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Algebraic Geometry for Computer-Aided
Geometric Design o v seves
Ronald N. Goldman

X t =1

discussed a century ago but which have lain dormant for
decades. The discussion is intended for a general techni-
cal audience and presupposes only a modest background
in algebra. The concepts are motivated by simple exam-
ples, and no rigorous proofs are included. Other refer-
ences provide the interested reader with lucid expositions
of the underlying theory'~? and advanced and specialized
treatments®® We will discuss the following three
problems:

1. Implicitization problem. Given a planar curve de-
fined parametrically as

ozt )

w(t)' ¥ T w(t)

where x(1), ¥(1), and w(t) are polynomials, find an
implicit equation f(x,y) = 0 that defines the same
curve,

2. Inversion problem. Given the x,y coordinates of a
point that lies on a parametric curve

Computer-aided geometric design and graphics has
drawn heavily from differential geometry and vector
geometry, but is only beginning to access the tools of
classical algebraic geometry. We underscore the word
classical because much modern algebraic geometry deals

with abstractions that are far removed from the algo- z(t _ wl(e)
rithmic nature of computer-aided geometric design and z= w(t)’ B w(t)
graphics, whereas classical mathematicians—those of 50
to 150 years ago—tended to write in less abstract terms. find the parameter value ¢ that corresponds to this
In this article, we discuss three problems, which were first point.
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3. Intersection problem. Compute the points of inter-
section of two parametric curves using the impli-
citization and inversion techniques.

We discuss implicitization and inversion together and
then apply them to the intersection problem. Several
works in computer algebra deal with these topics$’ and
there are several works on the implicitization of curves®?®
and the implicitization of surfaces!®!! There are also
other applications of algebraic geometry to problems in
computer-aided geometric designl!?13

Curve representation

Before we discuss these problems, let us look at curve
representation in general. Basically, a planar curve can be
defined in two ways: parametrically and implicitly. The
parametric equation of a plane curve takes the form

pozl) o oul)

w(t) Y7 w()
and the implicit equation of a curve is of the form
f(zy)=0

In these notes, we restrict ourselves to the case where
x(1), y(1), w(t), and f(x,y) are polynomials.

Obviously, the parametric equation of a curve has the
advantage of being able to quickly compute the x,y co-
ordinates of several points on the curve for plotting. Also,
it is simple to define a curve segment by restricting the
parameter ?to a finite range, for example 0 < 1< 1. On the
other hand, the implicit equation of a curve enables us to
easily determine whether a given point lies on the curve,
or if not, which side of the curve it lies on.

Given that we have two different equations for curves,
can we convert between representations for a given
curve? The answer is yes; it is always possible to find an
implicit equation of a parametric curve, but a parametric
equation can generally be found only for implicit curves
of degree two or one. Later in this article, we will discuss
how to convert between representations using an impor-
tant algebraic tool called the resultant. For fun, we also
show how someone might tackle the implicitization prob-
lem before learning about resultants.

Brute-force implicitization

Consider this simple example of parametric-to-
implicit conversion. Given a line

z=t+2 y=3t+1

we can easily find an implicit equation that identically
represents this line by solving for ¢ as a function of x

=z -2
and substituting into the equation for y

y=3(z-2)+1

or 3x - y - 5= 0. Note that this implicit equation defines
precisely the same curve as does the parametric equation.
We can also identify two inversion equations (for finding

June 1986

the parameter value of a point on the line): t=x-2 or
t=(y-1)/3.

This approach to implicitization also works for degree-
two parametric curves. Consider the parabola

z=1t2+1 y=t2+2t-2

Again, we can solve for t as a function of x:
t=2Vz -1

and substitute into the equation for y:
y=(Vz-1pP+2Vz -1-2

We can isolate the radical and square both sides
(v - (z-1) + 2)% = (£2Vz-1)?

to yield
22-2zy + y* - 10z + 6y + 13=0

which is the desired implicit equation. Again this implicit
equation defines exactly the same curve as does the
parametric equation.

We run into trouble, however, if we try to apply this
implicitization technique to curves of degree higher than
two. The critical step is expressing ¢ as a function of x. For
cubic and quartic equations, it can be done, but the
resulting expression is hopelessly complex. For curves of
degree greater than four, it cannot be done at all.

Further, we cannot obtain an inversion equation for
this parabola the way we did for the straight line. For
example, suppose we want to find the parameter of the
point (5,-2), which we know lies on the curve. The brute-
force approach is to find the values of ¢ that satisfy the
equation

z=5=1t2+1

and then to compare them with the values of tthat satisfy
the equation

y=-2=t2+2t -2

In the first case t = -2 or 2, and in the second case t = -2
or 0. The value of ¢ that satisfies both equations is -2,
which must therefore be the parameter value of the point
(5,-2).

Resultants

Thus far our attempt at implicitization and inversion
has been unsuccessful. An elegant, general solution to the
problem is provided by what are called resultants. Re-
sultants address the question of whether two polynomials
have a common root. Consider the two polynomials

1) = Z't o(t) = Z'bt

The resultant of f(t) and g(¢), written R(fg), is an
expression in terms of the coefficients a; and b such that
a common root of f(¢) and g(¢) exists if and only if R(f.g)
=0.

53
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We illustrate by finding the resultant of two cubic
polynomials

F(t)=ast®+ agt®+ a3t + 8o
g(8) = byt®+ byt2+ byt + b,

In other words, we want to determine whether a value o
exists such that f(a) = g(e) = 0—without actually finding
and comparing all roots of both polynomials. We begin by
forming three auxiliary polynomials A, (), ; (2), and ks (f)
as follows:

hy(t) = as9(t) - bsf(t)
= (agb,)i% + (agb,)t + (agho)

- 6,b,) and

ho(t) = (ast + a5)g(t) - (bst + b5)f(t)
= (a4b,)t% + [(a3bo) + (82,)]t + (azby)

ha(t) = (agt® + agt + a)g(t) - (b5t% + byt + by)f (1)
= (agho)t2 + (agbo)t + (ayb,)

Note that if a value « exists such that f(a) = g(a) = 0, then
hy (a) = hy(e) = Iy (a) = 0. We can therefore say that f(¢)
and g(t) have a common root if and only if the set of
equations

where (a,b,) = (a,b,

(a3dy) (ashy) (agho) || ¢2
(agb,) (83bo) + (agd,) (azbo) [yt (=0
(a3bo) (ab0) (a,80)

has a solution. (Actually, we have shown only that this
condition is necessary; the proof that it is also sufficient is
found elsewherel!4) However, we know from linear alge-
bra that this set of homogeneous linear equations can
have a solution if and only if

|("abz) (84by) (asbo) ;
|(aghy) (agho) + (azh;) (azbo)| =0
laghe)  (azbe)  (a1b0)]
and therefore,
;(asbz) (as8,) (asbo) !
R(f,9)= 1(asby) (agho) + (azb,) (azby)|
}(“sbo) (82b) (8,04) } :

The same approach can be used to construct the resultant
of polynomials of any degree. (Other sources present a
more detailed algorithm for forming the elements of the
determinant.!4)

Applying the concept

Let’s now try the resuitant approach on a couple of
examples. First, let f(f)= ¢ -2/ +3t+ 1and g() =27+
3£ - t+ 4. For this case,

54

t7 -7 21|
R(f.9)= {-7 -5 -11! = -1611
2 -11 13 |

We aren't interested so much in the actual numerical
value of the resultant, just whether or not it equals zero.
In this case, R(f,g) =-1611 # 0, so we conclude that f(1)
and g(¢) do not have a common root.

Let us next consider the pair of polynomials f(1)= ¢ -
£ —11t-4and g(t)=2¢ - 7# - 51+ 4. In this case

-5 17 12 |
R(f,9)= }17 -60 -32! =0
|12 -32 -64

since R(f,g) = 0, f(¢) and g(t) do have a common root.
Note that the resultant simply determines the existence
or nonexistence of a common root but does not directly
reveal the value of a common root, if one exists. In fact, if
the resultant is zero, there may actually be several com-
mon roots.

Determining the common root

We present two basic approaches to finding the com-
mon root of two polynomials: (1) solving a set of linear
equations and (2) using Euclid’s algorithm.

Linear equation approach

Our intuitive development of the resultant of two cubic
polynomials led us to a set of three linear equations in
three unknowns: £, ¢, and 1. In general, we could create
the resultant of two degree-n polynomials

J(t)=a,t" + g, "1+ ©+ 6, +a,
and
g(t)=b,t" + by yt" © o+ byt + by

as the determinant of the coefficient matrix of » homo-
geneous linear equations:

Vl”_lw
(anbn'l) st (“nbo) n-2
3 += 0
. PR . ¢
(8,0) .+ (848) 1
\ J

It may be a bit confusing at first to view this as a set of
homogeneous linear equations, since all the unknowns
are powers of ¢ Let us temporarily rename our unknowns:

Xn-lw
(anbn-l) R (“nbo) ‘X'”_2
4 > = 0
(a,b0) (e ]}
0. 1Yo Xo J

IEEE CG&A
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where X; = (. After solving for X;, the common root of
f(¢) and g(t) can be obtained as t = Xi+1/ X..

Cramer’s rule

There are several well-known methods of solving for
X;. One way is to apply Cramer’s rule. A nontrivial
solution exists (that is, a solution other than Xo = X, =. ..
= Xu-1 = 0) only if the determinant of the matrix is zero.
But, that implies that the » equations are linearly de-
pendent, and we can discard one of them without losing
any information. We discard the last equation, and then
solve the remaining n-1 homogeneous equations in n
homogeneous unknowns using Cramer's rule. It turns out
that occasionally we run into trouble if we discard an
equation other than the last onel!* We illustrate Cramer’s
rule forthecase f(t)=r -2 - 1lr-4and g() =22 -77
-5t+ 4. Recall that for this pair we have established that
R(f,g) = 0. We have the set of equations

-5 17 12 ]|Xe
17 -60 -32[{X,t=0
12 -32 -64]|x,

Discarding the last equation, we obtain

, X,

-5 17 12 _

17 -60 -32[]X1[=0
X

0)

from which we find the common root using Cramer’s rule:

:-5 12 =
t= —X—l— = -—ML =4
Xo :-5 1 |
|17 60 |
Gauss elimination
A numerically superior algorithm for solving this set of
equations is to perform Gauss elimination. Two other
advantages of Gauss elimination are that (1) it can be
used to ascertain whether the determinant is zero to
begin with and (2) it reveals how many common roots
there are. We will illustrate this approach with three
examples, using integer-preserving Gauss elimination. We
choose integer-preserving Gauss elimination because the
lower right determinant element of the upper triangular
matrix then becomes the value of the matrix.

Example 1: Our first example is one we considered
earlier: f(1)= 1 -2 + 3¢+ land g(1) =28 + 32 -1+ 4.
We set up the following set of linear equations and
triangularize the matrix using integer-preserving Gauss
elimination:

7 -7 2 |(Xe} [7 -7 2 }|Xe

-7 -5 -11{X,t= [0 -84 -63 {x,}=0

2 -11 13 X, 0 0 -1611 X,
We observe that the only solution to this set of equations
is X; = X, = X, = 0, and conclude that f(¢) and g(¢) do not

have a common root. Note that the lower right element

June 1986

-1611 is the determinant of the matrix, or the resultant.

Example 2: We next examine the pair of polynomials
f=r - -11r-4and g(t) =2£ - 712 - 5¢t+ 4. In this
case we have

-5 17 12 |1X2 -5 17 12 || X
17 -60 -32[{X,t=|0 11 -44[{x,¢=0
12 -32 -64 X, 0 0 0 X,

Again, the lower right element is the value of the deter-
minant, which verifies that the resultant is zero. It is now
simple to compute the solution: X, = 4X,, X, = 4X,. Since
X; = ¢, the common root is t = 4.

Example 3: For our final example we analyze the
polynomials f(f) = - 62+ 11t-6and g(t) = - 72 +
147~ 8. Our linear equations now are

-1 3 -2]|X: -1 3 -2]|X2
3 -9 6 1x,t=10 0 o [{x,}=0
-26-4X0 0 00O X,

In this case, not only is the resultant zero, but the matrix
is rank 1. In other words, there are two common roots,
and they can be found as the solutions to the quadratic
equation -2 + 3t - 2 = 0, which are t =1 and ¢t = 2.
Consequently, -2 + 3t - 2 is the greatest common divisor,
or GCD, of f(t) and g(¢). )

Euclid’s GCD algorithm

An alternative approach to finding the common root(s)
of two polynomials is to use Euclid’s algorithm. There is a
close connection between this algorithm and resultants.
In fact, Euclid’s algorithm does everything that resultants
do. It is an ancient method of finding the GCD of two
integers or two polynomials. Qur presentation of Euclid’s
algorithm consists of a series of examples; Kurosh! gives
a clear proof. The algorithm works beautifully in exact
integer arithmetic, but we have experienced numerical
instability in floating point.

Integers
We illustrate first on a pair of integers: 42 and 30. First
we assign the larger to be the numerator and the other to
be the denominator:

Step 1: gé-= 1 remainder 12.

We now take the remainder of the first step and divide it
into the denominator of the first step:

Step 2: f—g = 2 remainder 6.

We continue dividing the remainder of the preceding step
into the denominator of the preceding step, until we
obtain a zero remainder. This happens to occur in the
third step for this problem:

Step 3: 16_2 = 2 exactly.

According to Euclid’s algorithm, the second-to-last re-
mainder is the GCD. In this case, the second-to-last
remainder is 6, which is clearly the largest integer that
evenly divides 30 and 42.

55

Authorized licensed use limited to: Brigham Young University. Downloaded on January 27, 2009 at 16:42 from IEEE Xplore. Restrictions apply.



Polynomials
Example 1;: We illustrate how Euclid’s algorithm works
for polynomials by using the same three examples we
used in the previous section. For the polynomials f(1) = 3
-2+ 31+ 1and g(r) =2 + 32 - t+ 4, we have

23+ 312-4+4

Step 1: =2 remainder T¢2 -7t + 2
t3-212+ 3t +1
Step2: t2-202+3t+1 _t-1 oo der 12029
TH2- Tt + 2 7 7
T2 -Tt +2 196¢ - 343 . 1253
. = mainder =
Step 3: (12t + 97 P remainder 16
92¢ 144
Step 4 (204 9)/7_ 1 remainder 0
1253/16 8771 8771

In this case the GCD is 1253/16, which is merely a
constant, and so f(¢) and g(t) do not have a common root.

Example 2: We next analyze the polynomials f(1) = 1* -
£f-11t-4and g(t)=2t3-72-5t+ 4

2t"‘~7l2-5t+4=2

Step 1:
$3-12-11t - 4
remainder -5¢2 + 17¢ + 12
s _ 42 _ -
Stepz Lotz lit -4 g5 12
-5t2 4+ 17¢ + 12 25
remainder 211t + 44
25
-5¢2 + 17¢ + 12 75 .
L Zob v ldF T e —195¢ + — remainder 0
Step 3 T 111 + 44)25 11
-11t + 44

In this case, the GCD is and the common

rootis t=4.

25

Example 3: Finally, we consider f(1)= 2 - 612 + 111-6
and g()=1* -7 + 141-8:

t3-6t2+11t -6
13-7t2+ 14t - 8

Step 1: =1 remainder 2 -3t + 2

8- 712+ 14t -8 _
12-3t+2

Step 2: t - 4 remainder 0

The GCD is 2 - 3¢+ 2, and the common roots are the
roots of the equation 2 - 3t+ 2 =0, which are t= 1 and
t=2.

implicitization and inversion

We have just discussed resultants, a powerful tool for
determining whether two polynomials have a common

56

root. We want to apply that tool to converting the para-
metric equation of a curve given by

= 4t}
w(t)

into an implicit equation of the form f(xy) = 0. We
proceed by forming two auxiliary polynomials:

p(z,t) = w(t)z - z(t) gly,t)=w(t)y - y(t)

Note that p(x,t) = g(y,1) = 0 only for values of x, y, and ¢,
that satisfy the relationships

u(t)
w(t)’
View p(x,1) as a polynomial in ¢ whose coefficients are

linear in x, and view g(y,1) as a polynomial in ¢ whose
coefficients are linear in y. If

yt)= Soe, and w(t)= Fdr
1 =0

1=0

it

z= w(t) and y =

n

z(t)= ) a0,

1=0
then

p(z,t) = (daz = a,)t" + (dn-13 - an-l)‘"-l + e

+(d,3 - a))t + (doz - ap)

q(y’t) = (dny - bn)'" + (dn-ly - bn-l)t“-l +

+(dyy - b))t + (doy - by)

If we now compute the resultant of p(x,?) and g(y,1), we
do not arrive at a numerical value, but rather a poly-
nomialin x and y, which we call f(x,y). Clearly any x,y pair
for which f(x,y) = 0 causes the resultant of pand g to be
zero. But if the resultant is zero, then we know that a
value of 1 exists for which p(x,t) = g(y,t) = 0. In other
words, all x,y values for which f(x,y) = 0 lie on the
parametric curve, and therefore f(x,y) = 0 is the implicit
equation of that curve. The following examples clarify.

Example 1: In the first example we apply this technique
to the parabola we implicitized earlier using a brute-force
method:

z=1t2+1 y=1t2+2t-2

We begin by forming p(x,t) = - + (x-1) and g(y1) =
-12 - 2t + (y+2). The resultant of two quadratic poly-
nomials a;1* + ait+ ao and b 1> + bit+ bo is

|(azby) (a2bo) |
(a2b0) (3,00) |
and so the resultant of p(x,f) and q(y,t) is
| 2 z-y-31
R(p.g)= }z-y-3 2z-2 :

=-224+ 27y - y?+ 10z - 6y - 13

IEEE CG&A
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which is the implicit equation we had obtained earlier.
We can write an inversion equation for this curve—
something that eluded us in our ad hoc approach:

2 z-y-3||¢
z-y-3 2z-2 ||1 0

from which
-2z +2
z-y-3°

-z +y+3

i = ort=

Example 2: We next implicitize the cubic curve (Figure
1) for which

2t% - 1812 + 18¢ + 4
-3t2+ 3t + 1

> =

__39¢% - 69¢2+ 33t + 1
-32+ 3t + 1

We begin by forming p(x,7) and gq(y,1):
p(z,t)=-2t%+ (-3z + 18)t% + (3z - 18)t + (z - 4)
g(y,t) = -39t* + (-3y + 69)t% + (3y - 33)t + (y-1)

Recalling from our discussion on resultants that the
resultant of two cubic polynomials @13 + a: 1> + a1t + ao
and a; £ + @y t* + a1t + ao is

:("352) (agby) (agbo) I

[(agby) (a3bo) + (azb;) (azdy) |

l680)  (a80)  (a,b0) |
we have

R(PJ}: !(z!y)=

|-117z + 69y + 564 117z - 6y - 636 39z - 2y - 154 |
| 117z - 6y - 636 -69z - 2y + 494 -66z + 6y + 258 |
| 39z - 2y - 154 -66z - 2y + 258 30:-61;-1141

We can expand the determinant to get
f(z,y) = -1561952° + 6042622y - 7056zy? + 224y3
+ 218809822 - 562500zy + 33168y2
- 10175796z + 1322088y + 15631624

We can obtain an inversion equation using Cramer’s rule:

1117z - 6y - 636 39z - 2y - 154 |
2 1-60z - 2y + 494 -662 + 6y + 258 |

I
|
|
!f
IJ.
Iy
|

-

P(502)

Alternatively, we could use Gauss elimination to com-
pute the parameter of a point on the curve. Cramer's rule

is appealing because it actually generates an equation.

June 1986

¢ |-117z + 69y + 564 39z - 2y - 154 |
fmz-sy-sss -66z + 6y + 258 |

Figure 1. Cubic curve in implicitization Example 2. The
points P, are the Bezier control points of the curve. The
third coordinate is a weight.

We have intentionally carried out all computations in
exact integer arithmetic to emphasize the rational, non-
iterative nature of implicitization and inversion. Since the
coefficients of the implicit equation are obtained from
the coefficients of the parametric equations using only
multiplication, addition, and subtraction, we can obtain
an implicit equation that precisely defines the same point
set defined by the parametric equations.

Curve-curve intersections

Given one curve defined by the implicit equation f(x,y)
= 0 and a second curve defined by the parametric
equations x = x(7), v= y(1), we replace all occurrences of
x in the implicit equation by x(t), and replace all occur-
rences of y in the implicit equation by y(1). These sub-
stitutions create a polynomial f(x(1),y(?)) = g(t) whose
roots are the parameter values of the points of intersec-
tion. Of course, if we start off with two parametric curves,
we can first implicitize one of them.

We illustrate this process! by intersecting the curve

2t - 1812 + 18¢t, + 4
-3t2 + 3¢, + 1

=

3018 - 69¢7 + 33¢, + 1
-3t + 3¢, + 1

with the curve

57
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Figure 2. Two degree-three curves that intersect nine

times.

_ -52t3 + 63t - 15t,+ 7
-37t2 + 3t,+ 1

4
y =
=37t + 3t,+ 1

The two curves intersect nine times (Figure 2), which is
the most that two cubic curves can intersect.

We have already implicitized the first curve (in our
discussion on implicitization and inversion), so our inter-
section problem requires us to make the substitutions

_ -52t3 + 6317 - 151, + 7
-37tF + 3ty + 1

4
-37t2 + 3t,+ 1

into the implicit equation of curve 1:

f(z,y) = -1561952z% + 6042622y - 7056zy2 + 224y°

+ 218899822 - 562500zy + 33168y?

- 10175796z + 1322088y + 15631624.

*Bezout's theorem states that two curves of degree mand n, respectively,
intersect in n points, if we include complex points, points at infinity, and
multiple intersections.

58

After multiplying through by (=371 + 36 + 1)} we arrive
at the intersection equation:

9841002 - 4582003 + 8868537¢] - 942059312
+ 594940815 - 228285014 + 522890t3 - 6757212

+ 4401¢, - 109 = 0.

Again we have carried out this process in exact integer
arithmetic to emphasize that this equation is an exact
representation of the intersection points. Some con-
siderations for floating-point implementation are listed
elsewhere!¢

We now compute the roots of this degree-nine poly-
nomial. Those roots are the parameter values of the
points of intersection. The x,y coordinates of those inter-
section points can be easily found from the parametric
equations of the second curve, and the parameter values
on the first curve for the intersection points can be found
from the inversion equations. The results are presented in
Table 1.

Table 1. Parameter values of the intersection points of the
degree-three curves in Figure 2. )

1 0.0621  4.29822.3787
2 0.1098 4455629718
3 0.1785  4.61903.4127
4 03997  49113,3.2894
5 04212 4931232186  0.0889
6 06828  5.1737.2.2902  0.5339
7 08610 5467623212 05944
8 09342  5.6883,28773  0.8463
9 09823  59010,3.6148  0.0369

The most common curve intersection algorithms are
based on subdivision. Tests indicate that the implicitiza-
tion algorithm is several times faster than subdivision
methods for curves of degree two and degree three, and
subdivision methods are faster for curves of degree five
and greater.'®

Summary

We have presented a tutorial on resultants, curve
implicitization, curve inversion, and curve intersection.
Interest in this research is growing, and it is evident that
algebraic geometry is a valuable resource for computer-
aided geometric design. m
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