
Algebraic Implementation of Objects over Objects

H.-D. Ehrich

Abteilung Datenbanken, Technische Universit~t Braunschweig, Postfach 3329, D-3300 Braunschweig, FRG

A. Sernadas

Departamento de Matematica. Instituto Superior Tecnico, 1096 Lisboa Codex, PORTUGAL

Abstract - This paper ~ives semantic foundations of (correct) implementation as a relation-
ship between an "abstract" object and a community of "base" objects, In our aproach, an object is
an "observed process". Objects and object morphisms constitute a category OB in which colimits
reflect object aggregation and interaction between objects. Our concept of implementation allows
for composition, i.e. by composing any number of (correct) implementation steps, a (correct)
entire implementation is obtained. We study two specific kinds of implementation, extension and
encapsulation, in more detail and investigate their close relationship to object morphisms. Our
main technical result is a normal form theorem saying that any regular implementation, i.e. one
composed of any number of extensions and encapsulations, in any order, can be done in just
two steps: first an extension, and then an encapsulation.

K e y words - object-oriented systems ; objects; object morphisms (processes; process
morphisms ; semantic fundamentals ; algebraic implementation ; reification ; refinement ; extension ;
encapsulation.

1. Introduction

2. Motivation

3. Objects
3.1 Processes
3.2 Observations
3.3 Object Communities

4. Implementation
4.1 Concept
4.2 Extension
4.3 Encapsulation
4.4 Normal Form

5. Concluding Remarks

References

CONTENTS

HDEhrich
Schreibmaschinentext
deBakker, J. W., deRoever, W.-P., and Rozenberg, G., editors, Proc. REX Workshop“Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness”, LNCS 430, pages 239–266, Berlin, 1990. Springer

240

1. In t roduc t ion

Computing systems are built in layers. Each layer offers an interface with a collection of services

to its upper neighbors, and it makes these services operational by programming them on top of

the interfaces offered by the lower neighbors. Between an end user interface and the switching

circuitry inside a computer, there are usually many layers, both hardware and software. It is of

vital importance, both for correctness and efficiency, to understand clearly and thoroughly what

happens inside each layer, and what happens when moving up and down across layers.

When speaking of implementation intuitively, we sometimes mean the activity of establishing a

new layer on top of existing ones. and sometimes we mean the result of this activity, i.e. the new

layer itself. In any case, the notion of implementation refers to a relationship between layers.

This paper gives mathematical foundations of (correct) implementation as a relationship between

layers, based on an object-oriented model of layer.

Typically, each layer shows the following concepts: data with operations, variables with the

capability of storing data values, and actions changing the contents of variables. While one or the

other of these concepts might be missing, the main difference is in the level of abstraction. Bits.

switching gates, flipflops, and digital signals is an example of a rather low-level layer, whereas,

say, relational algebra, databases, and database transactions constitute a somewhat higher level.

Among the many approaches to model aspects of structure and behaviour of computing layers in

a rigorous mathematical setting, there are three complementary theories which have found wide

attention: the algebraic theory of abstract data types dealing with data and operations, the theory

of state machines dealing with states (of variables) changed by actions, and the theory of

processes dealing with actions (or "events") happening in time in some controlled way, in sequence

or concurrently.

We favor an object-oriented approach for modeling layers. The concept of an object in the sense

of object-oriented programming incorporates data, variables (or "attributes" or "slots"), and

actions (or "methods" or "events"). Moreover, objects can communicate with each other, e.g. by

means of messages. This supports viewing a computing system (one layer) as a community of

interacting objects.

The object concept is not new. Its origins trace back to the class concept in SIMULA (DMN67),

and the module concept of Parnas (PAT2), but it developed and became popular only much later,

with the advent of Smalltalk (GR83). Object-orientation has been proposed as a programming

paradigm by itself (HB77, He77), and this idea has found wide acceptance by now.

In contrast to its practical impact for quite a while (Lo85, DD86, SW87, Di88), mathematical

foundation of object-orientation in all its aspects is still feeble. An interesting early contribution

is (Go75), but only recently the issue has found wider interest (Am86, GM87, AR89). In a series

of papers (SSE87, ESS88, ESS89, ESS90, SEC89), we contributed to a model of objects, object

types, and aggregation of concurrent, interacting objects. The three complementary theories

mentioned above are reflected in various degrees: an object is considered to be an "observed

process" where the observation is done via attributes, each one capable of holding values from

an arbitrary abstract data type. In defining a category of objects and object morphisms, we take

benefit from algebraic data type theory also in a different, and more interesting respect. As in

the algebraic data type case, colimits play an essential role.

241

In this paper, we investigate (correct) implementation as a relationship between an "abstract"

object "built on top" of a community of (possibly interacting) "base" objects. Again, we capitalize

in some analogies with algebraic data types, taking benefit especially from work in (Eh81, Li82).

In section 2, we gi~e motivating background for our object, object morphism, and implemetation

concepts. In section 3, we develop the theory of objects in more detail, showing how object inter-

action and object aggregation can be uniformly handled in categorial terms, and in section 4 we

present our theory of implementing objects over objects. Extensions and encapsulations are intro-

duced as special cases of implementations, and their close relationship to object morphisms is

clarified. Our main technical result is a normal form theorem saying that any regular implemen-

tation, i.e. one composed of any number of extensions and encapsulations, in any order, can be

done in just two steps: first an extension, and then an encapsulation.

We make moderate use of a few category-theoretic notions. The reader may find it helpful to

consult the first chapters of (Go79) where all relevant notions are defined and explained, or any

other textbook on category theory.

2. Motivation

We explain the intuitive background of our object model and the relevant relationships between

objects. Then we outline the idea of what we mean by an implementation of an "abstract" object

over a given community of "base" objects.

Example 2.1: A very simple example of an object is a natural variable near , i.e. a variable for

natural numbers. We recognize the following ingredients:

data: the natural numbers (with their operations)

attribute: val, the current value

events: open, bringing the variable into existence,

close, bringing the variable out of existence, and

asg(n), for each n ~ , assigning value n to the variable. []

Example 2.2: A slightly more elaborate example of an object is an (infinite) array of integers,

indexed by natural numbers. More precisely, we have

data: the natural numbers and the integers,

attributes: conts(n), for each n~lN, the current value of the n-th component.

events: create, bringing the array into existence,

destroy, bringing the array out of existence, and

se t (n , i) , for each n~lN and each i~Z, assigning value i to the n-th component. []

Example 2.3: An interesting example of an object is a stack of integers with the following

ingredients :

data:

attribute:

events:

the integers,

top, the value of the topmost element,

new, bringing the stack into existence,

drop, bringing the stack out of existence,

242

push(i) , for each i c Z , putting e l ement i on top of the s tack , and

pop, taking the topmost e lement away. D

Knowing about the data, a t t r ibutes and events of an object does by no means provide a suff icient ly

complete picture of what an object is. We need to know more than its s ta t ic s t ruc ture , we need

to know its dynamic behavior. The behavior of an object is specif ied by answering two quest ions:

(1) How can events happen in t ime ?

(2) Which values are assumed by the a t t r ibutes ?

Question 1 refers to viewing the event par t of an object as a process ra ther than just a set of

events. It is essent ia l to know about near , for ins tance, that open has to be the first event before

near is ready to do anything else, and that close, if it ever happens, is the last event a f te r which

near is not ready to do anything, etc. For stack, as another example , we would perhaps like to

impose that we cannot pop the empty stack, i.e. that in any permissab le sequence of s tack events

start ing with new, we would insist to have at leas t as many push's as pop's , etc. These are typical

safety conditions.

It is essent ia l , however, that we can also handle active objects, not only passive ones. Typically,

active objects have to satisfy liveness conditions. As an example , for a user p rogram operat ing

on a stack, we might want to impose that it may not leave the s tack as garbage behind, i.e. it

has to drop the s tack eventual ly once it exists.

Therefore, we need a process model which can deal with bo th safety and l iveness.

There are plenty of process models around, and it is not c lea r which one is be t t e r or even the

best of all for our purposes. In order to fac i l i ta te developing ideas, we adopt, for the moment

being, the s implest in ter leaving model incorporat ing safety and l iveness and al lowing for infinite

behaviour: our life cycle model says that a process is a set of s t reams, i.e. finite or infinite

sequences, over a given alphabet of events (SEC89 t rea t s the finite case). The a lphabet may be

infinite, as suggested by the examples above. It is t rue that we do not cap ture full concur rency

and internal nondeterminism this way, but we are p repared to subst i tute a more powerful process

model la te r on. In this sense, we consider our theory as being pa rame te r i zed with r e s p ec t to the

process model.

Processes as sets of life cycles do not have to be prefix c losed! For instance, consider a s tack

user program which has to drop the s tack eventual ly once it exists . Af ter performing the t r ace

<new;push(1) ;push(1) ;pop,push(2)> of s tack events (disregarding non- s t ack events) , the p rogram

stil l has to do something with the stack, whereas af ter <new;push(1) ;pop;drop>, we have a

"complete life cycle" of s tack events so that the p rogram may te rminate . In fact, viewing a

process as a set of complete life cycles and not insisting in prefix c losure is the way l iveness is

expressed in our model.

Processes do not te l l everything about an object. For fully capturing its behavior , we have to

answer the second question posed above.

The values assumed by the a t t r ibutes depend, of course, on what happened before. For instance,

af ter a t race , i.e. a finite sequence of events ending with asg(10), the cur ren t value of near

should be 10. The case of s tack is more complicated: the cur ren t value of top may depend on an

a rb i t ra r i ly long t r ace of events before the point of observat ion.

243

Our model is to let observations, i.e. sets of a t t r i bu t e -va lue pairs, be funct ional ly dependent on

t r aces of events: a f te r each t race , the observa t ion is uniquely determined. We allow, however, for

"non-de te rmin i s t i c" observat ions in that the re may be any number of a t t r i bu t e -va lue pairs with the

same at t r ibute . This way, one a t t r ibu te may have any number of values , including none at all.

The intuit ion is tha t an empty observat ion expresses that the value is not known, and more than

one va lue expresses that it is one of these, but it is unknown which one. The ease that the

a t t r ibu te va lue is a set of values is different: this is captured by one a t t r i bu t e -va lue pair where

the va lue is a set of e lements , i.e. an ins tance of the data type of sets of these e lements . Our

notion of observa t ion is an abs t rac t ion and genera l i za t ion of that of a " record" or "tuple".

In short , we view objects as "observed processes" , as made precise in sect ion 3.1.

Objects in isolat ion do not te l l everything about the s t ruc tu re and behaviour of a computing system.

Typically, we have object commun i t i e s where there are many objects around, passive ones like

those in the examples above, or act ive ones like programs or t ransac t ions . These objects in te rac t

with each other , and they are put toge ther to form aggrega te objects in a var ie ty of in t r ica te

ways. Therefore , it is essent ia l to study relationships be tween objects. Our basic concept for this

is that of an object morph ism, general enough for including

- special izat ions like roads te r ~ > ca__.~r

- parts like engine - - - ~ car

- l inks like owner ~ ca___~r

Moreover , our theory can deal with shared parts in a sa t isfactory way, including event shar ing

as the basis for (synchronous and symmet r ic) communicat ion be tween objects . In fact, in te rac t ion

and aggregat ion a re t r ea t ed in the uniform mathemat ica l f ramework of col imits in the ca tegory

of objects . More de ta i led motivat ion will be given in sections 3.2 and 3.3, respect ively.

The cen t r a l subject of this paper , implementa t ion (or "reif icat ion" or " ref inement") , is a very

pecul ia r re la t ionship be tween objects that goes beyond morphisms as oulined above. The genera l

idea of implement ing an "abs t rac t " object over a community of "base" objects is to

- t r ans l a t e abs t rac t event s t r eams to base s t reams, and

- t r a n s l a t e base observat ions back to abs t rac t observat ions .

This way, the behavior of an abs t r ac t object is s imula ted via the base: a f te r an abs t rac t t r ace z ,

we "ca l cu la t e " the abs t rac t observat ion (which we do not have di rect ly) in the following way:

we t r ans l a t e ~ to base t r ace ~' , look at the base observat ion y" af ter T', and t r ans la t e y" back to

the abs t r ac t level , yielding abs t rac t observa t ion y. Of course, y should be the " co r r ec t " abs t r ac t

observa t ion af ter ~, as laid down in some abs t rac t specif icat ion.

E x a m p l e 2.4: A wel l known implementa t ion of an integer s tack over an integer array indexed by

na tu ra l numbers , toge ther with a na tu ra l va r iab le as top pointer , would eva lua te the top va lue of

the s tack t r ace

< new ;push(2) ;push(l) ;pop >

as follows (of. examples 2.1 to 2.3). Transla t ing to base t races event by event (for detai ls see

example 4.4), we would obtain, say,

< c r e a t e ;open; asg(0) > < set (0,2); asg(1) > < set(t ,1); asg(2) > < asg(1) > .

244

At the end of this t race , we have 1 as the na tura l var iab le ' s value, so tha t the top value of the

s tack is in the 1-component of the a r ray , and we have 2 as this component ' s value. From this,

we easily obta in 2 as the current top value of the stack. []

We give more de ta i led motivat ion for our approach to implementa t ion in sect ion 4.1.

Since implementa t ions in genera l are r a the r complex relat ionships be tween objects , the question

na tura l ly ar ises whe ther we can " tame" the concept so that the in te r -ob jec t re la t ionships become

managable. The l a t t e r are harder to deal with than in t ra -ob jec t s t ruc tu re and behaviour. If

possible, the in te r -ob jec t re la t ionships should be (close to) morphisms.

Extensions and encapsulat ions are two kinds of implementa t ion which are w e l l - b e h a v e d in this

respect . Extens ions capture the idea that - within one object - everything is "defined upon" a

proper part , and encapsula t ion captures the idea to es tab l i sh an " in ter face" to an object, a b s t r a c t -

ing some of the i tems and hiding the rest . More deta i led motivat ion is given in sect ions 4.2 and

4.3, respect ively.

3. Objects

Objects are observed processes . We first p resent our (prel iminary) life cycle model of processes

and process morphisms. Then we extend processes to objects by adding observat ions , and process
morphisms a re accordinly ex ten ted to object morphisms. In the resul t ing category OB of objects ,

we invest igate the exis tence of colimits and show how colimits are used to deal with communit ies

of in teract ing ob jec t s , and with aggregat ion of objects into complex objects ,

3.1 Processes

In the life cycle process model, a process consists of an a lphabet X of events and a set of life

cycles over X. Le t X * be the set of finite sequences over X, and le t X ° be the set of o - s e q u e n -

ces over X. By X ° we denote the set of streams over X, defined by X ° = X * u X ° .

Defini t ion 3.1: A process P=(X,A) consists of a set X of events and a set Ac-X ° of life cycles

such that E ~A.

The empty l ife cycle expresses that the process does not do anything, no events happen. The

reason why we impose that each process has the potent ia l of remaining inactive is mot ivated by

the examples in sec t ion 2: before the first event (and af te r the las t one if it ever happens), an

object "does not exist". It is brought into and out of exis tence by means of events. And each

object should have the potent ia l of remaining nonexis tent . The deeper reason for that comes

from object types (which we do not deal with in this paper , cf. ESS90): an object type provides a

large, possibly infinite supply of object ins tances , and many of these will never be act ivated.

Referr ing to examples 2.1 to 2.3, we give the processes underlying objects n e a r , a r ray and s tack.

Example 3.2: Let Pnvar = (Xnva r ,Anva r) be the following process.

Xnvar = { open , c lose } u Xasg where Xasg = { asg(n)] n~lN } .

Anvar : {open}Xasg{close}

i.e. the var iab le must eventual ly t e rmina te with a close even t , af ter finitely many assignments . 0

245

Example 3.3: Let Parray=(Xarray,Aarray) be the following process.

Xarray = { create , destroy } u Xse t where Xse t = { set(n,i) I nslN A iEZ } .

Aarray = {create}Xset{destroy} ~J {create}X~e t

i.e. the array can accept infinitely many assignments without ever being terminated by a destroy

event. O

Example 3.4: Let Pstack =(Xstack,Astack) be the following process.

Xstac k = { new , drop } u Xpp where Xpp = { pop } u { push(i) I i~Z }

Astack = {new}Ll{drop} u {new}L2

where LlC-X~p_ is the set of all finite sequences of pop's and push's with the property that each

prefix contains at most as many pop as push events, and L2~Xt~p is the set of all t~-sequences

where the same holds for each finite prefix. £3

As pointed out in section 2, it is important to study relationships between objects, and, in the first

place, between processes. The simplest relationship is that of being a subprocess, by which we

mean a process over a subset of all events where a certain relationship holds between the life

cycle sets. For intuition, we look at examples 3.2 to 3.4, respectively.

Example 3.5: Let Pnvar = (Xnvar, Anvar) be defined by the restriction "only values up to 1000 can
be assigned, and the variable need not tei 'minate":

Xnvar = { o p e n , close } u Xasg where Xasg = { asg(n) I n~lN A ng l000 }

A;~va r = {openIX~g{close} ~, {open}X;~g

Example 3.6: Let Parray = (Xarray, Aarray) be defined by the following idea: "values can only be

assigned to components up to 1000":

Xarray = { create , destroy } ~, Xse t where Xse t = { set(n,i) I n~N ^ i~Z ^ n~1000 }
,~

Aarray = {create}Xset{destroy} u {ereate}Xs~ t

Example 3.7: Let Pstack=(X~tack, Astack) be a (strange) stack which cannot be pushed, but

popped arbitrari ly often:

Xstac k = { new , drop } u Xpp where Xpp = { pop }

A~tack = {new}X~;{drop} u {new}Xp~ [3

The relationships between the life cycle sets of the corresponding examples 3.5 and 3.2 as well

as 3.6 and 3.3 are established by projection, defined as follows.

Def'mition 3.8: Let X'c~X. The projection o f a stream X ~ X ° to X', X+X ' , is defined recursively

by
e+X" = E

x(p+X') if x,X"
xp-~ X"

p+ X" otherwise

for each p E X °. The projection of a stream set A c_ X o to X" is given by

A,bX" = { X,bX" 1),cA }

In the examples given above, we obtain only valid life cycles by restriction, i.e.

246

Anvar,~Xnvar c Anvar and

Aar ray~Xar ray = Aarray

As for the stack examples, neither is Astack,b Xstac k a subset of Astac k nor the other way round,

both sets are incomparable. Intuitively, we would not accept Pstack as a subprocess of Pstack'

because the life cycle sets are largely unrelated. On the other side, we easily accept Parray as

a subprocess of Pa r r ay ' because the former behaves "like" the lat ter , albeit in a res t r ic ted way.

The question is whether we should accept Pnvar as a "subvariable" of Pnvar: we have a subset

of events, but the life cycle set is larger than that obtained by projecting Anvar to Xnvar . Our

decision is to accept this situation as a subproeess relationship, too: the subprocess "contains"

the behavior of the superprocess, but may allow for "more freedom". This decision is justified by

the results described in section 3.3 below.

Summing up, we consider P '=(X' ,A') to be a subprocess of P = (X , A) iff X'c-X and A.~X'C-A ".

It is straightforward to general ize from inclusions to injective mappings among event alphabets,

obtaining injective process morphisms. For the results in section 3.3, however, we have to cope

with arbitrary mappings between event alphabets, also noninjective ones, and it is by no means

straightforward how to general ize the above ideas to that ease. The following version is different

from that in (ESS89, ESS90), but it leads to nicer results about colimits and their usefulness for

describing paral le l composition, as presented in section 3.3.

Let X be an alphabet of events, and let X" be a finite subset of X. By a permutation of X" we

mean a trace 7z ~ X ' * containing each event in X" exact ly once. Thus, the length of 7t coincides

with the cardinality of X'. Let

perm(X') = { ~ X ' * [~t is a permutation of X" } .

For X ' = ~ , we define perm(~)={~}.

Let X 1 and X 2 be event alphabets, and let h : X 1 ->X 2 be a mapping. In what follows, we

assume that h - l (e) is finite for each e~X 2. h gives rise to a mapping h in the reverse direction.

Dermition 3.9: For h as given above, h is defined as follows

(1) For an event e c X 2 : h(e) = perm(h-l(e)) .

(2) For a s t ream e l e 2 . . . ~ X ~ : h ' (e l e 2 . . . } = h(e 1)h(e 2)

where juxtaposition denotes concatenation of t race sets.

(3) For a s t ream set Ac-X~: h'(A) = ~ A h (X)

Proposition 3.10: If h : XlC---> X 2 is an inclusion, then we have for each e c X 2 , X~X ~ and Ac-X~ :

f {e} if e , X 1 Re)
t {E} otherwise

~(x)-- x , x ~

g(A)-- ^ , x 1
Definition 3.11 : Let P 1 ; (X 1' A 1) and P 2 ; (X 2 ' A2) be processes. A process morphism h : P 1 ~ P2

is a mapping h : X 1 ~ X 2 satisfying the following life cycle inheritance condition:

VX2~A 2 3 X I ~ A 1 : X l ~ h (X 2)

The life cycle inheritance condition is i l lustrated by the following diagram which commutes if we

interpret * as "pick the right one".

247

A1 c_ > X] X 1

4
A2 c_ ____~ X~ X 2

If h is injective, there is no choice at * to pick, and we get an ordinary commuting diagram. In

this case, h is a mapping h : A2-----~A 1 when res t r ic ted to A 2.

Theorem 3.12: The processes P = (X , A) and process morphisms h : P 1 >P2 as defined above

establish a category.

Proof : We have to prove that morphisms compose and that there are isomorphisms. The s traight-

forward proof is left to the reader. []

Notation 3.13: The category of processes and process morphisms is denoted by PROC.

In section 3.3, we will investigate the exis tence of colimits in PROC and its extension OB, the

category of objects, to be introduced in the next section.

3.2 Observations

Observations are sets of a t t r ibute-value pairs, abstracting and generalizing the familiar notions

of "record" and "tuple". Let A be an alphabet of attributes. For each attribute aEA, we assume

a data type type(a) which provides a domain of values which a can assume. We admit arbitrary

data types for attributes. Although we do not address object types in this paper, we note in passing

that surrogate spaces of object types are data types, too (el. ESS90), so that "object-valued"

attributes are included.

Dermition 3.14 : An observation over A is a set of a t t r ibute-value pairs y c{ (a, d) I a~A ^ d~ type(a) }.
The set of observations over A is denoted by obs(A).

One attribute may have an arbitrary number of values, as motivated in section 2.

We equip a process P = (X , A) with observations by saying which observation is due after each

t race .

Definition 3,15: Let P = (X , A) b e a process. An observation structure over P is a pair V = (A . ~)

where c t :X*) obs(A) is the (attribute) observation mapping.

Actual ly, 0t as defined above does not depend on the life cycle set of P but only on the events.

In pract ice , we would be interested in the values of ct only for prefixes of life cycles, but when

it comes to specification, we usually prefer to specify ¢t independently of A, on a somewhat larger

set of traces. For the sake of mathematical smoothness, we define ct as a total mapping on all

traces. "Undefinedness" can still be expressed by empty observations.

Now we are ready for presenting our model of objects as observed processes.

Dermition 3.16: On object is a pair ob=(P ,V) where P = (X , A) is a process and V=(A, ct} is an

observation structure over P.

Referring to examples 3.2 to 3.4, we complete nvar, array and stack to full objects.

Example 3.17: Let the process Pnvar be as defined in example 3.2. The object

nvar = (Pnvar 'Vnvar)

248

is given by adding Vnvar = (Anvar ' ~nvar)

where Anvar = { val 1

and Ctnvar(X;asg(n)) = { (va t ,n) }

for each ~cXnvar and each n ~ q . For a t race # not ending with an assignment event, we define

OCnvar(P) = (~. []

Example 3.18: Let the process Parray be as defined in example 3.3. The object

a r ray = (Pa r r ay ,Va r r ay)

is given by adding Varray = (Aarray, Ctarray)

where Aar ray = { eonts(n) [n~BI }

and Ctarray(~;set(n,i)) = (Ctarray(Z) - { (c o n t s (n) , j) i j ~ 7 . }) u { (eonts(n) , i)}

for each t race ~cXar ray , each n~BI and each i~Z. For a t race 9 not ending with an assignment

event, we define C~array(P)=(~. []

Example 3.19: Let the process Pstack be as defined in example 3.4. The object

s tack = (Ps taek ,Vs taek)

is given by adding Vstac k = (Astac k,c~stack)

where As tac k = { top }

and cZstack(~ ;push(i);pop ;x') = ~stack(X ;~')

Ctstaek(~;push(i)) = { (top, i) }

for al l t races z,~ ~Xstac k and al l i (Z . For a t race p to which these rules do not apply, we

define C~stack(P)=~. []

The observation s t ructure V=(A,oc)over a process P = (X , A) (or ra ther over its event set X) can

he viewed as the behavior description of a state machine: the s ta tes are S= X*, the input alphabet

is X, the output alphabet is obs(A), the s ta te transit ion function ~ :XxX*-- ->X* is defined by

~ (x , z) = xz , and the output function is ~:S-->obs(A). Via this connection, also a s ta te -machine

model of objects can be established, bringing in the process aspect by lett ing ~ be par t ia l and

introducing a special s t a r t - s top state (el. ESS90). Our model, however, is more abst ract in that

it does not deal with s tates expl ici t ly , and this makes the mathematics easier and nicer.

For studying relationships between objects, we first look at the simple case of subobjects. For

intuition, we extend the subprocesses in examples 3.5 and 3.6 to full objects.

Example 3.20: Let Pnvar be as defined in example 3.5. Referr ing to example 3.17, let

Vnvar =(Anvar, C~nvar)

where Anvar = Anvar

and OCnvar(~) = OCnvar(~)

for each ~ ~ Xnvar. Then,

nvar" = (Pnvar 'Vnvar)

is an object, and Pnvar is a subprocess of Pnvar" But is nvar" a subobject of nvar ? []

Example 3.21: Let Par ray be as defined in example 3.6. Referr ing to example 3.18, let

Var ray = (Aarray,Ctarray)

249

Aarray = { conts(n) I n~lN ^ n~1000 } c Aarray , where

and ~array(~) = CCarray(X)

for each z ~ Xarray. Then,

a r r ay '= (Parray,Varray)

is an object, and Parray is a subprocess of Parray" But is array" a subobject of array ? [3

The relationship between observations in the corresponding examples 3.17 and 3.20 as well as 3.18

and 3.21 is established by a sort of projection, too.

DeFinition 3.22: Let A'~A. The projection of an observation ycobs(A) to A" is defined by

y-hA" = { (a,d) [(a,d)~y ^ a~A" }

Between array" and array, the following equation is valid for each ~ ~Xarray:

¢~array ('c-~ Xarray) = O~array(T),~Aarray

that is, events outside Xarray do not have any effect on attributes inside Aarray. In fact,

assignment to components beyond 1000 do not affect components up to 1000.

A corresponding equation does not hold between nvar" and nvar. In fact, for ~=<asg(500);

asg(lSO0)>, we have ~*Xnvar = <asg(500)>, and therefore

% v a r (~ * X n v a r) = 500 ~ IS00 = % v a r (~) * g ~ v a r

Assignments of values greater than 1000 do have an effect on the value of val in nvar, but they

disappear by projecting to Xnvar.

For an object Obl=(P1,V1) to be a subobject of ob2=(P2,V2), we expect P1 to be a subprocess

of P2' and we want to impose that events outside the subprocess do not have an effect on

attributes inside the subobject. That is, we require that the following observation inheritance
condition holds for all x ¢ X~ :

~1(~¢Xl) = ~2(~)¢A1
As in the case of processes, the problem is to generalize this to a useful concept of object

morphism, Again, the case of injective mappings h : A t --~A 2 is easy, but we must cope with

noninjeetive mappings as well. The following general definition of object morphism is justified by

the results in the next section.

DeVmition 3.23: Let Obl=(P1 ,Vi) and ob2=(P2,V2) be objects. Let Pi=(Xi, Ai) and Vi=(Ai, cq)

for i=1 ,2 . An object morphism h:ob 1 >ob 2 is a pair h=(hx,hA) of mappings where

(1) h X :P1 - - - -)P2 is a process morphism, and

(2) h A : A 1 - - -) A 2 is a mapping such that

(2.1) types are preserved, i.e. type(a)=type(hA(a)) for all a~A 1 ,

(2.2) the following observation inheritance condition holds:

v~2~x~ ~1 ~hx(~2): ~1(~1) -- hg(~2(~2))
Here,-hA(Y)={(a,d)la~A1 ^ (hA(a),d)~y} for each observation y cobs(A2). The observation

inheritance condition is illustrated by the following diagram:

250

X 1 X] ~1 - - > obs(A1) A I

X 2 X~ ~2 > obs(A2) A2

As in the case of life cycle inheritance, * stands for "pick the right one". If h X is injective, there

is no choice so that we get an ordinary commuting diagram.

Theorem 3.24: The objects ob=(P ,V) and object morphisms h : o b I - -+ob 2 as defined above

establish a category.

The proof is straightforward enough to omit it here.

Notation 3.25: The category of objects and object morphisms is denoted by OB.

There is an obvious forgetful functor U:OB PROC sending each object to its underlying

process and each object morphism to its underlying process morphism.

3.3 Object Communities

In this section, we investigate object communities, i.e. sets of objects and object morphisms

between them. In categorial terms, object communities are diagrams in OB. Of part icular interest

are colimits of such diagrams: they provide one object "incorporating" the entire object community,

i.e. a view of the object community as one aggregate object. Also symmetric and synchronous

interaction between objects can be understood this way (as for asymmetric and synchronous

interaction, called "event calling", cf. SEC89). Therefore, it is important to know when eolimits

exist, and to understand the eases where they do not exist.

In this paper, we only give a survey of this part of the theory; we present the material only so

far as it seems useful for understanding implementation which is our main issue here.

The simplest colimits are coproducts. Coproduets exist in OB, and the forgetful funetor

U:OB >PROC preserves coproducts. As it happens, coproduets represent composition by

disjoint interleaving. We first give an example, using the following notation: for any event

alphabets X 1 and X 2 and any s t ream sets A 1 -cX~ and A2c-X ~ , let

A I [IA 2 = { X ~ (X 1 u X 2)° t X + X I c A 1 ^ X + X 2 ~ A 2 } .

Please note that this definition also applies to the case where X 1 and X 2 are not disjoint.

Example 3.26: Let nvar and array be as defined in examples 3.17 and 3.18, respectively. The

disjoint composition of nvar and array is the object

nvar I[array = (aeom,Vcom)

where Pcom = { Xnvar + Xarray ' Anvar [] Aarray) '

Vco m = (Anvar + Aarray , ~Xnvar tt C~array} ,

and (¢Xnvar II Ctarray)(Q = OCnvar(~,b Xnvar) + Ctarray(Z,b Xarray}

for each x~Xnvar tl Xa r r ay . + denotes disjoint union wich is assumed to be ordinary union in this

251

case, since the sets in question are disjoint. There are object morphisms

h g
nvar ~ > nvar [1 array < - - array (1)

given by inclusion. It is straightforward to verify that, whenever there are object morphisms

h" g"
nvar > ob < array ,

then there is a unique morphism k: nvar l[array > ob such that h ' = k h and g ' = k g . That is,

diagram (1) is a coproduct in OB. Evidently, its forgetful image under U is a eoproduct in PROC.

On the underlying event and attribute alphabets and the respective mappings, we have coproducts

in the category SET of sets and (total) mappings, t3

Theorem 3.27: OB and PROC have coproduets, and U preserves coproducts.

The proof is straightforward, so we omit it here. In general, the coproduct ob 1 Ilob 2 of two objects

is given by the disjoint para l le l composition P 1 H P2 = (X 1 + X 2' A 1 I[A 2) of their underlying processes,

extended by the observation V 1 [[V2=(AI+A2,c~I Ilc~ 2) where C~lllC~2(T)=C~l(X,bXl)+ c~2(z-~X2)

for each ~ X ~ t lX~.

There is a well known construction of general colimits by means of coproducts and coequalizers.

A category is (finitely) cocomplete, i.e, it has all (finite) cotimits, iff it has all (finite) coproducts

and all coequalizers. So we turn our interest to coequalizers.

Example 3.28: Suppose we want to synchronize nvar and array on the creation and destruction

events so that "open=create" and "close=destroy" hold. That is, we have only one creation and

one destruction event, and these work simultaneously for nvar and array.

Let X0={ hello, bye}, and let o b 0 = ((X 0 , X ~) , (~3,~3)) be the object with event alphabet X 0,

all possible streams over this alphabet as life cycles, and empty observation structure (ob 0 is

essentially a process). Let f and g be object morphisms given by

f
ob 0 . . ~ _ ~ nvar i[array

f x : hello ~ open , bye ~ close ,

g x : hello ~-~ create , bye ~ destroy

Let nvar** be like nvar, but open and close renamed by hello and bye, respectively, and let array**

be like array, but create and destroy renamed by hello and bye, respectively. Let svn be defined

as follows:
I t I t

Xsy n = Xnvar u Xarray ,

i.e. the union of the event alphabets of nvar** and array**, respectively. Please note that

t, ** - { hello, bye } ! Xnvar n Xarray -
** I t

Asy n = Anvar [I Aarray ,

i.e. the (nondisjoint !) interleaving of the life cycle sets of nvar** and array #, respectively.
** I t

Asy n = Anvar + Aarray = Anvar + Aarray ,

0Csyn(~) = 0~nvar (~ d ~ # Xnvar) * * + 0Car r ay('~ d ~ * * Xarray) * * .

Now there is an object morphism

h : t~var [] array sYn

252

sending both open and crea te to hello, and both close and destroy to bye (so that h is not

in jec t ive!) , and each other i tem is sent to (the copy of) itself. By construction, we have the

following two coequal izer diagrams in SET:

fx
x° ---gx

_ _ _ _ .) h x
(Xnvar + Xarray) - Xsy n

) (Anvar + Aarray) Asyn

f > nvarHarray h) sen o_ vb. +
g

That h is indeed an object morphism is easily established. Taking example 3.26 and the standard

construction of pusbouts by means of coproducts and coequalizers into account, we have shown

that the following diagram is a pushout in OB. where hnvar and harray are the respect ive parts

of h on near and array, respect ively, coming from the coproduct.

ob 0 f ~ nvar

array ~
...... harray

It is obvious that the forgetful U-image of the above coequalizer and pushout diagrams are

coequalizer and pushout diagrams, respect ively, in PROC. O

This example shows that new objects can be composed via colimits. The construction of s_.LO_

demonstrates at the same time our approach to (synchronous and symmetric) interaction by means

of event sharing: by imposing "open=crea te" and "close=destroy", we have set up an object

community via pushout in which near and a~ray share these events, renamed as "hello" and "bye",

respectively.

Coproducts do always exist in OB, but unfortunately this does not hold for coequalizers so that

OB is not cocomplete. We claim, however, that al l "relevant" colimits exist, and that exis tence

and nonexistence of a colimit gives interesting information about a diagram. For demonstration,

we give a diagram P1 ~---- P 0 - - - ~ P2 in PROC which does not have a pushout.

Example 3.29: Let X = { go, stop }. Then we have the following identity mappings which are object

morphis ms:

p o = (X , X o) c f __5 p l = (X , { s , < g o ; s t o p > })

P 2 = (X , { E , <stop;go> })

fA

gA

The lat ter happens to be a coproduet diagram since fA and gA are empty. If h = (h x , h A) is

indeed an object morphism, then the following diagram is a coequalizer diagram in OB:

253

This diagram does not have a pushout in PROC ! In fact, the only candidate (up to isomorphism)

would be P3=(X,{E}) with the identity maps on X providing a commuting square. This is true

because E is the only life cycle whose projection to X is in both life cycle sets, that of P1 and

that of P2" If we consider, however, the process P4 = ({e}, { E, < e> }), then there are two process

morphisms from P l and P2 to P4 ' sending both go and stop to e, but there is no process morphism

from P3 to P4 since, with the only possible event map sending both go and stop to e, the life

cycle inheritance condition is not satisfied.

Please note that the above diagram shows the typical situation of a deadlock: it is impossible to

synchronize on both events, go and stop, if one process insists on go first and then stop, while

the other process insists on stop first and then go. []

The general situation of a coequal izer diagram in OB is given by

f h
ob 1 ~> ob 2 -> ob 3 (2) g

Let obi=(Pi, Vi), P i=(Xi , Ai). Vi=(Ai , c q) for i = 1 , 2 . 3 . Let ob 1, ob 2, f and g be given. In order

to be a coequalizer , the maps h x and h A and the sets X 3 and A 3. respect ively, must be

coequalizers in SET. This defines h X , h A, X 3 and A 3 . We onty have to worry about A 3 and c¢ 3.

In oder to obtain a coequalizer , A 3 should have as many life cycles as possible, as suggested by

the life cycle inheritance condition. But, of course, h has to be an object morphism. So whenever

diagram (2) is a coequal izer , ob 3 must have the maximal set of life cycles such that h satisfies

the life cycle condition, i.e.

A 3 : { X eX 3 I h ' x (X) c~ A 2 ~ ~) }

As for ~x 3. because of observation inheritance, we must have for each ~3 E X~:

cc3(z3) = hA(CC2(z2)) for some z 2 ~ h x (' ~ 3) .

This defines c~ 3 uniquely only if the value is independent of the choice of ~2' This condition has

to be satisfied by diagram (2) to be a coequalizer.

OeVmition 3.30: o¢ 2 is compatible with h X iff, for each x3cX~ and all Zl ,Z2 ~hx(z3), we have

c¢2(Zl)= c¢2(~2).

Much more complicated, however, is the conditiobn to be satisfied by the process part so that

diagram (2) is a coequal izer : A 2 has to satisfy a cer ta in closure condition with respect to h X.

Definition 3.31 : A mapping q : X 2 - - - -) X 3 covers h x iff

h x (e) = h x (e ') ~ q (e) = q (e ') for al l e , e ' E X 2 .

Definition 3.32: A 2 is closed with respect to h X iff, for each map q : X 2 - -) X 3 covering h X

and each life cycle XeA 2, we have: whenever) ,eq(p) for some stream psX~, then there is a

life cycle X'~A 2 satisfying X 'eq (~)nh 'x (p) .

As for intuition: a s t ream X eq(p) is a sequence of "segments" where each segment is a permut-

ation of q - l (e) for some e~X 3. The closure condition says, roughly speaking, that the events

within each segment can be rearranged in such a way as to obtain a sequence of finer segments

where each of the la t ter is a permutation of h ~ (e) for some e e X 3.

254

Theorem 3.33: Diagram (2) is a coequal izer in OB iff A 2 is closed with respect to h X and c~ 2 is

compatible with h X.

The proof is a l i t t le too lengthy to be included in this paper, it will be published elsewhere. Here

we only can point out a few consequences and further ideas around this result.

Obviously, we obtain a coequal izer in PROC when looking at the underlying process diagram, if

only the closure condition is satisfied. That is, the forgetful functor U:OB----> PROC preserves

eoequalizers.

As suggested by example 3.29, the closure condition seems to have a lot to do with deadlocks or,

rather, deadlock absence. Without being able to give full clarif icat ion here, we would like to

c la im that the following conjecture holds true.

Conjecture 3.34: A diagram in PROC has a colimit iff there is no possibility of deadlock.

Of course, the notion of deadlock has to be made precise in our framework before the conjecture

can be proved or disproved. This is subject to further study.

Colimits of arbitrary diagrams in OB (and PROC) can be constructed from coproducts and

coequalizers, as is well known. From the results presented above, the general construction

provides a general necessary and sufficient cri terion for a diagram to have a colimit. Going into

more detail, however, is outside the scope of this paper.

4. Implementation

We explain our concept of implementing objects over objects and give a precise definition.

Implementations can be composed so that, by any number of (correct) implementation steps, a

(correct) entire implementation is obtained. Then we study two specific kinds of implementation

in some detail: extension and encapsulation. Our normal form theorem says that, if an object is

implemented stepwise by any number of extensions and encapsulations, in any order, then it can

also be implemented in two steps where the first one is an extension, and the second one is an

encapsulation.

4.1 Concept

Given a col lect ion of objects b 1 b n as an implementation basis, what does it mean to

"implement" an abstract object ab "over" this basis ? We give an example in order to provide

some intuitive background.

Example 4.1: Let the basis consist of nvar and array as described in examples 3.17 and 3.18,

respectively. We want to implement the abstract object stack as given in example 3.19 on this

basis. Recal l the following items for the objects at hand.

s tack: events new , drop , push(int) , pop

attributes top : inAt , empty? : bool

array: events create , destroy , se t (na t , in t)

attributes conts(9_~) : in_At

255

nvar: events open , c lose , a sg (na t)

a t t r ibutes val : na__[

Intui t ively, an implementa t ion of s tack over a r ray and nvar would do the following two things:

(1) encode each s tack event by a " t ransac t ion" over the base, i.e. a sequence of a r ray and

nvar events , for ins tance (of. example 2.4):

new ~ < c rea te ; open; asg(0) >

drop ~--~ < close ; destroy >

push(i) ~--) < set ([val], i) ; a sg ([va l]+ l) >

pop r---> < a s g ([v a l] - I) >

Here , [va l] denotes the cur ren t value of the a t t r ibu te val of nvar (assuming determinis t ic

a t t r ibutes in this example) .

(2) decode each observat ion over the base a t t r ibutes as an observa t ion over the s tack

a t t r ibu tes , for ins tance

top <--~ [c o n t s ([v a l] - 1)]

empty? ~-~ e q u a l ? ([v a l] , 0)

Since events f rom severa l base objects are in t e r l eaved in the above encoding, we should look at

the composi te object bas = a r r ay l l nva r (of. example 3.26) as being the base, r a the r than some

co l l ec t ion of base objects. Thus, we may assume that the base is just a single object .

P lease note that the base " t ransac t ion" by which a s tack event is encoded will lead to different

base t races for the same s tack event , depending on context . For instance, pop can mean <asg(0)>

or <asg(l)> or and push(l) can mean <set(O,1);asg(1)> or <set(1,1);asg(2)> or depending

on the va lue of val in the s ta te where pop or push(l) occurs, respect ively .

Each s tack life cycle , for ins tance

<new ; push(l) ; push(2) ; pop ; push(l) ; pop ; pop ; drop > ,

can be t r ans fo rmed into a sequence of base events by means of the above encoding:

< c r e a t e ; o p e n ; asg(0) ; set (0 ,1) ; asg(1) ; s e t (l , 2) ; asg(2) ; asg(1); se t (l ,1) ; asg(2) ; a sg (l)*

asg(O) ; c lose ; destroy >

Thus, encoding amounts to "compiling" s tack s t reams into ba___~s s t reams. More detai ls about this

compi la t ion will be given in example 4.4 below.

The resu l t of compil ing a s tack life cycle should be "executab le" , i.e. it should be a val id ba___ss

l ife cycle , and the observat ions along this l ife cycle, when decoded as s tack observat ions, should

comply with the specified s tack behaviour . For instance, af ter the init ial t r ace of the above ba.__ss

l ife cycle ending at *, we have

[v a i l = 1

[conts (0)] = 1

[c o n t s (l)] = 1

This ba....~s observa t ion decodes as the fol lowing s tack observa t ion:

[t op] = [c o n t s ([v a l] - l)] = [conts(O)] = 1

[e m p t y ?] = e q u a l ? ([v a l] , O) = equal?(1 ,O) = false

256

This is the correct observation after the corresponding stack trace, i.e. the initial t race of the

above stack life cycle ending at +. []

As the example i l lustrates, it is appropriate to assume that the base consists of a single object

ba__ss. In practice, ba__~s will most often be an aggregate object composed of a col lect ion of objects

which may interact (i.e. ba__ss is the colimit object of some diagram in OB).

So our problem is the following: given an abstract object ab and a base object ba_~s, what is an

implemetation of a__b_b over ba__ss ? For notational convenience, we index each i tem of ab by ab (Xab,

Aab,etc .), and similarly for bas and the other objects to follow.

Def'mition 4.2:: An implementation <y,B> of ab over ba._s, denoted by <y,~> :bas Dab , consists of

two mappings,

7 : XaCb - - - + Xl~a s

: obs(Aba s) > obs(Aab) ,

such that the following conditions hold:

(1) "~(Aab) c Abas

(2) CXab = ~ ~bas ¥

We call y the encoding (of abstract streams by base streams) and ~ the decoding (of base

observations as abstract observations).

Condition (1), which we will refer to as the life cycle condition, says that we should obtain valid

base life cycles when encoding valid abstract life cycles. As a consequence, ~" can be looked at

as a function from Aab to Aba s . Condition (2). which we wilt refer to as the observation condition,
says how to ca lcula te abstract observations for abstract t races via encoding, base observation,

and decoding. The conditions are depicted in the following diagram.

, °Ca b
Aa b c____~ X~ b 6___D Xa b ~ obs(Aab)

AbasC____~ X~as (____D X~as ~bas) obs(Abas)

This definition of implementation is rather abstract. The encoding map y, in particular, does not

ref lect the idea of looking at an abstract event as a base "transaction". This concept would lead

to state dependent transformation of abstract events into base traces, as i l lustrated in example 4.1,

which in turn would lead to "compiling" abstract streams to base streams from left to right.

We just keep the "compilation" aspect as a mapping from abstract s treams to base streams in our

definition. One way to recover the more constructive le f t - to- r ight flavor would be to require

that "(be prefix monotone in the sense that, whenever a t race ~ is the prefix of some s t ream)~,

then T(~) is the prefix of 7(X). However , we refrain from imposing this condition. We feel that

it is necessary to leave the door open for studying, for instance, "ser ial izable" encodings, i.e. the

"transactions" for subsequent abstract events may inter leave in certain ways, or "encodings with

lookahead", i.e. the t race by which the occurrence of an abstract event is encoded does not only

depend on the ?past" (the prefix before that occurrence) , but also - to some extent - on the

"future" (the s t ream to follow).

257

Our abstract approach is also partly motivated by the intention to keep the mathematics as smooth

as possible. For the same reason, we refrain from restr ict ing the observation condition to prefixes

of life cycles, although this would be sufficient for the purposes of implementation verification.

The following proposition is an easy consequence of the definition and shows that implementations

can be composed or, the other way round, split into steps.

Proposition 4.3: If <`(1,81>:bas Dabs and <`(2,82>:abs Dab are implementations, so is

~'f1`(2,8281 > :bas Dab .

For the composition of implementations <`(1 '~1 > and <,(2,82 >, we will use a "bottom-up" notation:

<'(1,81>*<`(2,82 > := <`(1`(2,8281> •

We note in passing that, if both implementations are prefix monotone, so is the composition.

Implementat ion as defined above is a relationship between objects. It is easy to see, however, that

it is not an object morphism in general. Since we introduced object morphisms as a general tool

for studying relationships between objects, the question naturally arises which implementations

can be expressed by means of morphisms. In the next sections, we study two kinds of implemen-

tation in detail where the first one is not a morphism either, but very close to one, and the

second one is indeed a morphism.

4 . 2 E x t e n s i o n

The idea of an extension is that it adds "derived" events and attributes to the base , i.e. the new

items are "defined upon" the base items.

Example 4.4 : Consider objects stack and ba___ss = array II nvar as in example 4.1. Let an object ex__!t

be defined as follows. The events are given by

Xex t = Xba s + Xstac k

where the new ("derived") events are those from stack. We want to impose that streams over

s tack events are to be "compiled" to base streams, as suggested by example 4.1. In this example,

this is achieved by a le f t - to - r igh t translat ion

o
`(: Xex t - - ~ Xga s

defined recurs ively as follows. Let T~ X~a s and),~ X~x t, and let [a] z be the value of (base)

attribute a after t race z (i .e. in ~Xbas('Q). We make use of an auxil iary function ~[z](X) giving

the translat ion of)~ after T has been obtained so far.

~(x) = ¢[~](x) , where

+[x](e;)~) = ~b[x;e]()~) if e~Xba s

~b[x](new;)~) = ~[x ;create;open;asg(O)](X)

qb[x](drop ;),) = ~[x :close ;destroy](),)

~[z](push(i);) ,) : ~ [~ ;se t ([va l Jz , i) ; asg([va l]z+l)] () ,) for i~in_tt

kb[z](pop;k) : ~[z ;asg([valJz- 1)](),)

The life cycles of ex__tt are just the stack life cycles :

Aex t : Astac k •

258

The attributes of ext are defined by

Aex t = Aba s + Astac k •

and the observation map of ex__At is given by

<Xext('c) = ~(Ctbas(Y(z))) for each z ~ X e x t , where

~(y) = y u { (top, [conts ([va l]y- 1)]y) , (empty?, equal?([val]y ,0))}

for each observation y ~ obs(Abas). [a]y denotes the value of attribute a in observation y.

Obviously, <~(,~> : bas D stack is an implementation of stack over ba___~s.

The extension of the base ba__.~s = array][nvar by the stack object where the stack items

are "defined upon" the base, is depicted in the following diagram,

[array 1t nvar [c _ _ _ +

s t ~ k

l array]L nvar

The broken arrow indicates inclusions of events and attributes, nothing else. Indeed, these

inclusions do not form an object morphism! It is true that life cycle inheritance Aext~XbasC-Abas

c o and thus holds since A e x t - X s t a c k, Aext~Xbas=(3 . But observation inheritance does not hold;

for instance, we have

Ctext (<new>)~gbas = {(va l ,0)} , whereas

CCbas(<new >d/Xbas) = C~bas(E) = (3 •

Indeed, stack events do have an effect on base attributes, and this is definitely needed. If we

replace "Z6Xbas" by "y(z)", however, we obtain valid conditions corresponding to life cycle and

observation inheritance, respect ively :

Y(Aext) c_ Abas

<Xext(~),bAba s = ~(Ctbas(Y('t)))~Aba s = C~bas(T(~)) for each ~ X e x t .

Intuitively, we may look at the inclusion ba_~s c___)stack as being "like" an object morphism in the

following sense. We may consider a stack s tream k as being "equivalent" to its compiled ba__ss

version "((X) in the sense that their executions have the same effect , and if any one of them is

executed, the other one is automatical ly executed at the same time, i.e. they are like different

designations of the same l ife cycle. Considering X and "f(X) as "equivalent" in this sense and

recall ing that y (k) ~ X ~ a s , we might look at " k ~ X b a s " and "y(X)" as "equivalent" operations

and, consequently, at the above conditions as being "equivalent" to life cycle and observation

inheritance, respect ively. 0

Extensions are cer ta in implementations <'f,~> : ba__ss ~> ext where ex__! "contains" bas, i.e. Xbas c - Xex t

and AbasC-Aext . Let

X v = Xex t - Xba s ,

A v = Aex t - Aba s

be the sets of "new" events and attributes, respect ively. As the example suggests, the encoding

: X~xt > Xgas

259

is looked at as a "compiler" translating streams with possibly new events into base streams. We

do not impose any condition on "f.

It is necessary, however, to impose a condition on ~, namely that it leaves base observations

fixed, i.e. y= ~(y)d, Aba s for all observations y c o b s (A b a s) . We will refer to this condition as the

e x t e n s i o n cond i t i on .

DeFinition 4.5: An e x t e n s i o n is an implementation <-f£> :ba___~s D ext with XbasC-Xext and

AbasC-Aext such that y=~(y)J~Aba s holds for all observations y ~ o b s (A b a s) .

As i l lustrated in example 4.4, we can prove that the inclusion h :ba_._ss c___)ex__~t is "like" an object

morphism, i.e. life cycle and observation inheritance hold if we replace the operation ") , ~ X b a s "

by "-((X)' .

Lemma 4.6 : If <'L ~> : ba._~s D ext is an extension, we have

(1) "f(Aext) ~ Aba s

(2) Ctext(Z)-~Aba s = Ctbas(Y(z)) for each z~Xex t

Proof : The first condition is the life cycle condition which is required to hold for any implemen-
,

tation, and the second one is derived as follows, for each z~Xex t :

CXext(z)~Aba s = ~(C~bas(Y(z)))q, gba s = C~bas(Y(z)) ,

by extension condition. U

The situation of an extension being "like" an object morphism at the same time is depicted in the

following diagram.

c o 6 _ . * C%xt
Xext Aext > Xex t X e x t ~' obs{Aext) Abas

Xbas Abas c) Xgas 6--" X~a s CCbas ~ obs (Abas) Aba s

The diagram commutes, with the except ion that 8(Y~Abas)~y in general (but ~(y)-~Abas=Y holds,

this is the extension condition).

The pract ical usefulness of an extension is that, instead of dealing with implementation as a weird

relationship between objects, we can put an essential part "inside an object", leaving just something

like a morphism as an inter-object relationship. Specificationwise, this means that we can

put the features for implementation specification essential ly into those for object specification,

drawing on the established concepts of object morphism specification for handling inter-object

relationships.

Our abstract definition of extension requires that observation decoding ~ behaves wel l (i.e.

leaves the base observations fixed). Pract ical ly , we would achieve this in a way suggested by

example 4.4: with each new attr ibute a~A v, we associate a mapping

~Oa: t ype (a 1) × . . . × t ype (ar) t ype (a)

where a I a r are base attributes associated with a as its "domain of dependence". For any

observation y~obs(Abas), we then define

260

~(y)= y v {(a,qOa(W 1 w r) a~A v , (a i , wi)~y for l~ i~r , where a I a r is

the domain of dependence associated with a } .

Like implementations in general, extensions compose, too, i.e. the composition of extensions is

again an extension.

Lemma 4.7: If < ' f l '$1 > :has ~ e s t l and < ' f 2 ' 5 2 > : e x t l ~¢x t2 are extensions, so is

<~(1 '~1 > ,* <T2'52 > : bas D ext2 .

Proof: Obviously, Xbas- c X e x t 1 c_ Xext 2 and AbasC-Aext 1C-Aext2" As for the extension condition,

we have for each y~obs(Abas):

S(y),bAba s = S2(Sl(y))4~Abas = (~2(51(y))d, A e x t l) ¢ A b a s = ~l(y) ,~Abas = y . U

4.3 Encapsulation

While an extension adds new items which are "defined upon" the base, an encapsulation provides

the means for "abstracting" some items, "hiding" the rest. The simple idea is that an object should

provide an implementation for any of its parts. We show that this holds if the part is an object

in i tself whose life cycles as such are valid in the base. Allowing for renaming of events and

attributes which is often needed in practice, we read "part" as "injective morphism" g : if.._£ --~ bas

("ife" stands for "interface") .

Lemma 4.8: If g:if__£----~ba____ss is an injective morphism such that gx(Aifc)C-Abas , then

<gx,g-A > : ba__ss [) if__£ is an implementat ion.

Proof: The precondition gives the life cycle condition for the implementation, and the observation

condition is deduced from observation inheritance as follows:

~ifc(Z) = c t i f c (gx (gx (z)))= gA(ctbas(gx(Q)) for each ~EXi*fc . i3

This lemma suggests the following definition of encapsulation.

Dermition 4.9: An encapsulation of the base ba___~s by an interface if_.__c is an implementation of the

form <gx, gA > : bas D if___q where g= (g x ' gA) : if_.._£) ba.._ss is an injective object morphism

satisfying gx(Ai fe) c Aba s .

The la t ter encapsulation condition means that all ire life cycles must be valid in bas as such, i.e.

without being interleaved with events not in the encapsulation. Clear ly, any object isomorphic to

is an encapsulation of ba._.._~s. In this case, encapsulation amounts to renaming.

The life cycles of an encapsulation are even more tightly coupled with those of the base than

one might suspect at first glance.

Lemraa 4.10: If < g x , g A > : ba_..~s D if_._£ is an encapsulation, we have

Air c = gx(Abas) •

Proof: From life cycle inheritance, we have

~x(Abas) c Aifc ,

and from the encapsulation condition, we obtain

Air c = g 'x (gx(Ai fc)) ~ g'x(Abas) . E3

The situation of an encapsulation being an object morphism at the same time is depicted in the

following diagram.

261

c _ _ ~ ~_D * ctifc
Xifc Aifc ' > X ifc X ire > obs(Aifc) Aifc

Xbas AbasC____.~ Xgas ~___D X~as Ctbas _> obs(Abas) Abas

The diagram commutes, with the exception that gX(g-X(X))~-X in general , but gx (gx (X))=X holds.

Example 4.11: We take the object ex_.3t constructed in example 4.4 as basis. Let stack be the

object defined in example 3.19, Then stack is an encapsulation of ex_~t, An inclusion morphism

g : s t a e k c___~ ex_~t is given by sending each event and attribute in stack to i tself in ex_._L g is

indeed an object morphism: the life cycles are the same, and the observations coincide when

looking only at the new attributes in ex___!. The situation is depicted by the following diagram.

stack

I1 nvar

Here , s tack in the left box is the part by which array il nvar is extended in order to obtain the

extension ex__3t, as described in detail in example 4.4.

Like implementations in general and extensions in part icular , encapsulations compose, too, i.e. the

composition of two encapsulations is again an encapsulation.

Lemma 4.12: If <~'I'~1 > :ba___ss ~ ifcl and <~(2,~2 > :i_f~ (> ire2 are eneapsulat ions, so is

<Y1 ,~1 > * <T2 ,~2 > : ba.._.ss D ifc2 .

The proof is easy enough for omitting it.

In a stepwise implementation of a given abstract object a__bb, the last step often is an encapsulation

which picks those items in the object constructed so far that are needed to represent a__b.b. Therefore,

an encapsulation can also serve as a verification condition rather than a construction step. Our

viewpoint, however, provides a nice uniformity which makes it easier to study composition of

implementations.

4 .4 Normal Form

Consider a sequence of objects

b a s = b 1 , b 2 b m = a b

where there is an implementation of b i . 1 over b i for 1 ~ i ~ m - 1 . By proposition 4.3, there is also

an implementat ion of a_b_b over bas obtained by composition. If, in part icular , all single implemen-

tation steps are extensions or eneapsulations, then the entire implementation should also have

some special form.

Detrmition 4.13: A regular implementat ion is any composition of extensions and encapsulations, in

any order.

Example 4.14: The extension of example 4.4 and the encapsulation of example 4,11 can be

composed to a regular implementation of stack over ba_~s as depicted in the following diagram.

262

I stack (:~
A

[array II nvar] c) arr..aY..)1 nva(.

[]

Without loss of generality, we assume that the last step is an encapsulation (if necessary, we

can add an identity). The following normal form theorem says that any regular implementation

can be done in just two steps: first an extension and then an encapsulation, as in the above

example.

Thoorem 4.15: If <V,~> :bus ~a_h is a regular implementation, then there are an object ext, an

extension <y1,51 > :bus ~> ext and an encapsulation <y2,32> :ext Dab such that

<y,~> = <y1,31 >* <y2,~2 >

The proof is postponed until after the next lemma which provides the necessary preparation. It
says that, instead of implementing by an encapsulation followed by an extension, we can as well

implement by an extension followed by an encapsulation.

Lemma 4.16: If <gx,gA > : bas D ifc is an encapsulation and <y,~> :ifc Dab is an extension, then

there are an object ext, an extension < ' (Y> : bas D ext and an encapsulation <g'x,g'A > : ext D a__bb

such that the compositions are the same, i.e. the following holds:

<gx,gA > * <y,5> : <y',3"> * <g'x,g'A >
P r o o f : For the sake of notational simplicity, we assume that gx ' gA' g 'x ' and g'A are inclusions.

The following diagrams may provide guidance through the proof steps.

"r > Xi c

c Y Xex t -) Xgas

o b s (A a b) (.) obs(Aif e)

C~ab/ [c~i fc / |
/ |&Aab / l~Aifc

Xab ~ - ~) Xi*fe
I ~ 5' s

T obs(Aext) - ~ ~ ob (Aba s)

[/ C (e x t "~Xifc I / O C b a s

* _ _) X~a s Xext y,

263

Reversing the four ver t ica l arrows, there are inclusions from top to bottom which are not shown

in the diagram. The right and top faces of the cube represent the given implementations, and the

bottom and left faces represent the ones looked for. We have to define these implementations in

a way which makes the equation in the lemma valid, i.e. which makes the back face of the cube

as wel l as the square diagram above the cube commutative. From the lat ter , commutativity of

the front face of the cube follows.

Let X ~ = X a b - X i f c and A ~ = A a b - A i f c . The object ex__[t is constructed as follows.

(1) Xex t = Xba s + X~

(2) Aex t = Aab

(3) Aex t = Aba s + A~

(4) Ctext(X)= C~bas(Y(X-,~Xab))u (Ctab(Z-~Xab)) for each x~Xex t .

The extension <y',6"> :bas D ext is defined by

y'(X) = y (X ~ X a b) for each)~X~ext

$'(y) = y u 6(Y~Aifc) for each y~obs(Aba s) .
We have to prove that <y',5"> is indeed an extension. The life cycle condition is obvious:

y-(Aext,i , Xab) = Y(Aext) c Abas ' because <%6> is an implementation. As for the observation
,

condition, we have for each ~ ~ X e x t :

Ctext(Z) = Ctbas(Y('r-,~Xab)) u (Ctab(,-,~ Xab))

= Ctbas(Y'(z))u 6(c~ifc(y(z,bXab)))

= Ctbas(Y'(~)) u 6(Ctbas(Y'(z))-~Aifc)

= 6" (Ctbas(y'(z)))

The extension condition is established as fol lows:

6"(y),~Aba s = (y u ~(Y~Aifc)),,~Aba s

= Y~Aba s u 6(Y~Aifc)q, Aif c

= y u y-~Aif c

= y

The encapsulation <g 'x ,g~> : ext Dab is defined by inclusion of ab in ex_~t, as constructed above:

g 'x : Xab = Xifc + Xv c ~ Xba s + X~ = Xex t

g'A : Aab =Aifc + A v c) Aba s +A~; =Aex t .

Clear ly , g'x(Aab) = Aab = Aex t . Moreover , in the diagrams given above, the square as wel l as the

back face of the cube commute: for each X ~ X ex t, we have

y ' (X) ~ X i f c = y ()~ ,bXab)~Xifc = Y()~-,~Aab)

since the la t ter is in X~f c . And for each observation y ~ obS(Abas), we have

6"(y)~Aab = (y u ~(yq, A i f c)) ~ A a b

= Y ~ A a b u ~(y,~Aifc) ,~Aab

= y ,bAi f c u 6(y-,~Aifc)

= ~ (y,~ Aifc)

264

The last two equations hold because Aba s n Aab=Aif c, 5(Y~Aifc)C_obs(Aab) ' and

y,~Aif c c_ 5(y.bAifc) ' respectively. The latter, in turn, holds because y-bAifc = 5(y,~Aifc)~Aif c.

The only thing which is left to prove is that g'=(g'x,gA) is indeed an object morphism satisfying

the encapsulation condition. The latter is trivially satisfied by construction. Life cycle inheritance

is simple: Aex t ~ Xab = Aab .~ Xab = Aab = Aex t . As for observation inheritance, we conclude for
,

each ZeXex t , "chasing" through the above cube diagram:

C%xt(~)~Aab = S'(%as(,;'(~)))&Aab

= 5(%as('((~) }.~Aifc)

= ~ (ctifc('((~)* Xifc))

= ~(Cqfc(-¢(~ ~Xab)))

= Ctab('~ ,~ Xab)

Proof of theorem 4.15 : By applying lemma 4.16 repeatedly, we can transform any regular imple-

mentation into a two-phase one: in the first phase, we only have extensions, and in the second

phase, we only have encapsulations (at least one. by assumption). By applying lemma 4.7 repeat-

edly, the first phase can be replaced by a single extension. By applying lemma 4.12 repeatedly,

the second phase can be replaced by a single restriction. [3

[3

5. Concluding Remarks

Our concept of implementation as a relationship between objects allows for dealing with different

levels of abstraction, and this means different languages, and this in turn means different logical

systems for reasoning. We feet that implementation (or refinement) concepts working totally

within one fixed language or logical calculus miss an essential point.

In this paper, we concentrate on semantic fundamentals. Of course, the work has to be extended

in several respects. For correctness proofs of ihaplementations, appropriate logical calculi

have to be employed (cf. FS89), and the interdependencies between logics and semantics have to

be studied carefully. Based on the logical calculi and the semantic fundamentals, a specification

language is needed, together with a specification methodology for using the language, and an

animation system for computer support. The specification language has to be backed by a trinity

of axiomatic, denotational and operational semantics, as put forward by Hennessy (He88).

In a series of papers (ESS88-90, SEC89, FS89), we contributed to this program. In these papers,

several aspects of object-orientation are addressed within our approach which we did not discuss

in this paper. Among them are object types, subtypes, complex types, inheritance, object identity,

and event calling. The integration of these results and their completion towards a coherent theory

of objects is currently under research.

As a specific point for further study, we have to clarify the relationship between colimits and

deadlocks, as put down in conjecture 3.34 above.

A topic not addressed so far is parameterization which has been so succesfully clarified in

algebraic data type theory. Again capitalizing on that theory, we expect morphisms and colimits

265

to play an essential role once more, namely in studying parameter assignment and parameter

passing. This is also relevant for implementation: we would like to give parameterized

implementations of parameterized objects. One interesting problem in that respect is compatibility

of parameterization and implementation (ef. Li82 for the corresponding problem in algebraic

data type theory): if ob(x) is a parameterized object and act is an actual parameter object, we

can instantiate to obtain oh(act) and implement this object. On the other hand, we can implement

ob(x) in a parameterized way, leaving x as a formal parameter, and implement act separately.

Can we then instantiate the implementation of ob(x) by that of act. and does that give an

implementation of ob(act)? These questions - and others - are open for further research.

Acknowledgements

The authors are indebted to their colleagues Francisco Dionisio (who brought forward the first

example of a diagram without colimit), Cristina Sernadas, Jose-Felix Costa, and Gunter Saake

for many useful discussions on several aspects of the problems addressed in the paper. This work

was part ial ly supported by the CEC through the ESPRIT-II BRA No. 3023 (IS-CORE).

References

Am86

AR89

DD86

Di88

DMN67

EhS1

ESS88

ESS89

ESS90

FS89

GM87

Go75

America,P.: Object-Oriented Programming: A Theoretician's Introduction. EATCS
Bulletin 29 (1986), 69-84

America,P.;Rutten,J.: A Parallel Object-Oriented Language: Design and Semantic
Foundations. Dissertation, Vrije Universiteit Amsterdam 1989

Dayal,U.;Dittrich,K.(eds): Proc, Int. Workshop on Object-Oriented Database
Systems. IEEE Computer Society, Los Angeles 1986

Dittrich,K.(ed.): Advances in Object-Oriented Database Systems. LNCS 334,
Springer-Verlag, Berlin 1988

Dahl,O.-J.;Myhrhaug,B.;Nygaard,K.: SIMULA 67, Common Base Language, Nor-
wegian Computing Center, Oslo 1967

Ehrich,H.-D.: On Realization and Implementation. Proe. MFCS'81 (J.Gruska,
M.Chytil, eds.), LNCS 118, Springer-Verlag, Berlin 1981, 271-280

Ehrich,H.-D.;Sernadas,A.;Sernadas,C.: Abstract Object Types for Databases. In
Di88, 144-149

Ehrich,H.-D.;Sernadas,A.:Sernadas,C.: Objects, Object Types and Object Identity.
Categorical Methods in Computer Science with Aspects from Topology (H. Ehrig et
al (eds.), LNCS 393, Springer-Verlag (in print)

Ehrich,H.-D.;Sernadas,A.;Sernadas,C.: From Data Types to Object Types. Journal
of Information Processing and Cybernetics ElK (to appear 1990}

Fiadeiro,J.;Sernadas,A.: Logics of Modal Terms for Systems Specification. INESC,
Lisbon 1989 (submitted for publication)

Goguen,J.A.;Meseguer,J.: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In SW87, 417-477

Goguen,J.A.: Objects. Int. J. General Systems 1 (1975), 237-243

266

Go79

GR83

1-1877

He77

H e 8 8

Li82

Lo85

Pa72

SEC89

S W 8 7

SSE87

Goldblatt,R.: Topoi, the Categorial Anatysis of Logic. North-Holland Publ. Comp.,
Amsterdam 1979

Goldberg,A.;Robson,D.: Smalltalk 80: The Language and its Implementation.
Addison-Wesley, Reading, Mass. 1983

Hewitt,C.;Baker,H.: Laws for Communicating Paral lel Processes. Proc. 1977 IFIP
Congress, IFIP (1977), 987-992

Hewitt,C.: Viewing Control Structures as Patterns of Passing Messages. Journal of
Artificial Intelligence 8:3 (t977), 323-364

Hennessy,M.: Algebraic Theory of Processes. The MIT Press, Cambridge, Mass. 1988

Lipeck,U.: Ein algebraischer Kalkiil fiir einen strukturierten Entwurf yon Daten-
abstraktionen. Dissertation, Universidit Dortmund 1982

Lochovski,F.(ed.): Special Issue on Object-Oriented Systems. IEEE Database
Engineering 8:4 (1985)

Parnas,D.L.: A Technique for Software Module Specification with Examples.
Communications of the ACM 15 (1972),330-336

Sernadas,A.;Ehrich,H.-D.;Costa,J.-F.: From Processes to Objects (to appear)

Shriver,B.;Wegner,P.(eds.): Research Directions in Object-Oriented Programming.
The MIT Press, Cambridge, Mass. 1987

Sernadas,A,;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Specification of Databases:
An Algebraic Approach. Proc. 13th VLDB, P.M.Stocker, W.Kent (eds.), Morgan-
Kaufmann Publ. Inc., Los Altos t987, 107-116

