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1 Introduction

Consider a geometric object X with a subset P consisting of n points which
are enumerated P1, . . . , Pn. Suppose that we have a vector space L over Fq of
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functions on X with values in Fq. Thus f(Pi) ∈ Fq for all i and f ∈ L. In this
way one has an evaluation map

evP : L −→ Fnq
which is defined by evP(f) = (f(P1), . . . , f(Pn)). This evaluation map is linear,
so its image is a linear code. The image and its dual are the objects of study of
this chapter. The dimension and the minimum distance of these codes and their
duals will be considered. Decoding algorithms for these codes will be treated.

Defined in this generality, not much can be specifically said about the param-
eters of these codes. In the following, X is a subset of the affine or projective
space which is the common set of zeros of some given set of polynomials, called
a variety . P1, . . . , Pn will be rational points of X , i.e. points that have coor-
dinates in Fq. The functions will be polynomials or rational functions, that is
to say quotients of polynomials. We call the above codes algebraic geometry
(AG) codes if some theory of the variety X gives bounds on the dimension of
the vector space L and the minimum distance of the code.

The classical example of the above situation is given by Reed-Solomon (RS)
codes. Here the geometric object X is the affine line over Fq, the points are
n distinct elements of Fq and L is the vector space of polynomials of degree
at most k − 1 and with coefficients in Fq. This vector space has dimension k.
Such polynomials have at most k− 1 zeros, so nonzero codewords have at least
n−k+1 nonzeros. Hence this code has parameters [n, k, n−k+1] if k ≤ n. The
length of a RS code is at most q. A way to get longer codes is by considering
subfield subcodes or trace codes of RS codes. In this way one gets cyclic codes.

If we take as geometric object X the affine space of dimension m over Fq,
for the set P all the qm points of this affine space, and as vector space all
polynomials of degree at most r, then we get the Reed-Muller (RM) codes of
order r in m variables over Fq.

Every variety has a dimension and a variety of dimension one is called an
algebraic curve. If X is an algebraic curve over Fq, P a set of n distinct points of
X that are defined over Fq, and L a vector space of rational functions with pre-
scribed behavior of their poles and zeros, then we get the geometric Goppa codes.
The parameters of these codes are determined by the theorem of Riemann-Roch
, and they satisfy the following bound

k + d ≥ n+ 1− g, or equivalently d ≥ n+ 1− k − g,

where g is an invariant of the curve called its genus . The best codes are
obtained for curves of genus zero. They are in fact extended generalized RS
codes. These codes have length at most q + 1 and are therefore not capable of
giving asymptotically good sequences of codes. The length n of RM codes is
not bounded, but k/n or d/n tends to zero if n → ∞. The information rate
R = k/n and the relative minimum distance δ = d/n of geometric Goppa codes
satisfy the following inequality

R+ δ ≥ 1− g − 1

n
.

For good geometric Goppa codes, curves of low genus with many rational points
are therefore needed. By studying the number of rational points on modular
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curves over finite fields it was shown that there exist asymptotically good se-
quences of geometric Goppa codes satisfying the Tsfasman-Vlăduţ-Zink (TVZ)
bound

R+ δ ≥ 1− 1
√
q − 1

when q is a square.

This bound is better than the Gilbert-Varshamov (GV) bound when q ≥ 49. It
was the first time that the GV bound could be improved.

At the end of the eighties, an active period of research on decoding algorithms
for AG codes started, when the decoding algorithm for RS codes was general-
ized. RS codes are decoded up to half their minimum distance by first finding
the error positions as zeros of a polynomial known as the error-locator polyno-
mial. If the error positions are known and their number is strictly smaller than
the minimum distance, then error values can be obtained by solving linear equa-
tions involving syndromes . This idea was generalized by error-locator functions
on curves. The resulting basic algorithm decodes up to half the designed mini-
mum distance minus the genus. A technique called majority voting of unknown
syndromes gives an algorithm which decodes up to half the designed minimum
distance. Yet faster decoding algorithms were devised with an application of
linear recurring sequences in several variables. This is a multivariate general-
ization of the algorithm of Berlekamp-Massey .

The theory of algebraic geometry codes is rather involved and deep. To treat
algebraic curves (or equivalently algebraic function fields of one variable) in a
self-contained way, is already beyond the scope of this chapter. A large part
of the theory of modular curves is required to understand the result on the
asymptotically good sequences of codes on these curves. The complexity of the
construction of these codes is polynomial but, because the polynomial degree is
high, still not suitable for practical applications.

Several attempts have been made to give an elementary treatment. That
means an easier way both to construct the codes and to understand and prove
their properties. For plane curves, the theorem of Bézout was used to compute
the parameters of the codes, but for the dual codes the theorem of Riemann-
Roch was still needed. The majority voting for unknown syndromes gave a new
bound for the minimum distance. It was the starting point of an elementary
treatment of AG codes and it is the foundation of the main part of this chapter.

It resulted furthermore in an explicit and easy description of asymptotically
good sequences of curves over Fq when q is a square. Thus the theory has been
simplified drastically, but it still needs the theory of Artin-Schreier extensions.
The corresponding codes are not yet known by an explicit description, but a
start has been made.

Our aim with this chapter is not to survey the vast body of literature on AG
codes but to give an account of the construction and decoding of these codes
which can be treated in a self-contained and elementary way.

The key concept in our treatment is the notion of an order function . This
concept is well-known in the context of computational algebra and Gröbner bases
where reduction orders on monomials are intensively used. Two more applica-
tions of order functions will be given: bounds on the minimum distance and
decoding.
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In Sections 3-7 the theory is developed for the class of evaluation codes and
their duals, giving all the necessary definitions, theorems and proofs using only
linear algebra and some elementary knowledge of the ring of polynomials in
several variables as a background.

The class of evaluation codes with their duals contains codes on varieties of
arbitrary dimension and therefore intersects the class of geometric Goppa codes
in the set of so-called one point codes on curves.

The part on asymptotically good sequences of AG codes will only be outlined.

Section 2 contains an outline of the standard description of algebraic geometry
codes. Section 3 introduces the concepts order and weight functions. Section
4 defines and proves bounds on the minimum distance of evaluation codes and
their duals. Section 5 treats special order functions, which are called weight
functions, and their associated semigroups. Properties on the minimum dis-
tance for the codes are shown. The decoding of AG codes is treated in Section
6, where the basic algorithm and the majority voting scheme of unknown syn-
dromes is explained. Section 7 gives a fast decoding algorithm.

References are not included in the main text but each section ends with a sub-
section called Notes, where references and some history are given.

Notation: A field is denoted by F and its algebraic closure by F̄. The set of
nonzero elements of F is denoted by F∗. The field of real numbers is denoted
by R. The finite field with q elements is denoted by Fq. The standard inner
product on the vector space Fn is defined by x · y =

∑n
i=1 xiyi. The integers

are denoted by Z, the nonnegative integers by N0 and the positive integers by
N. The greatest common divisor of two integers a and b is denoted by gcd(a, b).
An F-algebra will be a commutative ring with a unit that has F as a unitary
subring, and it will be denoted by R. Most of the time the F-algebra will be
F[X1, . . . , Xm] , the polynomial ring in m variables with coefficients in F, or its
factor rings F[X1, . . . , Xm]/I where I is an ideal of F[X1, . . . , Xm]. Elements of
F[X1, . . . , Xm] will be denoted by capitals F , G and H and the corresponding
cosets in F[X1, . . . , Xm]/I by f , g and h, respectively.

2 Codes from curves

Reed-Solomon codes can be defined by considering points with coordinates in Fq
on the projective line. Codewords are defined by considering rational functions
with a pole of restricted order at a specified point and taking the values of these
functions at the given points as coordinates. The classical Goppa codes are
defined by calculating residues of certain functions at given points. The set of
functions is restricted by requirements on their zeros and poles. These two ideas
are what we shall generalize in this section. We must study algebraic curves,
find a way to describe the restrictions on the set of functions that we use, and
generalize the concept of residue. We describe two classes of codes that are
duals. Finally we consider asymptotically good codes on curves.

In this section the theory is outlined and most of the proofs are omitted.
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2.1 Algebraic curves

In the following, F is an algebraically closed field. In our applications, F will
be the algebraic closure of Fq. An will denote n-dimensional affine space with
coordinates x1, x2, . . . , xn. Similarly, Pn will be n-dimensional projective space
with homogeneous coordinates x0, x1, . . . , xn. First, we discuss the affine case.
The situation for projective spaces is slightly more complicated.

In the space An, the algebraic sets are the sets of zeros of ideals I of
F[X1, X2, . . . , Xn], that is to say

B = V (I) = {(x1, x2, . . . , xn) ∈ An | F (x1, x2, . . . , xn) = 0 for all F ∈ I}.

We always assume that I is radical, this means that F ∈ I if Fn ∈ I for some
n ∈ N0, so I consists of all the polynomials that vanish on B, by Hilbert’s
Nullstellensatz. An algebraic set B is called irreducible if B cannot be written
as the union of two proper algebraic subsets of B. An ideal I is called prime if
F ∈ I or G ∈ I for all F , G such that FG ∈ I. The set V (I) is irreducible if
and only if I is a prime ideal.

Example 2.1. In the affine plane, consider the principal ideal generated by
X2−Y 2. The corresponding algebraic set is the union of two lines with equations
Y = X, respectively Y = −X. Each of these lines is an irreducible algebraic set
in the plane A2.

All the curves in affine or projective space in this paragraph are required to be
irreducible.

Definition 2.2. Consider a prime ideal I in the ring F[X1, X2, . . . , Xn]. The
set X of zeros of I is called an affine variety.

Example 2.3. In 3-dimensional space, we consider the unit sphere, that is to
say, the set with equation X2 + Y 2 + Z2 = 1. In our terminology, this is the
affine variety consisting of the zeros of the ideal I, generated by the polynomial
X2+Y 2+Z2−1. We are just using algebraic terminology to describe geometric
objects that are defined by equations.

Two polynomials that differ by an element of I will have the same value in each
point of X . This is the reason for introducing the following ring.

Definition 2.4. The ring F[X1, X2, . . . , Xn]/I is called the coordinate ring F[X ]
of the variety X .

We adopt the convention to use capital letters X1, . . . , Xn, Y and Z to denote
variables. Polynomials are denoted by F , G and H and their cosets modulo the
ideal I are denoted by small letters f , g and h, respectively.

The coordinate ring is an integral domain, that is to say, f = 0 or g = 0 for
all f , g such that fg = 0, since I is a prime ideal. Therefore, we can make the
following definition.

Definition 2.5. The quotient field of the ring F[X ] is denoted by F(X ). It is
called the function field of X . The elements of F(X ) are called rational functions.
The dimension of the variety X is the transcendence degree of F(X ) over F. If
this dimension is 1, X is called an algebraic curve .
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Example 2.6. In the affine plane over the field F, we consider the parabola X
with equation Y 2 = X. In this example, the coordinate ring F[X ] consists of all
the expressions of the form A + By, where A and B are in F[x] and y satisfies
y2 = x. So, F(X ) is an algebraic extension of F(x) by the element y, satisfying
this equation of degree 2.

In projective space Pn, the situation is complicated by the fact that we must
use homogeneous coordinates. A point (x0 : x1 : · · · : xn) in Pn is the line in
An+1 through the origin and (x0, x1, . . . , xn) 6= 0. So (x0 : x1 : · · · : xn) = (y0 :
y1 : · · · : yn) if and only if (x0, x1, . . . , xn) = λ(y0, y1, . . . , yn) for some λ ∈ F∗.
Hence it makes sense to consider the zero set in Pn of homogeneous polynomials,
but for rational functions to have a meaning one takes only those quotients for
which numerator and denominator are homogeneous polynomials of the same
degree. A projective variety X is the zero set in Pn of a homogeneous prime
ideal I in F[X0, X1, . . . , Xn]. Consider the subring R(X ) of F(X0, X1, . . . , Xn)
consisting of the fractions F/G, where F and G are homogeneous polynomials
of the same degree and G /∈ I. Then R(X ) has a unique maximal ideal M(X )
consisting of all those F/G with F ∈ I. The function field F(X ) is by definition
R(X )/M(X ).

Definition 2.7. Let X be an affine or a projective variety. Let P be a point
on X . Then a rational function φ is called regular in the point P if one can
find polynomials F and G, respectively homogeneous polynomials of the same
degree, such that G(P ) 6= 0 and φ is the coset of F/G. The functions that are
regular in every point of the set U form a ring, denoted by F[U ].

If X is affine, then the coordinate ring of X coincides with the ring of regular
functions on X , so there is no ambiguity in the notation F[X ].

If X is projective, then there are no regular functions on X except constant
functions.

Definition 2.8. The local ring OP (sometimes denoted by OP (X )) of the point
P on the variety X is the set of rational functions that are regular in P .

The reader familiar with algebraic terminology will realize that this is indeed a
“local ring” in the algebraic sense, that is to say,it has a unique maximal ideal,
namely the set MP of functions in OP that are zero in P .

Example 2.9. In P2 with coordinates (x : y : z), consider the variety X defined
by XZ − Y 2 = 0. This is the parabola of Example 2.6, now with one point at
infinity, namely Q=(1:0:0). The function x/y is equal to y/z on the curve, hence
it is regular in the point P = (0 : 0 : 1). The function (2xz + z2)/(y2 + z2)
is regular in P . By replacing y2 by xz, we see that the function is equal to
(2x+ z)/(x+ z) and therefore also regular in Q.

Now we show how to embed an affine variety in a projective variety. Associate
with F ∈ F[X1, . . . , Xn] the homogeneous polynomial F ∗ defined by

F ∗ = X l
0F (X1/X0, . . . , Xn/X0),

where l is the degree of F . Let X be an affine variety in An defined by the
prime ideal I. Let I∗ be the ideal generated by {F ∗|F ∈ I}. Then I∗ is a
homogeneous prime ideal defining the projective variety X ∗ in Pn. Let X ∗0 =
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{(x0 : x1 : · · · : xn) ∈ X ∗|x0 6= 0}. Then X is isomorphic with X ∗0 under the
map (x1, . . . , xn) 7→ (1 : x1 : · · · : xn). The points (x0 : x1 : · · · : xn) ∈ X ∗ such
that x0 = 0 are called the points at infinity of X . Furthermore the function
fields F(X ) and F(X ∗) are isomorphic under the map f/g 7→ f∗xm0 /g

∗, where
m = deg(g)− deg(f).

Conversely, for any point P of a projective variety X and any hyperplane H
not containing P the complement X \ H is an affine variety containing P .

From now on, most of the time we will consider plane curves to simplify the
treatment.

Definition 2.10. Let F =
∑
aijX

iY j ∈ F[X,Y ]. Then FX , the partial deriva-
tive of F with respect to X is defined by

FX =
∑

iaijX
i−1Y j

and FY is defined similarly.

Definition 2.11. Consider a curve X in A2, defined by the equation F = 0.
Let P be a point on this curve. If at least one of the derivatives FX or FY is
not zero in P , then P is called a simple or nonsingular point of the curve. A
curve is called nonsingular, regular or smooth if all the points are nonsingular.

Let P = (a, b) be a nonsingular point on X . The tangent line TP at P is
defined by dPF = 0, where we define

dPF = FX(a, b)(X − a) + FY (a, b)(Y − b).

The definitions for a projective plane curve are similar and as follows. Let a
projective plane curve be defined by the homogeneous equation F = 0. Let P
be a point on this curve. If at least one of the derivatives FX , FY or FZ is
not zero in P , then P is called a simple or nonsingular point of the curve. Let
P = (a : b : c) be a nonsingular point of the curve. Then the tangent line at P
has equation

FX(a, b, c)X + FY (a, b, c)Y + FZ(a, b, c)Z = 0.

Example 2.12. The Fermat curve Fm is a projective plane curve with defining
equation

Xm + Y m + Zm = 0.

The partial derivatives of Xm + Y m + Zm are mXm−1, mY m−1, and mZm−1.
So considered as a curve over the finite field Fq, it is regular if m is relatively
prime to q.

Example 2.13. Let q = r2. The Hermitian curve Hr over Fq is defined by the
affine equation

Ur+1 + V r+1 + 1 = 0.

The corresponding homogeneous equation is

Ur+1 + V r+1 +W r+1 = 0.
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Hence it has r+ 1 points at infinity and it is the Fermat curve Fm over Fq with
r = m − 1. The conjugate of a ∈ Fq over Fr is obtained by ā = ar. So the
equation can also be written as

UŪ + V V̄ +WW̄ = 0.

This looks like equating a Hermitian form over the complex numbers to zero
and explains the terminology.

We will see in Section 3 that for certain constructions of codes on curves it is
convenient to have exactly one point at infinity. We will give a transformation
such that the new equation of the Hermitian curve has this property. Choose
an element b ∈ Fq such that br+1 = −1. There are exactly r + 1 of these,
since q = r2. Let P = (1 : b : 0). Then P is a point of the Hermitian curve.
The tangent line at P has equation U + brV = 0. Multiplying with b gives the
equation V = bU . Substituting V = bU in the defining equation of the curve
gives that W r+1 = 0. So P is the only intersection point of the Hermitian
curve and the tangent line at P . New homogeneous coordinates are chosen such
that this tangent line becomes the line at infinity. Let X1 = W , Y1 = U and
Z1 = bU − V . Then the curve has homogeneous equation

Xr+1
1 = brY r1 Z1 + bY1Z

r
1 − Zr+1

1

in the coordinates X1, Y1 and Z1. Choose an element a ∈ Fq such that ar +a =
−1. There are r of these. Let X = X1, Y = bY1 + aZ1 and Z = Z1. Then the
curve has homogeneous equation

Xr+1 = Y rZ + Y Zr

with respect to X, Y and Z. Hence the Hermitian curve has affine equation

Xr+1 = Y r + Y

with respect to X and Y . This last equation has (0 : 1 : 0) as the only point at
infinity.

Example 2.14. The Klein curve has homogeneous equation

X3Y + Y 3Z + Z3X = 0.

More generally we define the curve Km by the equation

XmY + Y mZ + ZmX = 0.

Suppose thatm2−m+1 is relatively prime to q. The partial derivatives of the left
side of the equation are mXm−1Y +Zm, mY m−1Z +Xm and mZm−1X +Y m.
Let (x : y : z) be a singular point of the curve Km. If m is divisible by the
characteristic, then xm = ym = zm = 0. So x = y = z = 0, a contradiction. If
m and q are relatively prime, then xmy = −mymz = m2zmx. So

(m2 −m+ 1)zmx = xmy + ymz + zmx = 0.

Therefore z = 0 or x = 0, since m2−m+ 1 is relatively prime to the character-
istic. But z = 0 implies xm = −mym−1z = 0. Furthermore ym = −mzm−1x.
So x = y = z = 0, which is a contradiction. Similarly x = 0 leads to a contra-
diction. Hence Km is nonsingular if gcd(m2 −m+ 1, q) = 1.
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2.2 Local parameters and discrete valuations

We want to show that the maximal ideal MP is a principal ideal, that is to
say, generated by one element. Let X be a smooth curve in A2 defined by the
equation F = 0, and let P = (a, b) be a point on X . The maximal ideal MP is
generated by x− a and y − b. Now

FX(P )(x− a) + FY (P )(y − b) ≡ 0 mod M2
P .

Hence the F-vector spaceMP /M2
P has dimension 1 and thereforeMP has one

generator. Let g ∈ F[X ] be the coset of a polynomial G. Then g is a generator
of MP if and only if dPG is not a constant multiple of dPF .

Definition 2.15. Let t be a generating element of MP . We can then write
every element z of OP in a unique way as z = utm, where u is a unit and m ∈ N0.
The function t is called a local parameter or uniformizing parameter in P . If
m > 0, then P is a zero of multiplicity m of z. We write m = ordP (z) = vP (z).
We use the convention vP (0) =∞.

Theorem 2.16. The map vP : OP → N0 ∪ {∞} is a discrete valuation, that is
to say the map is surjective and it satisfies the following properties:

(i) vp(f) =∞ if and only if f = 0
(ii) vP (λf) = vP (f) for all nonzero λ ∈ F
(iii) vP (f + g) ≥ min{vP (f), vP (g)}

and equality holds when vP (f) 6= vP (g).
(iv) vP (fg) = vP (f) + vP (g)
(v) If vP (f) = vP (g), then there exists a nonzero λ ∈ F such that

vP (f − λg) > vP (g).

for all f, g ∈ OP . Here ∞ > n for all n ∈ N0.

We extend the function vP to F(X ) by defining vP (f/g) = vP (f) − vP (g). If
vP (z) = −m < 0, then we say that z has a pole of order m in P . If z is an
element of F(X ) with vP (z) = m, then we can write z = atm + z′, where a ∈ F,
a 6= 0, and vP (z′) > m. In this way, one can show that z can be expanded as a
Laurent series

∑
i≥m ait

i, where ai ∈ F for all i and am 6= 0.

Example 2.17. Let P1 be the projective line over F. A local parameter in the
point P = (1 : 0) is y/x. The rational function (x2 − y2)/y2 has a pole of order
2 in P . If F does not have characteristic 2, then (1 : 1) and (−1 : 1) are zeros
with multiplicity 1.

Example 2.18. Let the characteristic of F be unequal to 2. Let X be the circle
in A2 with equation X2+Y 2 = 1 and let P = (1, 0). Let z = 1−x. This function
is 0 in P , so it is inMP . We claim that z has order 2. To see this, observe that
y is a local parameter in P , because the line dPY = Y = 0 is not equal to the
tangent line X = 1 in P . Furthermore, on X we have 1 − x = y2/(1 + x) and
the function 1/(1 + x) is a unit in OP .

When we construct codes, we will be interested in points that have their coor-
dinates in our alphabet Fq. We give these a special name.
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Definition 2.19. Let X be a curve defined over Fq, that is to say, the defining
equations have coefficients in Fq. Then points on X with all their coordinates
in Fq are called rational points.

Example 2.20. Consider the Klein quartic with equation X3Y +Y 3Z+Z3X =
0 of Example 2.14 over the algebraic closure of F2. Look at a few of the subfields.
Over F2 the rational points are (1:0:0), (0:1:0), and (0:0:1). If we go to F4,
there are two more rational points, namely (1 : α : 1 + α) and (1 : 1 + α : α) if
F4 = {0, 1, α, α2}, where α2 = 1 + α.

In later examples, this curve will be studied over F8. As usual, we define this
field as F2(ξ), where ξ3 = ξ+1. If a rational point has a coordinate 0, it must be
one of the points over F2. If xyz 6= 0, we can take z = 1. If y = ξi (0 ≤ i ≤ 6),
then write x = ξ3iη. Substitution in the equation gives η3 + η + 1 = 0, that is
to say, η is one of the elements ξ, ξ2, or ξ4. So we find a total of 24 rational
points over F8.

Example 2.21. Let X be the plane curve with equation X3 + Y 3 + Z3 = 0
over the closure of F2 and look at the subfield F4. So we consider the Hermitian
curve H2 of Example 2.13. Since a third power of an element of F4 is 0 or 1,
all the rational points have one coordinate 0. We can take one of the others to
be 1, and the third one any nonzero element of F4. So we find nine (projective)
points. In Q = (0 : 1 : 1), we can take t = x/z as local parameter. We consider
a difficulty that will come up again. The expression f = x/(y + z) looks like a
perfectly reasonable function and in fact on most of X it is. However, in Q the
fraction does not make sense. We must find an equivalent form for f near Q.
On X we have

x

y + z
=
x(y2 + yz + z2)

y3 + z3
= t−2 · y

2 + yz + z2

z2
,

where the second factor on the right is regular and not 0 in Q. By our earlier
conventions, we say that f has a pole of order 2 in Q. Similarly, y/(y + z) has
a pole of order 3 in Q.

2.3 Bézout’s theorem

We now consider the intersection of a curve and a hypersurface in Pn. We
assume that the reader is familiar with the fact that a polynomial of degree
m in one variable, with coefficients in a field has at most m zeros. If the field
is algebraically closed and if the zeros are counted with multiplicities, then
the number of zeros is equal to m. We shall now state a theorem, known as
Bézout’s theorem, which is a generalization of these facts to polynomials in
several variables.

The degree of a projective curve is the maximal number of points in the
intersection with a hyperplane not containing the curve. So the degree of a
projective plane curve is equal to the degree of the defining equation.

We only consider the intersection of an irreducible nonsingular projective
curve X of degree l and a hypersurface Y defined by the equation G = 0 of
degree m. We assume that X is not contained in Y.

Definition 2.22. Let P be a point of X . Let H be a homogeneous linear form
such that H(P ) 6= 0. Let h be the class of H modulo the ideal defining X . Then
the intersection multiplicity I(P ;X ,Y) of X and Y in P is defined by vP (g/hm).
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This definition does not depend on the choice of H, since h/h′ is a unit in OP
for any other choice of a linear form H ′ that is not zero in P .

Theorem 2.23. Let X be an irreducible nonsingular projective curve of degree
l and Y a hypersurface of degree m in Pn such that X is not contained in Y.
Then they intersect in exactly lm points (if counted with multiplicity).

We do not prove this theorem. If F is not algebraically closed or the curves are
affine, then the curves intersect in at most lm points.

We mention two consequences of this theorem.

Corollary 2.24. Two projective plane curves of positive degree have a point in
common.

Corollary 2.25. A regular projective plane curve is irreducible.

Proof. If F = GH is a factorization of F with factors of positive degree, we get

FX = GXH +GHX

by the product or Leibniz rule for the partial derivative. So FX is an element
of the ideal generated by G and H, and similarly for the other two partial
derivatives. Hence the set of common zeros of FX , FY , FZ and F contains the
set of common zeros of G and H. The intersection of the curves with equations
G = 0 and H = 0 is not empty since G and H have positive degrees, by Corollary
2.24. Therefore the curve has a singular point. �

Remark 2.26. Notice that the assumption that the curve is a projective plane
curve is essential. The equation X2Y − X = 0 defines a regular affine plane
curve, but is clearly reducible. However one gets immediately from Corollary
2.25 that if F = 0 is an affine plane curve and the homogenization F ∗ defines a
regular projective curve, then F is absolutely irreducible. The affine curve with
equation X2Y −X = 0 has the points (1 : 0 : 0) and (0 : 1 : 0) at infinity, and
(0 : 1 : 0) is a singular point.

Let Vl be the vector space of polynomials of degree at most l in two variables
X,Y and coefficients in Fq. Consider an element G of degree m in Fq[X,Y ]
such that the homogeneous form G∗ defines a nonsingular curve. Then G is
irreducible in F[X,Y ], where F is the algebraic closure of Fq by Corollary 2.25.
Let P1, P2, . . . , Pn be rational points on the plane curve defined by the equation
G = 0, that is to say, Pi = (ai, bi) ∈ F2

q and G(Pi) = 0 for 1 ≤ i ≤ n. We define
a code C by

C = {(F (P1), F (P2), . . . , F (Pn)) |F ∈ Fq[X,Y ], deg(F ) ≤ l}.

We shall use d for the minimum distance of this code and (as usual) call the
dimension k.

Theorem 2.27. Let n > lm. For the minimum distance d and the dimension
k of C, we have

d ≥ n− lm,

k =

{ (
l+2
2

)
if l < m,

lm+ 1−
(
m−1
2

)
if l ≥ m.

12



Proof. The monomials of the form XαY β with α + β ≤ l form a basis of Vl.
Hence Vl has dimension

(
l+2
2

)
.

Let F ∈ Vl. If G is a factor of F , then the codeword in C corresponding to
F is zero. Conversely, if this codeword is zero, then the curves with equations
F = 0 and G = 0 have degree l′ ≤ l and m, respectively and they have the n
points P1, P2, . . . , Pn in their intersection. Bézout’s theorem and the assumption
lm < n imply that F and G have a common factor. Since G is irreducible, F
must be divisible by G. Hence the functions F ∈ Vl that yield the zero codeword
form the subspace GVl−m. This implies that if l < m, then k =

(
l+2
2

)
, and if

l ≥ m, then

k =

(
l + 2

2

)
−
(
l −m+ 2

2

)
= lm+ 1−

(
m− 1

2

)
.

The same argument with Bézout’s theorem shows that a nonzero codeword
has at most lm coordinates equal to 0, that is to say, it has weight at least
n− lm. Hence d ≥ n− lm.

�

Remark 2.28. If F1, . . . , Fk is a basis for Vl modulo GVl−m, then

(Fi(Pj) | 1 ≤ i ≤ k, 1 ≤ j ≤ n)

is a generator matrix of C. So it is a parity check matrix for the dual of C.
The minimum distance d⊥ of C⊥ is equal to the minimal number of dependent
columns of this matrix. Hence for all t < d⊥ and every subset Q of P =
{P1, . . . , Pn} consisting of t distinct points, the corresponding k×t submatrix has
maximal rank t. Let Ll = Vl/GVl−m. Then the map that evaluates polynomials
at the points of Q induces a surjective map from Ll to Ftq. The kernel, which
we denote by Ll(Q), is the space of all functions F ∈ Vl that are zero at the
points of Q modulo GVl−m. So dim(Ll(Q)) = k − t if t < d⊥.

Conversely, the dimension of Ll(Q) is at least k− t for all t-subsets Q of P.
But in order to get a bound for d⊥, we have to know that dim(Ll(Q)) = k − t
for all t < d⊥. The theory developed so far is not sufficient to get such a bound.
The theorem of Riemann-Roch gives an answer to this question. See Section
2.7. Section 4 gives another, more elementary, solution to this problem.

Notice that the following inequality holds for the code C:

k + d ≥ n+ 1− g,

where g = (m− 1)(m− 2)/2. In Section 2.4 we will see that g is the genus, see
Definition 2.48. In Sections 3-6 the role of g will be played by the number of
gaps of the Weierstrass semigroup of a point at infinity, see Definition 2.60.

2.4 Divisors

In the following, X is an irreducible smooth projective curve over an alge-
braically closed field F.

Definition 2.29. A divisor is a formal sum D =
∑
P∈X nPP , with nP ∈ Z

and nP = 0 for all but a finite number of points P . The support of a divisor
is the set of points with nonzero coefficient. A divisor D is called effective if
all coefficients nP are nonnegative (notation D < 0). The degree deg(D) of the
divisor D is

∑
nP .
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Definition 2.30. Let X and Y be projective plane curves defined by the equa-
tions F = 0 and G = 0, respectively, then the intersection divisor X · Y is
defined by

X · Y =
∑

I(P ;X ,Y)P,

where I(P ;X ,Y) is the intersection mulitplicity of Definition 2.22.

Bézout’s theorem tells us that X · Y is indeed a divisor and that its degree is
lm if the degrees of X and Y are l and m, respectively.
Let vP = ordP be the discrete valuation defined for functions on X in Definition
2.15.

Definition 2.31. If f is a rational function on X , not identically 0, we define
the divisor of f to be

(f) =
∑
P∈X

vP (f)P.

So, in a sense, the divisor of f is a bookkeeping device that tells us where the
zeros and poles of f are and what their multiplicities and orders are.

Theorem 2.32. The degree of a divisor of a rational function is 0.

Proof. Let X be a projective curve of degree l. Let f be a rational function
on the curve X . Then f is represented by a quotient A/B of two homo-
geneous polynomials of the same degree, say m. Let Y and Z be the hy-
persurfaces defined by the equations A = 0 and B = 0, respectively. Then
vP (f) = I(P ;X ,Y)− I(P ;X ,Z), since f = a/b = (a/hm)(b/hm)−1, where H is
a homogeneous linear form representing h such that H(P ) 6= 0. Hence

(f) = X · Y − X · Z.

So (f) is indeed a divisor and its degree is zero, since it is the difference of two
intersection divisors of the same degree lm. �

Example 2.33. Look at the curve of Example 2.21. We saw that f = x/(y+z)
has a pole of order 2 in Q = (0 : 1 : 1). The line L with equation X = 0 intersects
the curve in three points, namely P1 = (0 : α : 1), P2 = (0 : 1 + α : 1) and Q.
So X · L = P1 + P2 +Q. The line M with equation Y = 0 intersects the curve
in three points, namely P3 = (1 : 0 : 1), P4 = (α : 0 : 1) and P5 = (1 +α : 0 : 1).
So X · M = P3 + P4 + P5. The line N with equation Y + Z = 0 intersects
the curve only in Q. So X · N = 3Q. Hence (x/(y + z)) = P1 + P2 − 2Q and
(y/(y + z)) = P3 + P4 + P5 − 3Q.

In this example it is not necessary to compute the intersection multiplicities
since they are a consequence of Bézout’s theorem.

Example 2.34. Let X be the Klein quartic with equation X3Y +Y 3Z+Z3X =
0 of Example 2.14. Let P1 = (0 : 0 : 1), P2 = (1 : 0 : 0) and Q = (0 : 1 : 0). Let
L be the line with equation X = 0. Then L intersects X in the points P1 and
Q. Since L is not tangent in Q, we see that I(Q;X ,L) = 1. So the intersection
multiplicity of X and L in P1 is 3, since the multiplicities add up to 4. Hence
X ·L = 3P1 +Q. Similarly we get for the linesM and N with equations Y = 0
and Z = 0, respectively, X ·M = 3P2 + P1 and X · N = 3Q + P2. Therefore
(x/z) = 3P1 − P2 − 2Q and (y/z) = P1 + 2P2 − 3Q.
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Definition 2.35. The divisor of a rational function is called a principal divisor.
We shall call two divisors D and D′ linearly equivalent if and only if D −D′ is
a principal divisor ; notation D ≡ D′.

This is indeed an equivalence relation.

Definition 2.36. Let D be a divisor on a curve X . We define a vector space
L(D) over F by

L(D) = {f ∈ F(X )∗ | (f) +D < 0} ∪ {0}.

The dimension of L(D) over F is denoted by l(D).

Note that if D =
∑r
i=1 niPi −

∑s
j=1mjQj with all ni,mj > 0, then L(D)

consists of 0 and the functions in the function field that have zeros of multiplicity
at least mj at Qj (1 ≤ j ≤ s) and that have no poles except possibly at the
points Pi, with order at most ni (1 ≤ i ≤ r). We shall show that this vector
space has finite dimension.

First we note that if D ≡ D′ and g is a rational function with (g) = D−D′,
then the map f 7→ fg shows that L(D) and L(D′) are isomorphic.

Theorem 2.37.
(i) l(D) = 0 if deg(D) < 0,
(ii) l(D) ≤ 1 + deg(D).

Proof. (i) If deg(D) < 0, then for any function f ∈ F(X )∗, we have deg((f) +
D) < 0, that is to say, f /∈ L(D).

(ii) If f is not 0 and f ∈ L(D), then D′ = D + (f) is an effective divisor
for which L(D′) has the same dimension as L(D) by our observation above.
So without loss of generality D is effective, say D =

∑r
i=1 niPi, (ni ≥ 0 for

1 ≤ i ≤ r). Again, assume that f is not 0 and f ∈ L(D). In the point Pi,
we map f onto the corresponding element of the ni-dimensional vector space
(t−ni
i OPi

)/OPi
, where ti is a local parameter at Pi. We thus obtain a mapping

of f onto the direct sum of these vector spaces ; (map the 0-function onto 0).
This is a linear mapping. Suppose that f is in the kernel. This means that
f does not have a pole in any of the points Pi, that is to say, f is a constant
function. It follows that

l(D) ≤ 1 +

r∑
i=1

ni = 1 + deg(D).

�

Example 2.38. Look at the curve of Examples 2.21 and 2.33. We saw that
f = x/(y+z) and g = y/(y+z) are regular outside Q and have a pole of order 2
and 3, respectively, in Q = (0 : 1 : 1). So the functions 1, f and g have mutually
distinct pole orders and are elements of L(3Q). Hence the dimension of L(3Q)
is at least 3. We will see in Example 2.57 that it is exactly 3.

2.5 Differentials on a curve

Let X be an irreducible smooth curve with function field F(X ).
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Definition 2.39. Let V be a vector space over F(X ). An F-linear map D :
F(X )→ V is called a derivation if it satisfies the product rule

D(fg) = fD(g) + gD(f).

Example 2.40. Let X be the projective line with function field F(X). Define
D(F ) =

∑
iaiX

i−1 for a polynomial F =
∑
aiX

i ∈ F[X] and extend this
definition to quotients by

D

(
F

G

)
=
GD(F )− FD(G)

G2
.

Then D : F(X)→ F(X) is a derivation.

Definition 2.41. The set of all derivations D : F(X ) → V will be denoted by
Der(X ,V). We denote Der(X ,V) by Der(X ) if V = F(X ).

The sum of two derivations D1, D2 ∈ Der(X ,V) is defined by (D1 +D2)(f) =
D1(f) + D2(f). The product of D ∈ Der(X ,V) with f ∈ F(X ) is defined by
(fD)(g) = fD(g). In this way Der(X ,V) becomes a vector space over F(X ).

Theorem 2.42. Let t be a local parameter at a point P . Then there exists a
unique derivation Dt : F(X )→ F(X ) such that Dt(t) = 1. Furthermore Der(X )
is one dimensional over F(X ) and Dt is a basis element for every local parameter
t.

Definition 2.43. A rational differential form or differential on X is an F(X )-
linear map from Der(X ) to F(X ). The set of all rational differential forms on
X is denoted by Ω(X ).

Again Ω(X ) becomes a vector space over F(X ) in the obvious way. Consider
the map

d : F(X ) −→ Ω(X ),

where for f ∈ F(X ) the differential df : Der(X )→ F(X ) is defined by df(D) =
D(f) for all D ∈ Der(X ). Then d is a derivation.

Theorem 2.44. The space Ω(X ) has dimension 1 over F(X ) and dt is a basis
for every point P with local parameter t.

So for every point P and local parameter tP , a differential ω can be represented
in a unique way as ω = fP dtP , where fP is a rational function. The obvious
definition for “the value “ of ω in P by ω(P ) = fP (P ) has no meaning, since it
depends on the choice of tP . Despite of this negative result it is possible to say
whether ω has a pole or a zero at P of a certain order.

Definition 2.45. Let ω be a differential on X . The order or valuation of ω in
P is defined by ordP (ω) = vP (ω) = vP (fP ). The differential form ω is called
regular if it has no poles. The regular differentials on X form an F[X ]-module,
which we denote by Ω[X ].

This definition does not depend on the choices made.

If X is an affine plane curve defined by the equation F = 0 with F ∈ F[X,Y ],
then Ω[X ] is generated by dx and dy as an F[X ]-module with the relation fxdx+
fydy = 0.
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Example 2.46. We again look at the curve X in P2 given by X3 +Y 3 +Z3 = 0
in characteristic unequal to three. We define the set Ux by Ux = {(x : y : z) ∈
X | y 6= 0, z 6= 0} and similarly Uy and Uz. Then Ux, Uy, and Uz cover X since
there is no point on X where two coordinates are zero. It is easy to check that
the three representations

ω =
(y
z

)2
d

(
x

y

)
on Ux, η =

( z
x

)2
d
(y
z

)
on Uy, ζ =

(
x

y

)2

d
( z
x

)
on Uz

define one differential on X . For instance, to show that η and ζ agree on Uy∩Uz
one takes the equation (x/z)3 + (y/z)3 + 1 = 0, differentiates, and applies the
formula d(f−1) = −f−2 df to f = z/x.

The only regular functions on X are constants, so one cannot represent this
differential as g df with f and g regular functions on X .

Now the divisor of a differential is defined as for functions.

Definition 2.47. The divisor (ω) of the differential ω is defined by

(ω) =
∑
P∈X

vP (ω)P.

Of course, one must show that only finitely many coefficients in (ω) are not 0.

Let ω be a differential and W = (ω). Then W is called a canonical divisor.
If ω′ is another nonzero differential, then ω′ = fω for some rational function
f . So (ω′) = W ′ ≡ W and therefore the canonical divisors form one linear
equivalence class. This class is also denoted by W . Now consider the space
L(W ). This space of rational functions can be mapped onto an isomorphic
space of differential forms by f 7→ fω. By the definition of L(W ), the image of
f under this mapping is a regular differential form and every regular differential
form is obtained in this way, that is to say, L(W ) is isomorphic to Ω[X].

Definition 2.48. Let X be a smooth projective curve over F. We define the
genus g of X by g = l(W ).

Example 2.49. Consider the differential dx on the projective line. Then dx
is regular at all points Pa = (a : 1), since x − a is a local parameter in Pa and
dx = d(x− a). Let Q = (1 : 0) be the point at infinity. Then t = 1/x is a local
parameter in Q and dx = −t−2dt. So vQ(dx) = −2. Hence (dx) = −2Q and
l(−2Q) = 0. Therefore the projective line has genus zero.

The genus of a curve will play an important role in the following sections. For
methods with which one can determine the genus of a curve, we must refer to
textbooks on algebraic geometry. We mention one formula without proof, the
so-called Plücker formula.

Theorem 2.50. If X is a nonsingular projective curve of degree m in P2, then

g =
1

2
(m− 1)(m− 2).
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Example 2.51. The genus of a line and a nonsingular conic are zero by Theo-
rem 2.50. In fact a curve of genus zero is isomorphic to the projective line. For
example the curve X with equation XZ − Y 2 = 0 of Example 2.9 is isomorphic
to P1 where the isomorphism is given by (x : y : z) 7→ (x : y) = (y : z) for
(x : y : z) ∈ X . The inverse map is given by (u : v) 7→ (u2 : uv : v2).

Example 2.52. So the curve of Examples 2.21, 2.33 and 2.46 has genus 1 and
by the definition of genus, L(W ) = F, so regular differentials on X are scalar
multiples of the differential ω of Example 2.46.

For the construction of codes over algebraic curves that generalize Goppa codes,
we shall need the concept of residue of a differential at a point P . This is defined
in accordance with our treatment of local behavior of a differential ω.

Definition 2.53. Let P be a point on X , t a local parameter at P and ω = f dt
the representation of ω. The function f can be written as

∑
i ait

i. We define
the residue ResP (ω) of ω in the point P to be a−1.

One can show that this algebraic definition of the residue does not depend on
the choice of the local parameter t.

One of the basic results in the theory of algebraic curves is known as the residue
theorem. We only state the theorem.

Theorem 2.54. If ω is a differential on a smooth projective curve X , then∑
P∈X

ResP (ω) = 0.

2.6 The Riemann-Roch theorem

The following theorem, known as the Riemann-Roch theorem is not only a cen-
tral result in algebraic geometry with applications in other areas, but it is also
the key to the new results in coding theory.

Theorem 2.55. Let D be a divisor on a smooth projective curve of genus g.
Then, for any canonical divisor W

l(D)− l(W −D) = deg(D)− g + 1.

We do not give the proof. The theorem allows us to determine the degree of
canonical divisors.

Corollary 2.56. For a canonical divisor W , we have deg(W ) = 2g − 2.

Proof. Everywhere regular functions on a projective curve are constant, that is
to say, L(0) = F, so l(0) = 1. Substitute D = W in Theorem 2.55 and the result
follows from Definition 2.48. �

Example 2.57. It is now clear why in Example 2.38 the space L(3Q) has
dimension 3. By Example 2.52 the curve X has genus 1, the degree of W − 3Q
is negative, so l(W − 3Q) = 0. By Theorem 2.55 we have l(3Q) = 3.

At first, Theorem 2.55 does not look too useful. However, Corollary 2.56 pro-
vides us with a means to use it successfully.
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Corollary 2.58. Let D be a divisor on a smooth projective curve of genus g
and let deg(D) > 2g − 2. Then

l(D) = deg(D)− g + 1.

Proof. By Corollary 2.56, deg(W−D) < 0, so by Theorem 2.37(i), l(W−D) = 0.
�

Example 2.59. Consider the code of Theorem 2.27. We embed the affine plane
in a projective plane and consider the rational functions on the curve defined
by G. By Bézout’s theorem, this curve intersects the line at infinity, that is
to say, the line defined by Z = 0, in m points. These are the possible poles
of our rational functions, each with order at most l. So, in the terminology of
Definition 2.36, we have a space of rational functions, defined by a divisor D of
degree lm. Then Corollary 2.58 and Theorem 2.27 imply that the curve defined
by G has genus at most equal to

(
m−1
2

)
. This is exactly what we find from the

Plücker formula 2.50.

Let m be a nonnegative integer. Then l(mP ) ≤ l((m−1)P )+1, by the argument
as in the proof of Theorem 2.37.

Definition 2.60. If l(mP ) = l((m−1)P ), then m is called a (Weierstrass) gap
of P . A nonnegative integer that is not a gap is called a nongap of P .

The number of gaps of P is equal to the genus g of the curve, since l(iP ) =
i+ 1− g if i > 2g − 2, by Corollary 2.58 and

1 = l(0) ≤ l(P ) ≤ · · · ≤ l((2g − 1)P ) = g.

If m ∈ N0, then m is a nongap of P if and only if there exists a rational function
which has a pole of order m in P and no other poles. Hence, if m1 and m2

are nongaps of P , then m1 + m2 is also a nongap of P . The nongaps form
the Weierstrass semigroup in N0. Let (ρi|i ∈ N) be an enumeration of all the
nongaps of P in increasing order, so ρ1 = 0. Let fi ∈ L(ρiP ) be such that
vP (fi) = −ρi for i ∈ N. Then f1, . . . , fi provide a basis for the space L(ρiP ).
This will be the approach of Sections 3-7.

The term l(W −D) in Theorem 2.55 can be interpreted in terms of differentials.
We introduce a generalization of Definition 2.36 for differentials.

Definition 2.61. Let D be a divisor on a curve X . We define

Ω(D) = {ω ∈ Ω(X ) | (ω)−D < 0}

and we denote the dimension of Ω(D) over F by δ(D), called the index of
speciality of D.

The connection with functions is established by the following theorem.

Theorem 2.62. δ(D) = l(W −D).

Proof. If W = (ω), we define a linear map φ : L(W−D)→ Ω(D) by φ(f) = fω.
This is clearly an isomorphism. �

Example 2.63. If we take D = 0, then by Definition 2.48 there are exactly
g linearly independent regular differentials on a curve X . So the differential of
Example 2.46 is the only regular differential on X (up to a constant factor) as
was already observed after Theorem 2.50.
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2.7 Codes from algebraic curves

We now come to the applications to coding theory. Our alphabet will be Fq. Let
F be the algebraic closure of Fq. We shall apply the theorems of the previous
sections. A few adaptations are necessary, since for example, we consider for
functions in the coordinate ring only those that have coefficients in Fq. If the
affine curve X over Fq is defined by a prime ideal I in Fq[X1, . . . , Xn], then its
coordinate ring Fq[X ] is by definition equal to Fq[X1, . . . , Xn]/I and its function
field Fq(X ) is the quotient field of Fq[X ]. It is always assumed that the curve
is absolutely irreducible, this means that the the defining ideal is also prime in
F[X1, . . . , Xn]. Similar adaptions are made for projective curves. Notice that
F (x1, . . . , xn)q = F (xq1, . . . , x

q
n) for all F ∈ Fq[X1, . . . , Xn]. So if (x1, . . . , xn)

is a zero of F and F is defined over Fq, then (xq1, . . . , x
q
n) is also a zero of F .

Let Fr : F → F be the Frobenius map defined by Fr(x) = xq. We can extend
this map coordinatewise to points in affine and projective space. If X is a curve
defined over Fq and P is a point of X , then Fr(P ) is also a point of X , by the
above remark. A divisor D on X is called rational if the coefficients of P and
Fr(P ) in D are the same for any point P of X . The space L(D) will only be
considered for rational divisors and is defined as before but with the restriction
of the rational functions to Fq(X ). With these changes the stated theorems
remain true over Fq in particular the theorem of Riemann-Roch 2.55.

Let X be an absolutely irreducible nonsingular projective curve over Fq. We
shall define two kinds of algebraic geometry codes from X . The first kind
generalizes Reed-Solomon codes, the second kind generalizes Goppa codes. In
the following, P1, P2, . . . , Pn are rational points on X and D is the divisor P1 +
P2 + · · · + Pn. Furthermore G is some other divisor that has support disjoint
from D. Although it is not necessary to do so, we shall make more restrictions
on G, namely

2g − 2 < deg(G) < n.

Definition 2.64. The linear code C(D,G) of length n over Fq is the image
of the linear map α : L(G) → Fnq defined by α(f) = (f(P1), f(P2), . . . , f(Pn)).
Codes of this kind are called geometric Reed Solomon codes.

Theorem 2.65. The code C(D,G) has dimension k = deg(G) − g + 1 and
minimum distance d ≥ n− deg(G).

Proof. (i) If f belongs to the kernel of α, then f ∈ L(G−D) and by Theorem
2.37(i), this implies f = 0. The result follows from the assumption 2g − 2 <
deg(G) < n and Corollary 2.58.

(ii) If α(f) has weight d, then there are n−d points Pi, say Pi1 , Pi2 , . . . , Pin−d
,

for which f(Pi) = 0. Therefore f ∈ L(G − E), where E = Pi1 + · · · + Pin−d
.

Hence deg(G)− (n− d) ≥ 0. �

Note the analogy with the proof of Theorem 2.27.

Example 2.66. Let X be the projective line over Fqm . Let n = qm − 1. We
define P0 = (0 : 1), P∞ = (1 : 0) and we define the divisor D as

∑n
j=1 Pj , where

Pj = (βj : 1), (1 ≤ j ≤ n). We define G = aP0 + bP∞, a ≥ 0, b ≥ 0. (Here β is
a primitive nth root of unity.) By Theorem 2.55, L(G) has dimension a+ b+ 1
and one immediately sees that the functions (x/y)i, −a ≤ i ≤ b, form a basis of
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L(G). Consider the code C(D,G). A generator matrix for this code has as rows
(βi, β2i, . . . , βni) with −a ≤ i ≤ b. One easily checks that (c1, c2, . . . , cn) is a
codeword in C(D,G) if and only if

∑n
j=1 cj(β

l)j = 0 for all l with a < l < n−b.
It follows that C(D,G) is a Reed-Solomon code. The subfield subcode with
coordinates in Fq is a BCH code.

Example 2.67. Let X be the curve of Examples 2.21, 2.33, 2.38 and 2.57. Let
G = 3Q, where Q = (0 : 1 : 1). We take n = 8, so D is the sum of the remaining
rational points. The coordinates are given by

Q P1 P2 P3 P4 P5 P6 P7 P8

x 0 0 0 1 α α 1 α α
y 1 α α 0 0 0 1 1 1
z 1 1 1 1 1 1 0 0 0

where α = α2 = 1 + α. We saw in Examples 2.38 and 2.57 that 1, x/(y + z)
and y/(y+ z) are a basis of L(3Q) over F and hence also over F4. This leads to
the following generator matrix for C(D,G): 1 1 1 1 1 1 1 1

0 0 1 α α 1 α α
α α 0 0 0 1 1 1

 .

By Theorem 2.65, the minimum distance is at least 5 and of course, one imme-
diately sees from the generator matrix that d = 5.

We now come to the second class of algebraic geometry codes. We shall call
these codes geometric Goppa codes.

Definition 2.68. The linear code C∗(D,G) of length n over Fq is the image of
the linear map α∗ : Ω(G−D)→ Fnq defined by

α∗(η) = (ResP1
(η),ResP2

(η), . . . ,ResPn
(η)).

The parameters are given by the following theorem.

Theorem 2.69. The code C∗(D,G) has dimension k∗ = n − deg(G) + g − 1
and minimum distance d∗ ≥ deg(G)− 2g + 2.

Proof. Just as in Theorem 2.65, these assertions are direct consequences of
Theorem 2.55 (Riemann-Roch), using Theorem 2.62 (making the connection
between the dimension of Ω(G) and l(W −G)) and Corollary 2.56 (stating that
the degree of a canonical divisor is 2g − 2). �

Example 2.70. Let L = {α1, . . . , αn} be a set of n distinct elements of Fqm .
Let g be a polynomial in Fqm [X] which is not zero at αi for all i. The (classical)
Goppa code Γ(L, g) is defined by

Γ(L, g) = {c ∈ Fnq |
∑ ci

X − αi
≡ 0 (mod g )}.

Let Pi = (αi : 1), Q = (1 : 0) and D = P1 + · · · + Pn. If we take for E the
divisor of zeros of g on the projective line, then Γ(L, g) = C∗(D,E −Q) and

c ∈ Γ(L, g) if and only if
∑ ci

X − αi
dX ∈ Ω(E −Q−D).
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This is the reason that some authors extend the definition of geometric Goppa
codes to subfield subcodes of codes of the form C∗(D,G).

It is a well-known fact that the parity check matrix of the Goppa code Γ(L, g)
is equal to the following generator matrix of a generalized RS code

g(α1)−1 . . . g(αn)−1

α1g(α1)−1 . . . αng(αn)−1

... · · ·
...

αr−11 g(α1)−1 . . . αr−1n g(αn)−1

 ,

where r is the degree of the Goppa polynomial g. So Γ(L, g) is the subfield
subcode of the dual of a generalized RS code. This is a special case of the
following theorem.

Theorem 2.71. The codes C(D,G) and C∗(D,G) are dual codes.

Proof. From Theorem 2.65 and Theorem 2.69 we know that k + k∗ = n. So it
suffices to take a word from each code and show that the inner product of the
two words is 0. Let f ∈ L(G), η ∈ Ω(G − D). By Definitions 2.64 and 2.68,
the differential fη has no poles except possibly poles of order 1 in the points
P1, P2, . . . , Pn. The residue of fη in Pi is equal to f(Pi)ResPi(η). By Theorem
2.54, the sum of the residues of fη over all the poles, that is to say, over the
points Pi, is equal to zero. Hence we have

0 =

n∑
i=1

f(Pi)ResPi
(η) = 〈α(f), α∗(η)〉.

�

Several authors prefer the codes C∗(D,G) over geometric RS codes but the
nonexperts in algebraic geometry probably feel more at home with polynomials
than with differentials. That this is possible without loss of generality is stated
in the following theorem.

Theorem 2.72. Let X be a curve defined over Fq. Let P1, . . . , Pn be n rational
points on X . Let D = P1 + · · · + Pn. Then there exists a differential form ω
with simple poles at the Pi such that ResPi

(ω) = 1 for all i. Furthermore

C∗(D,G) = C(D,W +D −G)

for all divisors G that have a support disjoint from the support of D, where W
is the divisor of ω.

So one can do without differentials and the codes C∗(D,G). However, it is
useful to have both classes when treating decoding methods. These use parity
checks, so one needs a generator matrix for the dual code.

In the next paragraph we treat several examples of algebraic geometry codes. It
is already clear that we find some good codes. For example from Theorem 2.65
we see that such codes over a curve of genus 0 (the projective line) are MDS
codes. In fact, Theorem 2.65 says that d ≥ n− k+ 1− g, so if g is small, we are
close to the Singleton bound.
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2.8 Some algebraic geometry codes

We know that to find good codes, we must find long codes. To use the methods
from algebraic geometry, it is necessary to find rational points on a given curve.
The number of these is a bound on the length of the code. A central problem
in algebraic geometry is finding bounds for the number of rational points on
a variety. In order to appreciate some of the examples in this paragraph, we
mention without proof the improvement by Serre of the Hasse-Weil bound.

Theorem 2.73. Let X be a curve of genus g over Fq. If Nq(X ) denotes the
number of rational points on X , then

|Nq(X )− (q + 1)| ≤ gb2√qc.

Example 2.74. In this example we consider codes from Hermitian curves of
Example 2.13. Let q = r2. Consider the second affine equation Xr+1 = Y r + Y
of the Hermitian curve X in A2 over Fq. By Theorem 2.50, the genus g of X
equals 1

2r(r − 1) = 1
2 (q − √q). We shall first show that X has the maximal

number of rational points, that is to say, by Theorem 2.73 exactly 1+q
√
q. The

last equation has (0 : 1 : 0) as the only point at infinity. To see that the number
of affine Fq-rational points is r + (r + 1)(r2 − r) = r3 one argues as follows.
The right side of the equation Xr+1 = Y r + Y is the trace from Fq to Fr.
The first r in the formula on the number of points corresponds to the elements
of Fr. These are exactly the elements of Fq with zero trace. The remaining
term corresponds to the elements in Fq with a nonzero trace, since the equation
Xr+1 = β, β ∈ F∗r , has exactly r + 1 solutions in Fq.

We take G = mQ, where Q = (0 : 1 : 0) and q −√q < m < q
√
q. The code

C(D,G) over Fq has length n = q
√
q, dimension k = m − g + 1, and distance

d ≥ n −m. We will deal with the true minimum distance in Section 5.3. To
see how good these codes are, we take as example q = 16. A basis for L(G) is
easily found. The functions fi,j = xiyj/zi+j , 0 ≤ i ≤ 4, 4i + 5j ≤ m will do
the job. First, observe that there are m − 5 = m − g + 1 pairs (i, j) satisfying
these conditions. The functions x/z and y/z can be treated in exactly the same
way as in Examples 2.33 and 2.34, showing that fi,j has a pole of order 4i+ 5j
in Q. Hence, these functions are independent. Therefore, the code is easily
constructed. Decoding will be treated in Sections 6 and 7. Let us try to get
some idea of the quality of this code. Suppose that we intend to send a long
message (say 109 bits) over a channel with an error probability pe = 0.01 (quite
a bad channel). We compare coding using a rate 1

2 Reed-Solomon code over
F16 with using C(D,G), where we take m = 37 to also have rate 1

2 . In this
case, C(D,G) has distance 27. The RS code has word length 16 (so 64 bits)
and distance 9. If a word is received incorrectly, we assume that all the bits
are wrong when we count the number of errors. For the RS code, the error
probability after decoding is roughly 3 · 10−4; however, for the code C(D,G),
the error probability after decoding is less than 2 · 10−7. In this example, it is
important to keep in mind that we are fixing the alphabet (in this case F16).
If we compare the code C(D,G), for which the words are strings of 256 bits,
with a rate 1

2 RS code over F25 (words are 160 bits long), the latter will come
close in performance (error probability 2 · 10−6) and a rate 1

2 RS code over F26

(words are 384 bits long) performs better (roughly 10−7).
One could also compare our code with a binary BCH code of length 255 and

rate about 1
2 . The BCH code wins when we are concerned with random errors.
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If we are using a bursty channel, then the code C(D,G) can handle bursts of
length up to 46 bits (which influence at most 13 letters of a codeword) while
the BCH code would fail completely.

Example 2.75. Let X be the Klein quartic over F8 of Examples 2.14, 2.20 and
2.34. By Theorem 2.50, the genus is 3. By Theorem 2.73, X can have at most
24 rational points and as we saw in Example 2.20 it has 24 rational points. Let
Q = (0 : 1 : 0) and let D be the sum of the other 23 rational points, G = 10Q.
From Theorem 2.65, we find that C(D,G) has dimension 10 − g + 1 = 8 and
minimum distance d ≥ 23 − 10 = 13. We now concatenate this code with the
[4,3,2] single parity check code as follows. The symbols in codewords of C(D,G)
are elements of F8 which we interpret as column vectors of length 3 over F2 and
then we adjoin the parity check. The resulting code C is a binary [92, 24, 26]
code. The punctured code, a [91, 24, 25] code set a new world record for codes
with n = 91, d = 25.

Example 2.76. We show how to construct a generator matrix for the code of
the previous example. We consider the functions x/z and y/z. The divisors
(x/z) = 3P1 − P2 − 2Q and (y/z) = P1 + 2P2 − 3Q were computed in Example
2.34. From these divisors, we can deduce that the functions (x/z)i(y/z)j with
0 ≤ 2i + 3j ≤ 10, 0 ≤ i ≤ 2j are in L(10Q). We thus have eight functions
in L(10Q) with poles in Q of order 0,3,5,6,7,8,9, and 10, respectively. Hence
they are independent and since l(10Q) = 8, they are a basis of L(10Q). By
substituting the coordinates of the rational points of X in these functions, we
find the 8 by 23 generator matrix of the code.

Example 2.77. Let F4 = {0, 1, α, α}, where α2 = α + 1 = α. Consider the
curve X over F4 given by the equation x2y + αy2z + αz2x = 0. This is a
nonsingular curve with genus 1. Its nine rational points are given by

P1 P2 P3 P4 P5 P6 Q1 Q2 Q3

x 1 0 0 1 1 1 α 1 1
y 0 1 0 α α 1 1 α 1
z 0 0 1 α α 1 1 1 α

Let D = P1 + P2 + · · · + P6, G = 2Q1 + Q2. We claim that the functions
x/(x + y + αz), y/(x + y + αz), αz/(x + y + αz) are a basis of L(G). To see
this, note that the numerators in these fractions are not 0 in Q1 and Q2 and
that the line with equation x+ y + αz = 0 meets X in Q2 and is tangent to X
in Q1. By Theorem 2.65, the code C(D,G) of length 6 has minimum distance
at least 3. However, the code is in fact an MDS code, namely the hexacode.

2.9 Asymptotically good sequences of codes and curves

The parameters of a linear block code over the finite field Fq of length n, di-
mension k and minimum distance d will be denoted by [n, k, d]q or [n, k, d]. The
quotient k/n is called the information rate and denoted by R = k/n and the
relative minimum distance d/n is denoted by δ.

The dimension k and the minimum distance d of an algebraic geometry code on
a curve of genus g with n points that are defined over Fq satisfy

k + d ≥ n+ 1− g,
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by Theorem 2.65. Hence

R+ δ ≥ 1− g − 1

n
.

Definition 2.78. A sequence of codes (Cm|m ∈ N) with parameters [nm, km, dm]
over a fixed finite field Fq is called asymptotically good if nm tends to infinity, and
dm/nm tends to a nonzero constant δ, and km/nm tends to a nonzero constant
R for m→∞.

Let Hq(0) = 0 and Hq(x) = xlogq(q − 1) − xlogqx − (1 − x)logq(1 − x) for
0 < x ≤ (q − 1)/q be the entropy function. Then there exist asymptotically
good sequences of codes attaining the the Gilbert-Varshamov bound

R ≥ 1−Hq(δ).

In order to construct asymptotically good codes we therefore need curves with
low genus and many Fq-rational points.

Definition 2.79. Let Nq(g) be the maximal number of Fq-rational points on
an absolutely irreducible nonsingular projective curve over Fq of genus g. Let

A(q) = lim sup
g→∞

Nq(g)

g
.

The Hasse-Weil bound 2.73 implies

A(q) ≤ 2
√
q.

This has been improved to the Drinfeld-Vlăduţ bound.

Theorem 2.80.
A(q) ≤ √q − 1.

Furthermore equality holds if q is a square.

The equality is proved by studying the number of rational points of modular
curves over finite fields. The theory of modular curves is a central and very
important part of mathematics, but it is very involved and deep, much more so
than the theory concerning the Riemann-Roch theorem and we will not touch it.

Applying this to algebraic geometry codes one derives the following Tsfasman-
Vlăduţ-Zink (TVZ) bound.

Theorem 2.81. Let q be a square. Then for every R there exists an asymptot-
ically good sequence of codes such that the limit value of the information rate is
R and the relative minimum distance is δ and

R+ δ ≥ 1− 1
√
q − 1

.

This in turn means that the TVZ bound is better than the GV bound when q
is a square and q ≥ 49 in a certain range of δ. This fact was the starting point
of the current interest in algebraic geometry codes.
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In the following we discuss an alternative method to derive these results. Let
F be a polynomial in the variables X and Y with coefficients in Fq. Let a =
degY (F ). Assume that there exists a subset S of Fq such that for any given
x ∈ S there exist exactly a distinct y1, . . . , ya ∈ S such that F (x, yi) = 0 for all
i = 1, . . . , a. Consider the algebraic set Xm in Am defined by the equations

F (Xi, Xi+1) = 0 for i = 1, . . . ,m− 1.

A lower bound on the number of rational points of Xm is easily seen to be
#S · am−1 by induction. If Xm is absolutely irreducible, then it is a curve.

Example 2.82. Let F = (Xq−X)−(Y q−Y ). Then F is an example with a = q
and S = Fq. Then Xm has qm rational points. This is the maximal possible
number of rational points for an algebraic set in Am, but Xm is reducible, since
F is divisible by X − Y .

Example 2.83. Let F = X(Xq −X)− (Y q − Y ). Then F is an example with
a = q and S = Fq. One can show that Xm is a curve. The number of rational
points of Xm is again qm, but the genus of these curves grows faster than the
number of rational points.

Definition 2.84. A sequence of curves (Xm|m ∈ N) is called asymptotically
good if g(Xm) tends to infinity and the following limit exists and

lim
m→∞

Nq(Xm)

g(Xm)
> 0,

where g(X ) is the genus of X and Nq(X ) is the number of Fq-rational points of
X .

Example 2.85. Let q = 8. Let F = XY 3 + Y + X3. Then F is an example
with a = 3 and S = F∗8. Therefore this gives a curve with 7 · 3m−1 points with
nonzero coordinates in F8, but this sequence of curves is not asymptotically
good.

Example 2.86. Let q = 4. Let F = XY 2 + Y + X2. Then F is an example
with a = 2 and S = F∗4. Therefore this gives a curve with 3 · 2m−1 points
with nonzero coordinates in F4, and in fact it gives a sequence of curves that is
asymptotically good.

More generally, let q = r2 and consider F = Xr−1Y r + Y −Xr. Then we get
an example with a = r and S = F∗q , that is to say, the equation F = 0 has the
property that for every given nonzero element x ∈ Fq there are exactly r nonzero
solutions in Fq of the equation F (x, Y ) = 0 in Y . This is seen by multiplying the
equation by X and replacing XY by Z. Then the equation Zr + Z = Xr+1 is
obtained, which defines the Hermitian curve over Fq, which we have considered
before in Example 2.74. Therefore the corresponding sequence of curves Xm
satisfies

Nq(Xm) ≥ (q − 1)rm−1.

The genus of the curve Xm is computed by induction by applying the formula
of Hurwitz-Zeuthen to the covering πm : Xm → Xm−1, where πm is defined
as πm(x1, . . . , xm) = (x1, . . . , xm−1). In this case it turns out to be an Artin-
Schreier covering. It is easier to view this in terms of function fields. Let Fm
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be the function field of Xm. Then F1 = Fq(z1) and Fm is obtained from Fm−1
by adjoining a new element zm that satisfies the equation

zrm + zm = xr+1
m−1,

where xm−1 = zm−1/xm−2 ∈ Fm−1 for m ≥ 2, and x1 = z1, x0 = 1.

Theorem 2.87. The genus gm of the curve Xm, or equivalently of the function
field Fm is equal to

gm =

{
rm + rm−1 − rm+1

2 − 2r
m−1

2 + 1 if m is odd ,

rm + rm−1 − 1
2r

m+2
2 − 3

2r
m
2 − rm−2

2 + 1 if m is even .

Thus the Drinfeld-Vlăduţ bound is attained.

It turns out that finding bases for the vector spaces involved in the construction
of AG codes is difficult. This last part remains to be done in order to make the
codes really constructive.

A new sequence of curves Ym with function field Tm over Fq with q = r2 is given
as follows. Let T1 = Fq(X1). Let Tm be obtained from Tm−1 by adjoining a new
element xm that satisfies the equation:

xrm + xm =
xrm−1

xr−1m−1 + 1
.

By induction it is shown that

Nq(Ym) ≥ (r2 − r)rm−1.

The same method applies to derive the following theorem.

Theorem 2.88. The genus gm of the curve Ym is equal to

gm =

{
(r

m+1
2 − 1)(r

m−1
2 − 1) if m is odd ,

(r
m
2 − 1)2 if m is even .

Hence this sequence of function fields attains the Drinfeld-Vlăduţ bound too.

Let Qm be the rational point on the curve Ym that is the unique pole of x1.

Theorem 2.89. Let Λm be the Weierstrass semigroup of Qm. Then Λ1 = N0

and
Λm+1 = r · Λm ∪ {n ∈ N0 | n ≥ cm},

where

cm =

{
rm − rm+1

2 if m is odd ,
rm − rm

2 if m is even .

This means that the sequence of nongaps of Qm is known, but an explicit
description of a basis for the spaces L(iQm) is not known in general.
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2.10 Notes

Goppa submitted his seminal paper [37] in June 1975 and it was published in
1977. Goppa also published three more papers in the eighties [38, 39, 40] and a
book [41] in 1991.

The material treated in Sections 2.1-2.8 can be found in the textbooks [62,
70, 97, 100] and the survey [61]. For books on algebraic geometry we refer to
[2, 13, 14, 31, 44, 90, 104, 105] to mention a few.

The codes on plane curves in Theorem 2.27 using Bézout’s theorem are
a special cases of Goppa’s construction and come from [50]. The Hermitian
curves in Example 2.13 and their codes have been studied by many authors.
See [91, 95, 96, 99, 106]. The Klein curve goes back to F. Klein [54] and has
been studied thoroughly, also over finite fields in connection with codes. See
[17, 19, 25, 43, 46, 62].

The world record mentioned in Example 2.75 is taken from [8]. More results
in this direction are mentioned in [11].

A survey on bounds on the number of rational points on curves and its
relation with coding theory one can find in [11, 34]. The upper bound on A(q)
in Theorem 2.80 was shown in [16]. The equality was proved in [48, 101], see
also [58, 100].
The construction of the modular curves and the corresponding codes can be
done with polynomial complexity, of degree 20 for classical modular curves and
degree 30 for Drinfeld modular curves, see [66, 100]. The degree for the latter
has been reduced to 17 in [64].

The first negative result on asymptotically good sequences of curves is in
[30]. The computation of the genus of the curves in Example 2.83 is from [77].
Example 2.85 and the idea to construct asymptotically good codes in this way is
from [27] and in [36] it is shown that this sequence of curves is not asymptotically
good. The two sequences of asymtotically good curves as presented in Theorems
2.87 and 2.88 are from [35, 36].

The computation of the Weierstrass semigroups of Theorem 2.89 can be
found in [78].

A first step in the direction of comuting the spaces L(iQ) is made in [103]
for the curve X3 and in [42] for X4 and q = 16.

Conference proceedings concerning AG codes are [76, 98] and a special issue on
this topic appeared in [59].

3 Order functions

The construction of codes in Section 2.3 can be generalized to the so-called
evaluation codes as will be done in Section 4. To this end we introduce the
notions of order, degree and weight functions and treat a method to obtain such
functions.

3.1 Order, degree, and weight functions

Recall that an F-algebra is a commutative ring with a unit that contains F as a
unitary subring. N denotes the positive integers and N0 the nonnegative inte-
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gers.

The standard example of an F-algebra is R = F[X1, . . . , Xm]. To present the
codes we need an order of a special kind on the polynomials in R which we
define as follows.

Definition 3.1. Let R = F[X1, . . . , Xm]. Suppose that ≺ is a total order on
the set of monomials in the variables X1, . . . , Xm such that for all monomials
M1,M2, and M , the following hold

(R.1) If M 6= 1, then 1 ≺M,
(R.2) If M1 ≺M2, then MM1 ≺MM2.

Then ≺ is called a reduction order, term order or admissible order on the mono-
mials.

The multi-index notation will be used for monomials. That means Xα =∏m
i=1X

αi
i if α = (α1, . . . , αm). The degree of a monomial is defined by

deg(Xα) = deg(α) =

m∑
i=1

αi.

Giving a reduction order on monomials in m variables is the same as giving a
total order on Nm0 such that, for all α1, α2, and α in Nm0 , the following hold

(E.1) If α 6= 0, then 0 ≺ α,
(E.2) If α1 ≺ α2, then α+ α1 ≺ α+ α2.

We use ≺ both for monomials and exponents.

Example 3.2. The lexicographic order ≺L is defined by

Xα ≺L Xβ if and only if
α1 = β1, . . . , αl−1 = βl−1 and αl < βl for some l, 1 ≤ l ≤ m.

The lexicographic order is a reduction order. For m = 2, with X = X1, Y = X2

and ≺=≺L, the lexicographic order looks like

1 ≺ Y ≺ Y 2 ≺ · · · ≺ Y j ≺ Y j+1 ≺ · · ·
X ≺ XY ≺ XY 2 ≺ · · · ≺ XY j ≺ XY j+1 ≺ · · ·
X2 ≺ · · ·

So Xi+1 is the supremum of the set { XiY j | j ∈ N0 }. If m ≥ 2, then the
lexicographic order is not isomorphic with the positive integers with the usual
order.

Example 3.3. The graded lexicographic order ≺D is defined by

Xα ≺D Xβ if and only if
either deg(Xα) < deg(Xβ) or deg(Xα) = deg(Xβ) and Xα ≺L Xβ .

The graded lexicographic order is a reduction order which is isomorphic with
the positive integers with the usual order.
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An order is extended to a function on all polynomials in the following way. Let
≺ be a reduction order which is isomorphic with the positive integers with the
usual order. Let f1, f2, . . . be the enumeration of the set of monomials such that
fi ≺ fi+1 for all i. The monomials constitutes a basis of F[X1, . . . , Xm] over F.
So every nonzero polynomial f can be written in a unique way as

f =

j∑
i=1

λifi,

where λi ∈ F for all i, and λj 6= 0. Define a function

ρ : F[X1, . . . , Xm] −→ N0 ∪ {−∞},

by ρ(0) = −∞ and ρ(f) = j − 1 where j is the smallest positive integer such
that f can be written as a linear combination of the first j monomials. It is not
difficult to show that ρ satisfies the following conditions

(O.0) ρ(f) = −∞ if and only if f = 0
(O.1) ρ(λf) = ρ(f) for all nonzero λ ∈ F
(O.2) ρ(f + g) ≤ max{ρ(f), ρ(g)}

and equality holds when ρ(f) < ρ(g).
(O.3) If ρ(f) < ρ(g) and h 6= 0, then ρ(fh) < ρ(gh)
(O.4) If ρ(f) = ρ(g), then there exists a nonzero λ ∈ F such that

ρ(f − λg) < ρ(g).

for all f, g, h ∈ R. Here −∞ < n for all n ∈ N0. The properties of the function
ρ are captured in the following definition.

Definition 3.4. Let R be an F-algebra. An order function on R is a map

ρ : R −→ N0 ∪ {−∞},

that satisfies the conditions (O.0), . . . , (O.4).

Definition 3.5. Let R be an F-algebra. A weight function on R is an order
function on R that satisfies furthermore

(O.5) ρ(fg) = ρ(f) + ρ(g)

for all f, g ∈ R. Here −∞+ n = −∞ for all n ∈ N0.

If ρ is a weight function and ρ(f) is divisible by an integer d > 1 for all f ∈ R,
then ρ(f)/d is again a weight function. So we may assume that the greatest
common divisor of the integers ρ(f) with 0 6= f ∈ R is 1.

Definition 3.6. A degree function on R is a map that satisfies conditions (O.0),
(O.1), (O.2) and (O.5).

It is clear that condition (O.3) is a consequence of (O.5).

Example 3.7. The standard example of an F-algebra R with a degree function
ρ is obtained by taking R = F[X1, . . . , Xm] and ρ(f) = deg(f), the degree of
f ∈ R. It is an order function if and only if m = 1, and here it is also a weight
function.
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Example 3.8. Let X be an absolutely irreducible nonsingular projective curve
over field F. Let P be an F-rational point. R be the ring of rational functions
on X that have no poles outside P . So, if f ∈ R and vP (f) ≥ 0, then f is
regular on X and therefore constant. Hence vP (f) ≤ 0 for all nonzero f ∈ R.
Define ρ(f) = −vP (f) for f ∈ R. Then ρ is a weight function by Theorem 2.16.
The purpose of this and the following sections is to show that it is possible
to develop the theory of AG codes to a certain extent without the theory of
algebraic curves.

Lemma 3.9. Let ρ be an order function on R. Then we have:
(1) If ρ(f) = ρ(g), then ρ(fh) = ρ(gh) for all h ∈ R.
(2) If f ∈ R and f 6= 0, then ρ(1) ≤ ρ(f).
(3) F = { f ∈ R | ρ(f) ≤ ρ(1) }.
(4) If ρ(f) = ρ(g), then there exists a unique nonzero λ ∈ F

such that ρ(f − λg) < ρ(g).

Proof.
(1) Let ρ(f) = ρ(g). Then (O.4) says that there exists a nonzero λ ∈ F

such that ρ(f − λg) < ρ(g). So ρ(fh − λgh) < ρ(gh), by (O.3). Now fh =
(fh−λgh)+λgh. So ρ(fh) = ρ(λgh) = ρ(gh), by (O.2) and (O.1), respectively.

(2) Suppose that f is a nonzero element of R such that ρ(f) < ρ(1). Then
ρ(1) > ρ(f) > ρ(f2) > · · · is a strictly decreasing sequence, by condition (O.3),
but this contradicts the fact that N0∪{−∞} is a well-order. Hence ρ(1) ≤ ρ(f)
for all nonzero elements f in R.

(3) It is clear that F is a subset of { f ∈ R | ρ(f) ≤ ρ(1) }, by conditions
(O.0) and (O.1). If f is nonzero and ρ(f) ≤ ρ(1), then ρ(f) = ρ(1), by (2).
Hence there exists a nonzero λ ∈ F such that ρ(f − λ1) < ρ(1), by (O.4). So
f − λ = 0 and f ∈ F.

(4) The existence is guaranteed by (O.4). For the uniqueness we argue as
follows. Suppose that there exist nonzero λ, µ ∈ F such that ρ(f − λg) < ρ(g)
and ρ(f−µg) < ρ(g). We get by (O.1) and (O.2) that ρ(f−λg−(f−µg)) < ρ(g).
Therefore ρ((µ− λ)g) < ρ(g). Condition (O.1) gives µ− λ = 0. �

Proposition 3.10. If there exists an order function on R, then R is an integral
domain.

Proof. Suppose that fg = 0 for some nonzero f, g ∈ R. We may assume that
ρ(f) ≤ ρ(g). So ρ(f2) ≤ ρ(fg) = ρ(0) = −∞. So ρ(f2) = −∞, and f2 = 0.
Now f 6= 0, hence ρ(1) ≤ ρ(f), by Lemma 3.9. So ρ(f) ≤ ρ(f2) = ρ(0) = −∞.
Hence f = 0, which is a contradiction. Therefore R has no zero divisors. �

Example 3.11. The F-algebraR = F[X1, X2]/(X1X2−1) is an integral domain.
We will show that it does not have an order function. Denote the coset of Xi

modulo the ideal (X1X2 − 1) by xi. If ρ is an order function on R, then
ρ(1) ≤ ρ(x1), so ρ(x2) ≤ ρ(x1x2) = ρ(1). Hence ρ(x2) = ρ(1) and in the same
way we get ρ(x1) = ρ(1). Therefore ρ(f) ≤ ρ(1) for all f ∈ R. So F = R by
Lemma 3.9, which is a contradiction since x1 6∈ F.

The following proposition and theorem show that if there exists an order func-
tion, then there exists a basis with certain properties; and conversely if such a
basis exists, then one can define an order function. Although the formulation is
technical, it is easy to apply. This will be shown in some examples.
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Proposition 3.12. Let R be an F-algebra with order function ρ. Assume that
R 6= F. Then there exists a basis { fi | i ∈ N } of R over F such that ρ(fi) <
ρ(fi+1) for all i. Every such basis has the property that if i is the smallest
positive integer such that f can be written as a linear combination of the first
i elements of that basis, then ρ(f) = ρ(fi).Let l(i, j) be the integer l such that
ρ(fifj) = ρ(fl), then l(i, j) < l(i+ 1, j) for all i and j. Let ρi = ρ(fi). If ρ is a
weight function, then ρl(i,j) = ρi + ρj.

Proof. There exists an f ∈ R such that f 6∈ F, since R 6= F. So ρ(1) < ρ(f) by
Lemma 3.9. Hence ρ(fn) < ρ(fn+1) for all n ∈ N0. Therefore the set of values
of ρ is infinite. Let (ρi | i ∈ N) be the increasing sequence of all nonnegative
integers that appear as the order ρ(f) of a nonzero element f ∈ R. By definition
for all i ∈ N there exists an fi ∈ R such that ρ(fi) = ρi. So ρ(fi) < ρ(fi+1) for
all i, and for all nonzero f ∈ R there exists an i with ρ(f) = ρ(fi), by definition.
The fact that { fi | i ∈ N } is a basis is proved by induction and Lemma 3.9 (4),
and it has the required property by (O.2). That the function l(i, j) is strictly
increasing in its first argument is a consequence of condition (O.3). If ρ is a
weight function, then ρl(i,j) = ρi + ρj by condition (O.5). �

Example 3.13. Consider the graded lexicographic order as in Example 3.3 for
m = 2 with X = X1 and Y = X2. Let R be the F-algebra F[X,Y ]. It has

{ XαY β | α, β ∈ N0 }

as basis. Consider the basis of monomials and their corresponding indexing in
the following two dimensional arrays:

...
...

...
...

...
. . .

Y 6 · · · · · · ·
Y 5 XY 5 · · · · · ·
Y 4 XY 4 X2Y 4 · · · · ·
Y 3 XY 3 X2Y 3 X3Y 3 · · · ·
Y 2 XY 2 X2Y 2 X3Y 2 · · · ·
Y XY X2Y X3Y X4Y · · ·
1 X X2 X3 X4 X5

...
...

...
...

...
. . .

22 · · · · · · ·
16 23 · · · · · ·
11 17 24 · · · · ·
7 12 18 25 · · · ·
4 8 13 19 · · · ·
2 5 9 14 20 · · ·
1 3 6 10 15 21

So the enumeration is along the diagonals from left above to right below. Con-
sider the elements f8 = XY 2 and f9 = X2Y . Then

f8f9 = XY 2 ·X2Y = X3Y 3 = f25.

Hence l(8, 9) = 25.

Theorem 3.14. Let R be an F-algebra. Let { fi | i ∈ N } be a basis of R
as a vector space over F with f1 = 1. Let Li be the vector space generated
by f1, . . . , fi. Let l(i, j) be the smallest positive integer l such that fifj ∈ Ll.
Suppose l(i, j) < l(i+1, j) for all i, j ∈ N. Let (ρi | i ∈ N) be a strictly increasing
sequence of nonnegative integers. Define ρ(0) = −∞, and ρ(f) = ρi if i is the
smallest positive integer such that f ∈ Li. Then ρ is an order function on R.
If moreover ρl(i,j) = ρi + ρj, then ρ is a weight function.
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Proof. The conditions (O.0), (O.1), (O.2) and (O.4) are a direct consequence
of the definitions.

With every nonzero element f ∈ R we associate ι(f), the smallest positive
integer such that f ∈ Lι(f). Let f and g be nonzero elements of R. Then

f =
∑
i≤ι(f)

λifi, g =
∑
j≤ι(g)

νjfj and fg =
∑

l≤ι(fg)

µlfl,

with λι(f) 6= 0, νι(g) 6= 0 and µι(fg) 6= 0. There exist µijl ∈ F such that

fifj =
∑

l≤l(i,j)

µijlfl

and µijl(i,j) 6= 0. So

µl =
∑

l(i,j)=l

λiνjµijl.

The function l(i, j) is strictly increasing in both arguments, by assumption and
symmetry. So l(i, j) < l(ι(f), ι(g)) if i < ι(f) or j < ι(g). Furthermore, if
i = ι(f) and j = ι(g), then

λiνjµijl(i,j) 6= 0,

This element is therefore equal to µι(fg), and we have proved that ι(fg) =
l(ι(f), ι(g)).

If moreover ρl(i,j) = ρi + ρj , then

ρ(fg) = ρι(fg) = ρl(ι(f),ι(g)) = ρι(f) + ρι(g) = ρ(f) + ρ(g).

�

Example 3.15. Let w = (w1, . . . , wm) be an m-tuple of positive integers called
weights. The weighted degree of α ∈ Nm0 and the corresponding monomial Xα

is defined by

wdeg(Xα) = wdeg(α) =
∑

αlwl,

and of a nonzero polynomial F =
∑
λαX

α by

wdeg(F ) = max{ wdeg(Xα) | λα 6= 0 }.

This gives a degree function wdeg on the ring F[X1, . . . , Xm]. The weighted
graded lexicographic order ≺w on Nm0 is defined by

α ≺w β if and only if
either wdeg(α) < wdeg(β) or wdeg(α) = wdeg(β) and α ≺L β ,

and similarly for the monomials. This is indeed a reduction order that is iso-
morphic to N.

Consider the weighted graded lexicographic order for m = 2 with X = X1,
Y = X2, wdeg(X) = 4 and wdeg(Y ) = 5. Let R be the F-algebra F[X,Y ]. It
has { XαY β | α, β ∈ N0 } as basis. Consider the weighted degrees 4α + 5β
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of this basis and their corresponding indexing in the following two dimensional
arrays:

...
...

...
...

...
...

. . .

25 · · · · · · · ·
20 24 · · · · · · ·
15 19 23 · · · · · ·
10 14 18 22 · · · · ·
5 9 13 17 21 25 · · ·
0 4 8 12 16 20 24

...
...

...
...

...
...

. . .

22 · · · · · · · ·
15 20 · · · · · · ·
10 14 19 · · · · · ·
6 9 13 18 · · · · ·
3 5 8 12 17 23 · · ·
1 2 4 7 11 16 21

The basis elements X6 and XY 4 have both 24 as weighted degree. But XY 4 is
smaller than X6 in the lexicographic order. Hence f20 = XY 4 and f21 = X6.

3.2 Existence of weight functions 1

Example 3.16. Let I be the ideal in F[X,Y ] generated by a polynomial of the
form

XaY c + Y b+c +G

with G ∈ F[X,Y ], degX(G) = d < a, wdeg(G) < a(b + c) and gcd(a, b) = 1,
where the degree of G ∈ F[X,Y ] as a polynomial in X is denoted by degX(G)
and wdeg(XαY β) = αb + βa. Let S = F[X,Y ]/I. Denote the cosets of X,
Y and G modulo I by x, y and g, respectively. Then xayc = −yb+c − g and
therefore xayc is a linear combination of elements of the form xαyβ with α < a,
since degX(G) < a. One shows by induction that the set

{ xαyβ | α, β ∈ N0, α < a or β < c }

is a basis for S. Suppose that there exists a weight function ρ on S such that
gcd(ρ(x), ρ(y)) = 1. We will show that ρ(x) = b and ρ(y) = a. Let XαY β be
the monomial in G with the largest weighted degree. Then αb+ βa < a(b+ c).
So ρ(g) ≤ αρ(x) + βρ(y) by (O.2) and (O.5).

(1) If bρ(y) ≤ aρ(x), then

αρ(x) + βρ(y) = αρ(x) + (β − c)ρ(y) + cρ(y) ≤

1

b
(αb+ βa− ac)ρ(x) + cρ(y) < aρ(x) + cρ(y).

So ρ(g) < ρ(xayc). Hence ρ(xayc) = ρ(xayc + g). But ρ(yb+c) = ρ(xayc + g).
Therefore ρ(yb+c) = ρ(xayc). So aρ(x) = bρ(y).

(2) If aρ(x) ≤ bρ(y), then by a similar argument we conclude that

αρ(x) + βρ(y) < (b+ c)ρ(y).

So ρ(g) < ρ(yb+c) = ρ(xayc). Hence aρ(x) = bρ(y).
Therefore in both cases aρ(x) = bρ(y). But gcd(ρ(x), ρ(y)) = 1. So ρ(x) = b

and ρ(y) = a.

1This section is corrected on September 20, 2011, after a remark by P. Piret with
wdeg(G) < a(b + c) instead of deg(G) < b + c.
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We will see in the following proposition that the F-algebra S has such a
weight function if c = 0. But if c > 0, then xa and yb are two elements that
have the same weight ab and are independent modulo elements of weight strictly
smaller than ab. This contradicts condition (O.4). Therefore there is no weight
function if c > 0.

The polynomial X3Y + Y 3 + Y is reducible and is of the above form with
a = 3, b = 2, c = 1, d = 0 and G = Y . So by Proposition 3.10 an order function
does not exist.

Consider the subspace R of S that is generated by

{ xαyβ | α, β ∈ N0, α < a and cα ≤ (a− d)β }.

In the following it is shown that R is an F-algebra and that indeed a weight
function exists on R such that ρ(x) = b and ρ(y) = a. The choice may seem ad
hoc, but the affine curve with equation XaY c + Y b+c + G = 0 has the points
P = (1 : 0 : 0) and Q = (0 : 1 : 0) at infinity if c > 0. By computing the
divisors of the monomials xiyj as explained in Section 2 one shows that the ring
R consists of all functions in S that are also regular in P , so that have possibly
a pole in Q and nowhere else.

Proposition 3.17. Let I be the ideal in F[X,Y ] generated by a polynomial of
the form XaY c + uY b+c + G with u ∈ F∗, G ∈ F[X,Y ], degX(G) = d < a,
wdeg(G) < a(b + c) and gcd(a, b) = 1. Let S = F[X,Y ]/I. Let R be the vector
space generated by { xαyβ | α, β ∈ N0, α < a and cα ≤ (a − d)β }. Then R is
an F-algebra with a weight function ρ such that ρ(x) = b and ρ(y) = a.

Proof. The set { xαyβ | α < a or β < c } is a basis for S over F. So { xαyβ | α <
a and cα ≤ (a− d)β } is a basis for R. Let f1, f2, . . . be an enumeration of this
basis of R. If fi = xαyβ , α < a and cα ≤ (a − d)β, then define ρi = αb + βa.
The map (α, β) 7→ αb + βa is injective on the domain { (α, β) ∈ N2

0 | α < a },
since gcd(a, b) = 1. Therefore if i 6= j, then ρi 6= ρj . So we may assume that
the enumeration is such that (ρi|i ∈ N0) is a strictly increasing sequence.

Let Ll = 〈f1, . . . , fl〉. We will prove that for all i, j there exists a nonnegative
integer l such that fifj ∈ Ll. So R is an F-algebra. Furthermore we will
show that if l(i, j) is the smallest nonnegative integer l such that fifj ∈ Ll,
then ρl(i,j) = ρi + ρj . Hence there exists a weight function ρ on R such that

ρ(xαyβ) = αb+ βa , by Theorem 3.14.
Let fi = xαyβ , ρi = αb+ βa with α < a and cα ≤ (a− d)β. Let fj = xγyδ,

ρj = γb+ δa with γ < a and cγ ≤ (a− d)δ. Then fifj = xα+γyβ+δ, ρi + ρj =
(α+ γ)b+ (β + δ)a and c(α+ γ) ≤ (a− d)(β + δ).

(1) If α + γ < a, then fifj is a basis element of R. So fl(i,j) = fifj and
ρl(i,j) = ρi + ρj .

(2) If α + γ ≥ a, then α + γ = a + ε for some nonnegative integer ε with
0 ≤ ε < a. Now

ca ≤ c(α+ γ) ≤ (a− d)(β + δ).

So β + δ = c+ η for some nonnegative integer η; and c(a+ ε) ≤ (a− d)(c+ η).
Hence cε ≤ (a− d)(b+ c+ η). So the term xεyb+c+η is a basis element fl of R.
Furthermore

fifj = xaycxεyη = −uxεyb+c+η − xεyηg,
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and
ρi + ρj = (α+ γ)b+ (β + δ)a = εb+ a(b+ c) + ηa = ρl.

We will show that xεyηg ∈ Ll−1. This implies that fifj ∈ Ll and fifj 6∈ Ll−1.
So l(i, j) = l.
A monomial of G with a nonzero coefficient, is of the form XκY λ with κ ≤ d
and κb+ λa < a(b+ c), since degX(G) = d and wdeg(G) < a(b+ c). Now

(ε+ κ)b+ (η + λ)a = εb+ (κb+ λa) + ηa < εb+ (b+ c+ η)a = ρl.

As a result we get that xε+κyη+λ ∈ Ll−1. Therefore xεyηg ∈ Ll−1.
�

Corollary 3.18. Let F be a polynomial of the form XaY c + uY b+c + G with
u ∈ F∗, G ∈ F[X,Y ], degX(G) = d < a, wdeg(G) < a(b + c) and gcd(a, b) = 1.
If G is not divisible by Y , then F is absolutely irreducible.

Proof. Suppose that there are polynomials U and V such that F = UV . Let
u and v be the cosets of U and V , respectively, in S = F[X,Y ]/(F ). Then
uv = 0. Let R be the subspace of S generated by the elements xαyβ such that
α < a and cα ≤ (a − d)β. Then R is an F-algebra with a weight function by
Proposition 3.17. Hence R is an integral domain by Proposition 3.10. Consider
the two cases:

(i) If c = 0, then R = S. Hence u = 0 or v = 0.
(ii) Suppose c > 0. By an argument similar to that in the proof of the

previous proposition one shows that there are positive integers r and s such
that yru, ysv ∈ R. So yru · ysv = yr+suv = 0. Hence yru = 0 or ysv = 0. If
yru = 0, then Y rU ∈ (F ). So there exists a polynomial A such that

Y rU = AF = A(XaY c + uY b+c +G).

F is not divisible by Y , since c > 0 and G is not divisible by Y . Therefore A is
divisible by Y r. So U ∈ (F ) and u = 0. Similarly v = 0 if ysv = 0.

In both cases u = 0 or v = 0. Hence S is an integral domain, (F ) is a prime
ideal and F is irreducible. These results still hold after extending the field F to
its algebraic closure. Therefore F is absolutely irreducible. �

Example 3.19. Let q = r2 be an even prime power. Consider the Hermitian
curve over Fq with the affine equation

Xr+1 − Y r − Y = 0.

See Example 2.13. Then it is of the form XaY c + uY b+c +G = 0 as treated in
Proposition 3.17 with a = r+1, b = r, c = d = 0 and u = −1, G = −Y . We will
have a closer look for r = 4. Let R be the F16-algebra F16[X,Y ]/(X5−Y 4−Y ).
It has

{ xαyβ | α < 5 }

as basis. Then ρ(xαyβ) = 4α + 5β gives a weight function on R. Consider the
basis of functions and their corresponding weights in the following two dimen-

36



sional arrays:

...
...

...
...

...
y4 · · · ·
y3 xy3 · · ·
y2 xy2 x2y2 · ·
y xy x2y x3y x4y
1 x x2 x3 x4

...
...

...
...

...
20 · · · ·
15 19 · · ·
10 14 18 · ·
5 9 13 17 21
0 4 8 12 16

The sequence (fl|l ∈ N) is an enumeration of the basis with increasing weight.
The first terms are :

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4, x4y, · · ·

Consider for instance f4 = x2 and f7 = x3. Then

f4f7 = x5 = −y4 − y = −f15 − f3.

So l(4, 7) = 15.
The weights are given by the sequence (ρl|l ∈ N). The weights of the terms

above are :

0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, · · ·

Hence ρl = l + 5 for all l ≥ 7.

Remark 3.20. If c = 0, then R = S and { xαyβ | β < b } is also a basis of the
F-algebra, by symmetry.

Example 3.21. The affine equation X3Y + Y 3 + X = 0 over F8 of the Klein
quartic, see Example 2.14, is of the form XaY b + uY b+c +G = 0 as treated in
Proposition 3.17 with a = 3, b = 2, c = d = 1 and u = 1, G = X. Let R be the
F8-subalgebra of F8[X,Y ]/(X3Y + Y 3 + X) generated by the elements xαyβ

such that α < 3, α ≤ 2β. Then R has

{1} ∪ { xαyβ | α ≤ 2, 1 ≤ β }

as basis, and ρ(1) = 0, ρ(xαyβ) = 2α + 3β gives a weight function on R. Con-
sider the basis of functions and their corresponding weights in the following two
dimensional arrays:

...
...

...
y4 · ·
y3 xy3 x2y3

y2 xy2 x2y2

y xy x2y
1

...
...

...
12 · ·
9 11 13
6 8 10
3 5 7
0

The sequence (fl|l ∈ N) is an enumeration of the basis with increasing weight.
The first terms are :

1, y, xy, y2, x2y, xy2, y3, x2y2, xy3, y4, x2y3, · · ·
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Consider f3 = xy and f5 = x2y. Then

f3f5 = x3y2 = −y4 − xy = −f10 − f3.

So l(3, 5) = 10.
The weights are given by the sequence (ρl|l ∈ N). The weights of the terms

above are :
0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, · · ·

Hence ρl = l + 2 for all l ≥ 3.

Example 3.22. This is partly a specialization to c = 0 and partly a generaliza-
tion to more than two variables of Proposition 3.17. Let wdeg be the weighted
degree on F[X1, . . . , Xm], where Xi has weight a1 · · · ai−1bi · · · bm−1. Let I be
the ideal in F[X1, . . . , Xm] generated by

Xai
i +Xbi

i+1 +Gi for i = 1, . . . ,m− 1,

where Gi ∈ F[X1, . . . , Xi+1], wdeg(Gi) < a1 · · · aibi · · · bm−1 and gcd(ai, bj) = 1
for all i ≤ j. Then the ring R = F[X1, . . . , Xm]/I has

{ xα | α ∈ Nm0 , αi < ai for all i < m }

as a basis. The affine ring R has a weight function ρ such that

ρ(xi) = a1 · · · ai−1bi · · · bm−1.

Therefore the ring R is an integral domain and the ideal I is prime. This can
be proved with the theory of Gröbner bases for which we refer to the literature
mentioned in the Notes.

3.3 Notes

The approach given in this and the next section is new. One can find the ideas
in the work of Feng, Rao, Tzeng and Wei [25, 26, 29], where the notion of an
order function is used on the level of codewords instead of functions, with the
concept of well-behaving sequences. See also [53, 73, 92].

The notion of a reduction order is standard in the theory of Gröbner bases
[12, 14]. In [45, 83] the connection between Gröbner bases and en- and decod-
ing of algebraic geometry codes is treated. The curves of Example 3.16 were
considered in [25] and the special case with c = 0 in [68, 69].

A similar result to Corollary 3.18 concerning the irreducibility of plane curves
is proved by other means in [3].

The generalization of Proposition 3.17 mentioned in Example 3.22 is from
[23, 75].

4 Evaluation codes and the dual minimum dis-
tance

We define evaluation codes and give bounds on the minimum distance of the
dual codes in terms of the order function.
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4.1 Evaluation codes and their duals

Let R be an Fq-algebra with an order function ρ. Let (fi | i ∈ N) be a basis
of R over Fq such that ρ(fi) < ρ(fi+1) for all i ∈ N, and for all nonzero f ∈ R
there exists a j with ρ(f) = ρ(fj). The existence of such a basis is guaranteed
by Proposition 3.12. Let Ll be the vector space generated by f1, . . . , fl. Then
for all nonzero f ∈ R we have that ρ(f) = ρ(fl) if and only if l is the smallest
integer such that f ∈ Ll. Let l(i, j) be the smallest positive integer l such that
fifj ∈ Ll. So l(i, j) < l(i+ 1, j) for all i, j ∈ N.

The coordinatewise multiplication on Fnq is defined by a ∗ b = (a1b1, . . . , anbn)
for a = (a1, . . . , an) and b = (b1, . . . , bn). The vector space Fnq with the mul-
tiplication ∗ becomes a commutative ring with the unit (1, . . . , 1). Identify the
unitary subring {(λ, . . . , λ)|λ ∈ Fq} with Fq. In this way Fnq is an Fq-algebra .

Definition 4.1. The map
ϕ : R −→ Fnq ,

is called a morphism of Fq-algebras if ϕ is Fq-linear and

ϕ(fg) = ϕ(f) ∗ ϕ(g).

Let hi = ϕ(fi). Define the evaluation code El and its dual Cl by

El = ϕ(Ll) = 〈h1, . . . ,hl〉,

Cl = {c ∈ Fnq | c · hi = 0 for all i ≤ l}.

The sequence of codes (El|l ∈ N) is increasing with respect to the inclusion.
They are all subspaces of Fnq . So there exists an N such that El = EN for all
l ≥ N . The code EN is the image of R under ϕ. We will consider only those
algebra morphisms ϕ that are surjective. So El = Fnq and Cl = 0 for all l ≥ N .

Example 4.2. Let the set P consist of n distinct points P1, . . . , Pn in Fmq . Let
R = F[X1, . . . , Xm]. Consider the evaluation map

evP : R −→ Fn,

defined by evP(f) = (f(P1), . . . , f(Pn)). This is a morphism of Fq-algebras from
R to Fnq , since FG(P ) = F (P )G(P ) for all polynomials F and G, and all points
P .

Lemma 4.3. The map evP is surjective.

Proof. Let Pj = (xj1, . . . , xjm). Let Ail = {xjl | j = 1, . . . , n} \ {xil}. Define
the polynomial Gi by

Gi =

m∏
l=1

∏
x∈Ail

(Xl − x).

Then Gi(Pj) = 0 for all i 6= j. Furthermore Gi(Pi) 6= 0, since the points
P1, . . . , Pn are distinct. The polynomial Gi/Gi(Pi) maps under evP to the i-th
standard basis element of Fnq . Hence evP is surjective. �
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Suppose that I is an ideal in the ring F[X1, . . . , Xm]. Let P1, . . . , Pn be in
the zero set of I with coordinates in F. So f(Pj) = 0 for all f ∈ I and all
j = 1, . . . , n. Then the evaluation map induces a well-defined linear map

evP : F[X1, . . . , Xm]/I −→ Fn,

which is also a surjective morphism of F-algebras.

Remark 4.4. In many papers one point codes are considered, that is to say
codes of the form C(D,mQ) or C∗(D,mP ), where Q is a rational point which
is distinct from all P1, . . . , Pn and m an integer. These codes are special cases of
the construction in this section. Let R be the ring of f ∈ Fq(X ) that have poles
possibly in Q and nowhere else. Let ρ(f) = −vQ(f) as in Example 3.8. Let ρi be
the ith nongap, see Definition 2.60. Then El = C(D, ρlP ) and Cl = C∗(D, ρlP ).

Example 4.5. In this example we discuss the question of the surjectivity of
the evaluation map for curves with an affine equation

XaY c + uY b+c +G = 0

over Fq with u ∈ F∗q , G ∈ Fq[X,Y ], degX(G) = d < a, wdeg(G) < a(b + c)
and gcd(a, b) = 1, as treated in Example 3.16 and Proposition 3.17. Let S =
Fq[X,Y ]/(XaY c + uY b+c + G). Then the map evP : S → Fnq is surjective by
Lemma 4.3. But S has no weight function if c > 0, as we have seen in Example
3.16. Let R be the subspace of S generated by the elements xαyβ such that
α < a and cα ≤ (a − d)β. Then R is a sub- Fq-algebra of S with a weight
function ρ such that ρ(xαyβ) = αb + βa by Proposition 3.17. Let ϕ be the
restriction of evP to R. Then ϕ is a morphism of Fq-algebras, but it is not
always surjective.

Take for instance the curve with equation X3Y + Y 3 +X2 − 1 = 0 over Fq
of odd characteristic. This is of the above form with a = 3, b = 2, c = 1, d = 2
and u = 1, G = X2 − 1. Let P = {P1, . . . , Pn} be a collection of n distinct
Fq-rational points with P1 = (1, 0) and P2 = (−1, 0). The first two coordinates
of ϕ(f) are the same for all f ∈ R. Therefore the first two columns of the parity
check matrix (ϕ(fi)j |1 ≤ i ≤ l, 1 ≤ j ≤ n) of Cl are the same. Hence d(Cl) = 2
for all l.

One can remedy this in two ways.
(1) The easiest way is to restrict the set P. Assume that there is at most

one point in P that lies on the line with equation Y = 0. One can show that
this suffices to prove that ϕ is surjective.

(2) The second way needs some theory. We will explain it by means of
an example. The Fq-algebra R is again an affine algebra of a curve, since
R = Fq[U, V ]/(U3 + V 5 + U2 − V 2), where U = XY and V = Y . This is seen
by multiplying the original equation by Y 2. The original curve has the points
(1 : 0 : 0) and (0 : 1 : 0) at infinity. The new curve has only (1 : 0 : 0) at infinity.
The map (x : y : z) 7→ (xy : yz : z2) defines a morphism form the old curve to
the new one. The three points (1 : 0 : 1), (−1 : 0 : 1) and (1 : 0 : 0) are mapped
to (0 : 0 : 1). That is why the origin is a singularity of the second curve. One
can extend the Fq-algebra R to R̃ which still has a weight function. R̃ is the
normalisation of R and consists of all fractions f = a/b with a, b ∈ R and b 6= 0,
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that satisfy an equation of the form fn + r1f
n−1 + · · ·+ rn−1f + rn = 0, where

r1, . . . , rn−1, rn ∈ R. In the example above one can show that the subspace R̃
of S generated by R and x + x2y is the normalization. Let f = x + xy2 and
r2 = xy4 + y3 − xy − 1. Then f2 + r2 = 0 and r2 ∈ R. So indeed f ∈ R̃. The
normalization R̃ is an Fq-agebra with a weight function that extends the one

on R. Let ϕ̃ be the restriction of evP to R̃. Then ϕ̃ is surjective. We will not
show how to obtain R̃ in general.

In the setting of this section, the codes are very general and nothing specific
can be said about the minimum distance of the codes El and Cl. This and the
next section will show that certain order and weight functions on the affine ring
R give a bound on the minimum distance which is in many cases the actual
minimum distance. Furthermore Section 6 will show how to correct errors up
to half the bound for Cl.

4.2 The order bound on the dual minimum distance

We repeat the main definitions. Let R be an Fq-algebra with an order function
ρ. Let {fi | i ∈ N} be a basis of R over Fq such that ρ(fi) < ρ(fi+1) for all
i ∈ N. Let ϕ : R→ Fnq be a surjective morphism of Fq-algebra’s. Let Ll be the
vector space with f1, . . . , fl as a basis. The number l(i, j) was defined as the
smallest positive integer l such that fifj ∈ Ll. The function l(i, j) is strictly
increasing in both arguments. Let hi = ϕ(fi). Let El = ϕ(Ll) and Cl its dual.
There exists a positive integer N such that El = Fnq for all l > N . So Cl = 0
for all l > N . Let H be the N ×n matrix with hi as its i-th row for 1 ≤ i ≤ N .

Definition 4.6. Let y ∈ Fnq . Consider the syndromes

si(y) = y · hi and sij(y) = y · (hi ∗ hj).

Then S(y) = (sij(y) | 1 ≤ i, j ≤ N) is the matrix of syndromes of y.

Lemma 4.7. Let y ∈ Fnq . Let D(y) be the diagonal matrix with y on the
diagonal. Then

S(y) = HD(y)HT ,

and
rank(S(y)) = wt(y).

Proof. The matrix of syndromes S(y) is equal to HD(y)HT , since

sij(y) = y · (hi ∗ hj) =
∑
l

ylhilhjl,

where hil is the l-th entry of hi. The rank of the diagonal matrix D(y) is equal
to the number of nonzero entries of y, which is wt(y). The rows of H generate
Fnq , since EN = Fnq . Hence the matrices H and HT both have full rank n.
Therefore rank(S(y)) = rank(D(y)) = wt(y). �

Definition 4.8. Let l ∈ N0. Define

Nl = { (i, j) ∈ N2 | l(i, j) = l + 1 }.

Let νl be the number of elements of Nl.
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Lemma 4.9.
(1) If y ∈ Cl and l(i, j) ≤ l, then sij(y) = 0.
(2) If y ∈ Cl \ Cl+1 and l(i, j) = l + 1, then sij(y) 6= 0.

Proof.
(1) Let y ∈ Cl. If l(i, j) ≤ l, then fifj ∈ Ll. So hi ∗ hj = ϕ(fifj) is an

element of ϕ(Ll), which is the dual of Cl. So sij(y) = y · (hi ∗ hj) = 0.
(2) Let y ∈ Cl \Cl+1. If l(i, j) = l+1, then fifj ∈ Ll+1 \Ll. So fifj ≡ µfl+1

modulo Ll for some nonzero µ ∈ Fq. Hence hi ∗hj ≡ µhl+1 modulo ϕ(Ll). Now
y 6∈ Cl+1, so sl+1(y) 6= 0. Therefore sij(y) 6= 0. �

Lemma 4.10. If t = νl and (i1, j1), . . . , (it, jt) is an enumeration of the ele-
ments of Nl in increasing order with respect to the lexicographic order on N2,
then i1 < · · · < it and jt < · · · < j1. If moreover y ∈ Cl \ Cl+1, then

siujv (y) =

{
0 if u < v,
not zero if u = v.

Proof. The sequence (i1, j1), . . . , (it, jt) is ordered in such a way that i1 ≤ . . . ≤
it and ju < ju+1 if iu = iu+1. If iu = iu+1, then ju < ju+1, and therefore

l + 1 = l(iu, ju) < l(iu, ju+1) = l(iu+1, ju+1) = l + 1,

which is a contradiction. So the sequence i1, . . . , it is strictly increasing. A
similar argument shows that ju+1 < ju for all u < t.

Let y ∈ Cl. If u < v, then l(iu, jv) < l(iv, jv) = l + 1. Lemma 4.9 implies
that siujv (y) = 0.

Moreover, let y 6∈ Cl+1. If u = v, then l(iu, jv) = l + 1. Lemma 4.9 implies
that siujv (y) 6= 0. �

Proposition 4.11. If y ∈ Cl \ Cl+1, then wt(y) ≥ νl.

Proof. This follows from Lemmas 4.7 and 4.10. �

Definition 4.12.
d(l) = min{νm | m ≥ l},

dϕ(l) = min{νm | m ≥ l, Cm 6= Cm+1},
The numbers d(l) and dϕ(l) will be called the order bound. If R is an affine
algebra of the form Fq[X1, . . . , Xm]/I and ϕ is the evaluation map evP of the
set P of n points in Fmq , then we denote dϕ by dP .

Theorem 4.13. The numbers d(l) and dϕ(l) are lower bounds for the minimum
distance of Cl:

d(Cl) ≥ dϕ(l) ≥ d(l).

Proof. The theorem is a direct consequence of Definition 4.12 and Proposition
4.11. �

Remark 4.14. The set Nl and the numbers νl and d(l) depend only on the
order function ρ and neither on the choice of the basis {fi | i ∈ N} nor on the
choice of the set of points. The number dP depends on the order function and
the choice of the set of points, but not on the choice of the basis.

If P ⊆ P ′, then dP ≥ dP′ .
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Example 4.15. Let R = Fq[X] and let ρ, with ρ(f) = deg(f), be the order
function of Example 3.7. Let fi = Xi−1. For a primitive element α of Fq and
n = q − 1, let ϕ : R → Fnq be defined by ϕ(f) = (f(α0), f(α1), . . . , f(αn−1)).
Then Cl = {c ∈ Fnq |c · ϕ(fi) = 0, 1 ≤ i ≤ l} then Cl is a cyclic code with

defining set α0, α1, . . . , αl−1. The order bound gives d(l) = l + 1, from which
the BCH bound may be derived.

Example 4.16. This is a continuation of Example 3.21 with the Klein quartic.
The table gives a list of the functions fl, their weights ρl, the numbers νl and
the bound d(l) from Theorem 4.13. We have that

Nl = {(i, j)|ρi + ρj = ρl+1},

since ρ is a weight function. It is easy to see that d(l) = νl = l− 2 for all l ≥ 6.

l 1 2 3 4 5 6 7 8 9
fl 1 y xy y2 x2y xy2 y3 x2y2 xy3

ρl 0 3 5 6 7 8 9 10 11
νl 2 2 3 2 4 4 5 6 7
d(l) 2 2 2 2 4 4 5 6 7

As a polynomial in Y , X3Y + Y 3 +X, has three distinct zeros for every value
of X in F∗8. The origin is the only point of the curve on the line X = 0 or
Y = 0. Hence the affine curve has 21 + 1 = 22 rational points. If we consider
the evaluation codes, then for any set P of rational points the functions y8 and
y evaluate to the same vector. This gives C21 = C22. If the set P consists of all
the 21 rational points with nonzero coordinates, then the function y7 evaluates
to the same vector as the function 1, so furthermore C18 = C19.

Let l ≥ 3. Let Hl = (ϕ(fi)j |1 ≤ i ≤ l, 1 ≤ j ≤ n) be the parity check matrix
of Cl. Then the first three entries of the j-th column of Hl are equal to 1, yj
and xjyj , where Pj = (xj , yj). There is at most one j with yj = 0. So any
two columns of Hl are independent. Hence the minimum distance of the codes
C3 and C4 is at least 3, and in fact it is equal to 3 for both codes. This is
an example where the minimum distance of Cl is strictly larger than dP(l) and
d(l).

Example 4.17. This is a continuation of Example 3.19 with the Hermitian
curve over F16. Consider the table with a list of fl, ρl, νl and d(l).

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
fl 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4 x4y
ρl 0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 21
νl 2 2 3 4 3 4 6 6 4 5 8 9 8 9 10 12
d(l) 2 2 3 3 3 4 4 4 4 5 8 8 8 9 10 12

One can verify that d(l) = νl = l − 5 for all l > 16.

Example 4.18. Reed-Muller codes. Let R = Fq[X1, . . . , Xm]. Let ρ be the
order function associated with the graded lexicographic order on the monomials
of R. Let fi be the i-th monomial with respect to this order. Let n = qm. Let
P1, . . . , Pn be an enumeration of the n points of Fmq = P. Then RMq(r,m) is by
definition the code obtained by evaluating all f ∈ Fq[X1, . . . , Xm] of degree at
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most r at all points of P. If fl = Xr
1 , then fl+1 = Xr+1

m and {fi | i ≤ l} is the
set of all monomials of degree at most r. So RMq(r,m) = evP(Ll) = El. The
minimum distance of Reed-Muller codes is well-known. It is also a consequence
of the theory developed above, as we will now demonstrate.

Lemma 4.19.
(1) If fl+1 = Xγ , then νl =

∏m
t=1(γt + 1).

(2)

d(l) = deg(fl) +

{
2 if fl = Xr

1 for some r,
1 otherwise.

(3) Let fl = Xr
1 . Write r+ 1 = ν(q− 1) + µ with ν, µ ∈ N0 such that µ < q− 1.

Then dP(l) = (µ+ 1)qν .

Proof.
(1) If fi = Xα, fj = Xβ , then fl = Xα+β for some l. So l(i, j) = l. Hence if

fl+1 = Xγ , then νl is equal to the number of pairs (i, j) such that fifj = fl+1,
which is equal to the number of l α ∈ Nm0 such that 0 ≤ αt ≤ γt for all t,
1 ≤ t ≤ m, which is

∏m
t=1(γt + 1).

(2) If fl = Xr
1 , then fl+1 = Xr+1

m . So νl = r + 2 = deg(fl) + 2. Let l′ ≥ l
and fl′+1 = Xγ . Then

νl′ =
∏m
t=1(γt + 1) ≥ (

∑m
t=1γt) + 1 = deg(fl′+1) + 1 ≥ deg(fl) + 2.

So d(l) = deg(fl) + 2.
If fl is not of the form Xr

1 , then fl0+1 = Xr
1 for some l0 ≥ l and r = deg(fl).

So νl0 = r + 1 and νl′ ≥ r + 1 for all l′ ≥ l. Hence d(l) = deg(fl) + 1.
(3) If fl′+1 = Xγ , then the code Cl′ is not equal to Cl′+1 if and only if

0 ≤ γt ≤ q − 1 for all t. So dP(l) is equal to

min{
∏m
t=1(γt + 1) |

∑m
t=1 γt ≥ r + 1 and 0 ≤ γt ≤ q − 1 for all t },

if fl = Xr
1 . Consider the real valued function f defined by f(x) =

∏m
t=1(xt + 1)

on the domain {x ∈ Rm |
∑m
i=1 xi ≥ r + 1 and 0 ≤ xt ≤ q − 1 for all t }. The

method of Lagrange multipliers gives that the minimum of f is obtained at the
corner (0, . . . , 0, µ, q − 1, . . . , q − 1), where the last ν coordinates are equal to
q − 1. Hence dP(l) = (µ+ 1)qν . �

Theorem 4.20. Let r and m be positive integers such that 0 ≤ r < (q − 1)m.
Write (q− 1)m− r = ν(q− 1) +µ with ν, µ ∈ N0 such that µ < q− 1. Then the
minimum distance of RMq(r,m) is equal to (µ+ 1)qν .

Proof. Let El be the Reed-Muller code RMq((q−1)− r−1,m) and obtained as

described in Example 4.18. Then Cl is the dual of this code if fl = X
(q−1)−r−1
1 .

The dual of RMq(r,m) is a RM code of order m(q − 1) − r − 1. We give a
sketch of the proof of this fact.

Notice that Xq
i and Xi evaluate to the same word under evP . A polynomial

is called reduced if the monomials Xα with a nonzero coefficient satisfy αi < q
for i = 1, . . . ,m. So for every polynomial F there exists a reduced polynomial F ′

such that evP(F ) = evP(F ′). This polynomial F ′ is unique. So the dimension of
RMq(r,m) is equal to the number of reduced monomials Xα such that deg(α) ≤
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r. Let Q = {0, 1, . . . , q− 1}. Let µ = (q− 1, . . . , q− 1). By considering the map
Xα 7→ Xµ−α on Qm one sees that

dim RMq(r,m) + dim RMq((q − 1)m− r − 1,m) = qm.

Let F and G be two reduced polynomials. Then

evP(F ) · evP(G) = 0 if deg(F ) + deg(G) < (q − 1)m.

This is seen by considering monomials first and using the fact that
∑
x∈Fq

xi = 0
for all i < q−1. Hence the two RM codes are orthogonal. By the above remark
on the dimensions we have proved that the two RM codes are dual to each other.

Hence Cl = RMq(r,m). Now (q− 1)m− r = (q− 1)ν + µ. So the minimum
distance of RMq(r,m) is at least (µ + 1)qν by Lemma 4.19. To show that this
lower bound is tight, we consider the polynomial

F =

m−ν−1∏
i=1

(
Xq−1
i − 1

) q−1∏
j=µ+1

(Xm−ν − aj) ,

where Fq = {a0, . . . , aq−1}. Then deg(F ) = (m− ν−1)(q−1) + (q−1−µ) = r.
So F evaluates to a codeword of RMq(r,m). Let P = (x1, . . . , xm). Then
F (P ) 6= 0 if and only if x1 = · · · = xm−ν−1 = 0 and xm−ν = aj for some
j ∈ {0, . . . , µ}. Hence evP(F ) has weight (µ+ 1)qν . �

4.3 Improvements and generalizations

In this section we sketch, without proofs, possible improvements and general-
izations of the theory.

Let R be an Fq-algebra. Let (fi|i ∈ N), (gj |j ∈ N) and (hl|l ∈ N) be three
sequences of independent elements in R. The vector space L(l) has h1, . . . , hl
as basis. Assume that for all i, j there exists an l such that figj ∈ L(l). The
function l(i, j) is defined as the smallest l such that figj ∈ L(l). Assume that
l(i, j) is strictly increasing in both arguments. In the theory of the previous
sections we have the special case with fi = gi = hi, (fi|i ∈ N) is a basis of R
and ρ(fi) < ρ(fi+1) for all i, where ρ is an order function on R. Let ϕ : R→ Fnq
be a surjective morphism of Fq-algebras. Let hl = ϕ(hl). Let El be the code
generated by h1, . . . ,hl. Let Cl be the dual of El. So

Cl = {c ∈ Fnq | c · hi = 0 for all i ≤ l}.

The set Nl is defined by

Nl = { (i, j) ∈ N2 | l(i, j) = l + 1 }

as in Definition 4.8, and νl is the number of elements of Nl. Let

d(l) = min{νm | m ≥ l},

dϕ(l) = min{νm | m ≥ l, Cm 6= Cm+1}

as in Definition 4.12. Then dϕ(l) ≥ d(l) and they are lower bounds on the
minimum distance of the code Cl.
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Example 4.21. Consider the curve with equation X3Y +Y 3 +X2−1 = 0 as in
Example 4.5. Let the sequence (hl|l ∈ N) list the elements xαyβ , α < 3 such that
2α+3β is increasing. So h1 = 1, h2 = x, h3 = y and h3k−e = xeyk−e if k ≥ 2 and
e = 0, 1, 2. Let (fi|i ∈ N) be the sequence obtained from (hl|l ∈ N) by deleting
x2. So f1 = 1, f2 = x, f3 = y, f4 = xy, f5 = y2 and f3k+e = x2−eyk+e−1 if
k ≥ 2 and e = 0, 1, 2. Let gi = fi. One can verify that the product figj is a
linear combination of the hl, and that the function l(i, j) is strictly increasing
in both arguments. It is easy to see that d(l) = νl = l − 2 for all l ≥ 8.

l 1 2 3 4 5 6 7 8 9 10
fl 1 x y xy y2 x2y xy2 y3 x2y2 xy3

hl 1 x y x2 xy y2 x2y xy2 y3 x2y2

νl 2 2 1 4 3 4 6 6 7 8
d(l) 1 1 1 3 3 4 6 6 7 8

Let F0 be a subfield of Fq. In the above situation we can define the code

C0
l = {c ∈ Fn0 | c · hi = 0 for all i ≤ l}.

Then C0
l is a subfield subcode of Cl. So the bounds d(l) and dϕ(l) hold also for

the minimum distance of C0
l . Define

d0ϕ(l) = min{νm | m ≥ l, C0
m 6= C0

m+1}.

Then d0ϕ(l) ≥ dϕ(l) ≥ d(l) and they are lower bounds on the minimum distance
of the code C0

l . In this way one get bounds on the minimum distance of cyclic
codes that improve the BCH bound. The most general bound is the so called
shift bound. We will not define it here but refer to the Notes. All these bounds
have the decomposition of the matrix of syndromes S(y) in common, and pat-
terns of zeros in this matrix give information on the nonzeros of y.

It is possible to give a version of these ideas on the level of words in Fnq directly
without any reference to the Fq-algebra R and the morphism ϕ.

Let {a1, . . . ,an}, {b1, . . . ,bn} and {c1, . . . , cn} be three bases of Fnq . Let

Ēl be the code generated by c1, . . . , cl. Let C̄l be the dual of the code Ēl. Let
l̄(i, j) be the the smallest positive integer l such that ai ∗bj ∈ Ēl. The pair (i, j)
is called well-behaving if l̄(i′, j′) < l̄(i, j) for all i′, j′ such that i′ ≤ i, j′ ≤ j and
(i′, j′) 6= (i, j). Let l = 0, 1, . . . , n− 1. Define

N̄(l) = { (i, j) | l̄(i, j) = l + 1 and (i, j) is well-behaving }.

Let ν̄(l) be the number of elements of N̄(l). Let ν̄(n) = n+ 1. Define

d̄(l) = min{ ν̄(m) | l ≤ m ≤ n }.

Then d̄(l) is a lower bound on the minimum distance of C̄l.
Let the basis {a1, . . . ,an} be obtained by deleting succesively superfluous

elements of the sequence (ϕ(fi)|i ∈ N), and let the bases {b1, . . . ,bn} and
{c1, . . . , cn} be obtained similarly from (ϕ(gj)|j ∈ N) and (ϕ(hl)|l ∈ N), respec-
tively. If the dimension of Cl is k, r = n− k and Cl 6= Cl+1, then C̄r = Cl and
d̄(r) ≥ dϕ(l).
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Definition 4.22. Let d be a positive integer. Define

C̃(d) = {c ∈ Fnq | c · hl+1 = 0 for all l ∈ N0 such that νl < d},

C̃ϕ(d) = {c ∈ Fnq | c · hl+1 = 0 for all l ∈ N0 such that νl < d and Cl 6= Cl+1}.

Proposition 4.23. The minimum distance of C̃(d) and C̃ϕ(d) is at least d.

Proof. The code C̃(d) is contained in C̃ϕ(d). So it is enough to prove the claim

for the latter. Let y be a nonzero codeword of C̃ϕ(d). If d = 1, then there is
nothing to prove. Let d > 1. Then ν0 = 1 < d. So y · h1 = 0. The number N
was defined in such a way that the elements h1, . . . ,hN generate Fnq . The word
y is not zero. So there exists a positive integer l such that y · hl+1 6= 0. Let
l be the smallest positive integer such that y · hl+1 6= 0. Then y ∈ Cl \ Cl+1.
Therefore wt(y) ≥ νl by Proposition 4.11. If νl < d, then y · hl+1 = 0, since
y ∈ C̃ϕ(d) and Cl 6= Cl+1. This is a contradiction. Hence wt(y) ≥ νl ≥ d. �

Definition 4.24. Let d be a positive integer. Define

R(d) = {l + 1 | l ∈ N0, νl < d},

Rϕ(d) = {l + 1 | l ∈ N0, νl < d and Cl 6= Cl+1}.

Let r(d) and rϕ(d) be the number of elements of R(d) and Rϕ(d), respectively.

Remark 4.25. The number r(d) is the number of parity checks that define
C̃(d) and depends only on the order function. These parity checks might be
dependent. So the redundancy of C̃(d) is at most r(d). Hence the dimension of
C̃(d) is at least n− r(d). The number rϕ(d) is the number of parity checks that

define C̃ϕ(d), and depends on the order function and the map ϕ. In this case

these parity checks are independent by definition. So the redundancy of C̃ϕ(d)

is equal to rϕ(d). Hence the dimension of C̃ϕ(d) is n− rϕ(d).

The codes C̃(d) and C̃ϕ(d) have the super code property, that is to say: if

d = d(l), then Cl ⊆ C̃(d) ⊆ C̃ϕ(d). So the minimum distance of the codes Cl,

C̃(d) and C̃ϕ(d) is at least d, but Cl might be smaller.

Example 4.26. Hyperbolic codes. Consider the situation as in Example 4.18 of
the RM codes. So n = qm and P = {P1, . . . , Pn} is an enumeration of the points
of the affine space Fmq . Furthermore R = Fq[X1, . . . , Xm] and ϕ is the evaluation
map evP . We have seen that that all the RM codes are of the form El and Cl,
and that the order bound is equal to the minimum distance by Theorem 4.20.
The bounds on the redundancies are given by

r(d) = #{α ∈ Nm0 |
∏m
i=1(αi + 1) < d},

rϕ(d) = #{α ∈ Qm |
∏m
i=1(αi + 1) < d},

where Q = {0, 1, . . . , q − 1}, by Lemma 4.19. The codes C̃(d) and C̃ϕ(d) are
called hyperbolic, since in case m = 2 the bound r(d) is the number of integer
lattice points (x, y) ∈ Nm0 under the hyperbola (x+ 1)(y + 1) = d.
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4.4 Notes

The order bound uses the fact that the matrix of syndromes is a triple product
of matrices which stems from the study of decoding algorithms as will be seen
in Section 6. The order bound is also called the Feng-Rao bound. It can be
seen as a generalisation of the shift bound for cyclic codes [63, 74].

The generalized RM codes are treated in [6, 15, 52] and [94].
The idea to define C̃(d) by deleting parity checks in the definition of Cl and

still keeping the same bound on the minimum distance is from [25], where they
are called improved geometric Goppa codes. From an algebraic geometric point
of view these codes are defined with the help of incomplete linear systems.

Hyperbolic codes are called Hyperbolic Cascaded Reed Solomon codes in
[82].

The idea to generalize the construction of Goppa from curves to varieties of
arbitrary dimensions is from [66], but until the order bound, not much could
be said about the parameters of these codes if the dimension of the variety is
greater than one.

5 Weight functions and semigroups

The order bound is investigated in detail when ρ is a weight function in terms
of its associated semigroup, in particular if the semigroup is generated by two
generators, and more generally, for semigroups which are called telescopic. The
minimum distance of Hermitian codes is determined.

5.1 Semigroups and the minimum distance

Suppose that ρ is a weight function. Condition (O.5) implies that the subset
Λ = { ρ(f) | f ∈ R, f 6= 0 } of the nonnegative integers N0 has the property
that, 0 ∈ Λ, and x+ y ∈ Λ for all x, y ∈ Λ.

Definition 5.1. A subset Λ of N0 is called a (numerical) semigroup if 0 ∈ Λ
and for all x, y ∈ Λ also the sum x+ y ∈ Λ.

Elements of N0 \Λ are called gaps of Λ and elements of Λ are called nongaps
of Λ. If all elements of Λ are divisible by an integer d > 1, then there are
infinitely many gaps. The number of gaps is denoted by g = g(Λ).

If g < ∞, then there exists an n ∈ Λ such that if x ∈ N0 and x ≥ n, then
x ∈ Λ. The conductor of Λ is the smallest n ∈ Λ such that { x ∈ N0 | x ≥ n }
is contained in Λ, denoted by c = c(Λ). So c− 1 is the largest gap of Λ if g > 0.

Example 5.2. If ρ is a weight function, then Λ = { ρ(f) | f ∈ R, f 6= 0 } is
the semigroup of ρ.

In particular, if ρ = −vP of Example 3.8, then Λ is the Weierstrass semigroup
of P , see Definition 2.15.

Remark 5.3. Let Λ be a semigroup with g gaps and conductor c.
(1) g = 0 if and only if c = 0.
(2) Let g > 0. Then c ≥ g+ 1, and Λ = { x ∈ N0 | x ≥ g+ 1 } ∪ {0} if and only
if c = g + 1.
(3) There is exactly one gap if and only if 1 is the only gap.
(4) If 2 is a nongap, then {1, 3, . . . , 2g − 1} is the set of gaps. So c = 2g.
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Example 5.4. Let Λ = {0, 4, 5, 8, 9, 10} ∪ { x ∈ N0 | x ≥ 12 }. Then Λ is the
semigroup of the weight function on the Hermitian curve over F16 of Example
3.19. The gaps are 1, 2, 3, 6, 7 and 11. So the number of gaps is g = 6, the
conductor is c = 12 and the largest gap is 11.

Definition 5.5. The elements of a semigroup Λ will be enumerated by the
sequence (ρl|l ∈ N) such that ρl < ρl+1 for all l. The number of gaps smaller
than ρl will be denoted by g(l).

Lemma 5.6. Let Λ be a semigroup with finitely many gaps.
(1) If l ∈ N, then g(l) = ρl − l + 1.
(2) If l ∈ N, then ρl ≤ l + g − 1 and equality holds if and only if ρl ≥ c.
(3) If l > c− g, then ρl = l + g − 1.
(4) If l ≤ c− g, then ρl < c− 1.

Proof.
(1) The nongap ρl is the (ρl+1)-st element of N0. So ρl is the (ρl+1−g(l))-th

element of the semigroup Λ. Hence l = ρl + 1− g(l).
(2) Now g(l) ≤ g and g(l) = g if and only if ρl ≥ c.
(3) The conductor c is the (c + 1)-st element of N0. All gaps are strictly

smaller than c. So c is the (c+ 1− g)-th element of Λ. Hence c = ρc+1−g. Let
l > c− g. Then ρl ≥ ρc−g+1 = c. Therefore ρl = l + g − 1 by (2).

(4) Let l ≤ c− g. Then ρl ≤ l+ g− 1 ≤ c− 1. But c− 1 is a gap or negative.
Therefore ρl < c− 1. �

In the previous lemma we used only the fact that { n ∈ N0 | n ≥ c } is contained
in Λ and c − 1 6∈ Λ. In the following proposition we use the property that a
semigroup is closed under addition.

Proposition 5.7. Suppose that the number of gaps is finite. Then

c ≤ 2g.

And c = 2g if and only if for any nonnegative integer s, if s is a gap, then
c− 1− s is a nongap.

Proof. Consider a pair of nonnegative integers (s, t) with s+ t = c− 1. At least
one of these two numbers has to be a gap, since c−1 is a gap and the sum of two
nongaps is a nongap. But there are c such pairs, giving the required inequality.

Equality holds if and only if for any pair of nonnegative integers (s, t) with
s + t = c − 1 exactly one of these two numbers is a nongap and the other is a
gap. �

Definition 5.8. A semigroup is called symmetric if c = 2g.

Example 5.9. The semigroup of the weight function of the Klein curve of
Example 3.21 has three gaps: 1, 2 and 4. The largest gap is 4 and the conductor
is 5. So this semigroup is not symmetric.

Definition 5.10. Let A = {a1, . . . , ak} be a subset of a semigroup Λ. If for

any element s ∈ Λ there exist x1, . . . , xk ∈ N0 such that s =
∑k
i=1 xiai, the

semigroup Λ is said to be generated by A and written Λ = 〈A〉. A set A of
generators of Λ is minimal if Λ is not generated by a proper subset of A.
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We state without proof the following facts. Every semigroup has a finite set of
generators. Every set of generators contains a minimal set of generators and a
minimal set of generators is unique.

Proposition 5.11. Let a, b ∈ N such that gcd(a, b) = 1. The semigroup gener-
ated by a and b is symmetric, has ab − a − b as largest gap, (a − 1)(b − 1) as
conductor and the number of gaps is equal to (a− 1)(b− 1)/2.

Proof. Every integer m has a unique representation m = xb+ ya, where x and
y are integers such that 0 ≤ y < b, since gcd(a, b) = 1. Hence every gap m has
a unique representation m = xb+ ya such that 0 ≤ y < b and x < 0, and every
nongap m has a unique representation m = xb + ya such that 0 ≤ y < b and
x ≥ 0.

Let c be the conductor of the semigroup Λ = 〈a, b〉. First the largest gap
c−1 is computed. The numbers ya ∈ Λ , y = 0, 1, . . . , b−1 form a complete set
of representatives of the cosets modulo b, and ya − b is the largest element in
the coset of ya without a representation with nonnegative integer coefficients.
Hence

(b− 1)a− b

is the largest gap, which is equal to c − 1. So c = (a − 1)(b − 1). To see that
〈a, b〉 is symmetric, assume that s and t are both gaps and s+ t = c− 1. Since
s and t can be written as

s = x1b+ y1a, t = x2b+ y2a, 0 ≤ y1, y2 < b and x1, x2 < 0,

we get c− 1 = ab− a− b = (x1 + x2)b+ (y1 + y2)a. So

(−x1 − x2 − 1)b = (y1 + y2 − b+ 1)a,

where 0 ≤ y1 + y2 ≤ 2b − 2 and x1 + x2 ≤ −2. The lefthand side of the
last equation is strictly positive and the righthand side strictly smaller than ab,
giving a contradiction, because gcd(a, b) = 1. Hence Λ is symmetric and c = 2g
by Proposition 5.7, where g is the number of gaps. So g = (a− 1)(b− 1)/2. �

Corollary 5.12. A semigroup has a finite number of gaps if and only if the
greatest common divisor of its elements is 1.

Proof. Suppose that the greatest common divisor of the elements of a semigroup
Λ is 1. Then there exist a, b ∈ Λ such that gcd(a, b) = 1. The number of gaps
of 〈a, b〉 is finite by Proposition 5.11, and Λ contains 〈a, b〉. So the number of
gaps of Λ is finite.

The converse is clear. �

Example 5.13. The semigroup of Example 5.4 is generated by 4 and 5. This
semigroup has 6 = (4− 1)(5− 1)/2 gaps and is indeed symmetric.

Example 5.14. The semigroup of the weight function of plane curves with
defining equation XaY c +Y b+c +G = 0 as treated in Proposition 3.17, is equal
to

〈a, b〉 \ { αb+ βa | α, β ∈ N0, α < a, cα > (a− d)β }.

Hence g = (a− 1)(b− 1)/2 + ∆, where ∆ is equal to the number of elements of
{(α, β) ∈ N2

0|α < a, cα > (a− d)β}.
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For a subset B of N0 and a ∈ N0 we denote the set { a+ b | b ∈ B } by a+B.

Lemma 5.15. Let Λ be a semigroup with finitely many gaps. Let s ∈ Λ . Then
the number of elements of Λ \ (s+ Λ) is equal to s.

Proof. Let c be the conductor of Λ. Let T = { t ∈ N0 | t ≥ s+ c }. Then T is
contained in Λ and in s+ Λ. Let U = { u ∈ Λ | u < s+ c }. Then the number
of elements of U is equal to s + c − g, and Λ is the disjoint union of T and U .
Let V = { v ∈ s + Λ | s ≤ v < s + c }. Then the number of elements of V is
equal to c− g, and s+ Λ is the disjoint union of V and T . Furthermore V ⊆ U ,
since s ∈ Λ and Λ is a semigroup. Hence

#(Λ \ (s+ Λ)) = #U −#V = (s+ c− g)− (c− g) = s.

�

Lemma 5.16. Let f be a nonzero element of an Fq-algebra R with a weight
function ρ. Then

dim(R/(f)) = ρ(f).

Proof. Let Λ be the semigroup of the weight function ρ. Let s = ρ(f). Let
(ρi | i ∈ N) be the sequence of the elements of Λ in increasing order. The image
under ρ of the set of nonzero elements of the ideal (f) is equal to s+ Λ. So for
every ρi ∈ Λ there exists an fi ∈ R such that ρ(fi) = ρi. If moreover ρi ∈ s+ Λ,
then we may choose fi ∈ (f). The sets { fi | i ∈ N } and { fi | i ∈ N, ρi ∈ s+Λ }
are bases of the algebra R and the ideal (f), respectively, by the same argument
as 3.12. Hence the classes of fi modulo (f) with i ∈ N and ρi ∈ Λ\ (s+ Λ) form
a basis of R/(f). So the dimension of R/(f) is equal to the number of elements
of Λ \ (s+ Λ), which is ρ(f) by Lemma 5.15. �

Lemma 5.17. Let R be an affine algebra with a weight function ρ and an
evaluation map evP . Let f be a nonzero element of R. Then the number of
zeros of f is at most ρ(f).

Proof. Let Q be the set of zeros of f and let t = |Q|. The map evQ : R→ Ftq is
linear and surjective by Lemma 4.3. Furthermore g(Q) = 0 for all Q ∈ Q and
g ∈ (f). This induces a well-defined map evQ : R/(f)→ Ftq which is linear and
surjective. So the number of zeros of f is at most the dimension of R/(f) which
is equal to ρ(f) by Lemma 5.16. �

Suppose that we have a weight function ρ on R = Fq[X1, . . . , Xm]/I. Let
(ρi|i ∈ N) be the enumeration of the elements of the semigroup of ρ in increasing
order. Let P consist of n distinct points of Fmq in the zero set of I, and let
evP : R→ Fnq be the corresponding evaluation map. The evaluation code El is
defined as in Section 4.1. So El = { evP(f) | f ∈ R, ρ(f) ≤ ρl }.

Theorem 5.18. The minimum distance of El is at least n−ρl. If ρl < n, then
dim(El) = l.

Proof. Let c be a nonzero element of El. Then there exists a nonzero element
f ∈ R such that ρ(f) ≤ ρl and c = evP(f). So ci = f(Pi) for all i. The number
of zeros of f is at most ρl, by Lemma 5.17. So wt(c) ≥ n− ρl.
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Suppose moreover that ρl < n. El is the image under the evaluation map of
the vector space Ll of dimension l. If f ∈ Ll and evP(f) = 0, then f has at least
n zeros. Hence f = 0 by Lemma 5.17, since ρl < n. So the map evP : Ll → El
is a linear isomorphism, hence dim(El) = l. �

Corollary 5.19. Let ρ be a weight function with g gaps. If ρk < n, then Ek is
an [n, k, d] code such that k + d ≥ n+ 1− g.

Proof. This follows from Theorem 5.18 and the fact that ρk ≤ k+g−1 as shown
in Lemma 5.6. �

Example 5.20. This is a continuation of Example 5.14. In the special case
that a = b + 1 and c = 0, one can compare the code C of Section 2.3 with
m = a and the code Ek of this section. The number of gaps is g =

(
m−1
2

)
by

Proposition 5.11. If ρk = lm, then C = Ek and Proposition 2.27 and Corollary
5.19 give the same parameters of the codes C and Ek, respectively.

Remark 5.21. If ρ is an order function but not a weight function, then in
general R/(f) is not finite-dimensional and there is not a straightforward bound
on the minimum distance for El.

5.2 Semigroups and the dual minimum distance

Let ρ be a weight function on the F-algebra R. It is assumed that the greatest
common divisor of the weights ρ(f), 0 6= f ∈ R, is 1. So g, the number of gaps
of the corresponding semigroup Λ, is finite. Let (ρi | i ∈ N) be the sequence of
nongaps of the weight function ρ such that ρi < ρi+1 for all i. The number of
gaps smaller than ρl is denoted by g(l). The conductor of Λ is denoted by c.

Recall from Proposition 3.12 that for a weight function ρ the function l(i, j)
is determined by

ρl(i,j) = ρi + ρj .

Hence the set Nl from Definition 4.8 can be redefined by

Nl = { (i, j) ∈ N2 | ρi + ρj = ρl+1 }.

The number of elements of Nl is denoted by νl. In Definition 4.12 the order
bound d(l) was defined by

d(l) = min{ νm | m ≥ l }.

Definition 5.22. The Goppa bound on the minimum distance of Cl is denoted
by dG(l) and is defined by dG(l) = l + 1− g.

Example 5.23. If Λ = N0, then ρl = l − 1 and Nl is the set of all pairs
(i, l + 2− i), i = 1, 2, . . . , l + 1. So d(l) = νl = l + 1 for all l ∈ N.

Theorem 5.24. Let D(l) = { (x, y) | x and y are gaps and x+ y = ρl+1 }.
Then

νl = l + 1− g(l + 1) + #D(l),

where g(l + 1) = g if l ≥ c − g and #D(l) = 0 if l > 2c − g − 2. Furthermore
d(l) ≥ dG(l) = l + 1− g and equality holds if l > 2c− g − 2.
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Proof.

(1) For a given integer l, define the following sets. A(l) is the set of pairs of
nonnegative integers (x, y) such that x+ y = ρl+1. Let B(l) be the set of pairs
(x, y) ∈ A(l) such that x is a gap, and let C(l) be the set of pairs (x, y) ∈ A(l)
such that y is a gap. Clearly A(l) = Nl ∪ B(l) ∪ C(l) and D(l) = B(l) ∩ C(l)
and Nl is disjoint from B(l) ∪ C(l). Hence

νl = #A(l)−#B(l)−#C(l) + #D(l).

The number of elements of A(l) is ρl+1 + 1. Let x ∈ N0. Then x is a gap
smaller than ρl+1 if and only if there exists a unique y such that (x, y) ∈ B(l).
So #B(l) = g(l+ 1), and similarly #C(l) = g(l+ 1). The equality for νl follows
now, since g(l + 1) = ρl+1 − l by Lemma 5.6.

(2) If l ≥ c− g, then g(l + 1) = g by Lemma 5.6 (3).
(3) Now suppose that l > 2c− g−2. If g = 0, then νl = l+ 1 for all l ∈ N by

Example 5.23. So we may assume that g > 0 and c ≥ 2. So 2c− g − 2 ≥ c− g.
Hence ρl+1 = l+g > 2c−2. Let x and y be gaps. Then x, y ≤ c−1. If moreover
x + y = ρl+1, then ρl+1 ≤ 2c − 2. Therefore such a pair (x, y) does not exist.
So D(l) is empty if l > 2c− g − 2.

(4) The statement about d(l) and dG(l) follows immediately from the defi-
nitions and the above results on νl. �

Example 5.25. Let us illustrate the theorem by means of a diagram of the
semigroup of the Klein quartic. Put the elements of the semigroup in an array
with x+y on the entry (x, y) if x and y are nongaps, and a dot otherwise. Look
at the diagonal x + y = ρl+1 and count the the number of times we see ρl+1.
In this way we determine νl, the size of Nl. The dots in the rows correspond to
elements of the set B(l), and the dots in the columns to elements in C(l). An
element (x, y) of D(l) corresponds with the x-th column with dots intersecting
the y-th row with dots. If l is large enough, then they do not intersect anymore.

0 · · 3 · 5 6 7 8 9 10 11 12
· · · · · · · · · · · ·
· · · · · · · · · · ·
3 · · 6 · 8 9 10 11 12
· · · · · · · · ·
5 · · 8 · 10 11 12
6 · · 9 · 11 12
7 · · 10 · 12
8 · · 11 ·
9 · · 12
10 · ·
11 ·
12

This gives again the values of the table of Example 4.16.

l 1 2 3 4 5 6 7 8 9
ρl+1 3 5 6 7 8 9 10 11 12
νl 2 2 3 2 4 4 5 6 7
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We will compare the redundancy of the codes Cl with the codes C̃(d) and C̃ϕ(d)
of 4.22.

Proposition 5.26. Let ρ be a weight function. Let g be the number of gaps of
the corresponding semigroup. Then rϕ(d) ≤ r(d) ≤ d− 1 + g.

Proof. The inequality rϕ(d) ≤ r(d) follows from the inclusion Rϕ(d) ⊆ R(d).
If l ∈ N0 and l ≥ d − 1 + g, then νl ≥ l + 1 − g ≥ d, by Theorem 5.24. So

l + 1 6∈ R(d). Hence R(d) ⊆ {1, 2, . . . , d− 1 + g} and r(d) ≤ d− 1 + g. �

The following technical lemma is needed in order to say more in the two gener-
ator case.

Lemma 5.27. Suppose a and b are two positive integers which are relatively
prime and such that a > b. Let Λ be the semigroup generated by a and b. Let
ρl+1 = xb+ ya for some nonnegative integers x and y. If ρl+1 < (b− 1)a, then
νl = (x+ 1)(y+ 1) and there is at least one gap in the interval [ρl+1 − νl, ρl+1].

Proof. Let m = ρl+1. Let ν = νl. Then ν is the number of pairs (m1,m2) ∈ Λ2

such that m1 +m2 = m.
We will use several times the fact that if m′ ∈ Λ and m′ < (b − 1)a, then

y < b, so there exist uniquely determined nonnegative integers x and y such
that m = xb+ ya, since gcd(a, b) = 1.

(1) Let (i, j) ∈ N2
0 such that 0 ≤ i ≤ x and 0 ≤ j ≤ y. Define m1(i, j) =

ib + ja and m2(i, j) = (x − i)b + (y − j)a. Then m1(i, j), m2(i, j) ∈ Λ and
m1(i, j) + m2(i, j) = m. The m1(i, j) are mutually distinct. Hence ν ≥ (x +
1)(y + 1).

If (m1,m2) is a pair such that m = m1 + m2 and m1,m2 ∈ Λ, then m1 =
x1b+ y1a and m2 = x2b+ y2a for some nonnegative integers x1, y1, x2 and y2.
So xb + ya = (x1 + x2)b + (y1 + y2)a. Hence x1 + x2 = x and y1 + y2 = y.
Therefore mt = mt(xt, yt) for t = 1, 2. So ν = (x+ 1)(y + 1).

(2) Let m− i be an element of the interval [m− ν,m]. Write

m− i = xib+ yia, 0 ≤ yi < b for i = 0, 1, . . . , ν.

If we can show that one of the xi’s is negative, then there is at least one gap in
[m− ν,m]. Consider two cases:

(2.i) ν < b. Here the yi, i = 0, . . . , ν are ν + 1 distinct nonnegative integers.
So there is at least one yi ≥ ν = (x + 1)(y + 1). For the corresponding xi we
have

xib = m− i− yia ≤ xb+ ya− i− (x+ 1)(y + 1)a ≤ x(b− a) < 0,

since b < a.
(2.ii) ν ≥ b. Then m− i takes on all possible values modulo b. Furthermore

m − i ≡ ayi (mod b) and gcd(a, b) = 1. Hence yi takes on all possible values
modulo b. So we find yi = b− 1 for some i = 0, 1, . . . , ν. For the corresponding
xi we have

xib = m− i− yia ≤ m− (b− 1)a < 0,

since it is assumed that m < (b− 1)a.
In both cases it is shown that one of the xi’s is negative. �

54



Proposition 5.28. Let the semigroup of the weight function be generated by
a and b such that b < a and gcd(a, b) = 1. Let (ρi) be an enumeration of the
semigroup in increasing order. Then

d(l) = j + 1 if l < g and (j − 1)a < ρl+1 ≤ ja.

Proof. The semigroup is symmetric, so c = 2g, and c = (a − 1)(b − 1) by
Proposition 5.11. Let l < g. Then l < c − g, so ρl+1 < c − 1 by Lemma 5.6.
Hence ρl < (b− 1)a. Write ρl+1 = xb+ ya for some nonnegative integers x and
y. Then νl = (x+ 1)(y + 1) by Lemma 5.27. If moreover ρl+1 = ja, then x = 0
and y = j, so νl = j + 1. Now assume (j − 1)a < ρl+1 = xb + ya < ja. So
0 ≤ y ≤ j − 1. Then νl = (x+ 1)(y + 1) is strictly larger than(

(j − 1− y)a

b
+ 1

)
(y + 1) ≥ (j − 1− y) + (y + 1) = j.

Hence d(l) = min{ νm | m ≥ l } = j + 1. �

Example 5.29. This is a continuation of Example 4.17 with the Hermitian
curve over F16. We have seen that the sequence νl is given by:

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
νl 2 2 3 4 3 4 6 6 4 5 8 9 8 9 10 12 12

and νl = l − 5 for all l ≥ 17. Notice that the νl are nongaps for all l ≥ 6.
Furthermore if 6 ≤ l ≤ 9, then νl ≥ 4 and 4 is the smallest nongap which is at
least l − 5.

Theorem 5.30. Let the semigroup of the weight function be generated by two
elements. If l ≥ g, then

d(l) = min{ ρt | ρt ≥ l + 1− g }.

Proof. The semigroup Λ is symmetric by Proposition 5.11. So c = 2g. Let
l ≥ g = c− g. Then ρl+1 = l + g by Lemma 5.6.

(1) If l > 3g − 2 = 2c − g − 2, then d(l) = l + 1 − g by Theorem 5.24.
Furthermore l−2g+2 > g = c−g. So ρl−2g+2 = l+1−g. Hence d(l) = ρl−2g+2.

(2) Suppose g ≤ l ≤ 3g − 2. Then ρl+1 = l + g. So 2g ≤ ρl+1 ≤ 4g − 2. We
may write ρl+1 = 2g−1 +κ, 1 ≤ κ ≤ 2g−1. So κ = l+ 1− g. The number νl is
equal to l+ 1− g+ #D(l), by Theorem 5.24. For the estimation of the number
of elements of D(l) we will consider two cases:

(2.i) κ is a nongap. Let (x, y) ∈ D(l). Then x and y are gaps and ρl+1 =
x+ y. So (2g − 1− x) + κ = y. The semigroup is symmetric, so 2g − 1− x is a
nongap. The sum of two nongaps is of course again a nongap. Hence y cannot
be a gap and D(l) is empty. Therefore νl = l + 1 − g = κ is a nongap ρt for
some t.

(2.ii) κ is a gap. Now there is a t such that ρt−1 < κ < ρt. There exists
an L ≥ l such that ρL+1 = 2g − 1 + ρt. By the argument in (2.i) we have that
νL = L+ 1− g = ρt. We will show that νl ≥ ρt.

The function #D(l) is defined by a condition on gaps. But for symmetric
semigroups such a condition can be translated into a condition on nongaps.
Define x′ = 2g − 1− x if x ∈ N0, 0 ≤ x ≤ 2g − 1. Then

x, y ∈ (N0 \ Λ), x+ y = ρl+1 if and only if x′, y′ ∈ Λ, x′ + y′ = 2g − 1− κ.
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So 2g − 1− κ is a nongap ρu+1 and the number of elements of D(l) is equal
to νu. Hence there is a gap in the interval [ρu+1 − νu, ρu+1] by Lemma 5.27.
Recall that ρt−1 < κ < ρt. So the numbers κ, κ + 1, . . . , ρt − 2, ρt − 1 are all
gaps. So

2g − ρt, 2g + 1− ρt, . . . , 2g − 2− κ, 2g − 1− κ = ρu+1

are all nongaps. So ρu+1 − νu < 2g − ρt. But ρu+1 = 2g − 1− κ by definition.
Therefore ρt − κ ≤ νu = #D(l). Hence νl = l + 1 − g + #D(l) ≥ ρt, since
κ = l + 1 − g. This implies d(l) = ρt is the smallest nongap which is at least
l + 1− g. �

5.3 Hermitian codes

In this section the theory will be applied to the Hermitian codes. This is a
continuation of Example 5.29 on the Hermitian curve. The length of these
codes is n = r3, and the number of gaps is g = (r2 − r)/2.

The set { xαyβ | 0 ≤ β < r } is used as a basis for the ring R and ρ(xαyβ) =
αr + β(r + 1). If α ≥ q, then evP(xαyβ) = evP(xα−qyβ). So the set

{ evP(xαyβ) | 0 ≤ α < q, 0 ≤ β < r }

generates Fnq and has qr = n elements. So it is a basis.
The nongaps are of the form ρl = αr + β(r + 1) = (α + β)r + β, where α

and β are nonnegative integers such that β < r. If 1 ≤ α < r, then the integers
of the interval [(α− 1)(r + 1) + 1, αr − 1] are gaps. Furthermore every gap lies
in such an interval.

In order to use the improved bound dP(l) those l with Cl = Cl+1 must be
determined. If l ≤ n− g, then ρl < n, so El has dimension l, by Theorem 5.18,
and Cl has dimension n − l. So Cl 6= Cl+1 and d(l) = dP(l) for all l < n − g.
If l ≥ n − g, then l > 3g − 2, so νl is strictly increasing. Therefore, although
dP(l) > d(l) for some values of l, there always exists an m > l such that Cl = Cm
and dP(l) = d(m).

Five cases will be distinguised to determine the minimum distance of Cl.
(1) If l > 3g − 2, then Theorem 5.24 gives d(l) = l + 1− g.
(2) If g ≤ l ≤ 3g − 2, then Theorem 5.30 can be used. Write l = 3g − 1 −

(x − 1)r − y with 0 ≤ y < r and 1 ≤ x < r. The smallest nongap ρt has to be
determined such that ρt ≥ l + 1 − g = (r − x − 1)r + (r − y). If x < y, then
(r − x − 1)r + (r − y) = (i + j)r + j with i = y − x − 1 and j = r − y. So
the minimum is (r − x)r − y and therefore d(l) = (r − x)r − y. If x ≥ y, then
(r− x− 1)r+ (r− y) is in the interval [(i− 1)(r+ 1) + 1, ir− 1] with i = r− x.
So d(l) = (r − x)r in this case.

(3) Suppose l < g. Write l = u(u + 1)/2 + (v + 1) with 0 ≤ v ≤ u < r − 1.
Then ρl = ur + v. This gives ρl+1 = ur + v + 1 if v < u and ρl+1 = (u + 1)r
if v = u. Therefore (u − 1)(r + 1) < ρl+1 < u(r + 1) in the first case and
u(r + 1) < ρl+1 < (u + 1)(r + 1) in the second case. Proposition 5.28 implies
that d(l) is equal to u+ 1 and u+ 2, respectively.

(4) Suppose l ≥ n − g. Write l = n − g + αr + β with 0 ≤ β < r.
Then ρl+1 = l + g = n + αr + β = r(q + (α − β) + β) + β which means
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that fl+1 = xq+(α−β)yβ . If β ≤ α, then the exponent of x is at least q, so
evP(fl+1) ∈ El and Cl = Cl+1. If α < β, then evP(fl+1) is an element of the
chosen basis, so Cl 6= Cl+1. Therefore

dP(l) = min{ n+ γr + δ + 1− g | 0 ≤ γ < δ < r, l ≤ n+ γr + δ }.

This minimum is n+ αr+ β + 1− 2g if α < β, and n+ αr+ (α+ 1) + 1− 2g if
β ≤ α.

(5) If l > n+ g, then Cl = 0, since xq−1yr−1 is the function which evaluates
to the last element of the basis for Fnq , and (q−1)r+(r−1)(r+1) = (n+g)−1+g.
So this function is the (n+ g)-th element of the basis of R.

For the Hermitian codes, the above lower bounds give in fact the true mini-
mum distance. We refer to the literature in the Notes for this fact. One needs a
result similar to the RM codes, stating that the codes Cl are also of the form El⊥ .

The values of the Hermitian codes are summarized in the following table.

l d(Cl)

l =
(
u+1
2

)
+ v + 1, v ≤ u < r − 1

1 ≤ l < g u+ 1 if v < u
u+ 2 if v = u

l = 3g − 1− (x− 1)r − y, y < r
g ≤ l ≤ 3g − 2 (r − x)r − y if x < y

(r − x)r if x ≥ y
3g − 2 < l < n− g l + 1− g

l = n− g + αr + β, β < r
n− g ≤ l ≤ n+ g n+ αr + β + 1− 2g if α < β

n+ αr + α+ 2− 2g if α ≥ β

5.4 Telescopic semigroups

Definition 5.31. Let (a1, . . . , ak) be a sequence of positive integers with great-
est common divisor 1. Define

di = gcd(a1, . . . , ai) and Ai = {a1/di, . . . , ai/di}

for i = 1, . . . , k. Let d0 = 0. Let Λi be the semigroup generated by Ai. If
ai/di ∈ Λi−1 for i = 2, . . . , k, then the sequence (a1, . . . , ak) is called telescopic.
A semigroup is called telescopic if it is generated by a telescopic sequence.

Remark 5.32. If (a1, . . . , ak) is telescopic, then gcd(a1/di, . . . , ai/di) = 1 and
the sequence (a1/di, . . . , ai/di) is telescopic for i = 2, . . . , k.

If di = 1 for a telescopic sequence (a1, . . . , ak), then (a1, . . . , ai) is also
telescopic and generates the same semigroup.

Example 5.33. Semigroups generated by two relatively prime elements are
telescopic. The sequence (4, 6, 5) is telescopic, since d2 = 2 and 5 is an element of
the semigroup generated by 4/2 and 6/2. The sequence (4, 5, 6) is not telescopic.
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Lemma 5.34. If (a1, . . . , ak) is telescopic and m ∈ Λk, then there exist uniquely
determined nonnegative integers x1, x2, . . . , xk such that 0 ≤ xi < di−1/di for
i = 2, . . . , k and

m =

k∑
i=1

xiai.

This representation is called the normal representation of m by (a1, . . . , ak).

Proof. The proof is by induction on the number k of entries in the sequence. For
k = 1 there is nothing to prove. For k = 2 the Lemma says: if gcd(a1, a2) = 1,
then every m ∈ Λ2 can be written uniquely as m = x2a2 + x1a1, 0 ≤ x2 < a1.
In fact this property was already used in the proof of Proposition 5.11. Now
suppose the lemma is proven for all telescopic sequences with k − 1 entries and
look at m ∈ Λk. There exist xk ∈ N0 and u ∈ Λk−1 such that m = xkak+dk−1u,
since Λk = 〈ak〉 + dk−1Λk−1. Write xk = wdk−1 + v, 0 ≤ v < dk−1 and get
m = vak + dk−1(u + wak). Now ak ∈ Λk−1, and therefore u + wak ∈ Λk−1.
Remember that also (a1/dk−1, . . . , ak−1/dk−1) is telescopic by Remark 5.32.
Let d′i = gcd(a1/dk−1, . . . , ai/dk−1) for i = 1, . . . , k − 1. Then there exist
0 ≤ xi < d′i−1/d

′
i for i = 2, . . . , k − 1, such that

u+ wak =

k−1∑
i=1

xi
ai
dk−1

is a normal representation by (a1/dk−1, . . . , ak−1/dk−1). Therefore m = vak +∑k−1
i=1 xiai is a normal representation by (a1, . . . , ak), since d′i−1/d

′
i = di−1/di.

For the uniqueness assume m has two normal representations
∑k
i=1 xiai =

m =
∑k
i=1 yiai, where 0 ≤ xi, yi < di−1/di for i = 2, . . . , k. Let l be the

largest index for which xi 6= yi. Then
∑l
i=1 xiai =

∑l
i=1 yiai and (xl −

yl)al =
∑l−1
i=1(yi − xi)ai. Hence the right-hand side is a multiple of dl−1 and

gcd(al/dl, dl−1/dl) = 1, so xl − yl is a nonzero multiple of dl−1/dl which gives
a contradiction. �

Proposition 5.35. Let Λk be the semigroup generated by the telescopic sequence
(a1, . . . , ak). Then

c(Λk)− 1 = dk−1(c(Λk−1)− 1) + (dk−1 − 1)ak =

k∑
i=1

(di−1/di − 1)ai,

g(Λk) = dk−1g(Λk−1) + (dk−1 − 1)(ak − 1)/2 = c(Λk)/2.

So telescopic semigroups are symmetric. Here we put d0 = 0.

Proof. If k = 1, then Λ1 = N0. So the conductor is 0 and the number of gaps is
0. This is in accordance with the formulas. For k = 2 we get Proposition 5.11.

Assume k > 1. Since gcd(ak, dk−1) = 1 every integerm ∈ N0 can be uniquely
represented as m = vak+dk−1w, 0 ≤ v < dk−1. Here w may be negative. So by
Lemma 5.34 the gaps of Λk are exactly the numbers m, where the corresponding
w is either a gap of Λk−1 or w is negative. Hence the first equation, involving
the largest gap c(Λk)− 1 in terms of the conductor c(Λk), follows immediately,
and for the second, we proceed by induction.

58



For every value of 0 ≤ v < dk−1 there are g(Λk−1) gaps of Λk coming from
those of Λk−1. In addition we get the gaps of the form m = vak +dk−1w, where
w < 0. But these are exactly the gaps of the semigroup < ak, dk−1 >, the
number of which we know to be (dk−1 − 1)(ak − 1)/2, by Proposition 5.11. So
the total number of gaps is equal to dk−1g(Λk−1) + (dk−1 − 1)(ak − 1)/2. The
remaining result on the symmetry now follows by induction. �

Example 5.36. For the ideal considered in Example 3.22 the semigroup of
nongaps is generated by the numbers a1a2 · · · ai−1bi · · · bm−1 with 1 ≤ i ≤ m,
where the empty product is equal to 1 by definition. The greatest common
divisor of the first i elements of these numbers is equal to di = bi · · · bm−1, since
gcd(ai, bj) = 1 for all i ≤ j. So Λi is generated by the numbers

a1a2 · · · aj−1bj · · · bi−1, 1 ≤ j ≤ i,

and the semigroup is telescopic. Proposition 5.35 implies that

2g − 1 = c− 1 =

m∑
i=2

(bi−1 − 1)a1 · · · ai−1bi · · · bm−1 − b1b2 · · · bm−1,

where g = g(Λm) and c = c(Λm).

5.5 Notes

The connection between properties of semigroups and the minimum distance of
algebraic geometry codes was made in [32, 33] and [53].

The history of the notion of telescopic semigroups and generalizations of
Theorems 5.30 and 5.28 for these semigroups can be found in [53]. See also [4].

Hermitian codes have been studied extensively by many authors; their true
minimum distance was determined in [57].

The formulation of Theorem 5.30 is from [49], which is an extension of results
obtained in [69].

The formula for the genus in Example 5.36 can be found in [25] and a special
case in [77].

6 Decoding algebraic geometry codes

In this section we treat two decoding algorithms for the codes Cl presented in
Sections 4 and 5. The basic algorithm corrects up to b(dG(l)− 1− g)/2c errors
when ρ is a weight function with g gaps. An extended algorithm using majority
voting on unknown syndromes enables one to decode up to half the order bound
if ρ is an arbitrary order function.

6.1 The decoding problem

Let C be a linear code in Fnq of minimum distance d. If c is a transmitted word
and c + e is the received word, then we call e the error vector and {i|ei 6= 0}
the set of error positions. The ei’s are called the error values and wt(e) is
the number of errors of the received word. If y is the received word and the
distance of y to the code C is t′, then there exists a codeword c′ and an error
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vector e′ such that y = c′ + e′ and wt(e′) = t′. If the number of errors is
at most (d − 1)/2, then we are sure that c = c′ and e = e′. In other words,
the nearest codeword to y is unique when y has distance at most (d−1)/2 to C.

Define C∗ = C ∪ {?}. A map

D : Fnq −→ C∗

is called a decoder for the code C if D(c) = c, for all c ∈ C. We allow the
decoder to give as outcome ”?”, when it fails to find a codeword. A maximum
likelihood decoder for a code C is a decoder D such that D(y) is a closest code-
word to y for all y. A decoder D for a code C is called a bounded distance
decoder that corrects t errors if D(y) is a nearest codeword for all y ∈ Fnq such
that d(y, C) ≤ t. A decoder D for a code C of minimum distance d decodes up
to half the minimum distance if D(y) is the nearest codeword for all y ∈ Fnq
such that d(y, C) ≤ (d− 1)/2.

Concerning statements about the the number of additions and multiplications
we use the ”big O” notation. We say f(n) = O(g(n)) for n→∞ if and only if
there exists a positive constant c and an integer n0 such that |f(n)| ≤ c|g(n)| for
all n ≥ n0. Of course, for many classes of codes, ”n→∞” makes no sense. An
algorithm has polynomial complexity if the number of operations is a polynomial
in the length of the input n. Concerning decoding algorithms, the received word
is the input, so the length of the code is a measure of the input. The known de-
coding algorithms which have polynomial complexity decode only up to a certain
bound, for instance up to half the (designed) minimum distance. All decoding
algorithms for algebraic geometry codes, that we will treat, decode up to half
some designed minimum distance and have complexity O(n3) or less for n→∞.

Errors can be corrected by solving a system of linear equations involving syn-
dromes, see 4.6, if we have complete information about the error positions, in
other words if we have erasures only.

Proposition 6.1. Let C be a linear code in Fnq with parity check matrix H.
Suppose we have a received word y with error vector e and know a set J with at
most d(C)− 1 elements that contains the set of error positions. Then the error
vector e is the unique solution of the following linear equations:

xHT = yHT and xj = 0 for all j 6∈ J.

Proof. It is clear that the error vector is a solution. If x is another solution,
then (x − e)HT = 0. Therefore x − e is an element of C, and moreover it is
supported at J . So its weight is at most d(C)−1. So it must be zero. Therefore
x = e. �

Thus we have shown that we can reduce error decoding to the problem of find-
ing the error positions. If we want to decode all received words with t errors,
then there are

(
n
t

)
possible t-sets of error positions one has to consider. This

number grows exponentially in n when t/n tends to a nonzero real number.
From Proposition 6.1 it is enough to find an (n, d− 1, t) covering system. That
is to say a collection J of subsets J of {1, . . . , n}, such that all J ∈ J have
d − 1 elements and every subset of {1, . . . , n} of size t is contained in at least
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one J ∈ J . The size of such a covering system is considerably smaller than the
number of all possible t-sets, but is at least

(
n
t

)
/
(
d−1
t

)
. This number also grows

exponentially in n.

6.2 The basic algorithm

Suppose that we are in the situation of Section 4 with an order function ρ
on an affine Fq-algebra R and a surjective algebra morphism ϕ : R → Fnq .
Let {fi | i ∈ N} be a basis of R over Fq such that ρ(fi) < ρ(fi+1) for all
i ∈ N. Let Ll be the vector space with f1, . . . , fl as a basis. We defined l(i, j)
as the smallest positive integer l such that fifj ∈ Ll. Let hi = ϕ(fi). Let
Cl = {c ∈ Fnq | c · hi = 0 for all i ≤ l} as before. So hi ∗ hj is a parity
check for Cl if l(i, j) ≤ l. The syndromes were defined 4.6 by si(y) = y · hi
and sij(y) = y · (hi ∗ hj). Define the i × j submatrix S(i, j) of the matrix of
syndromes S(y), as defined in 4.6, by

S(i, j) = (si′,j′(y) | 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j).

Suppose that we want to correct the errors of words with respect to the code
Cl. If y is a received word and y = c + e with c ∈ Cl, then si,j(y) = si,j(e) for
all i, j such that l(i, j) ≤ l.

Definition 6.2. Assume that l(i, j) ≤ l. Let y ∈ Fnq . Define the space

Kij(y) = { f ∈ Lj | y · ϕ(fg) = 0 for all g ∈ Li}.

Then Kij(y) is a subspace of Lj and it is the kernel of the linear map Lj → Li
with matrix S(i, j) with respect to the bases f1, . . . , fj and f1, . . . , fi of Lj and
Li, respectively. Hence Kij(y) = Kij(e).

Definition 6.3. Let J be a subset of {1, . . . n}. Define the subspace

Lj(J) = { f ∈ Lj | ϕ(f)k = 0 for all k ∈ J },

where ϕ(f)k denotes the k-th coordinate of ϕ(f).

Lemma 6.4. If I = supp(e) = {k ∈ {1, . . . , n} | ek 6= 0}, then Lj(I) ⊆ Kij(y).
If moreover d(Ci) > wt(e), then Lj(I) = Kij(y).

Proof. Let f ∈ Lj(I). Then ϕ(f)k = 0 for all k such that ek 6= 0, and therefore

e · (ϕ(f) ∗ ϕ(g)) =
∑
ek 6=0

ek(ϕ(f) ∗ ϕ(g))k = 0

for all g ∈ Li. So f ∈ Kij(e) = Kij(y).
Suppose moreover that d(Ci) > wt(e). Let f ∈ Kij(y) and let a = ϕ(f),

then f ∈ Kij(e) and hence

(e ∗ a) · ϕ(g) = e · (ϕ(f) ∗ ϕ(g)) = 0

for all g ∈ Li, giving e ∗ a ∈ Ci. Now wt(e ∗ a) ≤ wt(e) < d(Ci) and therefore
e ∗ a = 0 meaning that ekϕ(f)k = 0 for all k ∈ {1, 2, . . . , n}. Hence ϕ(f)k = 0
for all k ∈ I = supp(e) and therefore f ∈ Lj(I). �
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Let I be the set of error positions supp(e). The set of zero coordinates of ϕ(f),
where f ∈ Lj(I) contains the set of error positions. For that reason the elements
of Lj(I) are called error-locator functions. But the space Lj(I) is not known.
The space Kij(y) can be computed after receiving the word y. The equality
Lj(I) = Kij(y) implies that all elements of Kij(y) are error-locator functions.

More generally, every element f of R satisfying ϕ(f)k = 0 for all k ∈ supp(e) is
called an error-locator and the error-locators obviously constitute an ideal L of
R. If wt(e) = t then the dimension of R/L as an Fq-vector space is t.

Suppose l(i, j) ≤ l. The basic algorithm A(i, j) for the code C = Cl com-
putes the kernel Kij(y) for every received word y. If this kernel is nonzero, it
takes a nonzero element f and determines the set J of zero positions of f . If
d(Ci) > wt(e), where e is the error-vector, then J contains the support of e by
Lemma 6.4. If the set J is not too large, Proposition 6.1 can be applied to get
the error values.

Thus we have a basic algorithm for every pair (i, j) such that l(i, j) ≤ l. If j is
too small with respect to the number of errors, then Ki,j(y) = 0. If j is large,
then i becomes small, which results in a large code Ci, and it will be difficult
to meet the requirement d(Ci) > wt(e).

Proposition 6.5. Let ρ be a weight function with g gaps. Then the basic
algorithm corrects b(dG(l) − 1 − g)/2c errors for the code Cl with complexity
O(n3).

Proof. We may assume t = b(dG(l)−1−g)/2c ≥ 1, so l ≥ 2g+2 and ρl = l+g−1.
Assume for simplicity that l is even. The Goppa designed minimum distance
dG(l) = l + 1− g. So t = l/2− g. Let j = t+ 1 and let i = l/2. Then ρj ≤ l/2
and ρi = l/2 + g − 1. So ρi + ρj ≤ l + g − 1 ≤ ρl. So l(i, j) ≤ l and the basic
algorithm A(i, j) can be applied to decode Cl.

If a received word y has at most t errors, then the error vector e with
support I has size at most t and Lj(I) is not zero, since I imposes at most t
linear conditions on Lj and the dimension of Lj is j = t+1. Let f be a nonzero
element of Kij(y).

Theorem 5.24 implies d(Ci) ≥ i + 1− g which is strictly greater than t. So
Kij(y) = Lj(I) by Lemma 6.4. So f is an error-locator function.

The function f has at most ρj zeros,by Lemma 5.17 since ρ(f) ≤ ρj . Let
J = {k | f(Pk) = 0}. Then J contains I, the support of e, by Lemma 6.4. The
number of elements of J is at most ρj = l/2 < l + 1 − g, since l > 2g. Thus
#J < d(Cl) and Proposition 6.1 gives the error values.

The complexity is that of solving systems of linear equations. �

Example 6.6. This is a continuation of Example 4.17 on the Hermitian curve.
Let R = F16[X,Y ]/(X5 + Y 4 + Y ), and ρ(x) = 4, ρ(y) = 5. Let us consider the
64 points on the Hermitian curve X5 + Y 4 + Y = 0 over F16. As a basis for R
we use the functions xαyβ , 0 ≤ α < 5, 0 ≤ β and then ρ(xαyβ) = 4α+ 5β.

Let ϕ be the evaluation map of these 64 points and let us consider the code
C26. This is a [64, 38, 21] code. So the basic algorithm can correct (21−1−6)/2 =
7 errors. Let ω be a primitive element of F16 satisfying the equation ω4+ω+1 =
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0. We consider a seven-error pattern where the errors are located at the points
P1 = (1, ω), P2 = (ω8, ω3), P3 = (ω, ω7), P4 = (ω2, ω3), P5 = (ω11, ω3),
P6 = (ω5, ω3), P7 = (ω14, ω3) and with corresponding error values e1 = ω6,
e2 = ω8, e3 = ω7, e4 = ω, e5 = 1, e6 = ω6, and e7 = ω10.

l 1 2 3 4 5 6 7 8 9 10 11 12 13
fl 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2

ρl 0 4 5 8 9 10 12 13 14 15 16 17 18
sl ω9 ω14 0 ω5 ω9 ω9 ω7 ω14 ω11 ω6 ω2 ω12 0

l 14 15 16 17 18 19 20 21 22 23 24 25 26
fl xy3 y4 x4y x3y2 x2y3 xy4 y5 x4y2 x3y3 x2y4 xy5 y6 x4y3

ρl 19 20 21 22 23 24 25 26 27 28 29 30 31
sl ω4 ω5 ω5 ω12 ω7 ω7 ω6 ω6 ω3 ω6 ω4 ω11 ω10

In this case t = 7, l = 26 and g = 6 so we will use the basic algorithm A(13, 8).
An element of K13,8 has the form

λ1 + λ2x+ λ3y + λ4x
2 + λ5xy + λ6y

2 + λ7x
3 + λ8x

2y

where the coefficients λi satisfy the equation

ω9 ω14 0 ω5 ω9 ω9 ω7 ω14

ω14 ω5 ω9 ω7 ω14 ω11 ω2 ω12

0 ω9 ω9 ω14 ω11 ω6 ω12 0
ω5 ω7 ω14 ω2 ω12 0 ω5 ω5

ω9 ω14 ω11 ω12 0 ω4 ω5 ω12

ω9 ω11 ω6 0 ω4 ω5 ω12 ω7

ω7 ω2 ω12 ω5 ω5 ω12 1 ω5

ω14 ω12 0 ω5 ω12 ω7 ω5 ω6

ω11 0 ω4 ω12 ω7 ω7 ω6 ω3

ω6 ω4 ω5 ω7 ω7 ω6 ω3 ω6

ω2 ω5 ω5 1 ω5 ω6 ω8 ω13

ω12 ω5 ω12 ω5 ω6 ω3 ω13 ω
0 ω12 ω7 ω6 ω3 ω6 ω ω10





λ1
λ2
λ3
λ4
λ5
λ6
λ7
λ8


= 0

Here we have used that S(x5) = S(y4 +y) = ω5 +0 = ω5 and the corresponding
expressions for S(x6), S(x5y), S(x7), S(x6y), and S(x5y2).

It can be seen that (λ1, λ2, . . . , λ8) = (ω11, ω13, ω13, 0, ω10, 1, 0, 0) is a solu-
tion so ω11 + ω13x+ ω13y + ω10xy + ω2 ∈ K13,8. The zeros of this polynomial
are P1, . . . , P7 and (ω11, ω14); (ω14, ω12); (ω4, ω6).

Remark 6.7. The basic algorithm can be modified by considering all basic
algorithms A(i, j) such that l(i, j) ≤ l and taking the smallest j such that
Kij(y) is not zero. This results in the modified algorithm which can correct
b(dG(l)− 1)/2− g/4c errors for codes from plane curves.

6.3 Majority voting of unknown syndromes

In this section we examine codes Cl where ρ is an order function but not neces-
sarily a weight function.
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Let y be a received word with error vector e with respect to the code Cl. If we
knew the syndromes si = si(e) for all i ≤ N with N as in Section 4.2, then we
could solve the system of linear equations si(x) = si for all i, which would have
the unique solution x = e. The syndromes si(y) can be computed for all i, and
si(y) = si(e) for all i ≤ l. The syndrome si(e) is called known with respect to
Cl if i ≤ l, and unknown if i > l. It will be shown how the unknown syndrome
sl+1 can be obtained from the known ones by a majority vote, if the number of
errors is at most b(νl − 1)/2c.

The matrix of syndromes (sij(e) | 1 ≤ i, j ≤ N) with respect to an error vector
e was defined by:

sij(e) = e · ϕ(fifj)

in Definition 4.6. If y is a received word with error vector e with respect to
the code Cl and l(i, j) ≤ l, then fifj ∈ Ll, so sij(e) = sij(y). Thus sij(e)
is a known entry of the matrix of syndromes for all i, j such that l(i, j) ≤ l.
Abbreviate sij(e) and sl(e) by sij and sl, respectively.
The set Nl was defined by

Nl = {(i, j) ∈ N2 | l(i, j) = l + 1 }

in Definition 4.8. The entries of the matrix of syndromes with index (i, j) ∈ Nl
are the first unknown syndromes we encounter with respect to the code Cl.
As soon as we know one sij with (i, j) ∈ Nl, we know all the other si′j′ with
(i′, j′) ∈ Nl, since each one of the functions fifj , fi′fj′ or fl+1 is a generator of
the one dimensional vector space Ll+1 modulo Ll. In other words, there exist
µij , µijk ∈ Fq such that µij is not zero and

fifj = µijfl+1 +

l∑
k=1

µijkfk

for all i, j with l(i, j) = l + 1. Therefore

sij = µijsl+1 +

l∑
k=1

µijksk

and this relation is the same for all error vectors. Consider the matrix

S(i, j) = (si′j′(e) | 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j).

as was done in the previous section on the basic algorithm with the syndromes
sij(y) instead of sij(e). If l(i, j) = l + 1, then all entries of this matrix, except
sij , are known, since l(i′, j′) ≤ l if i′ ≤ i, j′ ≤ j and (i′, j′) 6= (i, j).

s1,1 . . . s1,j−1 s1,j
...

...
...

si−1,1 . . . si−1,j−1 si−1,j
si,1 . . . si,j−1 ?

 .

Remark 6.8. If l(i, j) = l, then S(i, j) is a matrix of the linear map from Lj to
Li which is used to compute the kernel Kij(y) in the basic algorithm A(i, j) for
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the code Cl. If f is a nonzero error-locator function in Lj and f =
∑j
j′=1 λj′fj′ ,

then the columns of the matrix S(i, j) are dependent:

j∑
j′=1

si′j′λj′ = 0 for all 1 ≤ i′ ≤ i.

Definition 6.9. If (i, j) ∈ Nl, that is to say l(i, j) = l + 1, and the three
matrices S(i − 1, j − 1), S(i − 1, j) and S(i, j − 1) have equal rank, then (i, j)
is called a candidate with respect to Cl. If (i, j) is a candidate, then there is
a unique value s′ij to assign to the unknown entry sij such that the matrices
S(i, j) and S(i−1, j−1) have equal rank. The element s′ij is called the predicted
or candidate value of the unknown syndrome sij . A candidate is called correct
or true when s′ij = sij and incorrect or false otherwise. Using the identities
between the syndromes, every (i, j) ∈ Nl gives a predicted value sl+1(i, j) of
sl+1 by

sl+1(i, j) =
s′ij −

∑l
k=1 µijksk

µij
.

Denote the number of true candidates by T and the number of false candidates
by F . An entry (i, j) is called a discrepancy if the three matrices S(i− 1, j− 1),
S(i−1, j) and S(i, j−1) have equal rank and the matrices S(i, j) and S(i−1, j−1)
do not have equal rank.

Remark 6.10. The discrepancies are the pivots if one applies Gaussian elim-
ination (without interchanging rows or columns) to the matrix of syndromes.
The total number of discrepancies is equal to the rank of the matrix of syn-
dromes. The rank of the matrix of syndromes is equal to the weight of e by
Lemma 4.7. Therefore the total number of discrepancies is equal to the number
of errors.

Let y be a received word with error vector e which has at most (νl − 1)/2
errors with respect to the code Cl. Denote the number of discrepancies in the
known part of the matrix by K. A candidate is incorrect if and only if it is a
discrepancy, so

K + F ≤ total number of discrepancies = wt(e).

If entry (i, j) is a known discrepancy, then all entries (i, j′) in the i-th row with
j′ > j, and all entries (i′, j) in the j-th column with i′ > i are noncandidates.
If (i, j) ∈ Nl is not a candidate, then there is at least one known discrepancy in
the same row or column. Thus the number of pairs (i, j) ∈ Nl which are non-
candidates is at most 2K. The number of pairs (i, j) ∈ Nl which are candidates
is equal to T + F . Therefore

νl = # candidates + # noncandidates ≤ (T + F ) + 2K.

Suppose that the number of errors is at most (νl − 1)/2. Then

wt(e) ≤ νl − 1

2
.

Combining the above inequalities gives

F < T.
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There may be no direct way to see whether a candidate is true or false. But a
predicted value s′ij of the syndrome si,j is assigned to every candidate, and this
gives a predicted value or vote sl+1(i, j) for sl+1 by Definition 6.9. All T true
candidates yield the same, correct, value for sl+1. Thus a proof of the following
proposition has been given.

Proposition 6.11. If the number of errors of a received word with respect to
the code Cl is at most (νl − 1)/2, then the majority of the candidates vote for
the correct value of sl+1.

Hence by recursion all the unknown syndromes with respect to the code Cl can
be obtained if the number of errors is at most b(dϕ(l)− 1)/2c, since νm ≥ dϕ(l)
if m ≥ l and Cm+1 6= Cm.

From this the error vector is obtained. The complexity of the algorithm is
at most the complexity of solving a system of n linear equations in n unknowns,
which is at most O(n3) for n → ∞. Thus the proof of the following theorem
has been given.

Theorem 6.12. bdϕ(l)− 1)/2c errors are corrected for the code Cl by majority
voting for unknown syndromes with complexity O(n3).

Remark 6.13. If ρ is a weight function with g gaps, then it is not necessary
to compute all unknown syndromes. One could stop as soon as one has the
unknown syndromes sl+1, . . . , sl+g and apply the basic algorithm to the code
Cl+g.

Example 6.14. The code C20 is a [64, 44, 15]-code. Let us consider the same
7-error pattern as in Example 6.6.

The syndrome matrix is (in powers of ω,with * indicating a zero)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 9 14 * 5 9 9 7 14 11 6 2 12 * 4 5 5 12 7 7 6 ×
2 14 5 9 7 14 11 2 12 * 4 5 5 12 7 7 5 ×
3 * 9 9 14 11 6 12 * 4 5 5 12 7 7 6 ×
4 5 7 14 2 12 * 5 5 12 7 0 5 ×
5 9 14 11 12 * 4 5 12 7 7 5 ×
6 9 11 6 * 4 5 12 7 7 6 ×
7 7 2 12 5 5 12 0 5 ×
8 14 12 * 5 12 7 5 ×
9 11 * 4 12 7 7 ×

10 6 4 5 7 7 6
11 2 5 5 0 5 ×
12 12 5 12 5 ×
13 * 12 7 ×
14 4 7 7
15 5 7 6
16 5 5 ×
17 12 ×
18 7
19 7
20 6
21 ×
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Here × denotes the syndrome corresponding to f21, which is the first unknown.

Using row operations one gets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 9 14 * 5 9 9 7 14 11 6 2 12 * 4 5 5 12 7 7 6 ×
2 * 8 9 6 * 10 7 6 1 13 13 1 12 0 6 0 ×
3 * * 13 1 11 1 9 7 10 12 12 7 5 14 10 ×
4 * * * 5 * * 10 8 * * 4 13 ×
5 * * * * * * 5 * * * 8 ×
6 * * * * * * * * * * ×
7 * * * * 5 0 * 10 ×
8 * * * * * * * ×
9 * * * * * * ×

10 * * * * * *
11 * * * * * ×
12 * * * * ×
13 * * * ×
14 * * *
15 * * *
16 * * ×
17 * ×
18 *
19 *
20 *
21 ×

From this it is seen that the positions (6, 11), (8, 8), and (11, 6) are candidate
positions and by keeping track of the performed row operations one sees also
that the candidate values in all three cases are ω6, so this is the correct syndrome
S(f21). In the same manner one finds S(f22) = ω3, S(f23) = ω6, S(f24) = ω4,
S(f25) = ω11, S(f26) = ω10, which corresponds to the results of Example 6.6
and we can now apply the basic algorithm for the code C26 as before.

An algorithm will be given in the next section that computes the unknown
syndromes from the known ones, and a basis for the error-locator functions.

6.4 Notes

The chapter on complexity issues [7] in coding theory is used as a reference on
this topic.

The basic and modified algorithm were presented for the class of codes on
plane curves by [50]. They are generalizations of the decoding algorithm for RS
codes of [5] and [79]. See also [10]. The general case was treated by [93]. It
was discovered independently by [56]. Another decoding algorithm is presented
in [80]. It is described and proved in [81]. The equivalence with the modified
algorithm was shown by [20, 21]. The error-correcting capacity of the modified
algorithm was determined in [17].

By applying several basic algorithms in parallel, one can decode up to half
the minimum distance as was proved in [72, 102]. Part of this approach is not
constructive.
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The idea of majority voting for unknown syndromes is from [24]. See also [18,
19] with the notion of majority coset decoding. Another explicit and constructive
algorithm which decodes up to half the designed minimum distance was given
by [22].

The Fundamental Iterative Algorithm [28] and the Modified Fundamental
Iterative Algorithm [24] are generalizations of Gaussian elimination for a partial
matrix and to get the unknown syndromes, respectively.

The survey paper [47] contains much more details and history of the decoding
algorithms of AG codes.

7 Fast decoding up to half the order bound

In this section we will present an efficient computational procedure which im-
plements the basic and the modified algorithms of Section 6.2 and an extension
which includes the majority voting presented in Section 6.3.

7.1 Determination of the unknown syndromes

We recall the definition of the codes Cl. Let R be an Fq-algebra with an order
function ρ. Let ϕ be a surjective morphism ϕ : R → Fnq of Fq-algebras. Fix a
basis (fi|i ∈ N) of R such that ρ(fi) < ρ(fi+1). The codes Cl were defined as

Cl = { c ∈ Fnq | c · ϕ(f) = 0 for all f with ρ(f) ≤ ρl }.

The number l(i, j) was defined as the unique l such that ρ(fifj) = ρl. This
can be used to define the binary operation ⊕ on N by i ⊕ j = l(i, j). The
operation is associative (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k), which follows from the fact
that multiplication in R is associative and properties of the order function.

We define a partial order ≤p on N by i ≤p j if there exists a k such that
i ⊕ k = j. This is indeed a partial order, since reflexivity and transitivity are
immediate and the antisymmetry follows from Lemma 3.9. The k above is
unique and we denote that by j 	 i.

Example 7.1. Let R = Fq[X1, . . . , Xm]. Let ≺D be the graded lexicographic
order and ρ the corresponding order function. Let fi = Xα and fj = Xβ be the
i-th and j-th monomial with respect to the order ≺D. Then i ≤p j if and only
if αt ≤ βt for all t, and fi⊕j = Xα+β . If j ≤p i, then fi	j = Xα−β .

Example 7.2. Let R be an Fq-algebra with a weight function ρ. Let g be
the number of gaps and c the conductor of the associated semigroup. Then
ρi = i+ g − 1 if i > c− g by Lemma 5.6. If i, j > c− g, then ρi⊕j = ρi + ρj =
i+ j + 2g − 2, so i⊕ j = i+ j + g − 1.

For an element y ∈ Fnq we define

Sy(f) = y · ϕ(f),

so in particular we have that Sy(fi) = si(y) and Sy(fifj) = sij(y) are the
syndromes of Definition 4.6. In the decoding situation, y = c + e is a received
word, c ∈ Cl and e is the error with respect to Cl. The syndromes Se(f) are
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equal to Sy(f) if ρ(f) ≤ ρl and can be calculated directly from y. The algorithm
takes as input the known syndromes in increasing order and gives as output the
syndromes Se(f) where ρ(f) > ρl provided that

wt(e) ≤ b(d(l)− 1)/2c.

In the following let e be fixed. We will omit the subscript e in the syndromes.
So S(f) = Se(f).

Definition 7.3. For f ∈ R with ρ(f) = ρj we define the span and fail of f by

span(f) = i if S(ffi) 6= 0 but S(ffk) = 0 for all k < i,

fail(f) = span(f)⊕ j.

This means that i is the largest number such that f is in the kernel Ki−1,j as
defined in 6.2. If span(f) = i and ρ(g) = ρk, then S(fg) = 0 if k < i, and
S(fg) 6= 0 if k = i. If fail(f) = k, then ρk is the smallest order for which some
multiple of f has that order and a nonzero syndrome.

Before presenting the algorithm, we will prove a series of lemmas which
eventually will prove that the algorithm works.

Lemma 7.4. Let f ∈ R, ρ(f) = ρk and span(f) = i. If g ∈ R and ρ(g) = ρi,
then span(g) ≤ k. More generally if j ≤p i and ρ(g) = ρi	j, then span(g) ≤ k⊕j
and fail(g) ≤ fail(f).

Proof. If ρ(g) = ρi	j , then ρ(gfj) = ρi. Since span(f) = i, S(f(gfj)) 6= 0. So
S(g(ffj)) 6= 0. Now ρ(ffj) = ρk⊕j . Therefore span(g) ≤ k ⊕ j. From this we
get

fail(g) ≤ k ⊕ j ⊕ (i	 j) = k ⊕ i = fail(f).

�

Definition 7.5. For l ∈ N let

Σl = {i | there exists an f ∈ R such that ρ(f) = ρi and fail(f) > l}

and let σl be the set of minimal elements of Σl with respect to ≤p. Let

∆l = {span(f) | f ∈ R, fail(f) ≤ l}

and let δl be the set of maximal elements of ∆l with respect to ≤p.

Lemma 7.6.
Σl ∩∆l = ∅

Proof. Let i ∈ ∆l and let f ∈ R have span(f) = i and fail(f) ≤ l. We want to
show that i /∈ Σl. But if g ∈ R with ρ(g) = ρi, then it follows from Lemma 7.4
that fail(g) ≤ fail(f) ≤ l and therefore i /∈ Σl. �

Lemma 7.6 shows that the sets Σl and ∆l are disjoint. We will prove that

Σl ∪∆l = N.
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This will be a result of an iterative procedure which also shows how the set
Infol = {σl, δl, Fl, Gl} can be computed from Infol−1, where Fl and Gl are
mappings

Fl : σl → R and Gl : δl → R,

such that Fl(i) = f is a choice of an element in f ∈ R with ρ(f) = ρi and
fail(f) > l, and Gl(i) = g is a choice of an element in g ∈ R with span(g) = i
and fail(g) ≤ l.

That this is indeed the case rests on the following lemmas.

Lemma 7.7. Let f ∈ R, ρ(f) = ρk and span(f) = i. Let g ∈ R with ρ(g) = j.
If j ≤p i, then span(fg) = i 	 j and fail(fg) = fail(f) = k ⊕ i. If j 6≤pi, then
span(fg) > m for all m such that j ⊕m < i.

Proof. Now S((fg)fl) = S(f(gfl)). So if ρ(gfl) < ρi we have S(f(gfl)) = 0 and
if ρ(gfl) = ρi we have S(f(gfl)) 6= 0. Therefore if j ≤p i, then span(fg) = i	 j
and fail(fg) = (i 	 j) ⊕ (k ⊕ j) = k ⊕ i = fail(f). Furthermore if j 6≤pi, then
span(fg) > m for all m such that j ⊕m < i. �

Lemma 7.8. Let j ≤p i.
(1) If j ∈ Σl, then i ∈ Σl.
(2) If i ∈ ∆l, then j ∈ ∆l.

Proof. (1) Let j ∈ Σl. Then there exists an f ∈ R such that ρ(f) = ρj and
fail(f) > l. If j ≤p i, then ρ(ffi	j) = ρi and fail(ffi	j) > l. So i ∈ Σl.

The proof of (2) is similar. �

So (Σl|l ∈ N) is a sequence of subsets of N which is decreasing with respect to
inclusion, and σl is the set of minimal elements of Σl with respect to ≤p. So

Σl = {i ∈ N| there exists a j ∈ σl such that j ≤p i}.

Similarly, (∆l|l ∈ N) is an increasing sequence of subsets of N and δl is the set
of maximal elements of ∆l. So

∆l = {j ∈ N| there exists an i ∈ δl such that j ≤p i}.

Example 7.9. Below a picture is given for the graded lexicographic order ≺
on the monomials in two variables. Here (α, β) ∈ N2

0 is mapped to i ∈ N, where
XαY β is the i-th monomial with respect to ≺. In this way the subsets ∆l and
Σl of N can be identified with subsets of N2

0.

•

•

•

◦

◦

◦

◦

∆l

Σl
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The bullets • denote the positions of the elements of δl, which are the maximal
elements of ∆l. The circles ◦ denote the positions of the elements of σl, which
are the minimal elements of Σl.

Lemma 7.10. Let f ∈ R, ρ(f) = ρk and span(f) = i. If ρ(g) = ρj and j 6≤pi,
then ρ(fg) = ρk⊕j and fail(fg) > k ⊕ i.

Proof. That ρ(fg) = ρk⊕j follows from the definition of ⊕. Let m = span(fg).
If fail(fg) ≤ k ⊕ i, then m ⊕ k ⊕ j ≤ k ⊕ i. So m ⊕ j ≤ i. But j 6≤pi. Hence
j ⊕m < i. Therefore span(fg) > m by Lemma 7.7, which is a contradiction. �

Lemma 7.11. Let f, f ′ ∈ R, ρ(f) = ρk, ρ(f ′) = ρk′ , span(f) = l and
span(f ′) = l′. Let g, g′ ∈ R, ρ(g) = ρi and ρ(g′) = ρi′ . Suppose k ⊕ l > k′ ⊕ l′.
If i ≤p l, i′ ≤p l′ and l 	 i = l′ 	 i′, then there exists a µ ∈ F∗q such that
h = fg + µf ′g′ satisfies ρ(h) = ρk⊕i, span(h) > l 	 i and fail(h) > k ⊕ l.

Proof. We have ρ(fg) = ρk⊕i and k⊕ i = k⊕ l	 l′⊕ i′ > k′⊕ l′	 l′⊕ i′ = k′⊕ i′.
Furthermore ρk′⊕i′ = ρ(µf ′g′), so ρ(h) = ρk⊕i for all µ ∈ F∗q .

Let h′ ∈ R have ρ(h′) = ρl	i = ρl′	i′ and let λ = S(fgh′) and λ′ =
S(f ′g′h′). Here both λ and λ′ are nonzero since span(f) = l = ρ(gh′) and
span(f ′) = l′ = ρ(g′h′). Letting µ = −λ/λ′ gives the result. �

We describe an algorithm to obtain Infol from Infol−1 and show by induction
that Σl ∪∆l = N. As initial step we let δ0 = ∅, σ0 = {1}, F0(1) = 1 and G0 = ∅
and we put ρ0 = −∞. Now suppose we have proved the statement up to l − 1.
We will prove it for l.

Definition 7.12. Define

δ′l = {span(f) | f ∈ Im(Fl−1) and fail(f) = l}.

∆′l = ∆l−1 ∪ {i	 j | i ∈ δ′l, j ≤p i}.

Let σ′l be the set of minimal elements of N \∆′l with respect to ≤p.

Lemma 7.13.
∆′l ⊆ ∆l.

Proof. It was already remarked that ∆l−1 ⊆ ∆l.
Let i ∈ δ′l. Then there exists a k ∈ σl−1 such that span(f) = i and fail(f) = l,

where f = Fl−1(k). Let j ≤p i. Then span(ffj) = i	 j and fail(ffj) = fail(f)
by Lemma 7.7. Hence i	 j ∈ ∆l. �

We will construct for each i ∈ σ′l a function of order ρi and fail > l thus proving
that σ′l ⊆ Σl. Therefore N \∆′l ⊆ Σl by Lemma 7.8. But ∆′l ⊆ ∆l by Lemma
7.13. So N \∆l ⊆ Σl. Lemma 7.6 says that ∆l ∩ Σl = ∅. Hence Σl = N \∆l.
From this of course also follows that ∆l = ∆′l and σl = σ′l. So the set of maximal
elements of ∆′l is δl. Hence δl is contained in δl−1 ∪ δ′l. Possibly there exists a
j ∈ δl−1 and a j′ ∈ δ′l such that j ≤p j′. Therefore δl is the disjoint union of δ′l
and {j ∈ δl−1 | j 6≤pj′ for all j′ ∈ δ′l}. Furthermore Fl and Gl will be constructed
from Fl−1 and Gl−1, respectively.

Let i ∈ σ′l. Then i ∈ (N \ ∆′l) ⊆ (N \ ∆l−1) which is equal to Σl−1 by the
induction hypthesis. So i = k ⊕ j for some k ∈ σl−1. Let f = Fl−1(k). Let
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m = span(f). Then fail(f) = m⊕k. If fail(f) = l, then l	 i /∈ Σl−1. Otherwise
l 	 i = k′ ⊕ j′ for some k′ ∈ σl−1. We can then apply Lemma 7.4 with f and
g = Fl−1(k′) since ρ(g) = ρk′ and k′ = l	 i	 j′ = l	 (k⊕ j)	 j′ = m	 (j⊕ j′)
and therefore get that fail(g) ≤ k⊕m = l and in fact fail(g) = l since fail(g) ≥ l
by assumption. But this implies j′ ⊕ i ∈ δ′l and therefore i ∈ ∆′l contradicting
the fact that i ∈ σ′l.

We will consider two cases for i.
(1) Suppose i ∈ σl−1. So i = k. Let f = Fl−1(k). If fail(f) > l we are done

and let Fl(k) = f . If fail(f) = l, then by the above remark we have l	 i /∈ Σl−1.
So l	 i ∈ ∆l−1, by the induction hypothesis, and we can find elements l′ ∈ δl−1
and i′ ∈ N such that l 	 i = l′ 	 i′. Let f ′ = Gl−1(l′). Let g = 1 and g′ = fi′ .
Then applying Lemma 7.11 to f , f ′, g and g′ gives a new function of order ρk
and fail strictly larger than l.

(2) Suppose i /∈ σl−1. Then i = k ⊕ j for k ∈ σl−1 and j > 1. Let g = fj .
Now f = Fl−1(k) must have fail(f) = l because k ∈ ∆l. By the claim above,
either i6≤pl or l 	 i ∈ ∆l−1. In the first case fg has order ρi and fail(fg) > l
by Lemma 7.10. In the second case l 	 i = l′ 	 i′ for some l′ ∈ δl−1. Let
f ′ = Gl−1(l′). Let g = fj and g′ = fi′ . Then applying Lemma 7.11 to f , f ′, g
and g′ gives a new function of order ρk⊕j and fail strictly larger than l.

For each i ∈ σ′l, we have constructed a function of order ρi and fail strictly
larger than l. This proves the claim. We have also produced the sets σl and δl
and the function Fl.

For the function Gl we note that each element i of δl is either an ele-
ment of δl−1 or δ′l. In the first case, Gl(i) = Gl−1(i) and in the second case
Gl(i) = Fl−1(l 	 i).

We can now formulate the following algorithm.

Algorithm 7.14.

Initialization: δ0 = ∅, σ0 = {1}, F0(1) = 1, G0 = ∅.
Given Infol−1 = {σl−1, δl−1, Fl−1, Gl−1}
(0) Let δ′l = {span(f) | f ∈ Im(Fl−1) and fail(f) = l}

Let ∆l = ∆l−1 ∪ {i	 j | i ∈ δ′l, j ≤p i}
Let σl be the set of minimal elements of N \∆l

(1) for each i ∈ σl−1
let f = Fl−1(i)
if i6≤pl or S(ffl	i) = 0, then

i ∈ σl and Fl(i) = f
else

a) if l 	 i = l′ 	 i′ for l′ ∈ δl−1 and i′ ∈ N, then
i ∈ σl and f ′ = Gl−1(l′), Fl(k) = fg + µf ′g′

(as in Lemma 7.11 with g = 1 and g′ = fi′)
else

b) l 	 i ∈ δ′l and Gl(l 	 i) = f
(2) for each i ∈ σl \ σl−1

i = k ⊕ j, where k ∈ σl−1 and j > 1, let f = Fl−1(k)
if i 6≤p l, then Fl(i) = fjf
else

l 	 i = l′ 	 i′ for l′ ∈ δl−1 and
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f ′ = Gl−1(l′), Fl(i) = fg + µf ′g′

(as in Lemma 7.11 with g = fj and g′ = fi′)

We have proved the following theorem.

Theorem 7.15. For all l ∈ N the two sets Σl and ∆l partition N and Algorithm
7.14 gives as output Infol with Infol−1 as input. .

Example 7.16. This is a continuation of Example 6.14 on the Hermitian curve.
Consider the code C27 with parameters [64, 44, 15]. Take the same error-vector
with 7 errors as in Example 6.6. Consider the following 20 known syndromes.

l 1 2 3 4 5 6 7 8 9 10
sl ω9 ω14 0 ω5 ω9 ω9 ω7 ω14 ω11 ω6

l 11 12 13 14 15 16 17 18 19 20
sl ω2 ω12 0 ω4 ω5 ω5 ω12 ω7 ω7 ω6

In the following table, l is in the first column and fl is in the second. The
third, fourth and fifth column are split into two rows for every l, corresponding
to σl and δl, and the fifth column gives the functions that are the image under
Fl and Gl, respectively, of elements in the fourth column.
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0 σ0 1 1
δ0

1 1 σ1 2 x
3 y

δ1 1 1
2 x σ2 2 x+ ω5

3 y
δ2 1 1

3 y σ3 2 x+ ω5

3 y
δ3 1 1

4 x2 σ4 3 y
4 x(x+ ω5) + β − 1 = x2 + ω5x+ ω14

δ4 2 x+ ω5

5 xy σ5 3 y + ωx+ ω6

4 x2 + ω5x+ ω14

δ5 2 x+ ω5

6 y2 σ6 4 x2 + ω5x+ ω14

5 x(y + ωx+ ω6) = xy + ωx2 + ω6x
6 y(y + ωx+ ω6) + ω5x(x+ ω5)

= y2 + ωxy + ω5x2 + ω6y + ω10x
δ6 2 x+ ω5

3 y + ωx+ ω6

7 x3 σ7 4 (x2 + ω5x+ ω14) + ω7(x+ ω5) = x2 + ω13x+ ω5

5 xy + ωx2 + ω6x
6 y2 + ωxy + ω5x2 + ω6y + ω10x

δ7 2 x+ ω5

3 y + ωx+ ω6

8 x2y σ8 4 x2 + ω13x+ ω5 + ω3(y + ωx+ ω6) = x2 + ω3y + ω11x+ ω6

5 xy + ωx2 + ω6x+ ω8(x+ ω5) = xy + ωx2 + ω14x+ ω13

6 y2 + ωxy + ω5x2 + ω6y + ω10x
δ8 2 x+ ω5

3 y + ωx+ ω6

9 xy2 σ9 4 x2 + ω3y + ω11x+ ω6

5 xy + ωx2 + ω14x+ ω13 + ω11(y + ωx+ ω6)
= xy + ωx2 + ω11y + ω5x+ ω14

6 y2 + ωxy + ω5x2 + ω6y + ω10x
δ9 2 x+ ω5

3 y + ωx+ ω6
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10 y3 σ10 4 x2 + ω3y + ω11x+ ω6

5 xy + ωx2 + ω11y + ω5x+ ω14

6 y2 + ωxy + ω5x2 + ω6y + ω10x+ ω3(y + ωx+ ω6)
= y2 + ωxy + ω5x2 + ω2y + ω2x+ ω9

δ10 2 x+ ω5

3 y + ωx+ ω6

11 x4 σ11 5 xy + ωx2 + ω11y + ω5x+ ω14

6 y2 + ωxy + ω5x2 + ω2y + ω2x+ ω9

7 x(x2 + ω3y + ω11x+ ω6) + ω12(x+ ω5)
= x3 + ω3xy + ω11x2 + ω4x+ ω2

δ11 4 x2 + ω3y + ω11x+ ω6

3 y + ωx+ ω6

12 x3y σ12 5 xy + ωx2 + ω11y + ω5x+ ω14 + ω(x2 + ω3y
+ω11x+ ω6) = xy + ω13y + ω14x+ ω

6 y2 + ωxy + ω5x2 + ω2y + ω2x+ ω9

7 x3 + ω3xy + ω11x2 + ω4x+ ω2 + ω8(y + ωx+ ω6)
= x3 + ω3xy + ω11x2 + ω8y + ω14x+ ω13

δ12 3 y + ωx+ ω6

4 x2 + ω3y + ω11x+ ω6

13 x2y2 σ13 5 xy + ω13y + ω14x+ ω
6 y2 + ωxy + ω5x2 + ω2y + ω2x+ ω9 + ω5(x2 + ω3y

+ω11x+ ω6) = y2 + ωxy + y + ω5x+ ω2

7 x3 + ω3xy + ω11x2 + ω8y + ω14x+ ω13

δ13 3 y + ωx+ ω6

4 x2 + ω3y + ω11x+ ω6

14 xy3 σ14 5 xy + ω13y + ω14x+ ω
6 y2 + ωxy + y + ω5x+ ω2

7 x3 + ω3xy + ω11x2 + ω8y + ω14x+ ω13

δ14 3 y + ωx+ ω6

4 x2 + ω3y + ω11x+ ω6

15 y4 σ15 5 xy + ω13y + ω14x+ ω
6 y2 + ωxy + y + ω5x+ ω2

7 x3 + ω3xy + ω11x2 + ω8y + ω14x+ ω13 + ω3(x2 + ω3y
+ω11x+ ω6) = x3 + ω3xy + ω5x2 + ω14y + ω10

δ15 3 y + ωx+ ω6

4 x2 + ω3y + ω11x+ ω6
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16 x4y σ16 6 y2 + ωxy + y + ω5x+ ω2

8 x(xy + ω13y + ω14x+ ω) + 1 · (x2 + ω3y + ω11x+ ω6)
= x2y + ω13xy + ω3x2 + ω3y + ω6x+ ω6

11 x(x3 + ω3xy + ω5x2 + ω14y + ω10) + ω7(y + ωx+ ω6)
= x4 + ω3x2y + ω5x3 + ω14xy + ωx+ ω13 + ω7y

δ16 7 xy + ω13y + ω14x+ ω
5 x3 + ω3xy + ω5x2 + ω14y + ω10

17 x3y2 σ17 6 y2 + ωxy + y + ω5x+ ω2 + ω8(xy + ω13y + ω14x+ ω)
= y2 + ω10xy + ω13y + ω13x+ ω11

8 x2y + ω13xy + ω3x2 + ω3y + ω6x+ ω6

11 x4 + ω3x2y + ω7y + ω5x3 + ω14xy + ωx+ ω13

δ17 7 xy + ω13y + ω14x+ ω
5 x3 + ω3xy + ω5x2 + ω14y + ω10

18 x2y3 σ18 6 y2 + ω10xy + ω13y + ω13x+ ω11

8 x2y + ω13xy + ω3x2 + ω3y + ω6x+ ω6

11 x4 + ω3x2y + ω5x3 + ω14xy + ωx+ ω13 + ω7y
δ18 7 x3 + ω3xy + ω5x2 + ω14y + ω10

5 x3 + ω3xy + ω5x2 + ω14y + ω10

19 xy4 σ19 6 y2 + ω10xy + ω13y + ω13x+ ω11

8 x2y + ω13xy + ω3x2 + ω3y + ω6x+ ω6x4

+ω3x2y + ω5x3 + ω14xy + ω7y + ω13

11 ωx(xy + ω13y + ω14x+ ω)
= x4 + ω5x3 + ω9x2y + x2 + ω7y + ω5x+ ω13

δ19 7 xy + ω13y + ω14x+ ω
5 x3 + ω3xy + ω5x2 + ω14y + ω10

20 y5 σ20 6 y2 + ω10xy + ω13y + ω13x+ ω11

8 x2y + ω13xy + ω3x2 + ω3y + ω6x+ ω6

+ω11(xy + ω13y + ω14x+ ω)
= x2y + ω4xy + ω3x2 + ωy + ω7x+ ω4

11 x4 + ω5x3 + ω9x2y + x2 + ω7y + ω5x+ ω13

+ω11(x3 + ω3xy + ω5x2 + ω14y + ω10)
= x4 + ω3x3 + ω9x2y + ω4x2 + ω14xy + ω6y + ω5x+ 1

δ20 7 xy + ω13y + ω14x+ ω
5 x3 + ω3xy + ω5x2 + ω14y + ω10

Running the algorithm from 0 to l will produce Fl and σl and it follows from
the discussion that if s is a minimal element of σl and Fl(s) = f then f is
an element of Kl	s,s and f is an error locator function if d(Cl	s) > wt(e).
Since we have the bound d(Cl) ≥ dϕ(l) = min{νm|m ≥ l, Cm 6= Cm+1} where
νl = #{(i, j) ∈ N2|i⊕j = l+1}, we want to correct t errors whenever 2t < d(Cl)
which means that the inequality d(Cl	s) > wt(e) is not always satisfied. It is
exactly in this situation that the majority voting enters and we will shortly see
how the algorithm described above can be extended to cover this case. We will
first prove

Lemma 7.17. If wt(e) = t, then for each l, #∆l ≤ t.

Proof. Let s ∈ ∆l. Then there exists an f ∈ R such that ρ(f) = ρs. Let [f ]
denote the class of f in R/L, where L is the ideal of error-locators as defined
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in the previous section. Then [f ] 6= [0] since f 6∈ L. Since the functions
corresponding to the elements of ∆l have different orders, they are linearly
independent and the same is true for their classes in R/L. Therefore #∆l ≤
dim(R/L) = t, by the remark in Section 6. �

Let Γl = {s ∈ Σl−1|s ≤p l, l 	 s ∈ Σl−1}. If s ∈ Γl then Lemma 7.4 implies
that either s and l 	 s are elements of Σl or if a function of order ρs has fail l
then s and l	 s are both in ∆l. Thus the increase of the delta set from l− 1 to
l is Γl ∩∆l. The following proposition says that this increase is less than half
of Γl if 2t is less than νl.

Proposition 7.18. If νl > 2t, then #(Γl ∩ Σl) > #(Γl ∩∆l).

Proof. Let Vl = Γl ∩ Σl and Wl = Γl ∩ ∆l, these partition Γl. We note that
Wl and ∆l−1 are disjoint subsets of ∆l−1, and using Lemma 7.17, we therefore
have

#∆l−1 + #Wl ≤ t
On the other hand the four sets

Vl, Wl, {a ∈ Σl−1|l 	 a ∈ ∆l−1} = Al, and {a ∈ ∆l−1|a ≤p l} = Bl

partition the set {a ≤p l}. Now #{a ≤p l} = νl and the sets Al and Bl contain
at most #∆l−1 elements so we have

νl ≤ #Vl + #Wl + 2#∆l−1

which gives the result. �

Assume 2t < dϕ(l) ≤ νl. We will use Proposition 7.1 together with the output
of the algorithm described before to calculate S(fl+1) from S(fi), i ≤ l.

For each a ∈ Γl+1 choose an s ∈ σl such that s ≤p a. Let f (s) = Fl(s) and
choose (the unique) ω ∈ F∗q such that g = fl+1 + ωf (s)f(l+1)	s satisfies ρ(g) <

ρl+1. We then have S(fl+1) = S(g) − S(ωf (s)fl+1−s). Let the vote by a for
S(fl+1) be S(g). The proposition says that most of the time S(ωf (s)fl+1−s) = 0
so that the majority of the a ∈ Γl+1 will vote for the correct answer. The same
process may now be applied to l + 2 and so on until we have sufficiently many
syndromes.

Remark 7.19. We note that the two inequalities above correspond to the
inequalities K + F ≤ t and νl ≤ T + F + 2K of the previous section.

Example 7.20. This is a continuation of Example 7.16. We will determine
S(f21).

Γ21 = {6, 8, 11}

6: g = x4y2 + x4(y2 + ω10xy + ω13y + ω13x+ ω11) and S(g) = ω6

8: g = x4y2 + x2y(x2y + ω4xy + ω3x2 + ωy + ω7x+ ω4) and S(g) = ω6

11 : g = x4y2 + y2(x4 + ω3x3 + ω9x2y + ω4x2 + ω14xy + ω6y + ω5x+ 1) and S(g) = ω6,

so S(f21) = ω6.

Since the vote was unanimous the sets F and G remain unchanged.

In the same way we get S(f22) = ω3 also unanimous. To determine S(f23) we
note that Γ23 = {6, 8, 9, 10, 13}.
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6: g = x2y4 + x2y2(y2 + ω10xy + ω13y + ω13x+ ω11) and S(g) = ω6

8: g = x2y4 + xy3(x2y + ω4xy + ω3x2 + ωy + ω7x+ ω4) and S(g) = ω6

9: g = x2y4 + xy2[x(y2 + ω10xy + ω13y + ω13x+ ω11)] and S(g) = ω6

10: g = x2y4 + x2y[y(y2 + ω10xy + ω13y + ω13x+ ω11)] and S(g) = ω6

13: g = x2y4 + y2[x2(y2 + ω10xy + ω13y + ω13x+ ω11)] and S(g) = ω6,

so S(f23) = ω6. It turns out that for l = 24, 25, 26 again there is only one value
and we get S(f24) = ω4, S(f25) = ω11, S(f26) = ω4 and the F - and G-sets are
the same as before.

Γ27 = {6, 8, 9, 10, 11, 12, 13, 14, 17}. Here, however, there is one wrong vote
corresponding to

11: g = x3(x5 + y) + x4(x4 + ω9x2y + ω3x3 + ω14xy + ω4x2 + ω6y + ω5x+ 1)

but others give S(f27) = ω. We finally get

F : {y2 + ω10xy + ω13y + ω13x+ ω11, x2y + ω4xy + ω3x2 + ωy + ω7x+ ω4}

and

G : {xy + ω13y + ω14x+ ω, x4 + ω9x2y + ω3x3 + xy + ω4x2 + ω11y + ωx+ ω}

and the corresponding figure (see Example 7.9)

•
•

◦
◦

∆27

Σ27

So indeed #∆27 = 7 and since

y2 + ω10xy + ω13y + ω13x+ ω11 = (y − ω3)(y + ω10x+ ω8)

and

x2y + ω4xy + ω3x2 + ωy + ω7x+ ω4 = (y − ω3)(x2 + ω4x+ ω)

it is easy to see that the common zeros are precisely the error points.

7.2 Computing the error values

In the special situation where we have a weight function ρ on an affine Fq-
algebra R = Fq[x1, . . . , xm]/I with ϕ : R → Fnq , the evaluation map evP where
P consists of n distinct points of Fmq in the zero set of I, and where the semigroup
of nongaps is finitely generated, we will give a formula for determination of the
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error values after sufficiently many syndromes have been determined by the
algorithm presented in Section 7.1.

Let a1, a2, . . . , aµ be a minimal set of generators and let Φj be the corre-
sponding functions such that ρ(Φj) = aj . To any vector ω = (ω1, . . . , ωµ) of
nonnegative integers corresponds the function

fω =

µ∏
s=1

Φωs
s

and

ρ(fω) =

µ∑
s=1

asωs.

Now

Se(fω) =

n∑
j=1

ejfω(Pj) =

n∑
j=1

ej

µ∏
s=1

Φs(Pj)
ωs

and suppose we know all syndromes Se(fω) where 0 ≤ ωi ≤ q − 1, i = 1, . . . , k.
Then for each Pe we can form the sum

∑
ω

Se(fω)

µ∏
s=1

Φ−ωs
s (Pl)

where the summation is over all vectors ω with 1 ≤ ωs ≤ q − 1, s = 1, . . . , k.
Inserting the expression for the syndromes, we get

∑
ω

n∑
j=1

ej

µ∏
s=1

Φωs
s (Pj)Φ

−ωs
s (Pl) =

n∑
j=1

ej

µ∏
s=1

∑
ω

(
Φs(Pj)

Φs(Pl)

)ωs

= (−1)kel

and therefore el can be calculated. The last equality comes from the fact that
if Φs(Pj) 6= Φs(Pl), then

q−1∑
ωs=1

(
Φs(Pj)

Φs(Pl)

)ωs

= 0.

If j 6= l, then for at least one s we have Φs(Pj) 6= Φs(Pl) because otherwise
the code would have minimum distance 2 and we will not consider such codes.
Of course the calculation above is only valid if Φs(Pl) 6= 0 for all s = 1, . . . , µ.
If this is not the case, there is a slight modification which will give the error
values.

The complexity in terms of the number of Fq additions and multiplications of
the whole decoding procedure for the codes considered above is bounded above
by

O(an2) +O(qµ+1(a1 + · · ·+ aµ)) +O(n · µ · qµ).

In the case of Hermitian curves this gives O(n5/2).
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7.3 Notes

The algorithm treated in this section is based on Sakata’s extension [84, 85, 86]
of the classical Berlekamp-Massey algorithm [9, 67]. The presentation of the
algorithm in this section is an adaption of the paper [71]. The application of
this algorithm to the decoding problem was made in [51] and the inclusion of
the majority voting is from [87, 88, 89]. The algorithm was implemented in
[65] for the Hermitian curve over F28 and a general implementation was carried
out in [1]. In [55, 60] a generalization of Forneys formula is presented for the
calculation of the error values. The formula in Section 7.2 is from [88]. Usually
one can apply a fast Fourier-like transform to speed up this part of the decoding.
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bases for a class of algebraic-geometric Goppa codes,” IEEE Trans. Inform.
Theory, vol. 41, pp. 1752-1761, Nov. 1995.

[46] T. Henocq and D. Rotillon, “The theta divisor of a Jacobian variety and
decoding of geometric Goppa codes,” J. Pure Appl. Algebra, vol. 112, pp.
13-28, 1996.

[47] T. Høholdt and R. Pellikaan, “On the decoding of algebraic-geometric
codes,” IEEE Trans. Inform. Theory, vol. 41, pp. 1589-1614, Nov. 1995.

[48] Y. Ihara, ”Some remarks on the number of rational points of algebraic
curves of finite fields,” Journ. Fac. Sc. Univ. Tokyo IA, vol. 28, pp. 721-
724, 1981.

[49] T. Johnsen, S. Manshadi, and N. Monzavi, “A determination of the pa-
rameters of a large class of Goppa codes,” IEEE Trans. Inform. Theory,
vol. 40, pp. 1678-1681, Sept. 1994.

[50] J. Justesen, K.J. Larsen, H. Elbrønd Jensen, A. Havemose and T. Høholdt,
”Construction and decoding of a class of algebraic geometric codes,” IEEE
Trans. Inform. Theory, vol. 35, pp. 811-821, July 1989.

[51] J. Justesen, K.J. Larsen, H. Elbrønd Jensen and T. Høholdt, ”Fast decoding
of codes from algebraic plane curves,” IEEE Trans. Inform. Theory, vol.
38, pp. 111-119, Jan. 1992.

[52] T. Kasami, S. Lin and W.W. Peterson, ”New generalization of Reed-Muller
codes, Part 1: Primitive codes,” IEEE Trans. Inform. Theory, vol. 14, pp.
189-199, 1968.

[53] C. Kirfel and R. Pellikaan, ”The minimum distance of codes in an array
coming from telescopic semigroups,” IEEE Trans. Inform. Theory, vol. 41,
no. 6, pp. 1720-1731, Nov. 1995.
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[93] A.N. Skorobogatov and S.G. Vlăduţ, ”On the decoding of algebraic-
geometric codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 1051-1060,
Nov. 1990.

[94] A.B. Sørensen, “Projective Reed-Muller Codes,” IEEE Trans. Inform. The-
ory, vol. 37, pp. 1567-1576, Nov. 1991.
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