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Abstract

The paper presents a minimalistic and elegant approach to working

with graphs in Haskell. It is built on a rigorous mathematical foun-

dation — an algebra of graphs — that allows us to apply equational

reasoning for proving the correctness of graph transformation al-

gorithms. Algebraic graphs let us avoid partial functions typically

caused by ‘malformed graphs’ that contain an edge referring to a

non-existent vertex. This helps to liberate APIs of existing graph

libraries from partial functions.

The algebra of graphs can represent directed, undirected, re�ex-

ive and transitive graphs, as well as hypergraphs, by appropriately

choosing the set of underlying axioms. The �exibility of the ap-

proach is demonstrated by developing a library for constructing

and transforming polymorphic graphs.
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1 Introduction
Graphs are ubiquitous in computing, yet working with graphs often

requires painfully low-level �ddling with sets of vertices and edges.

Building high-level abstractions is di�cult, because the commonly

used foundation – the pair (V ,E) of vertex set V and edge set

E ⊆ V ×V – is a source of partial functions. We can represent the

pair (V ,E) by the following simple data type1:

data G a = G { vertices :: [a], edges :: [(a,a)] }

Now G [1,2,3] [(1,2),(2,3)] is the graph with three vertices

V = {1, 2, 3} and two edges E = {(1, 2), (2, 3)}. The consistency

invariant E ⊆ V ×V holds. But what is G [1] [(1,2)]? The edge

refers to the non-existent vertex 2, breaking the invariant, and there

is no easy way to re�ect this in types. Perhaps, our data type is just

too simplistic; let us look at state-of-the-art graph libraries instead.

The containers library is designed for performance and powers

GHC itself. It represents graphs by adjacency arrays [King and

Launchbury 1995] whose consistency invariant is not statically

checked, which can lead to runtime usage errors such as ‘index
out of range’. Another popular library fgl uses the inductive graph
representation [Erwig 2001], but its API also has partial functions,

e.g. inserting an edge can fail with the ‘edge from non-existent

1Although in this paper we exclusively use Haskell, the problem we solve is general
and the proposed approach can be readily adapted to other programming languages.
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vertex’ error. Both containers and fgl are treasure troves of graph
algorithms, but it is easy to make an error when using them. Is

there a safe graph construction interface we can build on top?

In this paper we present algebraic graphs — a new interface

for constructing and transforming graphs (more precisely, graphs

with labelled vertices and unlabelled edges). We abstract away

from graph representation details and characterise graphs by a set

of axioms, much like numbers are algebraically characterised by

rings [Mac Lane and Birkho� 1999]. Our approach is based on the

algebra of parameterised graphs, a mathematical formalism used

in digital circuit design [Mokhov and Khomenko 2014], which we

simplify and adapt to the context of functional programming.

Algebraic graphs have a safe and minimalistic core of four graph

construction primitives, as captured by the following data type:

data Graph a = Empty

| Vertex a

| Overlay (Graph a) (Graph a)

| Connect (Graph a) (Graph a)

Here Empty and Vertex construct the empty and single-vertex

graphs, respectively; Overlay composes two graphs by taking

the union of their vertices and edges, and Connect is similar to

Overlay but also creates edges between vertices of the two graphs,

see Fig. 1 for examples. The overlay and connect operations have

two important properties: (i) they are closed on the set of graphs,

i.e. are total functions, and (ii) they can be used to construct any

graph starting from the empty and single-vertex graphs. For exam-

ple, Connect (Vertex 1) (Vertex 2) is the graph with two ver-

tices {1, 2} and a single edge (1, 2). Malformed graphs, such as

G [1] [(1,2)], cannot be expressed in this core language.

The main goal of this paper is to demonstrate that this core is

a safe, �exible and elegant foundation for working with graphs that

have no edge labels. Our speci�c contributions are:

• Compared to existing libraries, algebraic graphs have a smaller

core (just four graph construction primitives), are more com-

positional (hence greater code reuse), and have no partial

functions (hence fewer opportunities for usage errors). We

present the core and justify these claims in §2.

• The core has a simple mathematical structure fully charac-

terised by a set of axioms (§3). This makes the proposed

interface easier for testing and formal veri�cation. We show

that the core is complete, i.e. any graph can be constructed,

and sound, i.e. malformed graphs cannot be constructed.

• Under the basic set of axioms, algebraic graphs correspond to

directed graphs. As we show in §4, by extending the algebra

with additional axioms, we can represent undirected, re�ex-

ive, transitive graphs, their combinations, and hypergraphs.

Importantly, the core remains unchanged, which allows us

to de�ne highly reusable polymorphic functions on graphs.

• We develop a library2 for constructing and transforming

algebraic graphs and demonstrate its �exibility in §5.

2The library is on Hackage: h�p://hackage.haskell.org/package/algebraic-graphs.

https://doi.org/10.1145/3122955.3122956
https://doi.org/10.1145/3122955.3122956
http://hackage.haskell.org/package/algebraic-graphs


Haskell’17, September 7-8, 2017, Oxford, UK Andrey Mokhov

1 21 2+ =

(a) 1 + 2

1 2 = 1 2

(b) 1→ 2

1 =

3

2

+ 1

3

2

(c) 1→ (2 + 3)

=1 1
1

(d) 1→ 1 (e) 1→ 2 + 2→ 3

Figure 1. Examples of graph construction. The overlay and connect operations are denoted by + and→, respectively.

Graphs and functional programming have a long history. We

review related work in §6. Limitations of the presented approach

and future research directions are discussed in §7.

2 The Core

In this section we de�ne the core of algebraic graphs comprising

four graph construction primitives. We describe the semantics of

the primitives using the common representation of graphs by sets of

vertices and edges, and then abstract away from this representation

by focusing on the laws that these primitives satisfy.

LetG be the set of all directed graphs whose vertices come from

a �xed universe V. As an example, we can think of graphs whose

vertices are positive integers. A graph д ∈ G can be represented by

a pair (V ,E) whereV ⊆ V is the set of its vertices and E ⊆ V ×V is

the set of its edges. As mentioned in §1, when E * V ×V the pair

(V ,E) is inconsistent and does not correspond to a graph.

When one needs to guarantee the internal consistency of a data

structure, the standard solution is to de�ne an abstract interface

that encapsulates the data structure and provides a set of safe

construction primitives. This is exactly the approach we take.

2.1 Constructing Graphs

The simplest possible graph is the empty graph. We denote it by ε ,

therefore ε = (∅,∅) and ε ∈ G. A graph with a single vertex v ∈ V

is denoted simply by v . For example, 1 ∈ G is the graph (1,∅).

To construct larger graphs from the above primitives we de-

�ne binary operations overlay and connect, denoted by + and→,

respectively. The overlay operation + is de�ned as

(V1,E1) + (V2,E2)
def
= (V1 ∪V2,E1 ∪ E2).

That is, the overlay of two graphs comprises the union of their

vertices and edges. The connect→ operation is de�ned similarly:

(V1,E1) → (V2,E2)
def
= (V1 ∪V2,E1 ∪ E2 ∪V1 ×V2).

The di�erence is that when we connect two graphs, an edge is

added from each vertex of the left-hand argument to each vertex of

the right-hand argument3. Note that the connect operation is the

only source of edges when constructing graphs. As we will see in §3,

overlay and connect are very similar to addition and multiplication.

We therefore give connect a higher precedence, i.e. 1 + 2 → 3 is

interpreted as 1+ (2→ 3). Fig. 1 illustrates a few examples of graph

construction using the de�ned primitives:

• 1 + 2 is the graph with two isolated vertices 1 and 2.

• 1→ 2 is the graph with an edge between vertices 1 and 2.

• 1→ (2+3) comprises vertices {1, 2, 3} and edges {(1, 2), (1, 3)}.

• 1→ 1 is the graph with vertex 1 and the self-loop.

• 1→ 2 + 2→ 3 is the path graph on vertices {1, 2, 3}.

3Our de�nitions of overlay and connect coincide with those of graph union and join,
respectively, e.g see Harary [1969], however the arguments of union and join are
typically assumed to have disjoint sets of vertices. We make no such assumptions,
hence our de�nitions are total: any graphs can be composed using overlay and connect.

As shown in §1, the core can be represented by a simple data

type Graph, parameterised by the type of vertices a. To make the

core more reusable, the next subsection de�nes the core type class

that has the usual inhabitants, such as the pair (V ,E), data types

from containers and fgl, as well as other, stranger forms of life.

2.2 Type Class

We abstract the graph construction primitives de�ned in §2.1 as

the type class Graph4:

class Graph g where

type Vertex g

empty :: g

vertex :: Vertex g -> g

overlay :: g -> g -> g

connect :: g -> g -> g

Here the associated type5 Vertex g corresponds to the universe of

graph vertices V, empty is the empty graph ε , vertex constructs

a graph with a single vertex, and overlay and connect compose

given graphs according to the de�nitions in §2.1. All methods of the

type class are total, i.e. are de�ned for all possible inputs, therefore,

the presented API allows fewer opportunities for usage errors and

greater opportunities for reuse.

Let us put the interface to the test and construct some graphs. A

single edge is obtained by connecting two vertices:

edge :: Graph g => Vertex g -> Vertex g -> g

edge x y = connect (vertex x) (vertex y)

The graphs in Fig. 1(b,d) are edge 1 2 and edge 1 1, respectively.

A graph that contains a given list of isolated vertices can be con-

structed as follows:

vertices :: Graph g => [Vertex g] -> g

vertices = foldr overlay empty . map vertex

That is, we turn each vertex into a singleton graph and overlay

the results. The graph in Fig. 1(a) is vertices [1,2]. By replacing

overlaywith connect in the above de�nition, we obtain a directed

clique – a fully connected graph on a given list of vertices:

clique :: Graph g => [Vertex g] -> g

clique = foldr connect empty . map vertex

For example, clique [1,2,3] expands to 1→ 2→ 3→ ε , i.e. the

graph with three vertices {1, 2, 3} and three edges (1, 2), (1, 3) and

(2, 3). Note that it is di�erent from the graph in Fig. 1(e).

The graph construction functions de�ned above are total, fully

polymorphic, and elegant. Thanks to the minimalistic core type

class, it is easy to wrap your favourite graph library into the de-

scribed interface, and reuse the above functions, as well as many

others that we de�ne throughout this paper.

4The name collision (data Graph and class Graph) is not a problem in practice,
because the data type and type class are not used together and live in separate modules.
5Associated types [Chakravarty et al. 2005] require the TypeFamilies GHC extension.
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(b) Decomposition: 1→ 2→ 3 = 1→ 2 + 1→ 3 + 2→ 3

Figure 2. Two axioms of the algebra of graphs.

3 Algebraic Structure

The functions edge, vertices and clique de�ned in the previous

section §2 satisfy a few properties that we can intuitively write

down and verify at the level of sets of vertices and edges:

• vertex x = vertices [x] and edge x y = clique [x,y].

• vertices xs ⊆ clique xs, where x ⊆ y means x is a

subgraph of y, i.e. Vx ⊆ Vy and Ex ⊆ Ey hold.

• clique (xs ++ ys) = connect (clique xs) (clique ys).

In this section we characterise the Graph type class with a set of

axioms that reveal an algebraic structure very similar to a semiring6.

This provides a convenient framework for proving graph properties,

such as those listed above, using equational reasoning. The pre-

sented characterisation is generally useful for formal veri�cation,

as well as automated testing of graph library APIs.

3.1 Axiomatic Characterisation

The de�nitions of vertices and clique in §2.2 use ε as the identity

for both overlay + and connect→ operations. This seems unusual,

but we can check that x +ε = x and x → ε = x for any graph x ∈ G

by plugging the empty graph into the de�nitions of overlay and

connect, respectively. Furthermore, we can verify the following:

• (G,+, ε ) is an idempotent commutative monoid.

• (G,→, ε ) is a monoid.

• → distributes over +, as illustrated in Fig. 2(a).

The above looks remarkably close to a semiring, with the only

oddity being the shared identity of the two operations. The lack of

the annihilating zero element (i.e. x → 0 = 0) and the following

decomposition law is what makes the algebra of graphs di�erent:

x → y → z = x → y + x → z + y → z.

Fig. 2(b) illustrates the law by showing that the triangle graph

can be obtained in two di�erent ways: by connecting the three

vertices of the triangle and by constructing its edges separately and

overlaying them.

Interestingly, the fact that overlay and connect share the same

identity follows from the decomposition law. Indeed, let ε+ and ε→
stand for the identities of + and→, respectively. Then:

ε+ = ε+ → ε→ → ε→ (identity of→)

= ε+ → ε→ + ε+ → ε→ + ε→ → ε→ (decomposition)

= ε+ + ε+ + ε→ (identity of→)

= ε→ (identity of +)

Furthermore, the identity (x + ε = x ) and idempotence (x + x = x )

can be proved from the decomposition law, which leads to the

following minimal set of axioms that characterise algebraic graphs.

6 See Golan [1999] for a classic overview of semiring applications, where the author
hints at the existence of a non-semiring ‘algebra of digraphs’ whose operations coincide
with overlay and connect, referring to an unpublished paper by Anthony P. Stone.
Dolan [2013] uses the semiring theory to implement graph algorithms in Haskell.

Algebraic graphs are characterised by the following 8 axioms:

• + is commutative and associative, i.e. x + y = y + x and

x + (y + z) = (x + y) + z.

• (G,→, ε ) is a monoid, i.e. ε → x = x , x → ε = x and

x → (y → z) = (x → y) → z.

• → distributes over +: x → (y + z) = x → y + x → z and

(x + y) → z = x → z + y → z.

• Decomposition: x → y → z = x → y + x → z + y → z.

Our de�nition of graph construction primitives in §2.1 satis�es

these axioms and is therefore a valid Graph instance. We provide

an implementation for this and other useful instances in §4. Some

of them will satisfy additional axioms; for example, by making the

connect operation commutative, we obtain undirected graphs.

Algebraic graphs are complete in the sense that it is possible to

describe any graph using the core interface. Indeed, given a graph

(V ,E) we can construct it as graphV E, where the function graph

is de�ned as follows.

graph :: Graph g => [Vertex g] -> [(Vertex g, Vertex g)] -> g

graph vs es = overlay (vertices vs) (edges es)

Here edges is a generalisation of the function edge to a list of

edges, so that edge x y = edges [(x,y)]:

edges :: Graph g => [(Vertex g, Vertex g)] -> g

edges = foldr overlay empty . map (uncurry edge)

The absorption theorem x → y + x + y = x → y, which follows

from decomposition of x → y → ε , states that an edge (u,v ) con-

tains its two vertices {u,v} and is inseparable from them. Therefore,

if the pair (V ,E) is inconsistent, the set of vertices of graphV E

will be expanded to V̂ so that E ⊆ V̂ × V̂ holds. More generally, the

absorption theorem states that in addition to being complete, the

algebraic graph API is also sound in the sense that it is impossible to

construct an inconsistent pair (V ,E) using the four Graphmethods.

The following theorems can be proved from the axioms:

• Identity of +: x + ε = x .

• Idempotence of +: x + x = x .

• Absorption: x → y + x + y = x → y.

• Saturation: x → x → x = x → x .

These theorems were veri�ed in Agda by Alekseyev [2014] who

studied the more general algebra of parameterised graphs.

3.2 Partial Order on Graphs

It is fairly standard to de�ne x ≼ y as x + y = y for an idempotent

operation +, since it gives a partial order on the elements of the

algebra. Indeed, all partial order laws are satis�ed:

• Re�exivity x ≼ x follows from the idempotence x + x = x .

• Antisymmetry x ≼ y ∧y ≼ x ⇒ x = y holds since x +y = y

and y + x = x imply x = y.

• Transitivity x ≼ y ∧ y ≼ z ⇒ x ≼ z can be proved as

z = y + z = (x + y) + z = x + (y + z) = x + z.



Haskell’17, September 7-8, 2017, Oxford, UK Andrey Mokhov

vertices (h:t) = foldr overlay empty (map vertex (h:t)) (de�nition of vertices)

= foldr overlay empty (vertex h : map vertex t) (de�nition of map)

= overlay (vertex h) (vertices t) (de�nition of foldr)

⊆ overlay (vertex h) (clique t) (monotony and the inductive hypothesis)

⊆ connect (vertex h) (clique t) (overlay-connect order)

= foldr connect empty (vertex h : map vertex t) (de�nition of foldr)

= foldr connect empty (map vertex (h:t)) (de�nition of map)

= clique (h:t) (de�nition of clique)

Figure 3. Equational reasoning with algebraic graphs.

It turns out that this de�nition corresponds to the subgraph relation,

i.e. we can de�ne:

x ⊆ y
def
= x + y = y.

Indeed, expanding x +y = y to (Vx ,Ex ) + (Vy ,Ey ) = (Vy ,Ey ) gives

usVx ∪Vy = Vy and Ex ∪ Ey = Ey , which is equivalent toVx ⊆ Vy

and Ex ⊆ Ey , as desired.

Therefore, we can check if a graph is a subgraph of another one

if we know how to compare graphs for equality:

isSubgraphOf :: (Graph g, Eq g) => g -> g -> Bool

isSubgraphOf x y = overlay x y == y

The following theorems about the partial order on graphs can

be proved:

• Least element: ε ⊆ x .

• Overlay order: x ⊆ x + y.

• Overlay-connect order: x + y ⊆ x → y.

• Monotony: x ⊆ y ⇒

(x + z ⊆ y + z) ∧ (x → z ⊆ y → z) ∧ (z → x ⊆ z → y).

3.3 Equational Reasoning

In this subsection we show how to use equational reasoning and

the laws of the algebra to prove properties of functions on graphs.

For example, to prove that vertex x = vertices [x] we rewrite

the right-hand side using the function de�nitions and x + ε = x :

vertices [x] = foldr overlay empty (map vertex [x])

= foldr overlay empty [vertex x]

= overlay (vertex x) empty

= vertex x

Proving that vertices xs ⊆ clique xs requires more work.

We start with the casewhen xs is the empty list [], which is straight-

forward: vertices [] = ε ⊆ ε = clique [], as follows from the

de�nition of foldr. If xs is non-empty, i.e. xs = h:t, we make the

inductive hypothesis that vertices t ⊆ clique t and proceed

as shown in Fig. 3.

We formally proved all properties and theorems discussed in

this paper in Agda7.

4 Graphs à la Carte

In this section we de�ne several useful Graph instances, and show

that the algebra presented in the previous section §3 is not restricted

to directed graphs, but can be extended to axiomatically represent

undirected (§4.3), re�exive (§4.4) and transitive (§4.5) graphs, their

various combinations (§4.6), and even hypergraphs (§4.7).

7The proofs are available at h�ps://github.com/snowleopard/alga-theory.

4.1 Binary Relation

We start by a direct encoding of the graph construction primitives

de�ned in §2.1 into the abstract data type Relation isomorphic to a

pair of sets (V ,E), see Fig. 4. As we have seen, this implementation

satis�es the axioms of the graph algebra. Furthermore, it is a free

graph in the sense that it does not satisfy any other laws. This

follows from the fact that any algebraic graph expression д can be

rewritten in the following canonical form:

д =

(

∑

v ∈Vд

v

)

+

(

∑

(u,v )∈Eд

u → v

)

,

where Vд is the set of vertices that appear in д, and (u,v ) ∈ Eд

if vertices u and v appear in the left-hand and right-hand argu-

ments of the connect operation→ at least once (and should thus

be connected by an edge). The canonical form of an expression д

can be represented as R Vд Eд , and any additional law on Relation

would therefore violate the canonicity property. The existence of

the canonical form was proved by Mokhov and Khomenko [2014]

for an extended version of the algebra. The proof fundamentally

builds on the decomposition axiom: one can apply it repeatedly

to an expression, breaking up connect sequences x → y → z into

pairs x → y until the decomposition can no longer be applied. We

can then open parentheses, such as x → (y + z), using the distribu-

tivity axiom and rearrange terms into the canonical form by the

commutativity and idempotence of overlay +.

It is convenient to make Relation an instance of the Num type

class to use the standard + and ∗ operators as shortcuts for overlay

and connect, respectively:

instance (Ord a, Num a) => Num (Relation a) where

fromInteger = vertex . fromInteger

(+) = overlay

(*) = connect

signum = const empty

abs = id

negate = id

Note that the Num law abs x * signum x == x is satis�ed by the

above de�nition since x → ε = x . Any Graph instance can be made

a Num instance if need be, using a de�nition similar to the above.

We can now experiment with graphs and binary relations using

the interactive GHC:

λ> 1 * (2 + 3) :: Relation Int

R {domain = fromList [1,2,3], relation = fromList [(1,2),(1,3)]}

λ> 1 * (2 + 3) + 2 * 3 == (clique [1..3] :: Relation Int)

True

λ> 1 * 2 == (2 * 1 :: Relation Int)

False

https://github.com/snowleopard/alga-theory
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import Data.Set (Set, singleton, union, elems, fromAscList)

import qualified Data.Set as Set (empty)

data Relation a = R { domain :: Set a, relation :: Set (a, a) } deriving Eq

instance Ord a => Graph (Relation a) where

type Vertex (Relation a) = a

empty = R Set.empty Set.empty

vertex x = R (singleton x) Set.empty

overlay x y = R (domain x `union` domain y) (relation x `union` relation y)

connect x y = R (domain x `union` domain y) (relation x `union` relation y `union`

fromAscList [ (a, b) | a <- elems (domain x), b <- elems (domain y) ])

Figure 4. Implementing the Graph type class by a binary relation and the core graph construction primitives de�ned in §2.1.

λ> :t clique "abc"

clique "abc" :: (Graph g, Vertex g ∼ Char) => g

λ> relation (clique "abc")

fromList [(’a’,’b’),(’a’,’c’),(’b’,’c’)]

The last example highlights the fact that the Relation a instance

allows vertices of any type a that satis�es the Ord a constraint.

4.2 Deep Embedding

We can embed the core graph construction primitives into a simple

data type (excuse and ignore the name clash with the type class):

data Graph a = Empty

| Vertex a

| Overlay (Graph a) (Graph a)

| Connect (Graph a) (Graph a)

The instance de�nition is a direct mapping from the shallow

embedding of the core primitives, represented by the type class,

into the corresponding deep embedding, represented by the data

type. It is known, e.g. see Gibbons and Wu [2014], that by folding

the data type one can always obtain the inverse mapping:

fold :: Graph g => Graph (Vertex g) -> g

fold Empty = empty

fold (Vertex x ) = vertex x

fold (Overlay x y) = overlay (fold x) (fold y)

fold (Connect x y) = connect (fold x) (fold y)

We cannot use the derived Eq instance of the Graph data type,

because it would clearly violate the axioms of the algebra, e.g.

Overlay Empty Empty is structurally di�erent from Empty, but they

must be equal according to the axioms. One way to implement a

custom law-abiding Eq instance is to reinterpret the graph expres-

sion as a binary relation, thereby gaining access to the canonical

graph representation:

instance Ord a => Eq (Graph a) where

x == y = fold x == (fold y :: Relation a)

An interesting feature of this graph instance is that it allows us

to represent densely connected graphs more compactly. For exam-

ple, clique [1..n] :: Graph Int has a linear-size representa-

tion in memory, while clique [1..n] :: Relation Int stores

each edge separately and therefore requiresO (n2) memory. Exploit-

ing the compact graph representation for deriving algorithms that

are asymptotically faster on dense graphs, compared to conven-

tional algorithms operating on ‘uncompressed’ graph representa-

tions isomorphic to (V ,E), is outside the scope of this paper, but is

an interesting direction of future research.

4.3 Undirected Graphs

As hinted at in §3.1, to switch from directed to undirected graphs

it is su�cient to add the axiom of commutativity for the connect

operation. For undirected graphs we can denote connect by↔:

• ↔ is commutative: x ↔ y = y ↔ x .

Curiously, with the introduction of this axiom, the associativity

of↔ follows from the left-associated version of the decomposition

axiom and the commutativity of +:

(x ↔ y) ↔ z = x ↔ y + x ↔ z + y ↔ z (decomposition)

= y ↔ z + y ↔ x + z ↔ x (commutativity)

= (y ↔ z) ↔ x (decomposition)

= x ↔ (y ↔ z) (commutativity)

Therefore, the minimal algebraic characterisation of undirected

graphs comprises only 6 axioms:

• + is commutative and associative, i.e. x + y = y + x and

x + (y + z) = (x + y) + z.

• ↔ is commutative x ↔ y = y ↔ x and has ε is the identity:

x ↔ ε = x .

• Left distributivity: x ↔ (y + z) = x ↔ y + x ↔ z.

• Left decomposition: (x ↔ y) ↔ z = x ↔ y +x ↔ z +y ↔ z.

Commutativity of the connect operator forces graph expressions

that di�er only in the direction of edges into the same equiva-

lence class. One can implement this by the symmetric closure of the

underlying binary relation:

newtype Symmetric a = S (Relation a) deriving (Graph, Num)

instance Ord a => Eq (Symmetric a) where

S x == S y = symmetricClosure x == symmetricClosure y

Note that algebraic expressions of undirected graphs have the

canonical form where all edges are directed in a canonical order,

e.g. according to some total order on vertices.

Let’s test that the custom equality works as desired:

λ> clique "abcd" == (clique "dcba" :: Relation Char)

False

λ> clique "abcd" == (clique "dcba" :: Symmetric Char)

True

As you can see, polymorphic graph construction functions, such

as clique, can be reused when working with undirected graphs.

We can de�ne a subclass class Graph g => UndirectedGraph g

and use the UndirectedGraph g constraint for functions that rely

on the commutativity of the connect method.
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Figure 5. 3-decomposition: 1→ 2→ 3→ 4 = 1→ 2→ 3 + 1→ 2→ 4 + 1→ 3→ 4 + 2→ 3→ 4.

4.4 Re�exive Graphs

A graph is re�exive if every vertex of the graph is connected to itself,

i.e. has a self-loop. An example of a re�exive graph is the graph

corresponding to the partial order relation ⊆ on graphs: indeed,

x ⊆ x holds for all x . To represent re�exive graphs algebraically

we can introduce the following axiom:

• Self-loop: v = v → v , where v ∈ V is a vertex.

The self-loop axiom corresponds to the additional Graph law:

• vertex x = connect (vertex x) (vertex x).

One can implement the re�exive Graph instance analogously to

the implementation of the Symmetric data type presented in §4.3,

by wrapping the Relation into a newtype and giving it a custom

Eq instance based on the reflexiveClosure.

We can de�ne class Graph g => ReflexiveGraph g to increase

the type safety of functions that rely on the self-loop axiom.

4.5 Transitive Graphs

In many applications graphs satisfy the transitivity property: if a

vertex x is connected to y, and y is connected to z, then the edge

between x and z can be added or removed without changing the

semantics of the graph. A common example is dependency graphs

or partial orders — the semantics of such graphs is typically their

transitive closure. To describe this class of graphs algebraically we

add the following closure axiom:

• Closure: y , ε ⇒ x → y +y → z + x → z = x → y +y → z.

By using the axiom one can rewrite a graph expression into

its transitive closure or, alternatively, into its transitive reduction,

hence all graphs that di�er only in the existence of some transitive

edges are forced into the same equivalence class. Note that the

precondition y , ε is necessary as otherwise + and → can no

longer be distinguished, which is clearly undesirable:

x→z = x→ε→ z = x→ε + ε→z + x→z = x→ε + ε→z = x + z.

It is interesting to note that + and→ have simple meanings for

transitive graphs: they correspond to the parallel and sequential

composition, respectively. This allows us to algebraically describe

concurrent systems, which was the original motivation behind the

research on algebraic graphs [Mokhov and Khomenko 2014].

We can implement transitive graphs by wrapping Relation

in a newtype Transitive with a custom equality test that com-

pares the transitive closures of the underlying relations. A subclass

class Graph g => TransitiveGraph g can be de�ned to distin-

guish algebraic graphs with the closure axiom from others.

4.6 Preorders and Equivalence Relations

By combining re�exive and transitive graphs, one can obtain pre-

orders. For example, (1 + 2 + 3) → (2 + 3 + 4) is a preorder with

vertices 2 and 3 forming a strongly-connected component. By �nding

all strongly-connected components in the graph (e.g. by utilising

the function scc from the containers library) we can derive the

following graph condensation: {1} → {2, 3} → {4}. One way to

interpret this preorder as a dependency graph is that tasks 2 and 3

are executed as a step, simultaneously, and that they both depend

on task 1, and are prerequisite for task 4. Note that having sets as

the type of graph vertices is perfectly legal: the type of the above

graph condensation is (Graph g, Vertex g ∼ Set Int) => g.

One can further combine preorders and undirected graphs, ob-

taining equivalence relations, which can be equipped with an e�-

cient instance based on the disjoint set data structure [Tarjan and

Van Leeuwen 1984]. One interesting application of the resulting

algebra is modelling connectivity in circuits [Mokhov 2015].

4.7 Hypergraphs

As described in §4.1, the decomposition axiom collapses an alge-

braic graph expression into a collection of vertices and pairs of

vertices (i.e. graphs). By replacing the decomposition axiom with

3-decomposition, we obtain hypergraphs comprising vertices, edges

and 3-edges (triples of vertices):

• 3-decomposition:w → x → y → z =

w → x → y +w → x → z +w → y → z + x → y → z.

Fig. 5 illustrates the axiom by decomposing a tetrahedron into

four 3-edges corresponding to its faces. To better understand the

di�erence between the (2-)decomposition and 3-decomposition

axioms, let us substitute ε forw in the 3-decomposition and simplify:

x → y → z = x → y + x → z + y → z + x → y → z.

This is almost the 2-decomposition axiom, yet there is no way to get

rid of the term x → y → z on the right-hand side: indeed, a triple

is unbreakable in this algebra, and one can only extract the pairs

(edges) that are embedded in it. In fact, we can take this further and

rewrite the above expression to also expose the embedded vertices:

x → y → z = x + y + z + x → y + x → z + y → z + x → y → z.

Note that with 2-decomposition we can achieve something similar

via the absorption theorem:

x → y = x + y + x → y.

This can be taken further by de�ning 4-decomposition and so forth,

creating a hierarchy of algebraic structures corresponding to hy-

pergraphs of di�erent ranks.

Since every graph is also a hypergraph, we can de�ne a super-

class class HyperGraph g => Graph g, moving all Graph meth-

ods to the superclass, and leaving only the decomposition axiom in

Graph, as the law that distinguishes it from HyperGraph.
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vertices :: Graph g => [Vertex g] -> g

clique :: Graph g => [Vertex g] -> g

edge :: Graph g => Vertex g -> Vertex g -> g

edges :: Graph g => [(Vertex g, Vertex g)] -> g

graph :: Graph g => [Vertex g] -> [(Vertex g, Vertex g)] -> g

isSubgraphOf :: (Graph g, Eq g) => g -> g -> Bool

(a) Derived graph construction primitives and the subgraph relation

path :: Graph g => [Vertex g] -> g

circuit :: Graph g => [Vertex g] -> g

star :: Graph g => Vertex g -> [Vertex g] -> g

tree :: Graph g => Tree (Vertex g) -> g

forest :: Graph g => Forest (Vertex g) -> g

fold :: Graph g => Graph (Vertex g) -> g

(b) Standard families of graphs and graph folding

transpose :: Transpose g -> g

toList :: ToList a -> [a]

gmap :: Graph g => (a -> Vertex g) -> GraphFunctor a -> g

mergeVertices :: Graph g => (Vertex g -> Bool) -> Vertex g -> GraphFunctor (Vertex g) -> g

bind :: Graph g => GraphMonad a -> (a -> g) -> g

induce :: Graph g => (Vertex g -> Bool) -> GraphMonad (Vertex g) -> g

removeVertex :: (Graph g, Eq (Vertex g)) => Vertex g -> GraphMonad (Vertex g) -> g

splitVertex :: (Graph g, Eq (Vertex g)) => Vertex g -> [Vertex g] -> GraphMonad (Vertex g) -> g

removeEdge :: (Graph g, Eq (Vertex g)) => Vertex g -> Vertex g -> RemoveEdge (Vertex g) -> g

box :: (Graph g, Vertex g ∼ (a, b)) => GraphFunctor a -> GraphFunctor b -> g

deBruijn :: (Graph g, Vertex g ∼ [a]) => Int -> [a] -> g

(c) Polymorphic graph manipulation

Figure 6. API of the graph construction and transformation library.

5 Graph Transformation Library

As shown in the previous section §4, the world of Graph instances

has many inhabitants sharing a part of their ‘algebraic DNA’. They

all can bene�t from a library of polymorphic graph construction

and transformation, which we develop in this section. The API of

the library is summarised in Fig. 6. The part shown in Fig. 6(a) has

been de�ned in §3.

5.1 Standard Families of Graphs

This subsection de�nes a few simple functions for constructing

graphs from standard graph families. See Fig. 6(b) for the list of all

functions we de�ne.

A path on a list of vertices can be constructed from the edges

formed by the path neighbours:

path :: Graph g => [Vertex g] -> g

path [] = empty

path [x] = vertex x

path xs = edges $ zip xs (tail xs)

Note that the case with a single vertex on the path requires a special

treatment.

If we connect the last vertex of a path to the �rst one, we get

a circuit graph, or a cycle. Let us express this in terms of the path

function:

circuit :: Graph g => [Vertex g] -> g

circuit [] = empty

circuit xs = path (xs ++ [head xs])

A star graph can be obtained by connecting a centre vertex to a

given list of leaves:

star :: Graph g => Vertex g -> [Vertex g] -> g

star x ys = connect (vertex x) (vertices ys)

Finally, trees and forests can be constructed by the following pair

of mutually recursive functions:

tree :: Graph g => Tree (Vertex g) -> g

tree (Node r f) = star r (map rootLabel f) `overlay` forest f

forest :: Graph g => Forest (Vertex g) -> g

forest = foldr overlay empty . map tree

That is, a tree is represented by the root star overlaid with the forest

of subtrees of the root’s descendants. We remind the reader the

de�nitions of the data types Tree and Forest from the containers
library for completeness:

data Tree a = Node { rootLabel :: a

, subForest :: Forest a }

type Forest a = [Tree a]

Below we experiment with these functions and their properties,

and de�ne graphs pentagon and p4 that will be used in subsec-

tion §5.3 and in particular will feature in Fig. 7. The helper function

edgeList is de�ned as edgeList = Set.toList . relation.

λ> pentagon = circuit [1..5]

λ> p4 = path "abcd"

λ> :t pentagon

pentagon :: (Graph g, Num (Vertex g), Enum (Vertex g)) => g

λ> isSubgraphOf (path [1..5]) (pentagon :: Relation Int)

True

λ> edgeList p4

[(’a’,’b’),(’b’,’c’),(’c’,’d’)]

λ> t = Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]

λ> edgeList (tree t)

[(1,2),(1,3),(3,4),(3,5)]

λ> p4 == (clique "abcd" :: Transitive Char)

True

The last property deserves a remark: the transitive closure of a

path graph is the directed clique on the same set of vertices, there-

fore they are considered equal by the Transitive graph instance.
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5.2 Graph Transpose

In the rest of this section we present a toolbox for transforming

polymorphic graph expressions. The functions in the presented

toolbox are listed in Fig. 6(c).

One of the simplest transformations one can apply to a graph is

to �ip the direction of all of its edges. Transpose is usually straight-

forward to implement but whichever data structure you use to

represent graphs, you will spend at leastO (1) time to modify it (say,

by �ipping the treatAsTransposed �ag); much more often you

will have to traverse the data structure and �ip every edge, resulting

in O ( |V | + |E |) time complexity. However, by working with poly-

morphic graphs, i.e. graphs of type forall g. Graph g => g, and

using Haskell’s zero-cost newtype wrappers, we can implement

transpose that takes zero time.

Consider the following Graph instance:

newtype Transpose g = T { transpose :: g } deriving Eq

instance Graph g => Graph (Transpose g) where

type Vertex (Transpose g) = Vertex g

empty = T empty

vertex = T . vertex

overlay x y = T $ overlay (transpose x) (transpose y)

connect x y = T $ connect (transpose y) (transpose x)

That is, we wrap a graph in a newtype �ipping the order of connect

arguments. Let us check if this works:

λ> edgeList $ 1 * (2 + 3) * 4

[(1,2),(1,3),(1,4),(2,4),(3,4)]

λ> edgeList $ transpose $ 1 * (2 + 3) * 4

[(2,1),(3,1),(4,1),(4,2),(4,3)]

The transpose has zero runtime cost, because all we do is wrap-

ping and unwrapping the newtype, which is guaranteed to be free

or, to be more precise, is handled by GHC at compile time.

To make sure transpose is only applied to polymorphic graphs,

we do not export the constructor T, therefore the only way to call

transpose is to give it a polymorphic argument and let the type

inference interpret it as a value of type Transpose.

5.3 Graph Functor

We now implement a function gmap that given a function a -> b and

a polymorphic graph whose vertices are of type a will produce a

polymorphic graph with vertices of type b by applying the function

to each vertex. This is almost a Functor but it does not have the

usual type signature, because Graph is not a higher-kinded type8:

newtype GraphFunctor a =

F { gfor :: forall g. Graph g => (a -> Vertex g) -> g }

instance Graph (GraphFunctor a) where

type Vertex (GraphFunctor a) = a

empty = F $ \_ -> empty

vertex x = F $ \f -> vertex (f x)

overlay x y = F $ \f -> overlay (gmap f x) (gmap f y)

connect x y = F $ \f -> connect (gmap f x) (gmap f y)

gmap :: Graph g => (a -> Vertex g) -> GraphFunctor a -> g

gmap = flip gfor

8It is possible to de�ne a higher-kinded version of Graph, but it has fewer instances.

Essentially, we are de�ning another newtype wrapper, which

pushes the given function all the way towards the vertices of a

given graph expression. This has no runtime cost, just as before,

although the actual evaluation of the given function at each vertex

will not be free, of course. Here is gmap in action:

λ> edgeList $ 1 * 2 * 3 + 4 * 5

[(1,2),(1,3),(2,3),(4,5)]

λ> edgeList $ gmap (+1) $ 1 * 2 * 3 + 4 * 5

[(2,3),(2,4),(3,4),(5,6)]

As you can see, we can increment the value of each vertex by map-

ping the function (+1) over the graph. The resulting expression is a

polymorphic graph, as desired. Note that gmap satis�es the functor

laws gmap id = id and gmap f . gmap g = gmap (f . g), be-

cause it does not change the structure of the given expression and

only pushes the given function down to its leaves – the vertices.

An alert reader might wonder: what happens if the function

maps two di�erent vertices into the same one? They will be merged.

Merging graph vertices is a useful graph transformation, so let us

de�ne it in terms of gmap:

mergeVertices :: Graph g => (Vertex g -> Bool)

-> Vertex g -> GraphFunctor (Vertex g) -> g

mergeVertices p v = gmap $ \u -> if p u then v else u

λ> edgeList $ mergeVertices odd 3 $ 1 * 2 * 3 + 4 * 5

[(2,3),(3,2),(3,3),(4,3)]

The function takes a predicate on graph vertices and a target vertex

andmaps all vertices satisfying the predicate into the target, thereby

merging them. In our example the odd vertices {1, 3, 5} are merged

into 3, in particular creating the self-loop 3 → 3. Note: it takes

linear time O ( |д |) for mergeVertices to traverse the graph and

apply the predicate to each vertex (where |д | is the size of the graph

expression д), which may be much more e�cient than merging

vertices in a concrete data structure. For example, if the graph is

represented by an adjacency matrix, it will likely be necessary to

rebuild the resulting matrix from scratch, which takesO ( |V |2) time.

Since for many graphs we have |д | = O ( |V |), our mergeVertices

may be quadratically faster than the matrix-based one.

As another application of gmap, we implement the Cartesian

graph product operation box, orG � H , where the resulting vertex

set is VG × VH and vertex (x ,y) is connected to vertex (x ′,y′) if

either x = x
′ and (y,y′) ∈ EH , or y = y

′ and (x ,x ′) ∈ EG . An

example of the Cartesian product of graphs pentagon and p4 is

shown in Fig. 7.

box :: (Graph g, Vertex g ∼ (a, b))

=> GraphFunctor a -> GraphFunctor b -> g

box x y = foldr overlay empty $ xs ++ ys

where

xs = map (\b -> gmap (,b) x) . toList $ gmap id y

ys = map (\a -> gmap (a,) y) . toList $ gmap id x

The Cartesian product G � H is assembled by creating |VH |

copies of graph G and overlaying them with |VG | copies of graph

H . We get access to the list of graph vertices using toList and

turn vertices of original graphs into pairs of vertices by gmap. Note

that we need to reinterpret the input of type GraphFunctor as a

polymorphic graph by gmap id before passing it to the toList

function, which expects inputs of type ToList. As you can see,
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=

Figure 7. The Cartesian graph product of pentagon and p4.

we managed to implement quite a sophisticated graph transfor-

mation function box fully polymorphically. One can go further

up in layers of abstraction and use box to construct mesh and

torus graphs as mesh xs ys = box (path xs) (path ys) and

torus xs ys = box (circuit xs) (circuit ys), respectively.

The toList function is implemented as follows:

newtype ToList a = L { toList :: [a] }

instance Graph (ToList a) where

type Vertex (ToList a) = a

empty = L $ []

vertex x = L $ [x]

overlay x y = L $ toList x ++ toList y

connect x y = L $ toList x ++ toList y

Note that we do not provide the Eq instance for ToList, because it is

impossible to make it law-abiding without requiring Eq for vertices,

and we would like to avoid this in order to keep the box type

signature fully parametric. As a consequence, toList (1 + 1)

produces the list [1,1].

5.4 Graph Monad

What do the operations of removing a vertex and splitting a vertex

have in common? They both can be implemented by replacing each

vertex of a graph with a (possibly empty) subgraph and �attening

the result. You may recognise this as the bind operation of a monad.

We implement bind by wrapping it into yet another newtype:

newtype GraphMonad a =

M { bind :: forall g. Graph g => (a -> g) -> g }

instance Graph (GraphMonad a) where

type Vertex (GraphMonad a) = a

empty = M $ \_ -> empty

vertex x = M $ \f -> f x

overlay x y = M $ \f -> overlay (bind x f) (bind y f)

connect x y = M $ \f -> connect (bind x f) (bind y f)

The implementation is almost identical to gmap: instead of wrap-

ping the value f x into a vertex, we should just leave it as is. Let

us see how we can make use of this new type in our toolbox.

Firstly, we are going to implement a filter-like function induce

that, given a vertex predicate and a graph, will compute the induced

subgraph on the set of vertices that satisfy the predicate by turning

all other vertices into empty subgraphs and �attening the result.

induce :: Graph g

=> (Vertex g -> Bool) -> GraphMonad (Vertex g) -> g

induce p g = bind g $

\v -> if p v then vertex v else empty

λ> edgeList $ induce (<3) $ clique [0..10]

[(0,1),(0,2),(1,2)]

As you can see, by inducing a clique on a subset of the vertices

that we like (<3), we get a smaller clique, as expected. The cost of

induce for a given expression д is O ( |д |).

Now we can implement the removeVertex function:

removeVertex :: (Graph g, Eq (Vertex g))

=> Vertex g -> GraphMonad (Vertex g) -> g

removeVertex v = induce (/= v)

λ> edgeList $ removeVertex 2 $ 1 * 2 + 3 * 1

[(3,1)]

The polymorphic implementation of removeVertex presented

above takes O ( |д |) to remove a vertex from a graph expression д,

which is slower than some concrete graph data structures.

We can also use the bind function to split a vertex into a list of

given vertices:

splitVertex :: (Graph g, Eq (Vertex g)) => Vertex g

-> [Vertex g] -> GraphMonad (Vertex g) -> g

splitVertex v vs g = bind g $

\u -> if u == v then vertices vs else vertex u

λ> edgeList $ splitVertex 1 [0, 1] $ 1 * (2 + 3)

[(0,2),(0,3),(1,2),(1,3)]

Here vertex 1 is split into a pair of vertices {0, 1} that have the same

connectivity.

5.5 Beyond Homomorphisms

Most of the newtype wrappers de�ned in this section are homo-

morphisms, that is, they preserve the structure of the original graph

expression. The two exceptions are: Transpose, which is an anti-

homomorphism, and ToList which collapses the structure of the

original expression into a list.

Below we derive an implementation for removeEdge, which is

another example of a useful function that is not a homomorphism.

Removing an edge sounds easy, but the result is the most compli-

cated newtype in this paper.

Here is how it works. Removing an edge (u,v ) from the empty

graph or a vertex is easy: nothing needs to be done, because there

are no edges. To remove the edge from an overlay, we simply

recurse to both subexpressions, because the overlay does not create

any edges. The connect case x → y is handled by overlaying two

graphs: xu → yuv and xuv → yv , where:
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newtype RemoveEdge a = RE { re :: forall g. (Vertex g ∼ a, Graph g) => a -> a -> g }

instance Eq a => Graph (RemoveEdge a) where

type Vertex (RemoveEdge a) = a

empty = RE $ \_ _ -> empty

vertex x = RE $ \_ _ -> vertex x

overlay x y = RE $ \u v -> overlay (re x u v) (re y u v)

connect x y = RE $ \u v -> connect (removeVertex u $ re x u u) (re y u v) `overlay`

connect (re x u v) (removeVertex v $ re y v v)

removeEdge :: (Eq (Vertex g), Graph g) => Vertex g -> Vertex g -> RemoveEdge (Vertex g) -> g

removeEdge u v g = re g u v

Figure 8. Removing an edge from a polymorphic graph.

• xu = removeVertex u x and yuv = removeEdge u v y, thus

xu → yuv de�nitely does not contain the edge (u,v ) at the

cost of losing the vertex u in the left-hand side xu .

• yv = removeVertex v y and xuv = removeEdge u v x , thus

xuv → yv de�nitely does not contain the edge (u,v ) at the

cost of losing the vertex v in the right-hand side yv .

The overlay xu → yuv + xuv → yv contains the vertices u and v ,

because at least one copy of each vertex has been preserved, but

the edge (u,v ) is removed in both subexpressions as intended.

We demonstrate removeEdge on two simple examples:

λ> edgeList $ path "Hello"

[(’H’,’e’),(’e’,’l’),(’l’,’l’),(’l’,’o’)]

λ> edgeList $ removeEdge ’H’ ’e’ $ path "Hello"

[(’e’,’l’),(’l’,’l’),(’l’,’o’)]

λ> edgeList $ removeEdge ’l’ ’l’ $ path "Hello"

[(’H’,’e’),(’e’,’l’),(’l’,’o’)]

The removeEdge function is expensive: given an expression of size

|д | it may produce a transformed expression of the quadratic size

O ( |д |2). Many concrete Graph instances provide much faster equiv-

alents of removeEdge.

5.6 De Bruijn Graphs

To demonstrate that one can easily construct sophisticated graphs

using the presented library, let us try it on De Bruijn graphs, an

interesting combinatorial object that frequently shows up in com-

puter engineering and bioinformatics. The implementation is very

short, but requires some explanation:

deBruijn :: (Graph g, Vertex g ∼ [a]) => Int -> [a] -> g

deBruijn len alphabet = bind skeleton expand

where

overlaps = mapM (const alphabet) [2..len]

skeleton = edges [ (Left s, Right s) | s <- overlaps ]

expand v = vertices

[ either ([a]++) (++[a]) v | a <- alphabet ]

The function builds a De Bruijn graph of dimension len from

symbols of the given alphabet. The vertices of the graph are all

possible words of length len containing symbols of the alphabet,

and two words are connected x → y whenever x and y match

after we remove the �rst symbol of x and the last symbol of y

(equivalently, when x = az and y = zb for some symbols a and b).

The process of construction of a 3-dimensional De Bruijn graph on

the alphabet {0, 1} is illustrated in Fig. 9. Here are all the ingredients

of the solution:

• overlaps contains all possible words of length len-1 that

correspond to overlaps of connected vertices.

• skeleton contains one edge per overlap, with Left and

Right vertices acting as temporary placeholders.

• We replace a vertex Left s with a subgraph of two vertices

{0s, 1s}, i.e. the vertices whose su�x is s . Symmetrically,

Right s is replaced by vertices {s0, s1}. This is captured by

the function expand.

• The result is obtained by computing bind skeleton expand.

Below we construct the De Bruijn graph shown in Fig. 9.

λ> edgeList $ deBruijn 3 "01"

[("000","000"),("000","001"),("001","010"),("001","011")

,("010","100"),("010","101"),("011","110"),("011","111")

,("100","000"),("100","001"),("101","010"),("101","011")

,("110","100"),("110","101"),("111","110"),("111","111")]

λ> g = deBruijn 9 "abc"

λ> all (\(x,y) -> drop 1 x == dropEnd 1 y) $ edgeList g

True

λ> Set.size $ domain g

19683 -- i.e. 3^9

λ> Set.size $ relation g

59049 -- i.e. 3^10

Note that a De Bruijn graph of dimension len on the alphabet has

|alphabet|len vertices and |alphabet|len+1 edges.

5.7 Summary

We have presented a library of polymorphic graph construction and

transformation functions that provide a �exible and elegant way

to manipulate graph expressions polymorphically. Polymorphic

graphs are highly reusable and composable, and can be interpreted

using any of the Graph instances de�ned in §4, as well as other

instances provided by the algebraic-graphs library that is available

on Hackage. The library is written in the vanilla functional pro-

gramming style and has no dependencies apart from core GHC

libraries. Many of the presented graph transformation algorithms

are expressed using familiar functional programming abstractions,

such as functors and monads.
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Figure 9. Constructing De Bruijn graphs using the graph monad.

6 Related Work

Historically, �rst approaches to graph representation in functional

programming used edge lists, adjacency lists, as well as mutually

recursive data structures representing cyclic graphs by the so-called

‘tying the knot’ approach. The former were generally slower than

their imperative counterparts, while the latter were very di�cult

to work with. An asymptotically optimal implementation of the

depth-�rst search algorithm developed by King and Launchbury

[1995] used arrays to represent graphs and state-transformer mon-

ads [Launchbury and Peyton Jones 1994] to mimic imperative array

updates in pure functional programming. The developed algorithms

are still in use today and are available from the containers library
shipped with GHC. The API of the library contains partial functions.

A fundamentally di�erent approach by Erwig [2001] is based on

inductive graphs, whereby a graph can be decomposed into a context

(a node with its neighbourhood) and the rest of the graph. This

inductive de�nition makes it possible to share common subgraphs

and provides a way to implement graph algorithms in a more func-

tional style compared to the previous approaches based on array

representations. Inductive graphs are implemented in the fgl library
that contains implementations of many standard graph algorithms,

from depth-�rst search to maximum �ow on weighted graphs. The

library de�nes type classes Graph and DynGraph for working with

static (unchangeable) and dynamic (changeable) graphs, comprising

10 class methods in total. Compared to algebraic graphs proposed

in this paper, fgl has a larger core of graph construction primitives

(10 vs 4), some of which are partial. An important advantage of fgl
is the support of edge-labelled graphs.

Several other authors investigated ways to de�ne graphs com-

positionally, e.g. Gibbons [1995] proposed an algebraic framework

for modelling directed acyclic graphs comprising 6 core graph con-

struction primitives, but the approach was not general enough to

handle other practically useful classes of graphs.

Gibbon’s algebra is an example of a large body of research on

categorical graph algebras, e.g. see a survey by Selinger [2010].

These algebras are typically much more complex than the one

presented in this paper9, because they can represent graphs with

heterogeneous vertices and edges, where not all vertices and edges

9As an example, Signal Flow Graphs [Bonchi et al. 2015] have 17 primitives and a
few dozens of laws. Smaller characterisations of Signal Flow Graphs exist, however
minimising the number of graph construction primitives has not (so far) been a priority
for the authors (private communication with Pawel Sobocinski).

are compatible. Graphs in this paper are homogeneous, i.e. an edge is

allowed between any pair of vertices. This is a limitation for some

applications, but it allows us to have a much simpler theory and

implementation. Petri nets [Murata 1989] is an example of graphs

where not all edges are allowed10. Algebraic graphs proposed in

this paper cannot represent Petri nets in a safe way.

From a very di�erent angle, simple algebraic structures, such as

semirings, have been successfully applied to solving various path

problems on graphs using functional programming, e.g. see Dolan

[2013]. These approaches typically use matrix-based data struc-

tures for manipulating connectivity and distance information with

the goal of solving optimisation problems on graphs, and are not

suitable as an abstract interface for graph representation.

Simple graph construction cores are known for special families

of graphs. For example, non-empty series-parallel graphs require

only three primitives: a single vertex, and series and parallel com-

position operations. A classical result [Valdes et al. 1979] states that

only N -free graphs can be constructed using these primitives. Simi-

larly, the family of cographs corresponds to P4-free graphs, which

also require only three graph construction primitives: a single ver-

tex, graph complement, and disjoint graph union [Corneil et al.

1981]. Interestingly, there is an alternative core for cographs: a

single vertex, disjoint graph union, and disjoint graph join. The

only di�erence from the core used in this paper is the disjointness

requirement. By dropping this requirement, we can construct ar-

bitrary graphs. In particular, both N = 1 → 2 + 3 → (2 + 4) and

P4 = 1→ 2 + 2→ 3 + 3→ 4 can be easily constructed.

This paper builds on the work by Mokhov and Khomenko [2014],

where the algebra of parameterised graphs, a mathematical structure

very similar to a semiring, was proposed as a complete and sound

formalism for graph representation in the context of digital circuit

design. In that paper the authors did not investigate applications of

the algebra in functional programming but proved many important

results that are essential for this work. Alekseyev [2014] derived a

formalisation of the algebra of parameterised graphs in Agda, using

an encoding similar to the core type class that we de�ne.

7 Discussion and FutureResearchOpportunities

The paper presented a new algebraic foundation for working with

graphs. It is particularly well-suited for functional programming

10Petri nets have vertices of two types, called places and transitions, and edges are only
allowed between vertices of di�erent types.
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languages and bene�ts from functional programming abstractions,

such as functors and monads. Compared to the state-of-the-art,

algebraic graphs are easier to use and reuse, more compositional,

and have a smaller core of only four graph construction primitives,

fully characterised by an elegant algebra of graphs.

We demonstrated the �exibility of algebraic graphs by several

examples and developed a Haskell library for constructing and

transforming polymorphic graphs.

The presented approach has a few important limitations:

• This paper has not addressed edge-labelled graphs. In partic-

ular, there is no known extension of the presented algebra

characterising graphs with arbitrary vertex and edge labels.

However, Mokhov and Khomenko [2014] give an algebraic

characterisation for graphs labelled with Boolean functions,

which can be generalised to labels that form a semiring.

We found that one can represent edge-labelled graphs by

functions from labels to graphs. For example, a �nite automa-

ton can be thought of as a collection of graphs, one for each

symbol of the alphabet:

type Automaton a s = a -> Relation s

Here a and s stand for the alphabet and the set of states of

the automaton, respectively. This representation of labelled

graphs is supported by the following graph instance:

instance Graph g => Graph (a -> g) where

type Vertex (a -> g) = Vertex g

empty = pure empty

vertex = pure . vertex

overlay x y = overlay <$> x <*> y

connect x y = connect <$> x <*> y

Therefore, Automaton a s is a valid Graph instance.

• As mentioned in §6, the presented approach is designed for

homogeneous graphs, where an edge is allowed between

any pair of vertices. It is an open research question whether

it is possible to extend algebraic graphs for modelling het-

erogeneous graphs, such as Petri nets, without sacri�cing

the simplicity of the algebraic core.

• Many graph instances, e.g. Relation, incur a logarithmic

overhead during graph construction, and may therefore be

unsuitable for high-performance applications. One possible

solution is to operate on deeply-embedded algebraic graphs

(such as data Graph), and perform conversions to more

conventional representations only when necessary.

• There are no known e�cient implementations of fundamen-

tal graph algorithms, such as depth-�rst search, that work

directly on the algebraic core. Therefore, we need to trans-

late core expressions to conventional graph representations,

such as adjacency lists, and utilise existing graph libraries,

which may be suboptimal for certain algorithmic problems.

Despite these limitations, algebraic graphs have been success-

fully used in the design of processor microcontrollers [Mokhov and

Khomenko 2014] and asynchronous circuits [Beaumont et al. 2015].

Our future research will focus on addressing the above limita-

tions, and on the exploration of the following topics:

• Algebraic graph expressions can be minimised via themodu-

lar decomposition of graphs [McConnell and De Montgol�er

2005], thereby reducing their memory footprint, as well as

speeding up their processing. Modular decomposition is a

canonical graph representation, which can therefore be used

to e�ciently compare algebraic graph expressions for equal-

ity. Exploiting the compactness of algebraic graphs in algo-

rithms is a promising research direction.

• By using the algebraic approach to graph representation

one can formulate graph algorithms in the form of solving

systems of algebraic equations with unknowns. This may

potentially open way to the discovery of novel graph algo-

rithms.
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