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Abstract

We study the problem of simultaneously disseminating multiple messages in a large network in a

decentralized and distributed manner where nodes only have knowledge about their own contents. We

consider a network with n nodes and k messages spread throughout the network to start with, where

not all nodes have all the messages. Our communication model is such that the nodes communicate

in discrete-time steps, and in every time-step, each node communicates with a random communication

partner chosen uniformly from all the nodes (known as the random phone call model). In each time-step,

only one message can be transmitted. The goal is to rapidly disseminate all the messages among all the

nodes. We study the time required for this dissemination to occur with high probability, and also in

expectation.

We show that a random linear coding (RLC) based protocol for message dissemination disseminates

all the messages among all the nodes in time ck + O(
√

k ln(k) ln(n)) for a suitable constant c > 0.

Analytical results show that, c < 3.46 using pull based dissemination and c < 5.96 using push based

dissemination, but reported simulations suggest that c < 2 might be a tighter bound. Thus, if k �

(ln(n))3, the time required to simultaneously disseminate the messages using RLC is asymptotically

at most ck which is a substantial improvement over disseminating the messages sequentially (i.e., one

after the other) that takes a time of at least k log2(n). Furthermore, in the regime k � (ln(n))3, the

dissemination time is clearly order optimal, since disseminating k message takes at least k rounds. In

the regime k � (ln(n))2, the dissemination time with RLC goes down by a factor of Ω(
√

k/ ln k) (as

opposed to Θ(ln(n)) in the regime k � (ln(n))3) as compared to sequential dissemination. The cost of

the RLC protocol is an overhead associated with every transmission, but the overhead is negligible for

messages of reasonable size. We also consider a store and forward mechanism without coding, which is

a natural extension of gossip-based dissemination with one message in the network. We show such an
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approach performs badly for large values of k, i.e., when k = αn for some α ≤ 1, and does no better

than a sequential approach (instead of doing it simultaneously) of disseminating the messages which

takes Θ(k ln(n)) time.

While the asymptotic results might sound believeable based on the dissemination protocol using

RLC, owing to the distributed nature of the system, the proof requires careful modeling and analysis of

an appropriate time-varying Bernoulli process.

1 Introduction

Of late, design of protocols to rapidly disseminate messages in large networks have gained a lot of attention.

Much of the research on information dissemination started with updating messages in large distributed

computer systems where computers can communicate with each other. More recently, the emergence of

sensor networks has added a new paradigm to the problems of distributed message dissemination.

The use of gossip-based protocols to disseminate message was first proposed in [4]. In gossip based

protocols, nodes communicate with each other in communication steps called rounds, and the amount of

information exchanged in each round between two communicating nodes is limited. Further, there is no

centralized controller and every node in the network acts simply based on state or information of the node,

and not that of the over all network. Thus, gossip based protocols are inherently distributed and easily im-

plementable, and provides powerful alternatives to flooding and broadcast based protocols for dissemination

of messages. There is a wide literature on the practical aspects of gossip-based message dissemination [16].

A detailed analysis of a few gossip-based dissemination schemes were provided in [11]. A common per-

formance measure in all the previous work is the time required to disseminate a single message to all the

nodes in the network. In recent work, [13, 12] considered the scenario where there are multiple messages,

each with a unique destination. The authors considered what they call spatial gossip where the nodes are

embedded in a metric-space with some distance metric between the nodes. More recently, in [3], the authors

have studied gossip-like distributed algorithms for computing averages at the nodes. In the framework they

consider, each node starts with possibly distinct value of a certain parameter, and the goal is to find the

time required for every node to compute the average of the parameter values at the nodes, using gossip-like

algorithms. In this paper, we envisage a different problem, in which the network seeks to simultaneously

disseminate multiple messages to all the nodes in a distributed and decentralized manner. Thus, each node

wants to compute the exact messages at every other node.

As pointed out in [13], we note that, any gossip protocol has two layers of design aspects. One is the

design of gossip algorithm by which, in every round, every node decides its communication partner, either
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in a deterministic, or in a randomized manner. The other important aspect is the design of gossip-based

protocol by which any node, upon deciding the communication partner according to the gossip algorithm,

decides the content of the message to send to the communication partner. The main contribution of our paper

lies in proposing a gossip-based protocol using the idea of random linear coding, which has previously been

used in the context of communication theory for various purposes.

In this paper, we consider a scenario where there are multiple nodes in the network and also multi-

ple messages, but not all messages are with all the nodes to start with. We are interested in designing

mechanisms to ensure that all the nodes receive all the messages very fast. We restrict ourselves to gossip

protocols, so that each node acts based on local information, without a centralized controller. Moreover,

at each communication instant between nodes, only one message (we comment on this aspect later in the

paper) can be transmitted. The gossip algorithm we consider in this paper is what is popularly known as the

random phone call model or rumor mongering model [4]. In such a model, the system proceeds in rounds.

In each round, every node u calls a communicating partner v chosen uniformly at random from from all

the nodes. Thus, in the model we consider, the underlying communication graph is complete, in the sense

that, each node can potentially communicate with every other node. Alternatively, one can consider a more

generic model where a node can only communicate with any one from a given set of neighbors. While the

dissemination of a single message was first studied for a system similar to ours, it was later extended to a

more general communication model. However, a detailed study with a complete underlying communication

graph is important to the understanding of the benefits of out protocol when there are no constraints in the

network due to nodes being too far from each other. We propose gossip-based protocol using the idea of

random network coding introduced by Ho et. al. in [7, 8], and compare the protocol with a naive one. The

details of the protocols are provided later in the paper.

As we show in the paper, information dissemination schemes based on the concepts of network coding,

instead of a naive store and forward mechanisms, can provide substantial benefits in distributed environ-

ments at the cost of a small overhead (if the message sizes are reasonably large) associated with each

packet. In networks with fixed communicating graphs, network coding can be viewed as a vast general-

ization of routing where each packet is treated as an algebraic entity that can be operated upon instead of

simply storing and forwarding. Essentially, each node in the network sends to each output link any linear

function of the data received at the input links. It was shown in [15] that linear network coding can achieve

the min-cut bound in networks with multicast connections. There is a significant recent work on network

coding [9], especially on the algorithmic aspects of construction of linear network codes [2, 14, 10, 18]

for multicast connections. In [7, 8], the authors proposed the novel idea of random network coding. Our
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protocol for message dissemination is inspired by this.

The goal of this work is to propose protocols for simultaneous message dissemination. To, understand

the main constraints consider Figure 1. There are eight nodes in the network and each of the nodes has

Figure 1: Figure depicting the gossip-based communication in two successive time-steps

a distinct message to start with, and the goal is to disseminate all the messages among all the nodes. In

the first time-step, each node picks up a node at random (gossip based communication) and transmits the

message it has. In the second round, some of the nodes already have two distinct messages. For transmitting

a message in the second round, these nodes have to decide which message to transmit without the knowledge

of the contents of its communication partner. Obviously, the constraint is imposed by the fact that only one

message can be transmitted and nodes only have local knowledge.

We present a gossip-based protocol based on random network coding that can simultaneously spread k

messages (where each node has only one message initially) among n nodes in time ck+O(
√

k ln(k) ln(n)).

As the time required to disseminate the messages sequentially is at least k log2(n), the dissemination time

goes down by a factor of Θ(ln(n)) in the regime k � (ln(n))3, and by a factor of Ω(
√

k/ ln(k)) in the

regime k � (ln(n))2. Note that any protocol for disseminating the messages simultaneously will require at

least k rounds, and so the dissemination time using random network coding in the regime k � (ln(n))3 is

order optimal. The key feature in the protocol which helps to attain this bound is an “algebraic mixing” of

the messages using random linear coding. This is done by viewing each message as an element in a vector

space with the scalars in a finite field of appropriate size. We have also shown that a naive uncoded store

and forward approach of spreading the messages takes Ω(n ln(n)) time when k = αn for some α ≤ 1.

Note that, for k = αn, this is no better than a sequential approach of spreading the messages one after the
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other would take a sum-total of Θ(n ln(n)) (since the time to propagate a single message is Θ(ln(n)) [11]).

Before going into the details of the protocols and the results, we provide the key intuition behind the

power of a coding based approach in the following. Suppose there are k distinct elements in a finite field of

size q. Consider two approaches to store the elements in a database with k slots. Suppose each slot chooses

an element at random without the knowledge of what the other slots are choosing. Then, the probability

that all the elements are there in the database is very small. Now, consider a second approach in which each

slot in the database stores a random linear combination of the messages. All the messages can be recovered

from the database, only if the linear combination chosen by the slots are linearly independent. Now, there

are ((qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)) ways of choosing k linearly independent combination of

the k elements in a finite field of size q. Thus, the probability that the elements can be recovered from the

database is much higher in the latter scenario. This is the key idea which is at the heart of the random linear

coding based protocol we present in this paper.

While the basic details of RLC based dissemination may make it believable that k messages can be

disseminated in Θ(k) rounds, a rigorous derivation poses quite a few technical challenges due to the distrib-

uted nature of the system. The proof relies on suitably modeling a time-varying Bernoulli process (where

each subsequent toss of a coin has a larger probability of getting a “head”) which we have not encountered

in the literature. We comment that the main contribution of the paper does not lie in proposing the notion

of random linear coding, rather in applying the notion to uncoordinated dissemination and demonstrating

the gains that can be had by rigorous analysis and simulations. We also provide lower bound on the dis-

semination time of a store and forward protocol called Random Message Selection or RMS. The protocol

is a distributed version of the famous coupon collector problem where the coupons are distributed in the

network. While the derivation of the lower bound relies on the idea behind the coupon collector problem,

we provide a rigorous derivation as we have not encountered a similar proof in the literature.

The rest of the paper is structured as follows. In Section 2, the model, the protocols considered are

described along with a few preliminaries. We state our main analytical results and also report our simulation

results in Section 3. In Section 4- 7, we provide detailed analysis of the different protocols considered in

this paper. We conclude in Section 8.
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2 Model, Protocols, and Preliminaries

2.1 Model and Protocols

Suppose there are n nodes and k messages. Initially, each node has one of the k messages indexed by the

elements in the set M = {m1,m2, . . . mk}. The nodes are indexed by elements of the set [n].

Assumption 1. (Initial Condition) Every node has only one out of the k messages initially. If Vmi is the set

of nodes that start out with the message mi ∈ M , we also assume |Vm1 | = |Vm2 | = ... = |Vmk
|,∀m ∈ M ,

i.e., each message is equally spread in the network to start with.

Our theoretical results are derived under this assumption, but we do not think that this assumption is too

restrictive as we show in our simulations. Suppose there are only k distinct messages at k nodes initially

and no messages with the other n − k nodes. Then there are two phases of message dissemination if all

the nodes require all the messages. The first phase ends when every node has at least one message and this

might take a time of around log2(n). The second phase starts once every node has at least one message and

ends with all the nodes having all the messages. Since disseminating k messages takes at least k rounds, for

k � log2(n), the second phase is the dominant phase. Our goal in this paper is to understand the message

dissemination time in the second phase (after an initial period of possibly log2(n) when all the nodes have

some message). Further since, all the messages are identical, Assumption 1 might be viewed as some kind

of “average behavior” once every node has some message. We comment that, when k is large, i.e., say

k = αn for some α ≤ 1, the results and the derivations in this paper can be easily extended for the case

when some nodes have more than one message and some have none, or when all the messages are there

with one particular node to start with. We are interested in obtaining the time required to disseminate all the

messages to all the nodes using a rumor mongering approach in the asymptote of large n and k.

Gossip Algorithms:

The system advances in rounds indexed by t ∈ Z+. The communication graph in round t, Gt, is obtained in

a randomized manner as follows. In the beginning of each round, each node u ∈ [n] calls a communication

partner v chosen uniformly from [n]. As proposed in [4], we consider two versions of the rumor mongering

model for message exchange.

Pull: In this model, a message is transmitted from a called node to the caller node according to a suitable

protocol we describe later. Thus, the communication process is initiated by the receiving node.
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Push: Here, the message is transmitted from a caller node to the called node. Thus, the communication

process is initiated by the transmitting node.

There can be other variants of these basic models, for instance, by combining push and pull as considered

in [11].

Gossip-Based Protocols:

Having described the model for communication graph in each round, we now describe two protocols or

strategies for transmitting a message. The protocols will be adopted by the caller node in the push model

and the called node in the pull model. Below we describe two protocols for message transmission we

consider in this paper.

Random Message Selection (RMS): This is a simple strategy, where the transmitting node simply looks

at the messages it has received and picks any of the messages with equal probability to transmit to the

receiving node. Thus, if Mv is the set of messages at node v, then v transmits a “random” message e

to its communicating partner, where

Pr(e = m) =
I(m∈Mv)

|Mv|
.

In the above I(m∈Mv) is the indicator variable of the event (m ∈Mv).

Random Linear Coding (RLC): Suppose the messages are vectors over the finite field Fq of size q ≥ k.

If the message size is m bits, this can be done by viewing each message as an r = dm/ log2(q)e

dimensional vector over Fq (instead of viewing each message as a m dimensional vector over the

binary field). To this end, let mi ∈ Fr
q (mi, i = 1, 2, . . . k, are the messages) for some integer r. Thus

the messages are over a vector space with the scalars in Fq. All the additions and the multiplications

in the following description are assumed to be over Fq. In the RLC protocol, the nodes start collecting

several linear combinations of the messages in M . Once there are k independent linear combinations

with a node, it can recover all the messages successfully. Let Sv denote the set of all the coded

messages (each coded message is a linear combination of the messages in M ) with node v at the

beginning of a round. More precisely, if fl ∈ Sv, where l = 1, 2 . . . |Sv|, then fl ∈ Fr
q has the form

fl =
k∑

i=1

alimi, ali ∈ Fq,

and further the protocol ensures that ali’s are known to v. This can be done with a minimal overhead

with each packet in a manner described soon.

7



Now, if the node v has to transmit a message to u, then v transmits a “random” coded message with

payload e ∈ Fr
q to u, where

e =
∑

fl∈Sv

βlfl, βl ∈ Fq (1)

and

Pr(βl = β) =
1
q
, ∀β ∈ Fq . (2)

For decoding purposes, the transmitting nodes also send the “random coding vectors” as overhead

with each packet. This can be achieved by padding an additional k log2 q bits with each message. To

see the precise structure of the overhead associated with a packet, note that the payload part of the

transmitted message e in (1) can be represented as follows:

e =
∑

fl∈Sv

βlfl

=
∑

fl∈Sv

βl

k∑
i=1

alimi (where ali ∈ Fq)

=
k∑

i=1

θimi (where, θi =
∑

fl∈Sv

βlali ∈ Fq)

It is the θi’s that are sent as overhead with the transmitted messages. Thus, once the βl’s are selected

in randomized manner according to (2), the transmitting nodes can precisely obtain the values of θi’s

(i = 1, 2 . . . k) and send as overhead. This overhead would clearly require a padding of additional

k log2(q) bits. We also call the overhead (θ1, θ2, . . . , θk) ∈ Fk
q , the transmitted “code-vector.” We

simply comment that, if the message size m� log2(q), then the overhead required with the protocol

is minimal. Note that the overload scales with the number of messages being spread simultaneously.

The field size q is a design parameter, on which we comment later in Section 3.

The decoding of the messages is not hard to see. In RLC approach, the nodes start collecting the

“code vectors” as the system progresses. Once the dimension of the subspace spanned by the received

“code vectors” at a node becomes k, then the node can recover all the messages.

We are interested in the finding the expected time (rounds) required for all the nodes to receive (decode)

all the messages, and also the time required to receive all the messages with high probability for four cases:

RLC with pull, RLC with push, RMS with pull, RMS with push.
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2.2 Notations and Preliminaries

Our analysis decomposes the system evolution into multiple phases. In many of the cases, we show that

the time spent in each phase can be accurately described by a random variable with discrete phase type

distribution. Below we provide the definition of such a random variable. The definition is presented in a

manner to serve our purposes.

Definition 1. (Discrete phase type distribution)

Consider a discrete time Markov Chain Xk on the state space A∪Z+, where A is the absorption state.

Also suppose X0 = 1 and the transition probability matrix P has a structure such that ps,r = 0 if r < s

or r > s + 1 for r, s ∈ Z+. Further suppose Ps,A > 0 and Pr(limk→∞Xk = A) = 1. Then, the random

variable T , defined by

T = inf{k : Xk = A}

has a discrete phase type distribution with parameters given by the transition probability matrix of the

underlying Markov chain. We call T the absorption time of the corresponding Markov chain.

For the Markov chain shown in Figure 5 (the given Markov Chain is useful to some of our later results

and so the figure is pushed to a later page), the time to reach the state A starting at state 1 at time zero, has

a discrete phase type distribution. Note that, a geometric random variable is a special case of the discrete

phase type distribution with ps,A = 1− ps,s+1 = p > 0.

We use the notation X ≺st Y for two random variables to imply that X is smaller than Y in a stochastic

ordering sense [17], i.e., Pr(X ≥ a) ≤ Pr(Y ≥ a) ∀ a. Sufficient conditions for X ≺st Y to hold are

provided in [17]. We also use the notation X ∼ Y to imply that the distribution of the random variables X

and Y are identical. Further, we use the standard abbreviations w.p. and a.s. to mean “with probability” and

“almost surely”, respectively.

Further, we use the notation Geom(p) for a geometric random variable with parameter p, i.e., Pr(Geom(p) =

k) = (1− p)k−1p for k ≥ 1. We also use the notation Bin(N, p) for a Binomial random variable with para-

meters N and p, i.e., number of heads in N tosses with a coin with probability of “head” p.

We comment that the underlying probability space has a probability measure determined by the random

communication graphs in each round and the random transmitted messages. By a natural abuse of termi-

nology, in our analysis and discussion of the RLC protocol, we also refer to “dimension of the subspace

spanned by the code-vectors received by the node” as “dimension of a node.” Throughout this paper, we

also use the terms “round” and “time” interchangeably.
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2.2.1 A useful result on the RLC protocol

We now state and prove a useful, but simple and intuitive result which is key to demonstrating the benefits

of the RLC protocol. In the following, we assume that a coded message is transmitted from node v to node

u. It is implicit that, with a “pull” mechanism u is the caller node, and with a “push” mechanism v is the

caller node.

Lemma 2.1. Suppose node v transmits a coded message to node w in a particular round using the RLC

protocol. Let S−u , S−w and S−v denote the subspaces spanned by the code-vectors with u, w, and v respec-

tively at the beginning of the round. Let S+
w denote the subspace spanned by w at the end of the round, i.e.,

after receiving a coded message from v according to the scheme described by the RLC protocol. Then,

a) Pr(S+
w * S−u |S−w ⊆ S−u , S−v * S−u ) ≥ 1− 1

q

b) Pr(dim(S+
w ) dim(S−w )|S−v * S−w ) ≥ 1− 1

q
,

where q is the size of the field.

Proof. The result is reminiscent of the Schwartz-Zippel lemma. However, the framework here is slightly

different. The result follows almost immediately from the fact that, if S−v * S−u , then S−v must have a

component orthogonal to S−u . We make this observation precise in the following. We will simply prove the

first part.

Consider the event S−v , * S−u , conditioned on which we want to calculate the probability. Clearly,

there exists {g1, g2, . . . , gl} ⊆ S−v (gi ∈ Fk
q ) such that each of the gi’s have a component orthogonal to the

subspace S−u . Let

gj = vj + uj ,

where 0 6= vj ⊥ S−u (and hence vj ⊥ S−w ) and uj ∈ S−u . Suppose, the called node v decides to send a coded

message to the caller node u in which gj is multiplied by a random element βj . Clearly,

l∑
j=1

βjvj 6= 0 ⇒ S+
w * S−u ⇒ dim(S+

w ) > dim(S−w ) . (3)

Since vi ∈ Fk
q , we can represent the vi’s as [v1, v2, . . . vl]t = A where A is an (l × k) matrix in Fq. Then∑l

j=1 βjvj = 0 iff

[β1, β2, . . . , βl]A = 0 .
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The preceding set of equations in βj’s has k equations and l variables and so it has at most ql−1 solutions in

Fq. Further since the βj’s are chosen at random,

Pr(
l∑

j=1

βjvj = 0) ≤ ql−1

ql
=

1
q

from which the result follows owing to (3).

3 Main Results of the Paper

We now describe the main results of the paper. The detailed analysis of each of the protocols leading to

these results are provided in the subsequent sections. The stated results will also be stated in a more detailed

form in the subsequent sections.

Our first result is on the performance of RLC with pull mechanism.

Theorem 3.1. Suppose q ≥ k. Let T
pull

RLC be the random variable denoting the time required by all the

nodes to get all the messages using an RLC approach with pull mechanism. Then, under Assumption 1,

T
pull
RLC ≤ 3.46k + O(

√
k ln(k) ln(n)), w.p. 1−O( 1

n)

Further, if T pull
RLC is the time required for a particular node to get all the messages, then

E[T pull
RLC ] ≤ 3.46k + O(

√
k ln(k) ln(n)) .

We also have a similar result with a push based mechanism.

Theorem 3.2. Suppose q ≥ max(k, ln(n)). Let T push
RLC be the random variable denoting the time required for

all the nodes to get all the messages using an RLC protocol with push mechanism. Then, under Assumption 1,

T
push
RLC ≤ 5.96k + O(

√
k ln(k) ln(n)), w.p. 1−O( 1

n)

If T push
RLC is the time required for a particular node to get all the messages with RLC based push, then

E[T push
RLC ] ≤ 5.96k + O(

√
k ln(k) ln(n)),

Remark 1. The following extensions of the results are routine.

1. Suppose k = αn and α < 1 is a fixed constant. If there is only one copy of each of the k messages

with k different nodes initially, so that there are some nodes with no messages, then one can show that

the dissemination time is asymptotically at most ck for a suitable constant c > 0.
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2. Suppose k = αn for some fixed α < 1, and suppose that initially there are k distinct messages at

a single node. Then, similar to Theorem 3.1 and 3.2, one can show that the dissemination time is

asymptotically at most c′k for a suitable constant c′ > 0.

3. If we simply restrict q to q ≥ k in Theorem 3.2, we can show that the dissemination time is less than

ck + O(
√

k ln(k) ln(n)) for a suitable c (larger than 5.96).

The next natural question is, what if the nodes do not manipulate the packets and simply store and

forward the packets? We show that, in one such protocol as we have described in the paper, which we

call RMS or “Random Message Selection,” one can do no better than the case when the messages are

disseminated in the network sequentially one after the other. While the protocol is simple, as we have not

encountered any careful stochastic analysis of such a protocol in the literature, we state and prove lower

bound based results of such a protocol. We use the notation T = Ω(n ln(n)) to imply T ≥ cn ln(n) for a

suitable constant c > 0.

Theorem 3.3. Suppose k = αn for some α ≤ 1, and let TRMSpull
k be the time required for all the nodes to

get all the k messages using an RMS protocol with pull mechanism. Then, we have

ETRMSpull
k = Ω(n lnn)

and

lim
k→∞

Pr
(
TRMSpull

k = Ω(n ln(n))
)

= 1

We also have a very similar result for RMS with a push based mechanism.

Theorem 3.4. Let k = αn for some α ≤ 1, and let TRMSpush
k be the time required for all the nodes to get

all the k messages using an RMS protocol with push mechanism. Then, we have

ETRMSpush
k = Ω(n ln(n))

and

lim
k→∞

Pr
(
TRMSpush

k = Ω(n ln(n))
)

= 1

A few comments are in order which we note below:

1. In gossip-based communication with one message, it takes Θ(ln(n)) time for complete dissemination

to occur with high probability. Thus, if the k messages are disseminated sequentially one after the

other, it will take Θ(k ln(n)) time to disseminate all the messages. According to our results, for
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k � (ln(n))3, the time to disseminate all the messages using RLC is asymptotically at most, 3.46k

with pull and 5.96k using push. Thus, an RLC based dissemination can provide substantial gains

(reduction in dissemination time by a factor of Θ(ln(n))) in message dissemination time when k is

larger than (ln(n))3. Depending upon the size of the network, the gain in dissemination time, which

is Θ(ln(n)), can be quite large. Further, since no protocol can disseminate the messages in time

less thn k, the asymptotic dissemination time of ck is order optimal. For smaller values of k when

k � (ln(n))2, the reduction in dissemination using RLC is at least a factor of c1

√
k/ ln(k) with push

and a factor of c2

√
k/ ln(k) with pull for suitable c1 and c2.

2. The notion of “rounds” or “discrete-time step” has to be interpreted suitably. One round of message

transfer from one node to another simply refers to one message transferred from one node to the

other. One might also consider using parallel channels between the nodes, in which case, there might

be multiple messages exchanged between two nodes in one time-step. We believe our results can be

suitably modified in such a scenario.

3. Note that, if there is no bandwidth constraint (i.e., if a transmitting node can transmit its entire data-

base) between two communicating nodes, the dissemination time is simply Θ(ln(n)) for any k. This

is since the system behaves as if there is only one message for which the dissemination time is

Θ(ln(n)) [11].

4. An interesting quantity is the total amount of information that is exchanged. Consider the regime

k � (ln(n))3. If each message is of size m bits, the total amount of information exchanged in the

RLC protocol with q ≈ k is less than cnk(m + k log2(k)) for some constant c > 0. In the case

of sequential dissemination (where messages are disseminated one after the other), this quantity is

c1nk ln(n)(m + log2(k)) (additional log2(k) bits for identifying each message) for some constant

c1 > 0. Further, any protocol will require at least nkm bits of transmission. Note that since m

is in bits, the additional overhead with RLC is roughly 100(k log2(k)/m)%, which is typically a

small quantity. For example, with k = 100, the overhead is 1% for m = 100 KB and it is 0.1% for

m = 1 MB. We simply note that the overhead does not grow with the size of the messages or available

bandwidth and simply depends on the number of messages that are to be disseminated simultaneously.

In any case, RLC is useful only when, k log2(k)� (size of each message in bits).

5. We would also like to point out that the main computational aspect of RLC is in the end of the

dissemination time and it takes O(k3) operations. This is typically not large for k ≤ 1000 and
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with modern processors. The computation involved for each message transmission is no more than

O(mk/(log2(q)) operations, where m is the size of a message. While this computation time is not

much for typical values of parameters and modern processors, whether this computation time is large

or small depends on the values of m, k and the processor 1. Our goal of this paper is more fundamental,

to show that RLC based message dissemination achieves the optimal dissemination time (in an order

sense) without requiring to exchange the list of messages.

The power of a coding based approach comes from the fact that packets are treated as algebraic entities

which can be operated upon.

Remark 2. The inherent advantage of RLC comes from “coding.” The RMS scheme cannot do as well even

if packets were chopped up into multiple parts, or multiple packets were combined into large packets. To see

this, suppose each packet of size m is chopped into r mini-packets of size m/r each. There are kr packets

in the system. Suppose, there are r mini-rounds within each round for the transmission of these min-packets.

The new RMS scheme will take Ω(kr ln(kr)) mini-rounds or equivalently time worth Ω(k ln(kr)) rounds

in the original scheme. Also, a very similar modification for RMS scheme can be done with combining a

fixed number of packets. Hence, splitting or combining packets cannot help the non-coding nature of RMS

scheme to achieve the optimal order attained by a coding based scheme.

The RLC scheme does perform better than the RMS scheme, but, we did not allow any overhead in the

RMS protocol. However, even if a minimal overhead is allowed in the RMS protocol, the protocol cannot

benefit from any possible extra information.

3.1 Simulation results

3.1.1 Comparison of RLC with RMS and sequential dissemination

In this section, we provide some simulation results with push based dissemination mechanism. The purpose

of the simulations is two-fold. First, we want to get a more accurate idea about the dissemination time (the

theoretical results simply provide an upper bound). Secondly, we wish to investigate if there are gains to be

had by using RLC for very small values of k.

In all our simulations, there are k nodes that start with k distinct messages and all the other n− k nodes

do not have any messages to start with (Note that the theoretical upper bounds are derived assuming every

node has some message initially as noted in Assumption 1). We also choose q = k in all the cases.
1for example, some back of the envelope calculations for m = 1 MB, k = 100, and a 1 GHz processor yields that this

computation time is of the order of a tenth of a millisecond
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Figure 2: Plots showing the dissemination time with RLC and RMS protocol for different values of n

(number of nodes) and k (number of messages). The underlying communication graph is complete, i.e.,

every node can pick any other node as its communication partner.

15



In Figure 2, we show the mean complete dissemination time with RLC and RMS protocol. The mean is

obtained by averaging the complete dissemination time (the time by which all the nodes get everything) over

100 runs. In the plots on the top panel of Figure 2, we show the how the dissemination time varies with the

number of nodes n, when the number of messages is k = n and k = n/2. The RLC protocol for message

dissemination far outperforms the RMS protocol. The RMS protocol also seems to perform identically to

sequential dissemination of the messages. In the bottom panel, we have also shown the plots when number of

messages k is fixed at two and four. The purpose of this paper is to explore whether a random linear coding

based protocol can be useful in disseminating messages simultaneously. Thus, the important question is

not whether RLC outperforms RMS or not, rather, whether simultaneous dissemination of the messages can

expedite the dissemination process or not. Consider the dissemination time with n = k = 32. The mean

dissemination time is around 45 rounds. As it is well known that disseminating a single message takes

around log2(n) + log2 log2(n) ≈ 7 rounds [11], disseminating k = 32 messages would take around 224

rounds if the messages are disseminated one after the other. Thus, simultaneous dissemination of messages

using RLC protocol reduces the time to less than one fourth (also note that the RMS protocol does no

better than sequential dissemination). A similar trend can be observed in the case n = 32 and k = 4. In

this case, the mean dissemination time of RLC protocol is around 13 rounds, whereas, disseminating the

messages one after the other would take around 28 rounds. Clearly, RLC protocol can provide appreciable

gains in dissemination time even for small number of messages. We again remind the reader that, RLC

protocol comes with a little overhead of k log2(k) additional bits per transmission, which, in all of the cases

considered in the simulations (i.e.,k ≤ 32), is at most 20 bytes. For most applications, the size of a message

is likely to be much larger than this. It appears based on some of the simulations we have done that, the

mean time to disseminate k messages is close to 1.5k + log2(n) when k nodes start with k messages and

other n − k do not have any messages to start with. Thus, the upper bound in the theoretical results are

overestimates.

Why does the RMS protocol perform badly and RLC do well? In RMS, since messages are picked at

random, more the messages are at a node, the more likely it is that the received message is already found at

the node. RLC protocol overcomes this in the following way. In this the nodes build up dimension of sub-

space spanned by the received code-vectors. By Lemma 2.1, the probability that the dimension increases

due to a newly received coded message does not go down as the dimension gets closer to k or full-rank. In

Figure 3, we show plots for the time taken for the dimension of the various nodes to increase to different

values. We show plots for nodes that take longest to receive the messages, nodes that take least amount of

time, and also for a typical node.
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Figure 3: Plot showing how the rank builds up in the RLC protocol

3.1.2 Comparison of RLC with a modified version of RMS

In this paper we demonstrate that, RLC based message dissemination can provide substantial gains over a

random message selection (RMS) based scheme or sequential dissemination. One natural comarison of RLC

based dissemination can be with the following modified version of RMS where node u, before transmitting

messages to v, seeks the list of messages v has, and then picks a message randomly from the ones u has

but v does not have. This modified version of RMS would require an extra round per message exchange

for the nodes to exchange the list of messages. In Figure 4, we compare RLC based dissemination with the

modified RMS. By taking into account the extra round required by this modified RMS, we can see that the

average dissemination time of an RLC based dissemination is less by a factor of two. In other words, the

results indicate that an RLC based dissemination achieves the exact effect of exchanging the list of messages

without having to do so!

Remark: The modified version of RMS described in this subsection is similar to the one used by bit-

torrent file sharing system. The analysis in this paper with RLC does not carry over directly to a bit-torrent

like message dissemination for the setting in this paper. In this paper, we have focused on disseminating

multiple messages among all the nodes. The problem is mostly motivated by earlier studies on gossip-based

message dissemination with one message, where the inherent assumption is that messages are disseminated
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Figure 4: Plots showing the dissemination time with RLC and a modified RMS protocol (where a transmit-

ting node randomly picks a message from the disjoint set of messages) for different values of n (number of

nodes) and k (number of messages). The underlying communication graph is complete, i.e., every node can

pick any other node as its communication partner.

sequentially. However, we would like to bring in attention the conference paper [1], where we have analyzed

a bit-torrent like RMS (the one pointed by the reviewer) with RLC and also with traditional erasure codes for

a disributed file storage system. The setting there is somewhat different as certain nodes wish to collect all

the pieces of a file and other nodes simply act as limited storage elements and are not interested in gathering

pieces of the file. The analysis in [1] show a clear advantage of an RLC based storage over bit-torrent like

RMS, namely, the fact that, the probability that a certain fraction, say x of download is completed after

contacting, say r storage elements, is siginificantly more than that of bit-torrent like RMS (the paper also

contains the analysis for a Reed-Solomon code like storage). Furthermore, RLC can also be used to provide

security (the details are in a submitted longer version of [1]).

3.2 Key idea behind the results using a mean-field approach

Before we proceed to analyze the protocols in detail, we provide an intuition behind our results, and also

comment on the analysis approach of the protocols. The argument in this subsection is not rigorous and far
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from formal, and is only to provide a heuristic behind the optimal order attained by RLC mechanism. In the

subsequent sections, we formally prove the results.

First consider the RMS protocol and let us concentrate on any particular node, u. Since u starts with

one message at round zero, in the initial rounds, any communication from some other node is very likely to

provide u with a new message. However, as u gathers more and more messages, any new message is more

and more likely to be something u already has (recall the famous coupon collector problem [5]). Indeed,

our proof of the result with RMS protocol shows that, the system takes Ω(k ln(k)) rounds just to receive the

last k/2 messages. Thus, the performance of the RMS protocol deteriorates once a node already has roughly

half the total messages.

Now consider the RLC protocol with push mechanism (a similar intuition can be given for the pull

model). As before concentrate on a particular node u. The node u keeps receiving code vectors and decodes

all the messages once the dimension of node u is k. Suppose the dimension of node u is i. We are interested

in finding an expression for the number of rounds for which u has dimension i. First, lets classify the nodes

as “helpful” and “unhelpful” as follows. We call a node “helpful” to u, if the subspace spanned by its code

vectors does not lie in that of u. Otherwise, a node is “unhelpful” to u. The first point to note is that, if u is

pushed by a helpful node, the conditional probability of node u increasing its dimension to i + 1 is at least

1− 1/q by Lemma 2.1. This is true for any unhelpful node as well, i.e., if any node that is unhelpful to u is

pushed by a node that is helpful to u, the unhelpful node increases its dimension (and also becomes a helpful

node, provided u has yet to increase its dimension) with probability at least 1 − 1/q. Let φ be the fraction

of helpful nodes when node u has dimension i for the first time. It is not hard to argue that φ ≥ (k − i)/k,

with equality corresponding to the case when node u has recovered i messages. This is because, if u has

recovered i messages, then there is at least the (k − i)/k fraction of nodes that started with the remaining

k− i messages. Let us divide the time spent by u at dimension i into two phases. The first phase ends when

φ becomes at least 1/2. The second phase starts at this point and ends when u increases its dimension. This

total time in the two phases will clearly give an upper bound on the time the node u spends at dimension i,

as it is possible that the dimension of u icreases from i before the first phase ends. Consider the first phase

that ends when the fraction of helpful nodes exceeds 1/2. Now, the number of unhelpful nodes pushed by

a helpful node is roughly proportional to the number of helpful nodes, which is nφ to start with (i.e., first

time u has dimension i). To see this, let there be r unhelpful nodes and (n − r − 1) helpful nodes, where

r/n > 1/2. Each unhelpful node is pushed by at least one helpful node with probability 1−(1−1/n)n−r−1

which is greater than (n − r − 1)/(2n). Thus, on an average the number of unhelpful node pushed by a

helpful node is greater than r(n− r− 1)/(2n) which is greater than (n− r− 1)/4 for r/n > 1/2. Thus, on
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average, roughly nφ(1 − 1/q)/4 unhelpful nodes become helpful nodes after one more round of message

exchange. Thus, we have after one additional round of message exchange

φ← φ + φ(1− 1/q)/4 = φ(5/4− 4/q) .

It follows that, the updated value of φ after an additional round of message exchange satisfies φ ≥ k−i
k (5/4−

4/q). Let us suppose q > 16. Thus, after r rounds of message exchanges φ becomes at least ((k −

i)/k)(5/4− 4/q)r. A simple calculation shows that, after roughly ln(k/(2(k − i))/ ln(5/4− 4/q) rounds

(this is the an upper bound on the length of the first phase), the fraction of helpful node becomes at least

1/2. At this point, the second phase starts with φ > 1/2. However, any helpful node can increase the

dimension of u with probability at least (1/n)(1− 1/q), since any helpful node communicates with u with

probability 1/n and increases the dimension with probability 1 − 1/q at least. Since there are at least n/2

helpful nodes now, the probability that u does not increase its dimension is at most (1− 1
n(1− 1

q ))
n
2 ≈ 1√

e

(for large n). Thus, once there are at least n/2 helpful nodes, the mean time for u to increase its dimension

is 1/(1−1/
√

e) which is the length of the second phase. Thus, on an average, the total time Ti that u spends

while it has dimension i is no more than the sum of the time it takes until there are n/2 helpful nodes, and

1/(1− 1/
√

e). Thus,

Ti ≤ ln(k/(2(k−i))
ln(5/4−4/q) + 1

(1−1/
√

e)

which implies

k−1∑
i=1

Ti ≤
k−1∑
i=1

ln(k/(2(k−i))
ln(5/4−4/q) + (k − 1)

√
e√

e−1

= ln(kk−1/(2k−1(k−1)!)
ln(5/4−4/q) + (k − 1)

√
e√

e−1

= O(k)

Thus, a mean-field argument indicates that RLC with push attains the optimal order. However, the pre-

ceding argument is far from rigorous and a rigorous analysis requires careful analysis of various stochastic

processes.

An almost similar heuristic can be provided for pull. The only difference is that, here we keep track of

the unhelpful nodes. More precisely, starting with the fraction of unhelpful nodes (1 − φ), after one more

round of message exchange, the fraction of unhelpful nodes becomes at most(1 − φ)2 + (1 − φ)φ(1/q).

The first term accounts for the event that an unhelpful node stays so if it pulls from another unhelpful node,

and the second term accounts for the event that even if an unhelpful node pulls from a helpful node, with
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probability at most 1/q (Lemma 2.1) it may not increase its dimension. Using this, we can find the time

after which there are at most n/2 unhelpful nodes.

We end this section with a few words on the proofs. Intuitively, for the first k/2 dimensions (or k/2

messages with RMS) any communication is likely to be helpful, with or without coding (RLC or RMS).

However, we show that, the benefits of a coding based approach remains until the dimension is almost

k, more precisely, until the dimension is k − Θ(
√

k ln(k)) using pull, and k − Θ(
√

k ln(k)) using push.

We show that it takes O(n) time for the dimension of a node to reach, k − Θ(
√

k ln(k)) using pull, and

k − Θ(
√

k ln(k)) using push. However, the time to increase the dimension by one cannot be worse than

the time to receive a message with a single message based dissemination which takes ln(n) rounds. Thus,

increasing the dimension from k −Θ(
√

k ln(k)) to k will take O(
√

n(ln(n)2) time in the worst case. Thus

its takes O(n) time to decode all the messages.

In light of the above discussion, we decompose our analysis of RLC protocol into three regimes:

when the dimension of a node is less than k/2, when the dimension of a node lies between k/2 and k −

Θ(
√

k ln(k)) (in a pull based approach), and when the dimension of a node is larger than k−Θ(
√

k ln(k))

(with pull). In the case of push, the term k −Θ(
√

k ln(k)) replaced by k −Θ(
√

k ln(k)).

We also analyze the RMS protocol which is a distributed version of the coupon collector problem.

In the coupon collector problem, there are k coupons and the coupons are drawn uniformly at random with

replacement until each coupon is drawn at least once. In our setting, by viewing each message as a coupon of

distinct kind, each node tries to collect the coupons by choosing a node at random in each round. Intuitively,

we are not likely to improve upon the number of drawings by distributing the coupons, and so the number of

rounds in RMS protocol until a node gets all the messages is at least k ln(k) which is the expected number

of drawings in the coupon collector problem. We formally show that, this is indeed the case, i.e. the RMS

does no better than the coupon collector problem.

The details of the analysis with the all the protocols are provided in the next few sections.

4 Random Linear Coding with “Pull”

Our first observation is that, once the dimension of the subspace spanned by the coded messages received

by a particular node becomes k, that node can recover all the messages successfully. We divide the time

required for any node to decode all the messages into k − 1 phases, where the index of a phase represents

the the dimension of the node. Thus, in the ith phase, the subspace spanned by the code-vectors received by

a node has dimension i.
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Let Ti be the random variable denoting the time spent in phase i by a typical node.

4.1 Stochastic bounds

We show that the random variable Ti can be upper bounded by an appropriate random variable with discrete

phase type distribution in a stochastic ordering sense.

To characterize the random variables Ti, we break up our analysis into three cases depending on whether

i ≤ k/2, k/2 < i < k − 14
√

k ln(k), or i ≥ k − 14
√

k ln(k). As explained before, when i ≤ k/2, every

transmission is likely to be helpful to a node in any case, and so coding does not provide substantial benefit.

In the case, k/2 < i < k−14
√

k ln(k), the benefits of the coding based approach show up. However, when

k/2 < i < k − 14
√

k ln(k), there may not be any additional benefits from coding, but, even under a worst

case assumption, it does not take much time to decode all the messages once in this regime.

For the case i ≤ k/2, we have a trivial stochastic upper bound on Ti from Lemma 2.1.

Lemma 4.1. For i ≤ k/2,

Ti ≺st Yi ,

where,

Yi ∼ Geom
(

1
2(1− 1

q )
)

.

Proof. Let Su(t) denote the subspace spanned by the code-vectors with node u at the beginning of round t.

Suppose that dim(Su(t)) = i. Also, let v be the node called by u in this round. The subspace spanned by

the code-vectors with node u at the end of the communication in round t is same as that in the beginning of

round t + 1 which we denote by Su(t + 1).

At the beginning of round t, let Eu(t) denote the nodes that cannot help u if called by u, i.e.,

Eu(t) = {v : Sv(t) ⊆ Su(t)}

We also denote the fraction of such nodes by hu(t)
4
= |Eu(t)|/n. Note that, by Lemma 2.1, we have,

hu(t) ≤ i/k. To see this, let Ij be the set of nodes that start with the message mj at time zero. Clearly,

∃(Il1 , Il2 , . . . Ilk−i
) such that Eu(t) ∩ Ilj = ∅, ∀j ≤ k − i. Otherwise, it follows from the definition of

Eu(t) that the node u will have access to at least i + 1 messages. Thus Eu(t) ⊆ E′
u(t) where

E′
u(t) = [n] \

k−i⋃
j=1

Ilj
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from which it follows that |Eu(t)| ≤ |E′
u(t)| = ni/k since |Ij | = n/k ∀j. Since u calls any node outside

Eu(t) with probability 1− |Eu(t)|/n, it immediately follows using Lemma 2.1 that

Pr(dim(Su(t + 1)) > dim(Su(t))) ≥ (1− |Eu(t)|
n )(1− 1

q )

≥ (1− i
k )
(
1− 1

q

)
≥ 1

2

(
1− 1

q

)
and hence the result.

The above calculation does not rely actually on the use of random coding which is the essence of

RLC protocol, and also does not work when i is close to k. We show that, in the regime k/2 < i <

k − 14
√

k ln(k), the advantage of a random coding based approach shows up very clearly.

Lemma 4.2. Suppose q ≥ k. Then, for k/2 ≤ i ≤ k − 14
√

k ln(k),

Ti ≺st Yi ,

where, Yi is a discrete phase type distribution on the finite state space {1, 2, 3, . . . si} with transition prob-

ability structure given by

ps,s+1 = (1− 1
n3 )(1− ps,A), s ≤ si (4)

ps,A = (1− hs)(1− 1
q ), s ≤ si (5)

psi,A = 1− psi,si = 1
2(1− 1

q ) (6)

where

hs = ( i
k )2

s

(
(1 + 1

q )(1 + 7
√

ln(n)
n )

)2s−1

(7)

and

si = min{s : hs ≤ 1
2} .

The Markov Chain corresponding to the discrete phase type distribution of Yi is shown in Figure 5.

Proof. Let t be the first time (round) at which the node u has dimension i. Let t + Ti be the first time when

the dimension of of the node u increases from i.

Let Sv(s) be the subspace spanned by the code-vectors at node v in the beginning of round s. At the

beginning of round s, let Eu(s) be the nodes which cannot help u if called by u in round s, i.e.,

Eu(s) = {v : Sv(s) ⊆ Su(s)}

23



Figure 5: The first time to reach the state A in the Markov Chain gives an upper bound (in a stochastic

order sense) on the time spent by a node while the dimension is i. The values of ps,A are given by (4)-(6) in

Lemma 4.2, and given by (11)-(13) in Lemma 5.3.

We also denote the fraction of such nodes by hu(s) so that hu(s) = |Eu(s)|/n. We denote by pu(s) the

probability that the dimension of node u remains i after one round of message exchange in the sth round,

i.e.,

pu(s) = Pr(dim(Su(s + 1)) = i|dim(Su(s)) = i) .

Note that, we have from Lemma 2.1,

pu(s) ≤ 1− (1− hu(s))(1− 1
q ) , (8)

since the dimension of node u increases with probability at least (1 − hu(s))(1 − 1
q ) if all the nodes are

equally likely to be called with a pull mechanism.

We first note that hu(t) ≤ i/k upon using the argument in the proof of Lemma 4.1 (note that this is a

worst case assumption when dim(Su(t)) = i corresponds to u decoding i messages). We clearly have

pu(t) ≤ 1− (1− i
k )(1− 1

q )
4
= pu(t) .

In other words, pu(t) denotes the maximum probability of not increasing the dimension after the first time

the dimension of a node is i.
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We now proceed to obtain hu(t + 1) and hence pu(t + 1), i.e. the probability of not increasing the

dimension in round t + 1, given that the node u could not increase its dimension in round t. Let Nt be the

event that the node u fails to increase its dimension at the end of round t.

Claim 4.1. If i
k ≥

1
2 , then

hu(t + 1) ≤ ( i
k )2(1 + 1

q )(1 + εn)
4
= h1 , w.p. 1− 1

n3

where εn = 7
√

ln(n)/n, and h2 is given by (7). Thus, from (8),

pu(t + 1) ≤ 1− (1− h1)(1− 1
q ) < pu(t), w.p. 1− 1

n3 .

Proof. We clearly have,

Pr(v ∈ Eu(t + 1)|v ∈ Eu(t),Nt) ≤ pu(t)

The above follows from observing that, if v ∈ Eu(t), then the node v increases its dimension at the end of

round t with probability at least 1− pu(t). It follows that,

|Eu(t + 1)| | Nt ≺st Bin(|Eu(t)|, pu(t)) ≺st Bin(ni
k , pu(t)) , (9)

since |Eu(t)| ≤ ni/k .

Now, applying a Chernoff bound for Binomial random variable, we have

Pr(hu(t + 1) ≥ i
kpu(t)(1 + ε))

= Pr(|Eu(t + 1)| ≥ ni
k pu(t)(1 + ε)|Nt)

≤ Pr(Bin(
ni

k
, pu(t)) ≥ ni

k pu(t)(1 + ε)) (from (9))

≤ exp(− ε2nipu(t)
4k )

The last step is a standard application of Chernoff bound for a Binomial random variable. Note that, i/k ≥

1/2 and pu(t) ≥ 1 − (1/2)(1 − 1/q) ≥ 1/2, and hence, by choosing, ε = εn = 7
√

ln(n)/n, we have

ε2nipu(t)/4k ≥ 3 ln(n) from which it follows that

Pr(hu(t + 1) ≤ i
kpu(t)(1 + εn)) ≥ 1− 1

n3

Further, observe the following.

hu(t + 1) ≤ i
kpu(t)(1 + εn)

⇒ hu(t + 1) ≤ i
k (1− (1− i

k )(1− 1
q ))(1 + εn)

= (( i
k )2 + i

k (1− i
k )1

q )(1 + εn)

= ( i
k )2(1 + 1

q )(1 + εn) = h1 (by (7))
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Further, as we have argued earlier, we also have that,

pu(t + 1) ≤ 1− (1− hu(t + 1))(1− 1
q ) < 1− (1− h2)(1− 1

q ) .

The upper bound is useful so long as hu(t + 1) < 1 which is guaranteed if

i
k (1 + 1

q )(1 + εn) < 1

which is true as long as
i
k < (1− 1

q )(1− εn)

which is further implied by
i
k ≤ 1− 2εk . (10)

The inequality (10) is trivially true in the regime i ≤ k − 14
√

k ln(k). Claim 4.1 is thus proved.

The above calculation can be extended to calculate pu(t + 2), i.e., the probability of node u increasing

its dimension in round t + 2 provided it has not done so at the end of round t + 1. More precisely, we can

show that

hu(t + 2) ≤
(

i
k

)4 (1 + 1
q )3(1 + εn)3

and so on so forth for t + 3, t + 4, . . . so long as the worst case upper bound on hu(·) is larger than 1/2.

Note that, the quantities hs defined in the statement of Lemma are precisely the upper bounds on hu(t + s).

Thus, we have shown that the node u starts with a success probability (probability that the dimension

increases from i) with at least (1 − h1)(1 − 1/q). If node u fails to increase its dimension from after one

round of message exchange, with a probability of at least (1 − 1/n3) the system reaches a state at which

the success probability becomes at least (1− h2)(1− 1/q) , and so on so forth until the success probability

becomes (1/2)(1 − 1/q) (which happens when hs ≤ 1/2). Thus a discrete phase type distribution with

transition probability as given in the Lemma provides a stochastic upper bound on the random variable Ti.

We now proceed to analyze the regime i ≥ k − 14
√

k ln(k) when there may not be much benefit

provided by a coding based approach. In the regime, i ≥ k − 14
√

k ln(k), we note than Ti cannot be

“worse” than the time taken to disseminate a single message in the whole network using a pull mechanism

which is ln(n) w.h.p. We have the following result in this regime.

Lemma 4.3. For i ≥ k − 14
√

k ln(k) and n large enough,

Ti ≺st

sn∑
j=1

Gj +
rn∑

j=1

Hj + Geom(1
2(1− 1

q )) ,
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where Gj’s are iid with Gj ∼ Geom(1−
√

0.4), and H ′
js are iid with Hj ∼ Geom(0.4)2 , sn = ln(n) and

rn = ln(n/2)
ln(4/3) .

The proof is almost identical to pull with a single message. We provide the proof in the Appendix for

completeness.

4.2 Upper bound on mean and high probability bound

Lemma 4.4. For i ≤ k/2,

E[Ti] ≤
2q

q − 1
.

Further
k/2∑
i=1

Ti ≤
q

q − 1
(k + 4 ln(n) + 2

√
k ln(n)), w.p. 1−O( 1

n2 )

The proof follows from Lemma 4.1 by an application of Chernoff bound for Geometric random variables

and is relegated to the appendix.

We have a similar resulting the regime k/2 < i < k − 14
√

k ln(k).

Lemma 4.5. For k/2 < i < k − 14
√

k ln(k), we have

E[Ti] ≤
2q

q − 1
+ 1 + log(ln(2))− log

(
ln(k′

i )
)

+ O( 1
n2 ),

where k′ = k − 14
√

k ln(k). Further,

1.
k−14
√

k ln(k)∑
i=k/2

E[Ti] ≤ k
2 ( 2q

q−1 + 1 + log(ln(2)) + 1+ln(2)
ln(2) ) + O(

√
k ln k)

2.
k−14
√

k ln(k)∑
i=k/2

Ti ≤ k
2 (1 + log(ln(2)) + 1+ln(2)

ln(2) + 2q
q−1) + O(ln(n)) + O(

√
k ln(n)), w.p. 1−O( 1

n2 )

Again, the proof follows from Lemma 4.2 by standard application of Chernoff bound for Geometric

random variables and is relegated to the appendix.

Lemma 4.6. For i > k − 14
√

k ln(k), we have

1. ETi = O(ln(n))

2.
∑

i>k−14
√

k ln(k)

Ti = O(
√

k ln(k)(ln(n)), w.p. 1−O( 1
n2 ) .

2Instead of 0.4, any quantity slightly smaller than 0.5 works just as well
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The proof the above is relegated to the apendix.

We now prove the following from which Theorem 3.1 follows immediately.

Theorem 4.1. Using an RLC approach and with q ≥ k, we have,

k∑
i=1

E[Ti] ≤ k( 2q
q−1 + 1+log(ln(2))+(1+ln(2))/ ln(2)

2 ) + O(
√

k ln k ln(n)) ≤ 3.46k + O(
√

k ln(k) ln(n)) ,

and

T
pull
RLC ≤ 3.46k + O(

√
k ln(k) ln(n)), w.p. 1−O( 1

n)

Proof. Combine Lemma 4.4, 4.5, and 4.6 to show that

∑
i

Ti ≤ k( 2q
q−1 + 1+log(ln(2))+(1+ln(2))/ ln(2)

2 ) + O(
√

k ln(k) ln(n)) w.p. 1−O(1/n2)

≤ 3.46k + O(
√

k ln(k) ln(n)) w.p. 1−O(1/n2).

If T
j denotes the time required for the jth node to decode all the messages, clearly T

j ∼
∑

i Ti = O(n)

w.p. 1−O(1/n2). Further, T
pull
RLC = T

1 ∨ T
2 ∨ T

3
. . . T

n. However, it is easy to argue that

Pr(T 1 ∨ T
2 ∨ T

3
. . . T

n
< x) >

n∏
j=1

Pr(T j
< x) =

(
Pr(

k−1∑
i=1

Ti < x)

)n

since Pr(T 1
< x|T 2

< x) > Pr(T 1
< x) trivially. It follows that, if each of T

j satisfies the upper bound

w.p. 1−O(1/n2), T
pull
RLC too satisfies the upper bound w.p. (1−O(1/n2))n = 1−O(1/n).

5 Random Linear Coding with “Push”

We continue to use the same notation as in Section 4. Again, we denote by Ti the time spent by a node when

it has a dimension i.

5.1 Stochastic bounds

We first derive a key lemma which will be used repeatedly in all our proofs in this subsection.

Lemma 5.1. Suppose q ≥ max(k, ln(n)). Let S−u and S+
u be the subspaces spanned by the code-vectors

with node u at the beginning and the end of a typical round, respectively. At the beginning of the round, let

Eu be the set of nodes that cannot help node u, i.e.,

Eu = {v : S−v ⊆ S−u }
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and let hu denote the fraction of these nodes, so that hu = |Eu|/n. Then, for all n ≥ n0 (for a suitable

constant n0), with a push based mechanism under RLC protocol,

Pr(dim(S+
u ) = dim(S−u )) ≤

(
2
5

)1−hu

Proof. Note that, if a node v ∈ Eu pushes to node u (which happens with probability 1/n), then, node

u increases its dimension with probability at least 1 − 1/q by Lemma 2.1. Thus, v ∈ Eu increases the

dimension of u with probability at least (1/n)(1− 1/q). We thus have,

Pr(dim(S+
u ) = dim(S−u ))

= Pr(∩v∈Eu
{v does not increase the dimension of node u})

=
(
1− Pr(any node v ∈ Eu increases the dimension of u)

)|Eu|

≤
(
1− 1

n(1− 1
q )
)|Eu|

≤
(
1− 1

n + 1
n ln(n)

)n−|Eu|
(∵ q ≥ ln(n))

≤
(
1− 1

n + 1
n ln(n)

)(n(1−hu))
.

It can be shown that the quantity (1− 1/n + 1/(n ln(n))n is decreasing for large n, and further, for n large

enough (
1− 1

n + 1
n ln(n)

)n
≤ 2

5

In fact, the quantity 2/5 can be replaced by any quantity strictly larger than 1/e. The result thus follows.

We decompose our analysis into three regimes, i ≤ k/2, k/2 < i < k−
√

k ln(k), and i ≥ k−
√

k ln(k).

For the case i ≤ k/2, we have a trivial stochastic upper bound on Ti from Lemma 2.1 and Lemma 5.1.

Lemma 5.2. For i ≤ k/2, and n large enough (i.e., ∀n ≥ n0 for some n0),

Ti ≺st Yi ,

where,

Yi ∼ Geom
(

1−
√

2
5

)
,

Proof. Consider a time instant t and let Su(t) be the subspace spanned by the code-vectors received by node

u at the beginning of round t. Let dim(Su(t)) = i and let Eu(t) be the nodes that cannot help u, i.e.,

Eu(t) = {v : Sv(t) ⊆ Su(t)}

29



and let hu(t) = |Eu(t)|/n. Using an argument, similar to the one in the proof of Lemma 4.1, we have

hu(t) ≤ i

k

For n large enough, it immediately follows using Lemma 5.1 that

Pr(dim(Su(t + 1)) = dim(Su(t))) ≤
(

2
5

)1−hu ≤
(

2
5

)((k−i)/k) ≤
√

2
5

In the regime k/2 < i < k −
√

k ln(k), we have the following.

Lemma 5.3. For k/2 < i ≤ k −
√

k ln(k),

Ti ≺st Yi ,

where, Yi is a discrete phase type distribution on the finite state space {1, 2, 3, . . . si} with transition prob-

ability structure given by

ps,s+1 = (1− 1
n3 )(1− ps,A), s ≤ si (11)

ps,A = 1−
(

2
5

)1−hs , s ≤ si (12)

psi,A = 1− psi,si = 1−
√

2
5 , (13)

where

hs = 1− (1 + γ)s
(

k−i
k

)
, (γ = 0.23)

and

si = min{s : hs ≤ 1
2} .

The Markov Chain corresponding to the discrete phase type distribution of Yi is shown in Figure 5.

Proof. The proof starts along the lines of the proof of Lemma 4.2 but there are some key differences because

we are dealing with a push mechanism here. As before, let t be the first time at which the node u has

dimension i. Let Ti + t be the first time when the dimension of of the node u increases from i.

We continue to use the notation as before. To remind the reader, let Sv(s) be the subspace spanned by

the coded messages with node v at the beginning of round s. Let Eu(s) be the nodes which cannot help u if

they call u at the beginning of round s, i.e.,

Eu(s) = {v : Sv(s) ⊆ Su(s)}
3In fact any quantity slightly smaller than ln(5/2)

4
serves our purpose
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We also denote the fraction of such nodes by hu(s) so that hu(s) = |Eu(s)|/n. We denote by pu(s) the

probability that the dimension of node u remains i after one round of message exchange in the sth round,

i.e.,

pu(s) = Pr(dim(Su(s + 1)) = i|dim(Su(s)) = i) .

We first note that hu(t) ≤ i/k upon using the argument in the proof of Lemma 4.1 (note that this is

a worst case assumption when dim(Su(t)) = i corresponds to u decoding i messages). We have from

Lemma 5.1 that,

pu(t) ≤
(

2
5

)1−hu(t) ≤
(

2
5

)1−(i/k) 4= pu(t) .

We now proceed to obtain hu(t + 1) and hence pu(t + 1), i.e., given that the node u could not increase

its dimension in round t, the probability of not increasing the dimension in round t + 1. LetNt be the event

that the node u does not increase its dimension at the end of round t. We need to introduce some notation

here. Let r = |Eu(t)| and y = n− r. Let us index the nodes in Eu(t) by l1, l2 . . . lr where r = |Eu(t)|. We

introduce the following 0− 1 random variables.

Zli =


1, if li ∈ Eu(t + 1) |li ∈ Eu(t),

0, else, i.e., if li ∈ Eu(t + 1) |li ∈ Eu(t).

Note that, |Eu(t + 1)| =
∑|Eu(t)|

j=1 Zlj . However, the random variables Zlj ’s are not independent, unlike

the “pull” case. However, Zlj ’s are negatively correlated and so we can still apply the Chernoff bound for

appropriate Binomial random variables. More precisely, we may prove the following.

Claim 5.1. For all n ≥ n0 (for a suitable n0),

E

exp(θ
r∑

j=1

Zlj )

 ≤ E [exp(θX)] , ∀ θ > 0

where,

X ∼ Bin (r, pu(t))

It thus follows that a Chernoff-bound on the upper-tail of
∑r

j=1 Zlj can be bounded from above by a

Chernoff-bound on the upper tail of X .

Proof. We want to show that the random variables Zlj ’s are negatively correlated. To this end, we first

compute E[ZlmZlj ]. First, we note that

E[Zlj ] =
(
1− 1

n + 1
nq

)y
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upon using the argument in the proof of Lemma 5.1. Next note that,

E[ZlmZlj ] = Pr(Zlm = 1, Zlj = 1)

=
∑

r1+r2≤y

Pr(lm is pushed by r1 nodes in Eu(t), lj is pushed by r2 nodes in Eu(t))

× Pr(Zlm = 1, Zlj = 1 | lm is pushed by r1 nodes in Eu(t), lj is pushed by r2 nodes in Eu(t))

≤
∑

r1+r2≤y

Pr(lm is pushed by r1 nodes inEu(t), lj is pushed by r2 nodes inEu(t))
1

qr1+r2

Observe that,

Pr(lm is pushed by r1 nodes in Eu(t), lj is pushed by r2 nodes in Eu(t))

=
y!

r1!r2!(y − r1 − r2)!
(n− 2)y−(r1+r2)

ny

which follows from simple combinatorial considerations. It follows that,

E[ZlmZlj ] ≤
∑

r1+r2≤y

y!
r1!r2!(y − r1 − r2)!

(
1− 2

n

)y−(r1+r2) 1
(nq)r1+r2

=
(
1− 2

n + 2
nq

)y
(using multinomial expansion)

≤
(
1− 1

n + 1
nq

)2y
.

We thus have,

E[
r∑

j=1

Zlj ]
2 ≤ rE[Z2

l1 ] + r(r − 1)E[Zl1Zl2 ]

≤ r
(
1− 1

n + 1
nq

)y
+ r(r − 1)

(
1− 1

n + 1
nq

)2y

= E[
r∑

j=1

Xlj ]
2 ,

where Xlj ’s are iid 0 − 1 Bernoulli random variables with mean (1 − 1/n + 1/(nq))y. A very similar

calculation yields,

E[Zl1Zl2Zl3 . . . Zlm ] ≤
(
1− 1

n + 1
nq

)my
, ∀m ≥ 1 (14)

Further, since Zlj ’s are 0− 1 random variable, it follows from (14) that, for all positive integers c,

E[
r∑

j=1

Zlj ]
c ≤ E[

r∑
j=1

Xlj ]
c ,
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where Xlj are iid 0−1 Bernoulli random variables with mean (1−1/n+1/(nq))y. Thus E[exp(θ
∑r

j=1 Zlj )] ≤

E[exp(θ
∑r

j=1 Xlj )] for θ ≥ 0. We further have(
1− 1

n + 1
nq

)y

≤
(
1− 1

n + 1
n ln(n)

)(n(k−i)/k)

≤
(

2
5

)(k−i)/k
, for n large enough

and thus
∑r

j=1 Xlj ≺st Bin(r, (2
5)(k−i)/k). Claim 5.1 thus follows.

We now have the following bound on hu(t + 1).

Claim 5.2. For n large enough and i
k ≥

1
2 ,

hu(t + 1) ≤ 1− (1 + γ)k−i
k , w.p. 1− 1

n3

where γ = 0.2. It follows from Lemma 5.1 that,

pu(t + 1) ≤
(

2
5

)(1+γ)
k−i
k

Proof. We have that

|Eu(t + 1)| | Nt ∼
r∑

j=1

Zlj

Now, applying a Chernoff bound for Binomial random variable, we have,

Pr(|Eu(t + 1)| ≥ ni
k pu(t)(1 + ε)|Nt) (15)

≤ inf
θ>0

E(exp(θ
∑r

j=1 Zlj )

exp(θni
k pu(t)(1 + ε))

≤ inf
θ>0

E(exp(θ
∑ni/k

j=1 Xlj )

exp(θni
k pu(t)(1 + ε))

(appealing to Claim 5.1,
∑

j

Xlj ∼ Bin(ni
k , pu(t)))

≤ exp(− ε2nipu(t)
4k )

where the last step follows from the fact that the infimizing θ in the second last step precisely corre-

sponds to the Chernoff bound for Pr(Bin(ni/k, pu(t)) ≥ ni
k pu(t)(1 + ε)). Note that, i/k ≥ 1/2 and

pu(t) = (2/5)(k−i)/k ≥
√

2/5 (since i > k/2), and hence, by choosing, ε = εn = 7
√

ln(n)/n, we have

ε2npu(t)/2 ≥ 3 ln(n) from which it follows that

Pr(hu(t + 1) ≤ i
kpu(t)(1 + εn)) ≥ 1− 1

n3
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Further observe the following.

hu(t + 1) ≤ i
kpu(t)(1 + εn)

⇒ hu(t + 1) ≤ (1− k−i
k )
(

2
5

)(k−i)/k (1 + εn)

≤
1− k−i

k

1 + β k−i
k

(1 + εn)

(
β = ln(5

2), ∵
(

2
5

)(k−i)/k
<

1
1 + ln(5

2)k−i
k

)
≤ (1− k−i

k )(1− β
2

k−i
k )(1 + εn) (∵ 1

1+x ≤ 1− x
2 for 0 ≤ x ≤ 1)

≤ (1− k−i
k (1 + β

2 ) + β
2 (k−i

k )2)(1 + εn)

≤ (1− k−i
k (1 + β

2 −
β
4 ))(1 + εn) (∵ k−i

k ≤
1
2)

≤ 1− (1 + β
4 )k−i

k + k−i
k

k
k−iεn

≤ 1− (1 + β
4 )k−i

k + k−i
k

k√
k ln(k)

εn (∵ k − i ≥
√

k ln(k))

≤ 1− (1 + β
4 )k−i

k + k−i
k

7√
ln(n)

≤ 1− (1 + β
4 − δ)

(
k−i
k

)
,

where δ can be chosen as arbitrarily small for large enough n. More precisely, since β/4 ≈ 0.24, we can

choose n large enough so that β/4− δ = γ = 0.2, say. We thus have,

hu(t + 1) ≤ i
kpu(t)(1 + εn) (16)

⇒ hu(t + 1) ≤ 1− (1 + γ)k−i
k (γ = 0.2)

Claim 5.2 thus follows.

In effect, we have shown that, if node u fails to increase its dimension from i after one more round of

message exchange, with a probability of at least (1−1/n3) the system reaches a state in which 1−hu(t+1) ≥

(1 + γ)(k − i)/k and the corresponding success probability in round t + 1 immediately follows from

Lemma 5.1. If the dimension of the node u does not increase at the end of round t + 1, a similar calculation

yields 1 − hu(t + 2) ≥ (1 + γ)2(k − i)/k with probability at least 1 − 1/n3, and so on so forth until

the upper bound on hu(·) is less than 1/2. Thus a discrete phase type distribution with the given transition

probabilities provides a stochastic bound (in a stochastic order sense) on the random variable Ti.

In the regime, i ≥ k−
√

k ln(k), we note than Ti cannot be “worse” than the time taken to disseminate a

single message in the whole network using a pull mechanism which is ln(n) w.h.p. We have the following

result in this regime.
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Lemma 5.4. For i ≥ k −
√

k ln(k),

Ti ≺st

sn∑
j=1

Hj + Geom(1−
√

2
5) ,

where G′js are iid with distribution Geom(0.5), H ′
js are iid with distribution Geometric(θ) for some θ ∈

(0, 1) and for large enough n. Further rk = log(1+γ)(n) (γ = 0.2).

The proof is not much different from that of a single message with a push mechanism. We provide a

sketch of the proof in the Appendix, which is slightly different from the proof of Lemma 4.3.

5.2 Upper bound on mean and high probability bound

Lemma 5.5. For i ≤ k/2,
k/2∑
i=1

E[Ti] ≤
k/2

1−
√

2/5
≤ 1.36k .

Further
k/2∑
i=1

Ti =
q

q − 1
(k + 4 ln(n) + 2

√
k ln(n)), w.p. 1−O( 1

n2 )

Proof. Similar to the proof of Lemma 4.4

We have the following in the regime k/2 < i < k −
√

k ln(k).

Lemma 5.6. For k/2 < i < k −
√

k ln(k), we have

E[Ti] ≤
1

1−
√

2
5

+ 1 +
ln(k)− ln(2(k − i))

ln(1 + γ)
+ O( 1

n2 )

Further,

1.
k−
√

k ln(k)∑
i=k/2

ETi ≤ k
2 ( 1

1−
√

2/5
+ 1 + 1

ln(1+γ)) ≤ 4.6k

2.
k−
√

k ln(k)∑
i=k/2

Ti = 4.6k + O(ln(n)) + O(
√

k ln(n))), w.p. 1−O( 1
n2 )

Proof. Please see the proof of Lemma 4.5.

Lemma 5.7. For i > k −
√

k ln(k), we have

1. ETi = O(ln(n))
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2.
∑

i>k−
√

k ln(k)

Ti = O(
√

k ln(k) ln(n)), w.p. 1−O( 1
n2 ) .

Proof. Please see the proof of Lemma 4.6

We now have all the ingredients to prove Theorem 3.2, which we restate below for convenience.

Theorem 5.1. Using an RLC approach, we have,

ET push
RLC ≤ 5.96k + O(

√
k ln(k) ln(n)) ,

and

T
push
RLC = 5.96k + O(

√
k ln(k) ln(n)), w.p. 1−O( 1

n)

Proof. Combine Lemma 5.5, 5.6, and 5.7 with minor additional arguments as in the proof of Theorem 4.1.

6 Random Message Selection with “Pull”

In this case, we divide the time required for all the nodes to receive all the messages into k−1 phases, where

the ith phase corresponds to the minimum number of messages received by the nodes in the network being

i. Let Ti be the random variable denoting the time spent in phase i. Denote by TRMS the total time taken

by by all the nodes to receive all the messages. Note that, phase in this case refers to state of all the nodes,

whereas, phase in the RLC approach refers to a state of any particular node.

Lemma 6.1. For i > k/2,

Ti �st Geom
(

k−i
i

)
Proof. Let S−v denote the set of all the messages with v at the beginning of a round. Let i = minv∈[n] |S−v |

and WLOG arg minv∈[n] |S−v | = u. Let

ps = Pr(|S+
u | > |S−u |) ,

where S+
u is the set of messages with the node u after one more round of message exchange. Note that,

ps =
1
n

∑
v∈[n]

|S−v \ S−u |
|S−v |

= 1− 1
n

∑
v∈[n]

|S−v ∩ S−u |
|S−v |
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where the first step follows from the fact that each node transmits any of the messages it has with equal

probability in an RMS approach. Further since,

|S−v ∩ S−u | ≥ |S−v |+ |S−u | − k

we have

|S−v ∩ S−u |
|S−v |

≥ |S
−
v |+ |S−u | − k

|S−v |

= 1− k − i

|S−v |

≥ 1− k − i

i

where the last step follows using |S−v | ≥ i in the ith phase. Clearly,

ps ≤ min(1, k−i
i ) .

Since, p1 ≤ p2 implies Geom(p2) ≺st Geom(p1), the result follows.

We are now in a position to prove Theorem 3.3 which we restate below.

Theorem 6.1. Suppose k = αn. We then have

1.
k−1∑

i=k/2

ETi = Ω(n lnn)

2. limk→∞ Pr
(∑k−1

i=k/2 Ti = Ω(k ln(k))
)

= 1

Proof. Note that,
k−1∑

i=k/2

i

k − i
= −k

2
+ k

k−1∑
i=k/2

1
k − i

≈ k ln(k)
2

.

which is Ω(n lnn) (since n = αk). For the second part, consider the random variable

Sk =

∑k−1
i=k/2(Yi − EYi)

k ln(k)
,

where Yi ∼ Geom((k − i)/i) and Yi’s are independent. As Ti �st Yi from Lemma 6.1, it follows that

Var(Yi) = ( i
k−i)

2 − i
k−i

from which it can be shown through some algebraic manipulations that

k−1∑
i=k/2

Var(Yi) ≤ ξk2
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for a suitable constant ξ > 0. We thus have,

Var(Sk) ≤
ξ

(ln(k))2
→ 0

and hence Sk → 0 in probability as k →∞. We thus have for any given δ > 0,

Pr(
∑

i

Yi ≥
∑

i

E[Yi]− δk ln(k))→ 1

and the result follows since
∑

i Ti �st
∑

i Yi.

7 Random Message Selection with “Push”

In this case, we divide the time required for all the nodes to receive all the messages into k−1 phases, where

the ith phase corresponds to the minimum number of messages received by the nodes in the network being

i. Let Ti be the random variable denoting the time spent in phase i. Denote by TRMS the total time taken

by all the nodes to receive all the messages. Note that, phase in this case refers to state of all the nodes,

whereas, phase in the RLC approach refers to a state of any particular node.

Lemma 7.1. For i > k/2,

Ti �st Geom
(

k−i
i

)
Proof. The proof follows along the similar lines as in the proof of Lemma 6.1. We simply point the minor

differences in the argument due to the “push” mechanism.

As before, let S−v denote the set of all the messages with v at the beginning of a round. Let i =

minv∈[n] |S−v | and WLOG arg minv∈[n] |S−v | = u. Let

ps = Pr(|S+
u | > |S−u |) ,

where S+
u is the set of messages with the node u after one more round of message exchange. Further, let pv

denote the probability that node u gets a new message from node v. Clearly,

pv =
1
n

|S−v \ S−u |
|S−v |

,

since node v calls node u with probability 1/n. Using an argument similar to the proof of Lemma 6.1, we

have

pv =
1
n

|S−v \ S−u |
|S−v |

≤ 1
n

k − i

i
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Further, note that,

ps = 1−
∏

v∈[n]

(1− pv)

≤ 1−
∏

v∈[n]

(1− k−i
in )

= 1− (1− k−i
in )n

≤ k−i
i (∵ (1− x)n ≥ 1− nx, for 0 < x < 1)

The result thus follows from the fact that, p1 ≤ p2 implies Geom(p2) ≺st Geom(p1).

We have the following result which can be proved in exactly the same manner as Theorem 6.1.

Theorem 7.1. Suppose k = αn. We then have

1.
k−1∑

i=k/2

ETi = Ω(n lnn)

2. limk→∞ Pr
(∑k−1

i=k/2 Ti = Ω(k ln(k))
)

= 1

8 Concluding Remarks

We considered the problem of disseminating multiple messages simultaneously in a large network using

gossip-based dissemination mechanisms. We have presented a protocol based on random linear coding

that spreads the messages in optimal time in an order sense. The RLC protocol is quite general and does

not depend on the underlying communication model. However, we have demonstrated the benefits of the

protocol over a gossip-based communication model and in a worst case demand scenario when all the nodes

want everything. There are a few avenues one might pursue for future research. One avenue for research is

to derive results similar to the ones in this paper when the underlying communication graph is not complete.

A good starting point might be understand the gains due to simultaneous dissemination in sparse graphs.

Another path to tread might be to design protocols when there are some malicious nodes in the network.

The application of random linear coding for security has been demonstrated in [19] in a different setting.
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A Proofs of Lemme

A.1 Proof of Lemma 4.3

Lemma A.1. For i ≥ k − 14
√

k ln(k) and n large enough,

Ti ≺st

sn∑
j=1

Gj +
rn∑

j=1

Hj + Geom(1
2(1− 1

q )) ,

where Gj’s are iid with Gj ∼ Geom(1−
√

0.4), and H ′
js are iid with Hj ∼ Geom(0.4)4 , sn = ln(n) and

rn = ln(n/2)
ln(4/3) .

Proof. The proof is not much different from that of a single message with a pull mechanism. We provide an

outline of the proof below.

Suppose at a particular time t, node u has dimension i in the regime considered in this lemma. We call a

node helpful if the subspace spanned by the code-vectors at the node does not lie in that at u, and unhelpful

otherwise. Note that, since the node u does not have full rank, there is at least one node that can potentially

help node u if called by node u. Starting with a worst case scenario as in the proof of Lemma 4.2, assume

that all the other n − 2 nodes are unhelpful to u. The system then proceeds in rounds. We find the time

required until there are at least n/2 nodes that can potentially help u. Since u may increase its dimension

4Instead of 0.4, any quantity slightly smaller than 0.5 works just as well
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before that happens, this time provides a bound on the time u spends at dimension i. We thus consider the

following three phases in the evolution.

1. The first phase is until there are at least ln(n) nodes that can help u, provided the dimension of u

remains i throughout this phase. Note that, starting with at least one node that can help u, if pf is

the probability that the number of nodes that cannot help u does not increase after one more round of

message exchange, then

pf = Pr(none of the unhelpful nodes become helpful)

≤
(
1− 1

n(1− 1
q )
)n−1

(∵ any unhelpful node can potentially increase its dimension w.p. at least 1
n(1− 1

q ))

≤ exp
(
− 1

n(1− 1
q )(n− 1)

)
≤ (0.4)1−1/q (for large enough n)

≤
√

0.4.

Thus, the probability, ps, that there is at least one more helpful node after one more round of message

exchange is 1−
√

0.4. It follows that, the time spent in this phase is stochastically at most
∑ln(n)

j=1 Gj ,

where Gj’s are i.i.d. and Gj ∼ Geom(1−
√

0.4).

2. The second phase starts when there are at least ln(n) nodes that can potentially help u (if u still has

dimension i) and ends when there are at least n/2 nodes that can help u. Say, after a few rounds in

this phase, there are r nodes that can potentially help node u if called. Note that, ln(n) ≤ r ≤ n/2 in

this phase. We next show that,

Pr(Bin(n− r, r
n(1− 1

q )) ≥ r
3) > 1

2 − 0.1 , (17)

for large enough n so long as r ≤ n/2. To see the above, note that,

r

3
≤ r(1− r

n)(1− 1
k ) , (18)

for k ≥ 3, from which it follows that

Pr(Bin(n− r, r
n(1− 1

q )) ≥ r
3)

≥ Pr(Bin(n− r, r
n(1− 1

k )) ≥ r
3) (∵ q ≥ k)

≥ Pr(Bin(n− r, r
n(1− 1

k )) ≥ r(1− r
n)(1− 1

k )) (using (18))

=
1
2
− 0.1
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for sufficiently large n. The last step is a simple application of the classic Berry-Esseen theorem [6]

which when applied to a sum of independent Bernoulli trials with success probability p boils down to∣∣∣∣Pr
(

Bin(n,p)−np√
np(1−p)

≥ x

)
− Φ(x)

∣∣∣∣ ≤ C(p(1−p)3+(1−p)p3)
√

n(
√

p(1−p))3
≤ 2C√

np(1−p)
,

where Φ(x) is the cdf of a standard normal distribution and C is a universal constant independent of

x, n, and p. In our case, we apply the above to Bin(n− r, r
n(1− 1

n)) and x = 0 which readily implies

|Pr
(
Bin(n− r, r

n(1− 1
k )) ≥ r(1− r

n)(1− 1
k )
)
− 1

2 |

≤ 2Cq
(n−r)

r
n(1− 1

k )(1− r
n + r

nk )

≤ 2C

(1− r
n)
√

r(1− 1
k )

≤ 4Cq
ln(n)(1− 1

k )
(∵ ln(n) ≤ r ≤ n/2)

≤ 0.1 (for large enough n)

We have shown (17), and hence the number of nodes that can potentially help node u gets multiplied

by 4/3 with a probability at least 0.4 in each round until r ≤ n/2. This is assuming that node u has

not increased its dimension. Thus, the sum of at most ln(n/2)/ ln(4/3) geometric random variables

with parameter 0.4 takes the system to a state at which there are at least n/2 nodes that can potentially

help node u when called. The time spent in this phase is thus
∑ln(n/2)/ ln(4/3)

j=1 Hi where Hi’s are iid

and Hi ∼ Geom(0.4).

3. The third phase starts when there are at least n/2 nodes that can potentially help u if u has dimension

still i. But, then the probability that u increases the dimension is at least (1/2)(1− 1/q).

Hence the result by combining the three phases.

A.2 Proof of Lemma 4.4

Lemma A.2. For i ≤ k/2,

E[Ti] ≤
2q

q − 1
.

Further
k/2∑
i=1

Ti ≤
q

q − 1
(k + 4 ln(n) + 2

√
k ln(n)), w.p. 1−O( 1

n2 )
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Proof. First part of the lemma regarding ETi follows immediately from Lemma 4.1. For convenience, define

µ = 2q/(q − 1). For the second part, we first observe that Ti ≺st Yi for 1 ≤ i ≤ k/2 implies that [17]

k/2∑
i=1

Ti ≺st

k/2∑
i=1

Yi

from which it follows

Pr(
k/2∑
i=1

Ti ≥ kµ
2 (1 + δ))

≤ Pr(
k/2∑
i=1

Yi ≥ kµ
2 (1 + δ))

≤ Pr(Bin(kµ
2 (1 + δ), 1

µ) ≤ k
2 )

≤ exp(− kδ2

2(1+δ)) (19)

upon applying a Chernoff bound for Binomial random variable. Now set ξ = 4 ln(n)/k and δ = ξ/2 +√
ξ + ξ2/4. Substituting this δ into (19) yields

Pr

 k/2∑
i=1

Ti ≥ kµ
2 (1 + 2δ)

 ≤ 1
n2

(20)

and so,

k/2∑
i=1

Ti ≤
kq

q − 1

(
1 + 2 ln(n)

k +
√

4 ln(n)
k + 4(ln(n))2

k2

)
=

q

q − 1

(
k + 2 ln(n) +

√
4k ln(n) + 4(ln(n))2

)
≤ q

q − 1
(k + 4 ln(n) + 2

√
k ln(n)) w.p. 1−O( 1

n2 )

A.3 Proof of Lemma 4.5

Lemma A.3. For k/2 < i < k − 14
√

k ln(k), we have

E[Ti] ≤
2q

q − 1
+ 1 + log(ln(2))− log

(
ln(k′

i )
)

+ O( 1
n2 ),

where k′ = k − 14
√

k ln(k). Further,

1.
k−14
√

k ln(k)∑
i=k/2

E[Ti] ≤ k
2 ( 2q

q−1 + 1 + log(ln(2)) + 1+ln(2)
ln(2) ) + O(

√
k ln k)
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2.
k−14
√

k ln(k)∑
i=k/2

Ti ≤ k
2 (1 + log(ln(2)) + 1+ln(2)

ln(2) + 2q
q−1) + O(ln(n)) + O(

√
k ln(n)), w.p. 1−O( 1

n2 )

Proof. Recall that k′ = k − 14
√

k ln(k). Note that, k/((1 + εn)(1 + 1/q)) > k′, since

k

(1 + εn)(1 + 1/q)
= k − k(1− k

(1+εn)(1+1/q))

≥ k − k(εn + 1/q + εn/q)

≥ k − (7
√

k ln(k) + 1 + εn)

≥ k′ .

Note from Lemma 4.2 that, Ti is the absorption time of the Markov chain given in Figure 5. Let Di denote

the event that the absorption does not happen in any of the states {1, 2, 3, . . . , si − 1}. It is clear that

E[Ti] ≤ E[Ti|Di] = (1− 1
n3 )−1si + E[Geom(1

2(1− 1
q ))]

since the absorption probability in the state si is (1/2)(1− 1/q). It follows that

E[Ti] ≤ (1− 1
n3 )−1si + 2q

q−1 (21)

Note that, from Lemma 4.2,

si = min{s : ( i
k )2

s
(
(1 + 1

q )(1 + εn)
)2s−1

≤ 1
2}

≤ min{s :
(

i
k (1 + 1

q )(1 + εn)
)2s

≤ (1+εn)(1+1/q)
2 }

≤ min{s :
(

i
k′

)2s

≤ (1+εn)(1+1/q)
2 }

since we have shown that k/((1 + εn)(1 + 1/q)) > k′. This yields

si = dlog

(
ln( 2

(1+
1
q )(1 + εn)

)

)
− log

(
ln(k′

i )
)
e ≤ 1 + log(ln(2))− log

(
ln(k′

i )
)

(22)
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Now, using the inequality lnx > 1− 1/x,

k′−1∑
i=k/2

− log ln(k′

i )

< 1
ln(2)

∑k′−1
i=k/2− ln(1− i

k′ )

= 1
ln(2)

∑k′−1
i=k/2 ln( k′

k′−i)

< 1
ln(2) ln( k′k

′−k/2

(k′−k/2)!)

≤ 1
ln(2) ln( k′k

′−k/2

((k′−k/2)/e)k′−k/2 )

= k′−k/2
ln(2) (1− ln(1− k

2k′ ))

= k′−k/2
ln(2) (1 + ln(2)) + O(

√
k ln(k)) (23)

The inequality (23) along with (22) implies

k′−1∑
i=k/2

si ≤ k
2 (1 + log(ln(2)) + 1+ln(2)

ln(2) ) + O(
√

k ln k). (24)

Part 1 of Lemma follows from (21) and (24). For the high probability calculation, note that (see Figure 5)

Ti < si + Geom( 2q
q−1), w.p. (1− 1

n3 )si ,

from which it follows that

k′−1∑
i=k/2

Ti =
k′−1∑
i=k/2

si +
k′−1∑
i=k/2

Fi, w.p. (1− 1
n3 )
Pk′−1

i=k/2
si = (1− 1

n3 )O(n) ≥ 1−O( 1
n2 ) (25)

where F ′is are iid and Fi ∼ Geom(2q/(q − 1)). Further, using the Chernoff bound for Geometric random

variables as in the proof of Lemma 4.4, we also have

k′−1∑
i=k/2

Fi ≤
q

q − 1
(k + 4 ln(n) + 2

√
k ln(n)), w.p. 1−O( 1

n2 ), (26)

and thus it follows from (24), (25), and (26) that,

k′−1∑
i=k/2

Ti = k
2 (1 + log(ln(2)) + 1+ln(2)

ln(2) + 2q
q−1) + O(ln(n)) + O(

√
k ln(n)), w.p. 1−O( 1

n2 ) (27)

We have proved part 2 of Lemma.
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A.4 Proof of Lemma ??

Lemma A.4. For i > k − 14
√

k ln(k), we have

1. ETi = O(ln(n))

2.
∑

i>k−14
√

k ln(k)

Ti = O(
√

k ln(k)(ln(n)), w.p. 1−O( 1
n2 ) .

Proof. Note that, it immediately follows from Lemma 4.3 that

E[Ti] ≤
ln(n)

1−
√

(0.4)
+

ln(n/2)
0.4 ln(4/3)

+ 2q
q−1 .

For the second part, simply note that,

ln(n)∑
j=1

Gj = O(ln(n)) w.p. 1−O( 1
n3 ) ,

where Gk’s are the geometric random variables given in Lemma 4.3, and similarly for the Hj’s. Thus

Ti = O(ln(n)) + Geom(1
2(1− 1

q )) w.p. 1−O( 1
n3 ) .

The result follows upon further applying the Chernoff bound for the geometric random variables with para-

meter (1/2)(1− 1/q).

A.5 Proof of Lemma 5.4

Lemma A.5. For i ≥ k −
√

k ln(k),

Ti ≺st

sn∑
j=1

Hj + Geom(1−
√

2
5) ,

where G′js are iid with distribution Geom(0.5), H ′
js are iid with distribution Geometric(θ) for some θ ∈

(0, 1) and for large enough n. Further rk = log(1+γ)(n) (γ = 0.2).

Proof. The proof is not much different from that of a single message with a push mechanism. We provide a

sketch of the proof below which is slightly different from the proof of Lemma 4.3.

Suppose at a particular time t, node u has dimension i in the regime considered in this lemma. We call a

node helpful if the subspace spanned by the code-vectors at the node does not lie in that at u, and unhelpful

otherwise. Note that, since the node u does not have full rank, there is at least one node that can potentially

help node u if they call node u. Starting with a worst case scenario as in the proof of Lemma 4.2, assume

that all the other n−2 nodes are unhelpful to u. The system then proceeds in rounds. Again, we find the time
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required until there are at least n/2 nodes that can potentially help u. Since u may increase its dimension

before that happens, this time provides a bound on the time u spends at dimension i. We thus consider the

following two phases in the evolution.

1. The first phase ends when there are at least n/2 helpful nodes. This details of this phase almost

parallels the proof of Lemma 5.3 and so we simply point out the differences without providing the

details. Say, after a few rounds there are r helpful nodes and u has not increased its dimension.

We have 1 ≤ r ≤ n/2 in this phase. Denote by hu the fraction of unhelpful nodes. We have

hu = (n − r)/n. Also, denote by h+
u the fraction of unhelpful nodes after the current round of

message exchange. Let l1, l2, . . . ln−r be the unhelpful nodes, and Zlj , j = 1, 2 . . . (n − r) be 0 − 1

random variables so that Zlj = 1 iff the node lj does not increase its dimension after the current round

of message exchange. Thus, h+
u =

∑
j Zlj/n. Using an argument similar to that in Claim 5.1 and

Claim 5.2, we have

Pr(h+
u ≥ (1− r

n)(2
5)(1−hu)(1 + ε))

= Pr(
n−r∑
j=1

Zlj ≥ (n− r)(2
5)1−hu(1 + ε))

≤ exp(− ε2(n−r)
4 (2

5)1−hu)

(using calculations similar to(15)with (n− r) in place ofni
k , and (2

5)1−hu in place of pu(t))

≤ exp(− ε2n
8

√
2
5) (∵ r ≤ n/2, 1− hu ≤ 1

2 in this regime) .

By choosing ε = εn = δ/
√

n, we have

Pr(h+
u ≥ (1− r

n)(2
5)1−hu(1 + εn)) ≤ exp(− δ

8

√
2
5)

4
= θ(δ) < 1

where we will choose δ appropriately soon. Again, repeating the straight-forward, but tedious com-

putation as in the derivation of (16) in the proof of Claim 5.2, we can show that,

h+
u ≤ (1− r

n)(2
5)1−hu(1 + εn)

⇒ h+
u ≤ 1− (1 + γ) r

n (γ = 0.2)

for a suitable choice of δ. Thus the number of helpful nodes gets multiplied by a factor (1 + γ) in

every round with a constant probability of at least 1− θ(δ) (instead of probability 1−O(1/n3) since

εn = δ/
√

n). Thus, the sum of another ln(n)/(ln(1 + γ)) geometric random variables takes the

system to the state when there are half the nodes that can potentially increase the dimension of node

u.
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2. Finally, using Lemma 5.1, once there are at least n/2 that can help u, u can increase its dimension

with probability at least 1−
√

2
5 .

The result follows by combining the three cases.
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