificial coupling between the antidiffusive fluxes associated with different

discrete operators). Moreover, the increased complexity of the algorithm has made

it too expensive for practical purposes. For some time, we continued using the more

efficient special-purpose limiting techniques: FCT for time-dependent problems and

lumped-mass ‘TVD’ for steady-state computations. In this section, we introduce an

algebraic flux correction scheme that can handle both situations equally well.

The algorithm to be presented is a fully multidimensional counterpart of the

edge-based slope limiter we developed in [51] for anisotropic diffusion problems.

In what follows, we extend it to steady and unsteady convective transport. The con-

tribution of the consistent mass matrix is taken into account by applying the limiter

to the vector of discretized time derivatives. Furthermore, we constrain the sum of

raw antidiffusive fluxes instead of individual fluxes or slopes. This revision results

in a marked gain of accuracy as compared to edge-by-edge slope limiting.

Another major improvement is a new iterative solver for the nonlinear algebraic

system. We present a nonlinear SSOR scheme which updates the nodal values of the

numerical solution and the limited antidiffusive fluxes in a single loop over the nodes

of the computational mesh. To speed up convergence, we use Anderson acceleration

[1, 80], also known as Anderson mixing [18, 19]. The efficiency of this approach is

confirmed by our numerical study for an anisotropic diffusion equation. On fine

meshes, the number of SSOR iterations is reduced by a factor of 60 and more.

7.1 Flux Splitting

So far we have limited all components of the raw antidiffusive flux fi j using a com-

mon correction factor αi j ∈ [0,1]. Let us now replace definition (53) with

f̄i j := αM
i j f M

i j +αK
i j f K

i j +αL
i j f L

i j, (84)

where αM
i j , αK

i j , and αL
i j denote the individual correction factors for the fluxes

f M
i j = mi j (u̇i − u̇ j) , (85)

f K
i j = di j(ui −u j), (86)

f L
i j = l+i j (ui −u j). (87)



Algebraic Flux Correction I 25

The limited antidiffusive term (52) proves local extremum diminishing if

qM
i (u̇min

i − u̇i)≤ ∑
j 6=i

αM
i j f M

i j ≤ qM
i (u̇max

i − u̇i), (88)

qK
i (u

min
i −ui)≤ ∑

j 6=i

αK
i j f K

i j ≤ qK
i (u

max
i −ui), (89)

qL
i (u

min
i −ui)≤ ∑

j 6=i

αL
i j f L

i j ≤ qL
i (u

max
i −ui) (90)

for some positive constants qM
i , qK

i , and qL
i independent of u. In this section, we use

criterion (88)–(90) to determine the values of αM
i j , αK

i j , and αL
i j.

Without loss of generality, we consider fi j := f K
i j and present the limiting strategy

that delivers αi j satisfying (57) for a given qi > 0. The fluxes f L
i j and f M

i j are limited

in the same way but the bounds for f M
i j are defined in terms of u̇ rather than u.

7.2 Gradient-Based Slope Limiting

To get started, we present the symmetric linearity-preserving (LP) slope limiter we

developed in [51] in the context of steady anisotropic diffusion. This algorithm be-

longs to the family of edge-based stencil reconstruction methods that constrain the

jumps of the gradient along the line connecting two nodes [32, 54, 60, 70].

A raw antidiffusive flux of the form fi j = di j(ui − u j) requires limiting if the

difference between ui and u j is “too large.” Introducing the limited slope

s̄i j := αi j(ui −u j), 0 ≤ αi j ≤ 1, (91)

we define

f̄i j := di j s̄i j = αi j fi j. (92)

Thus, the multiplication of fi j by αi j is equivalent to replacing ui −u j with s̄i j. An

algorithm that produces s̄i j rather than αi j is called a slope limiter.

The definition of s̄i j must guarantee that f̄i j is LED. This will be the case if

smin
i j ≤ s̄i j ≤ smax

i j , (93)

where the upper and lower bounds are given by

smax
i j = γi j(u

max
i −ui), (94)

smin
i j = γi j(u

min
i −ui) (95)

for some bounded γi j ≥ 0. That is, each slope is constrained in the same manner as

the sum of antidiffusive fluxes in (57). This approach is used in many edge-based

extensions of 1D high-resolution schemes to unstructured meshes [32, 54, 60].
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To construct the LED bounds smax
i j and smin

i j , consider the linear approximation

ui −u j ≈ si j := (∇u)i · (xi −x j). (96)

The value of (∇u)i is obtained using numerical differentiation. A variety of gradient

reconstruction techniques based on averaging or superconvergent patch recovery are

available for this purpose. In our method, we use the lumped-mass L2 projection

(∇u)i =
1

mi
∑
k

cikuk, (97)

where mi is a diagonal entry of the lumped mass matrix ML, and cik is a vector-

valued coefficient of the discrete gradient operator C given by (31). Since the gradi-

ents of Lagrange basis functions sum to zero, we have

cii =−∑
k 6=i

cik.

Thus

(∇u)i =
1

mi
∑
k 6=i

cik(uk −ui). (98)

We will use this representation to derive the LED bounds for the extrapolated slope

si j, and then we will use these bounds to define γi j in (94) and (95).

Plugging (98) into the definition of si j, we obtain the following estimates

si j ≤
1

mi
∑
k 6=i

|cik · (xi −x j)|(umax
i −ui), (99)

si j ≥
1

mi
∑
k 6=i

|cik · (xi −x j)|(umin
i −ui). (100)

To make the bounds for si j less restrictive, we multiply them by 2 and define

γi j :=
2

mi
∑
k 6=i

|cik · (xi −x j)|. (101)

This nonnegative coefficient is used to determine the bounds (94) and (95) for the

slope limiter. The localized LED constraint (93) can be enforced by setting

s̄i j =

{

min{smax
i j ,ui −u j}, if ui > u j,

max{smin
i j ,ui −u j}, if ui < u j.

(102)

The one-sided limiting strategy is sufficient if the slope s̄ ji :=−s̄i j cannot violate

the LED principle for node j. In particular, this is the case if j is a node on the

Dirichlet boundary or a downwind neighbor of node i (see Section 7.3). In all other

cases, the slope limiter must enforce not only (93) but also smin
ji ≤ s̄ ji ≤ smax

ji .
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The following definition of s̄i j guarantees the LED property for both nodes [51]

s̄i j =

{

min{smax
i j ,ui −u j,−smin

ji }, if ui > u j,

max{smin
i j ,ui −u j,−smax

ji }, if ui < u j.
(103)

This symmetric limiting strategy corresponds to a double application of the one-

sided slope limiter. In the following Theorem, we prove linearity preservation.

Theorem 5. If uh is linear, then the lumped-mass L2 projection (97) is exact and

si j = ui −u j = s̄i j.

Proof. If uh is a linear, then its gradient is constant and ui −u j = ∇uh · (xi −x j). It

follows that si j = ui −u j if (∇u)i = ∇uh. According to (97), we have

(∇u)i =
1

mi

∫

Ω
ϕi∇uh dx = ∇uh

(

1

mi

∫

Ω
ϕi dx

)

= ∇uh (104)

since the diagonal entry of the lumped mass matrix is given by

mi = ∑
j

mi j =
∫

Ω
ϕi

(

∑
j

ϕ j

)

dx =
∫

Ω
ϕi dx.

Thus, the L2 projection is exact and si j = ui − u j. By definition of γi j, the slope

s̄i j = si j satisfies the imposed constraints, whence no limiting is performed. �

Linearity preservation implies that f̄i j → fi j as h → 0. Therefore, the constrained

Galerkin scheme is consistent even if the low-order scheme is inconsistent.

Example 2. To illustrate the relationship of the linearity-preserving slope limiter to

classical TVD schemes [29, 78], consider a 1D mesh with uniform spacing ∆x. In

this case, the coefficients of (97) are given by mi = ∆x and ci±1/2 =±1/2.
The resulting formula for u′i is equivalent to the second-order central difference

u′i =
1

2

(

ui −ui−1

∆x
+

ui+1 −ui

∆x

)

=
ui+1 −ui−1

2∆x
.

For any interior node, the local maxima and minima of the grid function are

umax
i = max{ui−1,ui,ui+1}, umin

i = min{ui−1,ui,ui+1}.

Furthermore, γi j = 2 for j = i+1 since estimate (99)–(100) corresponds to

umin
i −ui ≤ ∆xu′i ≤ umax

i −ui.

The one-sided slope limiter (102) can be written as a single-line formula

s̄i j = minmod{2(ui−1 −ui),ui −ui+1},
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and the corresponding formula for the symmetric slope limiter (103) reads

s̄i j = minmod{2(ui−1 −ui),ui −ui+1,2(ui+1 −ui+2)}.

The minmod limiter function returns the argument with the smallest magnitude if all

arguments have the same sign and zero otherwise. That is,

minmod{a,b, . . .}=







min{a,b, . . .}, if a > 0, b > 0, . . .
max{a,b, . . .}, if a < 0, b < 0, . . .
0, otherwise.

It follows that the proposed slope limiter is activated only if two consecutive gradi-

ents have opposite signs or their magnitudes differ by a factor of 2 and more.

7.3 Symmetric Flux Limiter

In contrast to the fully multidimensional FCT method, the linearity-preserving (LP)

slope limiter presented in Section 7.2 constrains the antidiffusive flux fi j indepen-

dently of all other fluxes into node i. This is convenient but the results are quite sen-

sitive to the orientation of mesh edges. In this section, we convert the edge-based

slope limiter into an FCT-like limiter for the sum of antidiffusive fluxes. The LED

constraint (57) can be enforced using the following generalization of (80)–(83)

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+
i = ∑

j 6=i

max{0, fi j}, P−
i = ∑

j 6=i

min{0, fi j}. (105)

2. Define local extremum diminishing upper/lower bounds of the form

Q+
i = qi(u

max
i −ui}, Q−

i = qi(u
min
i −ui}. (106)

3. Compute the nodal correction factors for positive/negative fluxes

R+
i = min

{

1,
Q+

i

P+
i

}

, R−
i = min

{

1,
Q−

i

P−
i

}

. (107)

4. Limit the fluxes fi j and f ji using the common correction factor

αi j =

{

min{R+
i ,R

−
j }, if fi j > 0,

min{R−
i ,R

+
j }, if fi j < 0.

(108)

As in the case of FCT, this definition of the correction factor αi j implies that

Q−
i ≤ R−

i P−
i ≤ ∑

j 6=i

αi j fi j ≤ R+
i P+

i ≤ Q+
i . (109)
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To maintain linearity preservation, we define Q±
i as the sum of the LED bounds we

imposed on individual slopes/fluxes in Section 7.2. That is, we set

qi := ∑
j 6=i

γi jdi j. (110)

In contrast to FCT, the resulting formula for Q±
i is independent of the time step.

7.4 One-Sided Flux Limiter

Algorithm (105)–(108) is ideally suited for constraining a symmetric operator like L

or MC. In the latter case, the antidiffusive fluxes (85) and the bounds Q±
i be defined

in terms of u̇ rather than u. At the fully discrete level, the time derivative is replaced

with the finite difference approximation u̇ ≈ (un+1 − un)/∆ t. Note that the same

correction factor αM
i j is applied to the explicit and implicit part of f M

i j .

In principle, the discrete convection operator K can also be constrained using

(105)–(108). However, it turns out that the LED constraint for node j is satisfied

automatically if k ji > 0. To take advantage of this fact, we limit the convective part

in an upwind-biased fashion [49, 46]. In accordance with our upwind-downwind

edge orientation convention (40), we assume that ki j ≤ k ji. As long as

k̄ ji := k ji +(1−αi j)di j

is nonnegative for all αi j ∈ [0,1], it is enough to make sure that (57) holds for node i.

In the one-sided version of (105)–(108), we begin with the prelimiting step

fi j := (di j +max{0,k ji})(ui −u j) (111)

which is required to enforce the LED constraint for node j in the unlikely case of

k ji < 0. After this prelimiting, the correction factors αi j are calculated as follows:

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+
i = ∑

ki j≤k ji

max{0, fi j}, P−
i = ∑

ki j≤k ji

min{0, fi j}. (112)

2. Compute qi and the local extremum diminishing upper/lower bounds

Q+
i = qi(u

max
i −ui}, Q−

i = qi(u
min
i −ui}. (113)

3. Compute the nodal correction factors for positive/negative fluxes

R+
i = min

{

1,
Q+

i

P+
i

}

, R−
i = min

{

1,
Q−

i

P−
i

}

. (114)
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4. Multiply fi j and f ji by the nodal correction factor for the upwind node i

ki j ≤ k ji ⇒ αi j =

{

R+
i , if fi j ≥ 0,

R−
i , if fi j < 0,

α ji := αi j. (115)

We have used this one-sided limiting strategy to design algebraic flux correction

schemes based on a generalization of upwind TVD limiters [39, 40, 46, 49].

8 Solution of Nonlinear Systems

After the discretization in time, the flux-corrected discrete problem can be written

in the form (58). Since the antidiffusive term depends on the unknown solution, the

nonlinear discrete problem must be solved in an iterative way. In contrast to the non-

linear FCT algorithm presented in Section 6.2, only the fully converged solution is

guaranteed to be nonoscillatory. Therefore, it is essential to make sure that iterations

converge. Moreover, convergence must be fast enough to keep the cost of algebraic

flux correction reasonable. Thus, the robustness and efficiency of the iterative solver

for the nonlinear system are just as important as the flux limiting procedure.

8.1 Defect Correction Scheme

As in the case of FCT, the structure of the nonlinear system (58) suggests the use of

a fixed-point iteration with a lagged evaluation of the antidiffusive term

Au(m+1) = Bun + f̄ (m). (116)

A more general class of defect correction schemes can be formally written as

u(m+1) = u(m)+ωÃ−1r(m), (117)

where Ã is an approximation to the Jacobian of the nonlinear system, ω ∈ [0,1] is a

relaxation parameter, and r(m) is the residual vector given by

r(m) = Bun −Au(m)+ f̄ (m). (118)

In practice, the matrix Ã is ‘inverted’ by solving a linear system (see Al-

gorithm 2). The iteration process is typically terminated when certain norms of

u(m+1)−u(m) and/or r(m+1) become smaller than a prescribed tolerance. More elabo-

rate stopping criteria based on the finite element theory can be found in [2]. Clearly,

the rates of convergence and the overall efficiency of the above defect correction

scheme are strongly influenced by the choice of the ‘preconditioner’ Ã.
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Algorithm 2: Defect correction scheme.

Set u(0) := un

For all m = 0,1, . . . do

Solve the linear system Ã∆u(m+1) = r(m)

Update the solution u(m+1) := u(m)+ω∆u(m+1)

Exit if the stopping criteria are satisfied

Set un+1 := u(m+1)

The default setting is ω := 1 and Ã := A, which corresponds to (116). By con-

struction, the low-order operator A is an M-matrix. This property results in fast

convergence of inner iterations. If the time step ∆ t is very small, the solution can be

updated in a fully explicit fashion using the diagonal preconditioner Ã := diag(A).
As few as 1-3 outer iterations may suffice if good initial guess is available. Thus,

the cost per time step might be comparable to that of an explicit algorithm. On the

other hand, such a solver may fail to converge if the time step is too large.

Some advanced preconditioning and underrelaxation techniques are discussed in

[44, 51, 64]. In quasi-Newton methods, Ã must be a good approximation to the Ja-

cobian of (58). Due to the complex structure and nondifferentiability of the limited

antidiffusive term, the assembly of such preconditioners is very complicated and

expensive. Thus, Jacobian-free solvers are to be preferred. In particular, the conver-

gence acceleration method described in Section 8.3 leads to a Newton-like scheme

in which the memory effect is exploited to avoid numerical differentiation.

8.2 Nonlinear SSOR Scheme

A major drawback of fixed-point methods like (116) is the fully explicit treatment

of the antidiffusive term. An attempt to build implicit antidiffusion into the precon-

ditioner Ã aggravates convergence problems if all correction factors are taken from

the previous outer iteration. This has led us to update the solution values, the anti-

diffusive fluxes, and the correction factors simultaneously in a loop over nodes. The

resulting algorithm can be classified as a nonlinear Gauß-Seidel / SSOR method.

The i-th equation of the flux-corrected Galerkin scheme (58) can be written as

∑
j

ai ju j = bi + f̄i, (119)

where the antidiffusive term f̄i depends on u= un+1, whereas bi =∑ j bi ju
n
j is known.
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The calculation of u
(m+1)
i ≈ un+1

i begins with the assembly of f̄i. In the forward

sweep, the new values of u j are already available for all j < i. Thus

u j =

{

u
(m+1)
j , if j < i,

u
(m)
j , if j ≥ i.

(120)

In the backward sweep, the solution values are updated in the reverse order, so the

i-th step begins with u j = u
(m+1)
j for j > i and u j = u

(m)
j otherwise.

Given the array of current solution values ui, we recalculate the raw antidiffusive

fluxes fi j, apply the flux limiter, and add the result to f̄i (see Algorithm 3).

Algorithm 3: Assembly of f̄i (symmetric version).

For all i do

P±
i := 0, Q±

i := 0, f̄i := 0

For all j ∈ Si do

P±
i := P±

i + max
min

{0, fi j}
Q±

i := max
min

{

Q±
i ,

mi
∆ t
(u j −ui)

}

R±
i := min

{

1,Q±
i /P±

i

}

For all j ∈ Si do

αi j := min{R±
i ,R

∓
j }

f̄i := f̄i +αi j fi j

Since the value of αi j depends not only on R±
i but also on R∓

j , we store the up-

dated nodal correction factors, so that they are readily available when it comes to

calculating αi j. Due to the lag in evaluation of f̄i j and f̄ ji, intermediate approxima-

tions may be nonconservative but f̄ ji =− f̄i j when the algorithm converges.

Given the updated value of f̄i, the old solution value ui is overwritten by

ui := ui +
1

ãii

(

bi −∑
j

ai ju j + f̄i

)

, (121)

where ãii ≥ aii. Setting ãii := aii, one obtains the symmetric Gauß-Seidel (SGS)

method which may fail to converge if the implicit part of f̄i is too large compared to

∑ j ai ju j. A possible remedy is implicit underrelaxation of the form

ãii :=
aii

ω
, 0 < ω ≤ 1.
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Equivalently, the SSOR scaling factor ãii can be defined by adding a nonnegative

number to the diagonal entry. In our numerical experiments, we used

ãii := aii +θ ∑
j 6=i

(di j + l+i j ).

The flow chart of the nonlinear SSOR method for solving (58) is as follows:

Algorithm 4: Nonlinear SSOR iteration.

For all i = 1, . . . ,N −1,N do (forward sweep)

For all i = N,N −1, . . . ,1 do (backward sweep)

Update the antidiffusive term f̄i using Algorithm 3

Calculate the new solution value ui using (121)

The forward sweep can be written as (D̃+ L̃)∆u∗ := r, where r is the residual,

D̃ = diag{ãii} is a diagonal matrix of scaling factors, and L̃ is the strict lower tri-

angular part of A plus limited antidiffusion. Likewise, the backward sweep can be

written as (D̃+ Ũ)∆u := ∆u∗, where Ũ is a strict upper triangular matrix. Thus,

Algorithm 4 can written in the form (117) with ω = 1 and

Ã = (D̃+ L̃)D̃−1(D̃+Ũ).

Luo et al. [59] used this sort of defect correction as a preconditioner for a linear

GMRES solver. A nonlinear version of this solution strategy is recovered when the

method presented in Section 8.3 is employed to accelerate Algorithm 4.

In the iterative solver for steady transport equations, we set θ := 1 and bi := 0.

Furthermore, the contribution of the mass matrix is removed, which corresponds to

using an infinitely large pseudo-time step ∆ t. It is also possible to march the solution

to the steady state using θ := 1 and local time stepping. In either case, a usable initial

guess can be obtained by solving the linear system with f̄i = 0 or f̄i = fi.

8.3 Anderson Acceleration

Since the cost of recalculating the correction factors for the flux limiter is rather

high, slow convergence of an iterative method can make algebraic flux correction

very expensive. The fixed-point defect correction scheme (117) and the nonlinear

SSOR iteration (121) generate a sequence of successive approximations but only

the last iterate u(m) is used when it comes to the computation of u(m+1). It turns out

that including information from a number of previous iterates may dramatically im-
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prove the convergence behavior. This idea is exploited in many vector extrapolation

techniques for vector sequences (see, e.g., [34, 77]). In this work, we employ the

convergence acceleration technique known as Anderson mixing [1, 18, 19, 80]. As

shown in [18], this approach is equivalent to the Broyden scheme for the inverse

Jacobian but is easier to implement and explain. On linear problems, the accelerated

fixed point iteration is related to the preconditioned GMRES method [80].

Following Walker and Ni [80], we formulate Anderson acceleration as follows:

Algorithm 6: Anderson acceleration.

For all m = 0,1, . . . do

Compute ũ(m) := g(u(m)) with (117) or (121)

Store ũ(m) and ∆u(m) := ũ(m)−u(m)

Given k ≤ m iterates, determine the weights

ω(m) = (ω
(m)
1 , . . . ,ω

(m)
k )T

by solving the constrained least-squares problem

min
ω(m)

∥

∥

∥

∥

∥

k

∑
i=1

ω
(m)
i ∆u(m−k+i)

∥

∥

∥

∥

∥

2

s.t.
k

∑
i=1

ω
(m)
i = 1

Set u(m+1) :=
k

∑
i=1

ω
(m)
i ũ(m−k+i)

In practice, it is worthwhile to calculate the weights by solving an equivalent uncon-

strained least squares problem [80]. Furthermore, Anderson acceleration may need

to be restarted if the vectors ∆u(m) become (almost) linearly dependent, or if the

norm of ∆u(m) is much greater than that of ∆u(m−1). We refer to [18, 19, 65, 80] for

a discussion of various improvements and practical implementation details.

9 Numerical Examples

A properly designed high-resolution scheme should be (i) at least second-order

accurate for smooth data and (ii) capable of resolving small-scale features with-

out excessive smearing or steepening. To evaluate the accuracy and efficiency of

our linearity-preserving limiting techniques, we apply them to three representative

benchmark problems which have already been studied using other algebraic flux

correction schemes [42, 44, 46, 51] as well as variational shock capturing [35],
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monotone finite volume schemes [52, 53], and slope limiters for discontinuous

Galerkin methods [43]. Thus, a quantitative comparison of the results is possible.

Given a reference solution u and a numerical approximation uh, we define

E1(h) = ∑
i

mi|u(xi)−ui| ≈ ‖u−uh‖1, (122)

E2(h) =
√

∑
i

mi|u(xi)−ui|2 ≈ ‖u−uh‖2, (123)

where mi =
∫

Ω ϕi dx stands for a diagonal coefficient of the lumped mass matrix ML.

The objective of the below numerical study is to investigate the dependence of

the errors E1 and E2 on the mesh size h and on the choice of the limiting strategy. In

particular, we will use the numerical solutions computed on the two finest meshes

to estimate the expected order of accuracy by the formula [52]

p = log2

(

E1(2h)

E1(h)

)

. (124)

In the last two examples, we compare the convergence behavior of the global defect

correction scheme to that of nonlinear SSOR with Anderson acceleration.

9.1 Solid Body Rotation

The solid body rotation test [52, 81] is often used to evaluate numerical advection

schemes. The problem to be solved is the continuity equation

∂u

∂ t
+∇ · (vu) = 0 in Ω = (0,1)× (0,1). (125)

The velocity v describes a counterclockwise rotation about the center of Ω

v(x,y) = (0.5− y,x−0.5). (126)

After each full revolution, the exact solution u coincides with the given initial data

u0. Hence, the challenge of this test is to preserve the shape of u0.

Following LeVeque [52], we simulate solid body rotation of the profile displayed

in Fig. 2. The geometry of each body is described by a given function G(x,y) defined

on a circle of radius r0 = 0.15 centered at some point (x0,y0) ∈ Ω . Let

r(x,y) =
1

r0

√

(x− x0)2 +(y− y0)2

be the normalized distance from the point (x0,y0). Then r(x,y)≤ 1 inside the circle.
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The slotted cylinder is centered at the point (x0,y0) = (0.5,0.75) and

G(x,y) =

{

1, if |x− x0| ≥ 0.025 or y ≥ 0.85,

0, otherwise.

The sharp cone is centered at (x0,y0) = (0.5,0.25) , and its shape is given by

G(x,y) = 1− r(x,y).

The smooth hump is centered at (x0,y0) = (0.25,0.5), and the shape function is

G(x,y) =
1+ cos(πr(x,y))

4
.

In the rest of the domain, the solution to (125) is initialized by zero, and homoge-

neous Dirichlet boundary conditions are prescribed at the inlets.

The snapshots presented in Figs. 2–5 show the shape of the solution at the final

time T = 2π , which corresponds to one full rotation. All computations were per-

formed on a uniform mesh of 128×128 bilinear elements using the Crank-Nicolson

time-stepping with the time step ∆ t = 10−3. The results obtained with αi j := 1 and

αi j := 0 are displayed in Figs. 3 and 4, respectively. As expected, the unconstrained

Galerkin solution exhibits spurious oscillations, while its low-order counterpart is

too diffusive. The solution shown in Fig. 5 was computed using linearized FCT (see

Section 6.1) with u̇L given by (65). A detailed numerical study of FCT schemes

(explicit vs. implicit, linearized vs. nonlinear) can be found in [42].

In the captions to Figs. 6–9, the abbreviations LPSL and LPFL refer to the lim-

iting techniques described in Sections 7.2 and 7.3, respectively (LP := Linearity

Preserving, SL:= Slope Limiting, FL := Flux Limiting). The results shown in Figs. 6

and 7 indicate that LPFL is more accurate than LPSL and almost as accurate as FCT.

This is good news since the solid body rotation test belongs to the class of problems

that FCT can handle much better than other shock-capturing methods [35].

In contrast to flux limiters of TVD type [39, 40], LPSL and LPFL are applicable

to the antidiffusive part of the consistent mass matrix which makes it possible to

attain fourth-order accuracy with linear finite elements (see [16], p. 96). To demon-

strate the importance of this result, we present the numerical solutions obtained with

the lumped mass matrix (αM
i j := 0) in Figs. 8 and 9. The diagram in Fig. 10 depicts

the E1 convergence history for the consistent and lumped-mass versions of LPSL

and LPFL. The numerical values values of E1 and E2 are listed in Tables 2 and 3.

The local Courant number ν = |v|∆ t
h

equals zero at the center of the square domain

and attains its largest value νmax = 1√
2

∆ t
h

at the corners. In the process of mesh

refinement, the time step was adjusted to maintain the fixed ratio ∆ t
h
= 0.128.

The expected order of accuracy p is estimated using (124) with h = 1/256.

The rates of convergence for the LP algorithms used in Figs. 6–9 are given by

p = 0.96,0.90,0.77, and 0.77, respectively. The consistent-mass LPFL produces

smaller errors than LPSL. However, there is hardly any difference if mass lumping
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Fig. 2 Solid body rotation: initial data / exact solution at t = 2π .

Fig. 3 Solid body rotation: Galerkin solution at t = 2π .
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Fig. 4 Solid body rotation: low-order solution at t = 2π .

Fig. 5 Solid body rotation: FEM-FCT solution at t = 2π .
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Fig. 6 Solid body rotation: consistent-mass LPSL solution at t = 2π .

Fig. 7 Solid body rotation: consistent-mass LPFL solution at t = 2π .
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Fig. 8 Solid body rotation: lumped-mass LPSL solution at t = 2π .

Fig. 9 Solid body rotation: lumped-mass LPFL solution at t = 2π .
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Fig. 10 Solid body rotation, convergence history for LP limiters.

LPSL, lumped mass LPSL, consistent mass

h E1 E2 E1 E2

1/32 0.783E-01 0.163E+00 0.582E-01 0.135E+00

1/64 0.564e-01 0.144e+00 0.380E-01 0.111E+00

1/128 0.346e-01 0.109e+00 0.180E-01 0.704E-01

1/256 0.203e-01 0.803e-01 0.919E-02 0.509E-01

Table 2 Solid body rotation: LPSL grid convergence.

LPFL, lumped mass LPFL, consistent mass

h E1 E2 E1 E2

1/32 0.785E-01 0.165E+00 0.465E-01 0.125E+00

1/64 0.560E-01 0.147E+00 0.271E-01 0.907E-01

1/128 0.340E-01 0.110E+00 0.130E-01 0.612E-01

1/256 0.200E-01 0.806E-01 0.705E-02 0.459E-01

Table 3 Solid body rotation: LPFL grid convergence.

is performed. In this case, both algorithms converge at the rate p = 0.77, which is

a typical value for a TVD scheme that delivers p = 2 for smooth data. The use of

the consistent mass matrix results in a significant gain of accuracy and faster grid

convergence. This justifies the additional effort invested in the computation of αM
i j .
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9.2 Circular Convection

The second test problem is taken from [30]. Consider the hyperbolic PDE

∇ · (vu) = 0 in Ω = (−1,1)× (0,1) (127)

which describes steady circular convection if the velocity field is defined as

v(x,y) = (y,−x).

The exact solution and inflow boundary conditions for this test are given by

u(x,y) =

{

G(r), if 0.35 ≤ r =
√

x2 + y2 ≤ 0.65,
0, otherwise,

where G(r) is a given function that defines the shape of the solution profile.

To evaluate the performance of LPSL and LPFL for smooth data and discontinu-

ous solutions, we consider the following shape functions

G1(r) = cos2

(

5π
2r+1

3

)

, G2(r)≡ 1.

As before, computations are performed on a uniform mesh of bilinear finite elements

which is successively refined to perform a grid convergence study.

The exact solution to the circular convection problem is constant along the

streamlines of the stationary velocity field. Figure 11 displays the results for G = G1

and G = G2 computed using the LPFL algorithm with h = 1/64. The convergence

history for LPSL and LPFL is presented in Tables 4 and 5, respectively. In the case

of the smooth profile G1, the E1 errors for LPSL are approximately twice as large

as those for LPFL. The expected orders of accuracy are 2.22 and 2.11, respectively.

In the case of the discontinuous profile G2, the convergence rates drop to 0.91 for

LPSL and 0.83 for LPFL. The absolute values of the E1 errors differ by a factor of

1.5. We conclude that the revised limiting strategy leads to a marked improvement

not only for transient convection problems but also in steady-state computations.

smooth data discontinuous data

h E1 E2 E1 E2

1/32 0.318E-01 0.551E-01 0.821E-01 0.152E+00

1/64 0.104E-01 0.204E-01 0.449E-01 0.108E+00

1/128 0.251E-02 0.595E-02 0.259E-01 0.860E-01

1/256 0.537E-03 0.160E-02 0.138E-01 0.601E-01

Table 4 Circular convection: LPSL grid convergence.
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smooth data discontinuous data

h E1 E2 E1 E2

1/32 0.146E-01 0.266E-01 0.540-01 0.131E+00

1/64 0.377E-02 0.801E-02 0.295E-01 0.893E-01

1/128 0.944E-03 0.230E-02 0.185E-01 0.757E-01

1/256 0.218E-03 0.632E-03 0.104E-01 0.519E-01

Table 5 Circular convection: LPFL grid convergence.

(a)

(b)

Fig. 11 Circular convection: LPFL results for (a) smooth and (b) discontinuous data.
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defect correction nonlinear SSOR

h AA(5) AA(10) AA(5) AA(10)

1/32 576 574 274 287

1/64 — 975 487 501

1/128 — 1866 908 940

1/256 — — — 1893

Table 6 Circular convection: number of nonlinear iterations.

The iterative solver was configured to run until the absolute norm of the residual

becomes smaller than 10−6. This stopping criterion is more stringent than necessary

to obtain an accurate solution. However, it is important to make sure that the resid-

uals go to zero. The methods under investigation are the global defect correction

scheme (with ãii = 2aii and ãi j = ai j for j 6= i) and the nonlinear SSOR method

(with ãii = ∑ j |ai j|). The same subroutine was used to evalulate the residuals for

both schemes. To prevent division by zero, the LP limiter was implemented using

R±
i = min

{

1,
Q±

i ±ε

P±
i ±ε

}

, where ε is a multiple of the machine precision.

In the circular convection test with the discontinuous profile, the residuals begin

to oscillate, and convergence stalls if no Anderson acceleration is performed. The

number of nonlinear iterations for the accelerated schemes is presented in Table 6,

where AA(k) stands for Anderson acceleration applied to k iterates. The defect cor-

rection scheme with k = 5 fails to converge in most cases. The total number of

iterations for k = 10 is twice as large as that for nonlinear SSOR. Moreover, the cost

of a defect correction cycle is higher than that of an SSOR iteration.

9.3 Anisotropic Diffusion

In the last example, we consider a steady anisotropic diffusion equation

−∇ · (D∇u) = 0 in Ω , (128)

where Ω = (0,1)2\[4/9,5/9]2 is a square domain with a hole in the middle.

The outer and inner boundary of Ω are denoted by Γ0 and Γ1, respectively (see

Fig. 12a). The following Dirichlet boundary conditions are prescribed

u(x,y) =

{

−1, if (x,y) ∈ Γ0,
1, if (x,y) ∈ Γ1.

(129)

The diffusion tensor D is a symmetric positive definite matrix defined as

D = R(−θ)

(

k1 0

0 k2

)

R(θ), (130)
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h E1 E2 p umin umax

1/18 0.826E-01 0.194E+00 -1.06565 1.00000

1/36 0.514E-01 0.136E+00 0.68 -1.05527 1.00000

1/72 0.298E-01 0.904E-01 0.79 -1.03944 1.00000

1/144 0.155E-01 0.544E-01 0.94 -1.01818 1.00000

1/288 0.684E-02 0.278E-01 1.18 -1.00133 1.00000

1/576 0.225E-02 0.103E-01 1.60 -1.00000 1.00000

Table 7 Anisotropic diffusion: Galerkin grid convergence.

h E1 E2 p NNL-A NNL

1/18 0.741E-01 0.181E+00 70 258

1/36 0.441E-01 0.128E+00 0.75 293 1,136

1/72 0.257E-01 0.874E-01 0.78 448 4,904

1/144 0.143E-01 0.547E-01 0.85 951 20,375

1/288 0.712E-02 0.292E-01 1.01 1,094 51,763

1/576 0.245E-02 0.111E-01 1.54 1,976 120,213

Table 8 Anisotropic diffusion: LPFL grid convergence.

where k1 and k2 are the positive eigenvalues and R(θ) is a rotation matrix

R(θ) =

(

cosθ sinθ
−sinθ cosθ

)

. (131)

The eigenvalues of D represent the diffusion coefficients associated with the axes

of the Cartesian coordinate system rotated by the angle θ . Let

k1 = 100, k2 = 1, θ =−π

6
.

By the continuous maximum principle, the exact solution to the above Dirichlet

problem is bounded by the prescribed boundary data u|Γ =±1. However, the diffu-

sion tensor (130) is highly anisotropic, which may result in a violation of the DMP

even if a regular mesh of acute/nonnarrow type is employed.

The above benchmark problem was introduced by Lipnikov et al. [53]. The re-

sults obtained with LPSL can be found in [51]. In this section, we discretize the

anisotropic diffusion equation (128) using LPFL and linear finite elements on uni-

form triangular meshes. Since no exact solution is available, the reference solution

depicted in Fig. 12b is calculated with the standard Galerkin method on a very fine

mesh (h = 1/1152). This solution is bounded by the prescribed Dirichlet boundary

values, as required by the maximum principle. The unconstrained Galerkin solutions

computed on coarser meshes exhibit spurious undershoots shown as the dark blue

regions in Figs 12c and 12d. Algebraic flux correction based on the LPFL algorithm

makes it possible to enforce the DMP constraint without excessive smearing. The

solutions for h = 1/36 and h = 1/288 are presented in Figs 12e and 12f.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Anisotropic diffusion: (a) domain geometry, (b) reference solution, (c) Galerkin, h= 1/36,

(d) Galerkin, h = 1/288, (e) LPFL, h = 1/36, (f) LPFL, h = 1/288.
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The results of the grid convergence study are summarized in Tables 7 and 8.

On coarse meshes, the LPFL algorithm produces smaller errors than the underlying

Galerkin scheme. As the mesh is refined, the undershoots produced by the latter

method become smaller and eventually disappear. In the fourth column, we list the

rate of convergence (124) for each pair of meshes. Note that the value of p increases

monotonically as the mesh size h goes to zero.

The nonlinearity of the algebraic system associated with the flux-corrected

Galerkin discretization of the anisotropic diffusion equation is more severe than

in the case of pure convection. This phenomenon was first discovered in [51]. The

last two columns in Table 8 list the total number of nonlinear SSOR iterations re-

quired to make the maximum norm of the residual smaller than ε = 10−6. It is worth

mentioning that the values of E1 and E2 converged at early stages of the iteration

process. Hence, a better choice of stopping criteria would make the iterative solver

more efficient [2]. The numbers in the column labeled NNL-A were obtained with

Anderson acceleration, as described in Section 8.3. If it is switched off, a dramatic

increase in the number of nonlinear iterations NNL is observed (see the last column

in Table 8). The accelerated version is 60 times faster on the finest mesh.

In the current implementation of Anderson acceleration, we always mix k = 5

iterates and calculate the corresponding weights using the LAPACK subroutine

DGELS to solve the (unconstrained) least squares problem. The improvements pro-

posed in [18, 19, 65, 80] are likely to result in a further gain of efficiency.

10 Summary and Outlook

The algebraic flux correction paradigm presented in this chapter provides a set of

general rules, concepts, and tools for enforcing the discrete maximum principle and

positivity preservation in the context of low-order finite element approximations

on arbitrary meshes. The presented methodology is based on a generalization of

FCT. In particular, we addressed the design of implicit FCT schemes, developed

a linearity-preserving slope limiter and converted it into a fully multidimensional

format. In contrast to FCT, the new approach to flux correction is well-suited not

only for time-dependent problems but also for steady transport equations.

The use of flux limiting gives rise to a nonlinear system which must be lin-

earized or solved in an iterative way. The former approach has led us to an efficient

predictor-corrector algorithm for computations with small time steps. In the case of

stationary transport equations or large time steps, the linearization of antidiffusive

fluxes about a low-order predictor would degrade the accuracy of the algebraic flux

correction scheme and inhibit convergence. Hence, there is no way to replace the it-

erative solution of a nonlinear system with a single postprocessing step. Our results

for the anisotropic diffusion equation indicate that Anderson acceleration is a very

useful tool for the design of efficient quasi-Newton iterative solvers. The nonlinear

SSOR method presented in this paper can also be used as a smoother within the

framework of a full multigrid / full approximation scheme (FMG-FAS).
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The generality of algebraic flux correction makes it very powerful. The same

limiter routine can be employed to enforce positivity constraints in 2D and 3D, on

structured and unstructured meshes. The origin of discrete operators makes no dif-

ference as far as the M-matrix property is concerned. However, the flux limiter must

be designed to keep the perturbation of the discrete problem as small as possible.

The demand for high resolution is particularly difficult to meet in the case of higher-

order finite elements because the fluxes may depend on solution values at more than

two nodes, and even the construction of an optimal low-order scheme becomes a

nontrivial task [41]. This has led us to believe that higher-order Galerkin schemes

must be constrained within the framework of hp-adaptivity. In regions where the

derivatives of order p ≥ 1 are smooth, no limiting is required. Otherwise, the poly-

nomial degree p must be reduced until a smooth derivative is found [43] or a (multi-)

linear approximation (p = 1) is recovered in a given element. In the latter case, flux

limiting can be performed using the methodology presented in this chapter.

The unavoidable loss of accuracy around internal and boundary layers can be

compensated using h-adaptation, i.e., local mesh refinement. The Galerkin orthogo-

nality error produced by the flux limiter is computable and easy to localize. Thus, it

provides valuable feedback for goal-oriented mesh adaptation [47].

In the next two chapters, we extend algebraic flux correction to systems of con-

servation laws including the compressible Euler and incompressible Navier-Stokes

equations. The topics to be addressed include the construction of artificial viscosity

operators, flux limiting in terms of nonconservative variables, synchronization of

the correction factors, and failsafe control of the solution behavior. We also discuss

the treatment of source/sink terms in the context of the k− ε turbulence model.
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[21] I. Faragó, R. Horváth, and S. Korotov, Discrete maximum principle for linear

parabolic problems solved on hybrid meshes. Appl. Numer. Math. 53 (2005)

249–264.

[22] C.A.J. Fletcher, The group finite element formulation, Comput. Methods Appl.

Mech. Engrg. 37 (1983) 225–243.

[23] C.A.J. Fletcher, A comparison of finite element and finite difference solu-

tions of the one- and two-dimensional Burgers’ equations. J. Comput. Phys.

51 (1983) 159–188.

[24] S.K. Godunov, Finite difference method for numerical computation of dis-

continuous solutions of the equations of fluid dynamics. Mat. Sb. 47 (1959)

271–306.

[25] S. Gottlieb and C. W. Shu, Total Variation Diminishing Runge-Kutta schemes,

Math. Comp. 67 (1998) 73–85.

[26] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order

time discretization methods. SIAM Review 43 (2001) 89–112.



50 D. Kuzmin

[27] M. Gurris, D. Kuzmin, and S. Turek, Implicit finite element schemes for the

stationary compressible Euler equations. Int. J. Numer. Methods Fluids. In

press, DOI: 10.1002/fld.2532.

[28] P. Hansbo, Aspects of conservation in finite element flow computations. Com-

put. Methods Appl. Mech. Engrg. 117 (1994) 423–437.

[29] A. Harten, High resolution schemes for hyperbolic conservation laws. J. Com-

put. Phys. 49 (1983) 357–393.

[30] M.E. Hubbard, Non-oscillatory third order fluctuation splitting schemes for

steady scalar conservation laws. J. Comput. Phys. 222 (2007) 740–768.

[31] W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-Dependent

Advection-Diffusion-Reaction Equations. Springer, 2003.

[32] A. Jameson, Computational algorithms for aerodynamic analysis and design.

Appl. Numer. Math. 13 (1993) 383–422.

[33] A. Jameson, Analysis and design of numerical schemes for gas dynamics 1.

Artificial diffusion, upwind biasing, limiters and their effect on accuracy and

multigrid convergence. Int. Journal of CFD 4 (1995) 171–218.

[34] A. Jemcov and J.P. Maruszewski, Algorithm stabilization and acceleration in

computational fluid dynamics: exploiting recursive properties of fixed point al-

gorithms. In: R.S. Amano and B. Sundén (eds) Computational Fluid Dynamics

and Heat Transfer, WIT Press, 2010.

[35] V. John and E. Schmeyer, On finite element methods for 3D time-dependent

convection-diffusion-reaction equations with small diffusion. Comput. Meth.

Appl. Mech. Engrg. 198 (2008) 475-494.
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[63] M. Möller, Hochauflösende FEM-FCT-Verfahren zur Diskretisierung von kon-

vektionsdominanten Transportproblemen mit Anwendung auf die kompress-

iblen Eulergleichungen. Diploma thesis, University of Dortmund, 2003.
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