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ALGEBRAIC HULLS AND SMOOTH ORBIT EQUIVALENCE

ALESSANDRA IOZZI

Abstract. For i = 1, 2 , let ^ be foliations on smooth manifolds M¡ de-
termined by the actions of connected Lie groups H¡ ; we describe here some
results which provide an obstruction, in terms of a geometric invariant of the
actions, to the existence of a diffeomorphism between the &¡'s.

1. Introduction
Let (M¡, p¡), i = 1, 2, be two manifolds with quasi-invariant measures,

and let Hi c Diff(Af() be connected Lie groups. If there is a measure class
preserving diffeomorphism 6: Mx -» M2 which is a bijection of //¡-orbits
and H2-orbits then we say that the actions are smoothly orbit equivalent. If
the //-actions determine foliations &¡ on the manifolds Mi, then the map
6 is just a diffeomorphism between the foliations. These phenomena, and the
corresponding phenomena arising in situations in which the (M¡, p¡) are just
Borel (or topological) //-spaces and the map 9 is a measure class preserving
Borel isomorphism (or homeomorphism), have been studied, using a variety of
techniques, independently by several authors [B, CFW, DI, D2, K, PnZ, Wl,
W2, Z2, Z4]. Most of the results obtained require some strengthening of the
hypotheses, such as finiteness and invariance of the measures and amenability
or semisimplicity (in higher rank) of the groups acting.

One of the results that we want to describe in this paper fits in this geometric
setting and provides an obstruction, in terms of a geometric invariant of the
actions, to the foliations being difteomorphic. Recall that, if H acts ergodically
and by diffeomorphisms on the «-dimensional manifold M, the algebraic hull
of the //-action is the unique (up to conjugacy) smallest algebraic subgroup
L c GL(«, R) such that there exists a measurable //-invariant reduction to
L of the frame bundle on M, on which H acts by automorphisms. (For an
analytic definition see §2 and for the general context see [Z5, 9.2].) Then the
normal algebraic hull of the //-action on M will be the projection of L in the
direction normal to the orbits.

Theorem 4.1. Let Hx, H2 be connected Lie groups, Hi c Diff(Af(.), where Mi
are smooth manifolds with a quasi-invariant measure p¡.   Suppose that the

Received by the editors June 17, 1989.
1980 Mathematics Subject Classification ( 1985 Revision). Primary 22D40, 22E40, 57Sxx, 28D99,

54H20, 58F18.

©1991 American Mathematical Society
0002-9947/91  $1.00+ $.25 per page

371

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372 ALESSANDRA IOZZI

actions are locally free, essentially free (i.e., free on a conull set) and ergodic,
and let &¡ be the corresponding foliations. If the S^ are diffeomorphic, then the
normal algebraic hulls are conjugate.

Notice that there are no assumptions on the finiteness or the invariance of
the measures; moreover local freeness is necessary only to be able to state the
theorem in terms of foliations (instead of orbits), and we require ergodicity
only to state the result in terms of algebraic hulls globally and not restricting
the attention to each ergodic component.

Many interesting examples arise as particular cases of homogeneous spaces
G/Y, where G is a connected, semisimple Lie group with no compact factors
and T is a lattice in G; the action of H will hence be via an embedding
H «-» G, and the foliation determined by the //-action will be identified with
the double cosets H\G/Y. (Notice that, in this context, essential freeness of
the //-action on M = G/Y follows automatically, at least in the case in which
H is algebraic, as it is shown in Proposition 4.4.) This situation has been ex-
tensively studied, not only in the case in which G is semisimple, [B, M, Pr, Rt,
Wl, W2]. One of the most recent and complete results is due to Dave Witte
[W2]; generalizing an idea of D. Benardete [B], he proved that any (continu-
ous) orbit equivalence between two foliations Hj\Gj/Yj (where the C7;'s are
semisimple groups to which the Mostow Rigidity theorem applies or suitable
solvable groups or simply connected nilpotent groups) is the composition of
an affine map and a homeomorphism that preserves each leaf, provided that
the ///s are unimodular. (An affine map between Gx/Yx and G2/Y2 is the
composition of a homomorphism a: Gx —> G2, such that o(Yx) c Y2, and
a translation.) Our approach to the problem is completely different and, for
this kind of action, the next theorem provides an explicit way to compute the
algebraic hulls.

Theorem 3.1. Let G be a connected semisimple Lie group with no compact
factors and finite center, Y c G an irreducible lattice and H c G a noncompact
closed subgroup. Then the algebraic hull of the H-actionon G/Y is the algebraic
hull of AdG(H).

It is worth observing here that, building on Theorems 4.1 and 3.1, our meth-
ods give results for the group H = ax + b~Rxt*'R of affine motions of the
line which do not seem to be accessible so far by other techniques (see §4 for
details). Moreover, besides being of independent interest, this theorem also
gives results in terms of smoothly conjugate actions. In fact we have

Corollary 3.2'. Let G ,Y be as above, and let H be a noncompact Lie group
acting on G/Y via two different embeddings itx, it2: H -» G with closed images
Hx, H2. If the actions of H on G/Y given by ni 's are conjugate, then ad (hi)
and ad (h2) are conjugate as subalgebras of gl(g).

It needs to be recalled here that a much stronger result (even though with
a narrower range of application in the semisimple case) has been proven by
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D. Witte [Wl]; he showed, in fact, that any measurable isomorphism of ergodic
unipotent translations on G/Y (where G is a connected Lie group and Y is
any closed subgroup of G such that G/Y has finite volume) is an affine map,
or, in other words, that Hx and H2 are conjugate in G. (A weaker conclusion
holds in the case in which the H ¡'s have zero-entropy.) In §3 we shall illustrate
how to deal with some examples which can be approached both using our result
and Witte's theorem.

The proof of these results are essentially based on two ingredients: the first
is a correspondence in cohomology between the cocycle of the //-action and
a cocycle of a suitable T-action, ([Z3] and Lemma 3.1); the second ingredient
is the correspondence (under the necessary hypotheses) between the algebraic
hull of a G-action and the algebraic hull of the restriction of the action to Y
(Theorem 2.1). It should be noticed here that the necessity of restricting our
attention to semisimple groups is due to the fact that Theorem 2.1 is known, so
far, only in this case.

For completeness, although in a different spirit, we study also the case in
which G is a compact Lie group, and the following theorem is proven in §3.
Theorem 3.4. Let H, G be Lie groups with G compact, and let nl• : H -> G,
i = 1, 2, be two embeddings with dense image it¡(H) = H¡. If the actions of
H¡ 's on G are measurably conjugate, then there exists an automorphism A of
G such that A(HX) = H2.

I want to thank my advisor, R. Zimmer, for many useful conversations we
had during the preparation of this paper, which was part of my Ph.D. thesis at
the University of Chicago.

2. Preliminaries on cocycles

Let (S, p.) be a (/-space with a quasi-invariant measure p , and let a, ß: Sx
G -» H be measurable cocycles. Recall that we say that a is equivalent to ß
(and we write a ~ ß) if there exists a measurable map <p: S -* H such that,
for every g e G, ß(s, g) = tp(gs)a(s, g)tp(s)~ for almost every s E S. If
G is ergodic on S and H is algebraic there exists a unique (up to conjugacy)
smallest algebraic subgroup L ç H such that a is equivalent to a cocycle taking
values in L but is not equivalent to a cocycle taking value in a proper algebraic
subgroup of L. It follows that if a ~ ß, ß(S x G) ç J and / is algebraic,
then J contains a conjugate of L. The conjugacy class of L is called the
algebraic hull of a [Z5, 9.2]. Given any group G acting by diffeomorphisms
on a smooth manifold M, we define the algebraic hull of the (7-action on M
to be the algebraic hull of the derivative cocycle a: MxG -» GL(«, R) defined
as a(m, g) = (dg)m , after a measurable trivialization of the tangent bundle.

Let ar : S x Y -» H denote the restriction of a cocycle a to Y. The next
result will be crucial in proving Theorems 3.1 and 4.1.

Theorem 2.1 [I]. Let G be a connected semisimple Lie group with finite center
and no compact factors, and let Y c G be an irreducible lattice. Let a: SxG —>
H be a cocycle of an ergodic G-action into an algebraic group, and assume that
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the G-action of G on S is not essentially transitive with compact stabilizers.
Then the algebraic hulls of a and ar are the same.

Recall that, under the above hypotheses on G, Y and S, the restriction to
T of the G-action is still ergodic [Mo, Zl]; this implies in turn that the product
action of G on S x G/Y is ergodic as well [Z3, Proposition 2.2.2].

Let Z(S x G; H) be the set of cocycles from S x G into H, and let
H (S x G ; H) be the set of the corresponding equivalence classes of cocycles.

Proposition 2.2. Let G ,Y, H and S be as above. Then there is a bijection
in cohomology *P: H (S xY; H) -* HX(S x G/Y x G; H) which preserves the
algebraic hulls.

Remark. The existence of the bijection holds in much greater generality [Z3] for
any closed subgroup T of a locally compact topological group G, any locally
compact topological group H and any G-space S. However, besides the fact
that the above situation is the one in which we shall use this result, the corre-
spondence between algebraic hulls makes sense only under suitable hypotheses
which insure ergodicity of all the actions.

Proof. Since we shall use it in the sequel, we give here the explicit form of this
correspondence, leaving out the details. For a complete proof see [I, Z3]. Let
n: G/Y —> G be a Borel section of the canonical projection p: G —> G/Y such
that n(p(g))g e Y, for every g eG. Then, if [a] £ HX(S xY;H) and a e
Z(SxY; H) with a £ [a], we define *¥(a)(s, x, g) = a(n(x), n(gx)gn(x)~x);
the equivalence class of ^(a) will be independent of the choice of a € [a],
and hence *F will be a map in cohomology. Conversely, given

[ß]eHX(SxG/YxG;H)

and ß £ [ß], we want to define O = *¥~x ; choose x £ g[e] £ G/Y and
define <&(ß) £ Z(S x Y; H) as Q{ß){s, y) = ß(gs, x, gyg~x). Then *¥(ß) is
independent in cohomology of the choice of x e G/Y, O and *F are inverses
in cohomology and both maps preserve the algebraic hulls.   □

Let (S¡, p¡) be //-spaces, i = 1, 2 ; we say that the actions of Hx and
H2 are orbit equivalent if there exists a measure class preserving Borel iso-
morphism (possibly after discarding a set of measure zero) 9 : Sx —» S2 that
takes any Hx -orbit onto an //2-orbit. If the //2-action is essentially free then
the map 9 defines a cocycle X: Sx x //, —► H2 which satisfies the relation
9(hxsx) - k(sx, hx)9(hx). If the cocycle k is equivalent to a cocycle indepen-
dent of sx £ Sx , namely, if X ~ k where X (sx, hx) = p(hx) with /?://,—» H2
a homomorphism, then we say that the actions are conjugate (or isomorphic). If
Sx and S2 are manifolds and the map 9 is a diffeomorphism then we say that
the actions are respectively smoothly orbit equivalent and smoothly conjugate
(or smoothly isomorphic); moreover, in the essentially free case, the cocycle X
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will be smooth along a.e. orbit. The correspondence in cohomology described
in the next proposition is well known [Rm] and we shall use this result several
times.

Proposition 2.3. IF 9: Sx -+ S2 is an orbit equivalence between essentially free
spaces, then there is a bijection T: Z(S2 x H2 ; L) —► Z(SX x Hx ; L) which is a
bijection in cohomology and preserves the algebraic hulls.
Proof. If ß £ Z(S2 xH2;L), let us define ß e Z(SX xHx;L) as ß(sx ,//,) =
T(ß)(sx, hx) - ß(9(sx), X(sx, hx)), where X: Sx x Hx -> H2 is the cocycle as-
sociated to 9. Conversely, if a £ Z(SX x Hx ; L), let us define 2(a) = a0 £
Z(S2 x H2; L) as a0(s2, h2) = a(9~ (s2), n(s2, h2)), where n: S2x H2-* Hx
is the cocycle associated to 6~ ; namely, if X(sl, hx) = h2 and 9(sx) = s2,
then n(s2, h2) = n(9(sx), X(sx , /z,)) = /z, . It is straightforward to verify that
the maps H and T are inverses and that equivalence classes of cocycles, as well
as algebraic hulls, are preserved.   D

3. Smoothly conjugate actions

Let G be a connected semisimple Lie group with no compact factors, finite
center and Lie algebra g, and let Y be an irreducible lattice in G. Let H be
a noncompact Lie group and let nx, it2: H -> G be two different embeddings
of H with closed images H¡ - it ¡(H), i = 1, 2 .

The first result we want to prove will be a very easy consequence of the next
theorem which illustrates how to compute the algebraic hull of the //-action
on G/Y by diffeomorphisms, where, for simplicity of notation, we identify H
with its embedded image in G.

Recall that, since Y is discrete, the tangent bundle T(G/T) can be smoothly
identified with G/Y x g. Then the action of H c G c Diff(G/r) on T(G/Y)
is given, via this identification, by the derivative cocycle a : G/Y x H —» GL(g),
a(x, h) = (dh)x = AdG(h), for x £ G/Y and h £ H.

Theorem 3.1. Let G be a semisimple noncompact Lie group with no compact
factors and finite center, Y c G an irreducible lattice and H c G a noncompact
closed subgroup. Then the algebraic hull of the H-action on G/Y is the algebraic
hull of AdG(H).

Before proving this theorem note the following consequence.

Corollary 3.2. Let G ,Y, H¡, i = 1, 2, be as above. If the Hx-action and the
H2-action on G/Y are smoothly isomorphic, then the algebraic hulls of AdG(Hx)
and AdG(H2) are conjugate as subgroups of GL(g).

Remarks. ( 1 ) If H is a noncompact connected simple Lie group, the result of
Theorem 3.1 is in [Z6, Corollary 5.3] and is a consequence of the Borel density
theorem.

(2) A natural question is to ask whether or not Theorem 3.1 is true for sub-
groups T which are only Zariski dense. In our theorem, we need the hypothesis
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of r being a lattice, because this was the case in which, so far, we have been
able to prove Theorem 2.1 (cf. §1).

(3) If the H¡'s are real algebraic, as in the case in which H is real algebraic
and the 7^'s are rational homomorphisms, then AdG(H¡) is of finite index in
a real algebraic group, so that the conclusion of the corollary is that (modulo a
finite group) AdG(Hx) and AdG(H2) are conjugate in GL(g).

The following is just a local reformulation of the previous corollary.

Corollary 3.2'. Let G,Y, H¡, i = 1, 2, be as above. If the Hx-action and
the H2-action on G/Y are smoothly isomorphic, then ad (h,) and ad (h2) are
conjugate in g[(g).
Proof of Corollary 3.2. Let a¡ : G/Y x H¡ -* GL(g) be the derivative cocy-
cles a¡(x, h¡) = (dh¡)x, for x e G/Y and h¡ e H¡. Because of the isomor-
phism 9 between the Hx- and the //2-action, we have that, for a.e. x £ G/Y,
9(hxx) = h29(x), where h2 = p(hx). Differentiation of this equality yields
the relation (d9)h x(dhx)x(dd)~x = (dh2)e{x) or else tp(hxx)ax(x, hx)(p(x)~~x -
a2(9(x), h2), where tp: G/Y -> GL(g) is defined as <p(x) = (d9)x: hence
a2 = T-1(q,) (as defined in Proposition 2.3), so that the algebraic hulls of ax
and q2 are the same.   D

Proof of Theorem 3.1. As it is shown in Proposition 2.2, and with the same
notation, we have the bijection

//' (G/Y x H ; GL(n, R)) «-» HX (G/Y x G/H x G ; GL(«, R))

and
HX(G/H xG/YxG; GL(n, R)) «-» HX (G/H x Y ; GL(n, R)),

which, together with the obvious identification Hx (G/Y x G/H x G ; GL(«, R))
~ Hx(G/HxG/YxG; GL(n , R)), imply that there is a bijection in cohomology
between cocycles for the //-action on G/Y and cocycles for the T-action on
G/H, and this bijection preserves the algebraic hulls. However, for our purpose,
we need to study the correspondence more closely; in particular, we need to see
that the cocycle ßT: G/H x Y —> GL(«, R) corresponding to a: G/Y x H —>
GL(«, R), where a(x, h) = (dh)x = AdG(h) is the adjoint cocycle, is still the
restriction to Y of the adjoint representation of G. If we can prove this we
are done, because then, by Theorem 2.1, the algebraic hull of ßT: G/H x Y —*
GL(n, R) is the same as the algebraic hull of ß: G/H x G -> GL(«, R) and,
by transitivity of G on G/H, this is the same as the algebraic hull of AdG(H)
[Z5, Proposition 4.2.13]. Hence to complete the proof we need to show

Lemma 3.3. Let H ,Y be closed subgroups of G, and let a: G/Y x H —► L be
the cocycle a(x, h) = it(h) where it: G —> L is a given homomorphism. Let
[ß] e HX(G/H xY; L) be defined as [ß] = Q([a]), where Q. is the bijection
Q: HX(G/Y xH;L)^ HX(G/H xY;L). Then there exists a cocycle ß £ [ß]
such that ß(y, y) = it(y).
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Proof. We shall use the same notation as in Proposition 2.2, writing, however,
H(G/Y x H) and H(G/H x Y) for H(G/Y x H;L) and H(G/H xY;L),
respectively. Let p : G —► G/H be the canonical projection, and let a : G/H -+
G be a Borel section such that a(p(g))g £ H for every g eG. Then we have
the map

^://'(G/rx//)   -»   Hx(G/YxG/HxG)
oa •—► a

defined by a°(x, y, g) = a(a(y)x, fftejOffffüO-1) = n(o(gy)ga(y)~x), and
the map

®:Hx(G/HxG/YxG)   -»   Hx(G/HxY)
ß ßx

defined by /^(y, 7) = /?(gy, x, gyg~x), where x = g[e]r 6 G/T. Notice that
O is independent in cohomology of the choice of x. Moreover, if

Z:Hx(G/YxG/HxG)   -►   HX(G/H x G/Y x G)

is the identification Z(a)(x,y, g) = à(x, y, g) - cx(y, x, g), where x £
G/Y, y £ G/H, looking at the composition Q = xPoZoí> of these maps

Hx{G¡TxH)     *     Hl{G/rxG/HxG)     *     h\g/H x G/T x G)     *     Hx(G/HxT)
0 -0 -0a >—► a 1—» a 1—► a

we claim that [<5^] = [an]. In fact if x = g[e]r £ G/Y, for a.e. y £ G/H and
y£T,

.0, N       .0, -K 0, -K
ax(y, y) = a (gy , x, gyg    ) = a (x,gy, gyg    )

= a(xo(gy), a(gyy)gyg'xa(gy)~x)

= it(a(gyy)gyg~x a(gy)~x)

= n(a(gyy)g)n(y)n(g~x a(gy)~x)

= it(o(gyy)g)it(y)n(a(gy)g)~x

= (px(yy)n(y)q>x(y)~l,

where <px: G/H —> L defined by <px(y) - it(o(gy)g) is the map which imple-
ments the equivalence.   D

Example. We want to point out that Corollary 3.2 allows us to obtain, by
completely different methods, results which were already available via other
techniques. For example, if G = SL(3, R) and re G is any lattice, let us
consider the actions on G/Y of the two unipotent one-parameter subgroups
H¡ = {exp(L4.): / € R} , where

(o   on (0   1   0\
¿,= [000       and   A2 =    0   0   1     .

V0   0   oj \0   0   0)
Since ad (hi) and ad (h2) have different rank (as linear transformations of
g), they cannot be conjugate in g[(g), thus implying that the actions of R by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



378 ALESSANDRA IOZZI

the identification with the H¡'s cannot be isomorphic. The same result is a
consequence of Witte's theorem [Wl] since Hx and H2 are not conjugate in
G as well. (If they were, then Ax and A2 would be conjugate matrices in g,
which is impossible, since they have different rank.)

Before studying actions which are just smoothly equivalent, let us examine, in
contrast with what was done before, the case in which the group G is compact.
Since for compact groups ergodicity is equivalent to (essential) transitivity [Z5,
2.1], then the restriction of the action to a subgroup H is still ergodic if and
only if H is dense in G.

Theorem 3.4. Let H, G be Lie groups with G compact, and let n¡: H -» G,
i - 1,2, be two different embeddings with dense image it¡(H) = H¡. Suppose
there exists a measurable bijection 9: G —> G which conjugates the H ¡-actions,
/=1,2. Then there exists an automorphism A of G such that A(HX) = H2.

Remark. The same result holds also in the case in which H¡ acts on G/G0
where G0 is not normal in G.

Proof. Since the Hx -action and the H2-action on G are conjugate, we have
that, for a.e. x £ G, h29(x) = 9(hxx), where h¡ = it:(h), ï = 1,2. If we
define a right action of G x G on Map(G, G) = {/: G —► G\f is measurable}
by (/ • (gi, g2))(x) — gj. f(g\x) > 0 turns out to be a fixed point for the //-
action, where H acts on Map(G, G) via (itx, n2)(H) = //, x H2 c G x G.
By continuity of the action, 9 is left fixed also by the closure Hx x H2 = L of
Hx x H2 in G x G. If pl■ : G x G —► G, i = 1, 2, is the projection onto the z'th
coordinate, since H¡ c p¡(L) c Ht. = G, we have that p¡(L) — G, i = 1,2,
that is, L projects onto G on both coordinates. So, for (gx, g2) £ L, we
have that (g,, g2)9 - 9, that is, g29(x) = 9(gxx) for every x £ G. Notice
that, since the action is free, g2 is uniquely determined by g, : in other words
there exists a unique g2 = X(gx) such that (gx, X(gx)) £ L. Moreover, since
X(gxg2)9(x) = 9(gxg2x) = X(gx)9(g2x) = X(gx)X(g2)9(x), then X £ Aut(G).   D

4. Smooth orbit equivalence

If H is a connected Lie group acting by diffeomorphisms on a smooth man-
ifold M with discrete stabilizers, then the //-orbits determine a foliation &"
on M and smoothly orbit equivalent actions correspond to diffeomorphic foli-
ations.

Theorem 4.1. Let //,, H2 be connected Lie groups acting by diffeomorphisms
on smooth n-dimensional manifolds Mx, M2. Suppose that the H ¡-actions are
essentially free, locally free and ergodic, and let ^,9^ be the corresponding
foliations on Mx, M2. If the foliations are diffeomorphic then the algebraic hulls
of the derivative cocycles in the direction normal to the leaves of the foliations are
conjugate.
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Proof. Since S?~X,!F2 are smoothly equivalent, then there is a diffeomorphism
9: Mx -» M2 such that, for every m £ Mx, hx £ Hx, 9(hxm) = h29(m), with
h2 = X(m, hx) = Xh (m), where X: MxxHx -> H2 is a cocycle a.e. smooth along
the orbits. If we write the previous equation as 9 o Lh (m) — Lx, h , o 9(m),
where Lh(m) = h m denotes the action on m by the diffeomorphism defined
by h, and we let pm : H¡ -* M¡ denote the orbit map pm (h¡) = h¡m¡ for
m¡ £ M¡, then differentiation of the above expression at m for Ä( e Hx fixed
gives

(de)hím(dLh)m = d(9oLh¡)m = d(LMmh¡]o9)m

= (dLKm,h¿)e(m)(de)m + W Pe(m))x(m,h^dXh)m>

which shows that the diagram

TmM,
(««■*,)»

Th,mMx

Ta<

W\m

M, ,dL . *h28(my"2A/,= T6(h.m A/,

does not necessarily commute. However, the maps Lh , Lx, h, and 9 pre-
serve the foliations and their derivatives dLh , dLX(m h), d9 preserve the tan-
gent space to the foliations, that is,

VÎ (d6)h m
T      y 1    T QT
1h,nT\ J«(*,mn

and
T  T (^f T      <?xm^\ lQ(mfr2

Hence we have the induced diagram

(dLMm . h, )'6{m) T F

TmMJTm9 ThimMJTh¡m9¡

idO\m

(dLan ,)ö„
TLai^MJTh.ai_& = Ta■ h26{my*2'    A,e("i)    2 ,M2/T8(h.my"2l Ä i(*m)"2

which, if we denote, by A^^ = TmMl/Tm3r¡, the normal space to the foliation
& at the point m , becomes

N.
VL„

m"\ N

(*) m„
h,nT\

N.6(mri («"■«■
¡V gr — m        or
iyh,ß{mV2 - ly9(h¡m)^2
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Now we need the following

Lemma 4.2.  (dXh )\N gr -0 and the diagram (*) commutes.

Assuming this lemma, whose proof we postpone for a while, we have that

m\^{dLhx)\Nm/ri = (dLHmihi))\Ne{m)92(d6)\N^ = (dLhi)\Ns{mS(d9)\N^,

that is,

Using again Proposition 2.3 we can easily deduce that the algebraic hulls of
(dL, )L s-  and (dL, )|v    v are the same.   In fact, if k and n   (k < n)

"l     "m^X "2    'Vn
are the dimensions of the foliations and the manifolds respectively, let a¡ £
Z(M¡ x H¡; GL(n -k,R)) be defined as a¡(m¡, A.) = (dLh)\N $-, í = 1,2.

/ m ;    i

Since, by Proposition 2.3 (and using the same notation), we have that the al-
gebraic hulls of T(q2) and a2 are the same, it will be enough to show that
T(a2) - ax in cohomology. In fact

T(a2)(m,hx) = a2(9(m), X(m, hx)) = (dLh )\N    ~

= (d9)\     y(dL)\   y(d9)-x\
fit m    \ l mi ml

= (d9)\N   grax(m,hx)(d9yx\N <? = ax(m,hx),
/i|W    I m    \

where a, ~ a\ via the map c/>: Mx —> GL(n - k, R) defined as (p(m) =
(d9)\N gr . Hence [T(q2)] = [a,] and this completes the proof.   D

Proof of Lemma 4.2. We want to differentiate the equation 9(hxm) = h29(m)
in local coordinates. Observe first of all that we can choose coordinate charts
i(um> VmïïmeM, > ̂ Vm' > Vm')}m'eM2 on M\ and M2 such that the map 9: Mx
-* M2 is locally just the identity map. In fact let {(Um , <Pm)}m€M   be charts

which realize the foliation &¡, namely, ç»m ((//,-orbit) n£/m) = {R xÇ>m(Um)}x
{pt}, and assume for simplicity that <pm(m) — (0, 0). We can choose charts
{(_*'«'.¥'*•)} on M2 defined by (Vm>, ¥m.) = (Ve{m), ¥f(m)) = (d(Um), <pm o
9~x), and it is straightforward to check that these charts realize the folia-
tion i^, y/m>(m) = (cpm o 9~x)(9(m)) = (0,0)  and that, locally, the map

6m- <Pm(Um)   ~*   ̂ (m)(F0(m))   =   ?'mi1U   defined W   0M   =   V9(m) ° 6 ° <P~l    ™
just the identity. Fix m0 £ Mx ; if m £ Um , hx £ //,, we have hxm £
uh,m0 so that ç>Mo(m) = (x, y) and <Ph¡mQ(hxm) = (tAi(x, y), £(>>)), where

t^ : R x R"~ —> R is just the map which describes in local coordinates the
translation of m along the fiber by hx £ Hx (i.e., xh = LA in local coordi-

nates) and £: R"~ —► R"~ indicates in local coordinates the fiber of the point
hxm (notice that if /z, e //, is close enough to the identity so that hxm £ Um ,
then Ç(y) = y).   Moreover, because of our choice of charts on M2, since
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9(m) £ 9(Umo) = Ve(mo) and h29(m) = 9(hxm) £ 0(1/^) = V^^, we can
write Ve(mo)(0(m)) = (x> y) and ^e(A,m0)(Ä26,(w)) = (ta2(-x> y). »ZOO). where
t. , « describe in local coordinates (as observed above for t,   and £) the ac-

™2 "l
tion of /z2 on ö(m) and, here, h2 = A(m, /z, ) is a function of m . Then these
equations together give us that

i\(x,y), n(y)) = ¥e(h¡mo)(h26(m)) = ^,m/(Äim))

= ehimü(Th(x,y),i(y)) = (Th(x,y)A(y)).

From these equalities it follows that t\ = n and

(\(x,y),t(y)) = (Th{(x,y),Z(y))-

Differentiation of this equality, using the notation

dzh(ux,u2)
h(x,y) = du; and   rK(x,y) = t:(xy)(h2

(x,y)

i.e., Lx   , = pm in local coordinates), gives

(r\(x,y)   x\(x,y)\_ _/%(*, y) + %f§   <(x,y) + ^§
I      0 %      )"{ 0 g

__(rxh2(x,y)   ?¡2(x,y)\     ¿W£    g
o       g  y+ ^2 vo o

which is nothing but the expression in local coordinates of the equation

(de)hlm(dLh)m = (dL^m,h,))e(m)(dd)m + (dPe(m))i(m,hl)(d\)m-

But this shows that (dX)\N & = 0 which implies the commutativity of the
diagram (*).   D

In order to apply Theorem 4.1 we need the following

Proposition 4.3. Let

G(k,n-k)=(G^   GL(;M))cGL(«,R),

and consider the surjective homomorphism p: G(k, n - k) -> GL(« - k, R).
Suppose a: G x S —► G(k, n - k) is a cocycle with algebraic hull H ç
G(/<, n - k). Then the algebraic hull of p o a is the Zariski closure of p(H) in
which p(H) is of finite index.
Proof. Since p is surjective, the algebraic hull of p o a cannot be strictly con-
tained in p(H). Let Hc be a complex algebraic group defined over R such that
H - (HC)R consists of its real points. Since p is R-regular, we have that p(Hc)
is an R-algebraic group, but p(H) is not necessarily Zariski closed. However,
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if we denote by p(H)    the Zariski closure of p(H) in GL(« - k, R), we have
-z

the inclusions p(H) c p(H)   c (p(Hc))R : since p(H) = p((Hc)R) is of finite
-zindex in (p(Hc))R, it follows that p(H) is of finite index in p(H)    as well.   D

The main application for the theorem about smooth orbit equivalence that
we present here is to the //-action on G/Y, and we shall illustrate with an
example at the end of this section how to obtain results which did not seem to
be accessible by other methods. However, before doing this we want to show
how, in this case, essential freeness follows almost automatically.

Proposition 4.4. Let G be a noncompact connected simple Lie group, Y c G
a lattice and H c G an almost connected real algebraic group. Then H acts
essentially freely on G/Y.

Remark. For simplicity we stated the result only for simple groups; however,
exactly the same proof works in the case in which G is semisimple and Y c G
is irreducible, as long as we assume that Y does not intersect a subgroup N ç H
normal in G. Moreover, small modifications of the proof show that the result
holds also in the case in which H is not algebraic.

We start the proof with the following lemma.

Lemma 4.5. Essential freeness of H acting on G/Y is equivalent to essential
freeness of Y acting on G/H.

Proof. This is just a straightforward exercise on double cosets. If p is the
Haar measure on G, let pr and pH be the measures respectively on G/Y
and G/H. Notice that, since G is connected and H is a proper subgroup
of smaller dimension, if X c G is a measurable subset then pr(pr(X)) = 0
if and only if p(X) = 0 if and only if pH(pH(X)) = 0, where we denote
with pr: G —> G/Y and pH: G —> G/H the canonical projections. Let W =
{xY: Stab„(xT) ¿ e} C G/Y and V = {xH: Stabr(x//) ^ e} C G/H. We
want to show that pH(V) = 0 if and only iî pT(W) = 0. An easy compu-
tation shows that, for x £ G, xY £ W if and only if x" H £ V, so that
í'//((crr(^/))- ) Q V, where err: G/Y —> G is a section of the pr. Hence
H„(pH((oT(W))-x)) < pH(V). If pH(V) = 0 then pH(pH((aT(W))-x)) = 0
so that 0 = p(av(W))~x - p(aY(W)) = pT(W) which is what we wanted: the
other direction (which actually we shall not use), follows by symmetry.   □

Proof of 4.4. Because of the lemma, it is enough to show that Y is essentially
free on G/H. With the notation used in 4.5 we need to show that pH(V) = 0.
For each y £ Y, let V — {xH £ G/H: yxH = xH} ; it is clear that V is a
subvariety and that V = \J er V , where the union is countable. Then it will be
enough to show that, for every y £Y, V is a subvariety of smaller dimension,
so that pH(V) = 0. Since G is connected, G/H is an irreducible variety, so
that if V  does not have smaller dimension it must be V — G/H. But if, for
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some yn £ Y, yn ^ e, we have Vv = G/H, then, since G/H = V, = gV, =u u '0 '0 '0

V     -i  for any g £ G, this would imply the existence of a connected normal
s/qs

subgroup TV = Gy0G~x which is proper (since it fixes the whole space, hence
N ç H) and this is impossible since G is simple.   D

Example. Let H = Rx k R be the group of the affine motions of the line. If
T c SL(3, R) is any lattice let us consider the //-action on SL(3, R)/T by
itx,it2:H^ SL(3, R) = G, defined by

X     0     t\ ¡X   0     t
l(3 rt- '7T,(/l,/)=|0   X '    0 I    and   n2(X, t) = I 0   X     0

0     0     \) \0   0   X~
We claim that these two actions cannot be smoothly orbit equivalent, and we
shall prove it by showing that AdG(Hx)\,^ and AdG(H2)\,^ are not conjugate
in GL(g). In fact, because of Theorem 3.1, we have that the algebraic hull of
the //¿-action on G/Y is the Zariski closure of AdG(H/), and Proposition 4.3
implies that the algebraic hull of the //.-action in the direction normal to the
orbits is the Zariski closure of AdG(//.)| ~ . Let C~ (h¡) be the centralizer of
h¡ £ H¡ in g/h, and Vh = {X e g/h;: AdG(h¡)\s/t)X = X} . Then we have that
Cg/b,(/î/) = FVf0r Ä, e//,., so that

w^- n <w*f)= n vv
An easy computation shows that C .(//j) (and hence VH) is zero-dimensional
and C ,. (H2) (and hence VH ) consists of matrices of the form

{ (0   a   0\
:¿2GR

Since AdG(H)\ ,. is of finite index in its Zariski closure and since the dimen-
sion of the subspace of fixed vectors would be an invariant of conjugacy, it
follows that the algebraic hulls of AdG(Hx)\ /t) and AdG(H2)\ ,. cannot be
conjugate in GL(g).
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