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1. In t roduc t ion  

Computing systems are built in layers. Each layer offers an interface with a collection of services 

to its upper neighbors, and it makes these services operational by programming them on top of 

the interfaces offered by the lower neighbors. Between an end user interface and the switching 

circuitry inside a computer, there are usually many layers, both hardware and software. It is of 

vital importance, both for correctness and efficiency, to understand clearly and thoroughly what 

happens inside each layer, and what happens when moving up and down across layers. 

When speaking of implementation intuitively, we sometimes mean the activity of establishing a 

new layer on top of existing ones. and sometimes we mean the result of this activity, i.e. the new 

layer itself. In any case, the notion of implementation refers to a relationship between layers. 

This paper gives mathematical foundations of (correct) implementation as a relationship between 

layers, based on an object-oriented model of layer. 

Typically, each layer shows the following concepts: data with operations, variables with the 

capability of storing data values, and actions changing the contents of variables. While one or the 

other of these concepts might be missing, the main difference is in the level of abstraction. Bits. 

switching gates, flipflops, and digital signals is an example of a rather low-level layer, whereas, 

say, relational algebra, databases, and database transactions constitute a somewhat higher level. 

Among the many approaches to model aspects of structure and behaviour of computing layers in 

a rigorous mathematical setting, there are three complementary theories which have found wide 

attention: the algebraic theory of abstract data types dealing with data and operations, the theory 

of state machines dealing with states (of variables) changed by actions, and the theory of 

processes dealing with actions (or "events") happening in time in some controlled way, in sequence 

or concurrently. 

We favor an object-oriented approach for modeling layers. The concept of an object in the sense 

of object-oriented programming incorporates data, variables (or "attributes" or "slots"), and 

actions (or "methods" or "events"). Moreover, objects can communicate with each other, e.g. by 

means of messages. This supports viewing a computing system (one layer) as a community of  

interacting objects. 

The object concept is not new. Its origins trace back to the class concept in SIMULA (DMN67), 

and the module concept of Parnas (PAT2), but it developed and became popular only much later, 

with the advent of Smalltalk (GR83). Object-orientation has been proposed as a programming 

paradigm by itself (HB77, He77), and this idea has found wide acceptance by now. 

In contrast to its practical impact for quite a while (Lo85, DD86, SW87, Di88), mathematical 

foundation of object-orientation in all its aspects is still feeble. An interesting early contribution 

is (Go75), but only recently the issue has found wider interest (Am86, GM87, AR89). In a series 

of papers (SSE87, ESS88, ESS89, ESS90, SEC89), we contributed to a model of objects, object 

types, and aggregation of concurrent, interacting objects. The three complementary theories 

mentioned above are reflected in various degrees: an object is considered to be an "observed 

process" where the observation is done via attributes, each one capable of holding values from 

an arbitrary abstract data type. In defining a category of objects and object morphisms, we take 

benefit from algebraic data type theory also in a different, and more interesting respect. As in 

the algebraic data type case, colimits play an essential role. 
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In this paper, we investigate (correct) implementation as a relationship between an "abstract" 

object "built on top" of a community of (possibly interacting) "base" objects. Again, we capitalize 

in some analogies with algebraic data types, taking benefit especially from work in (Eh81, Li82). 

In section 2, we gi~e motivating background for our object, object morphism, and implemetation 

concepts. In section 3, we develop the theory of objects in more detail, showing how object inter- 

action and object aggregation can be uniformly handled in categorial terms, and in section 4 we 

present our theory of implementing objects over objects. Extensions and encapsulations are intro- 

duced as special cases of implementations, and their close relationship to object morphisms is 

clarified. Our main technical result is a normal form theorem saying that any regular implemen- 

tation, i.e. one composed of any number of extensions and encapsulations, in any order, can be 

done in just two steps: first an extension, and then an encapsulation. 

We make moderate use of a few category-theoretic notions. The reader may find it helpful to 

consult the first chapters of (Go79) where all relevant notions are defined and explained, or any 

other textbook on category theory. 

2. Motivation 

We explain the intuitive background of our object model and the relevant relationships between 

objects. Then we outline the idea of what we mean by an implementation of an "abstract" object 

over a given community of "base" objects. 

Example 2.1: A very simple example of an object is a natural variable near , i.e. a variable for 

natural numbers. We recognize the following ingredients: 

data: the natural numbers (with their operations) 

attribute: val, the current value 

events: open, bringing the variable into existence, 

close, bringing the variable out of existence, and 

asg(n), for each n ~ ,  assigning value n to the variable. [] 

Example 2.2: A slightly more elaborate example of an object is an (infinite) array of integers, 

indexed by natural numbers. More precisely, we have 

data: the natural numbers and the integers, 

attributes: conts(n), for each n~lN, the current value of the n-th component. 

events: create,  bringing the array into existence, 

destroy, bringing the array out of existence, and 

se t (n , i ) ,  for each n~lN and each i~Z, assigning value i to the n-th component. [] 

Example 2.3: An interesting example of an object is a stack of integers with the following 

ingredients : 

data: 

attribute: 

events: 

the integers, 

top, the value of the topmost element,  

new, bringing the stack into existence, 

drop, bringing the stack out of existence, 
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push(i ) ,  for each i c Z ,  putting e l ement  i on top of the s tack ,  and 

pop,  taking the topmost e lement  away.  D 

Knowing about the data,  a t t r ibutes  and events of an object does by no means provide a suff icient ly 

complete  picture  of what an object  is. We need to know more than its s ta t ic  s t ruc ture ,  we need 

to know its dynamic behavior. The behavior  of an object  is specif ied by answering two quest ions:  

(1) How can events  happen in t ime ? 

(2) Which  values  are  assumed by the a t t r ibutes  ? 

Question 1 refers  to viewing the event par t  of an object as a process ra ther  than just  a set  of 

events.  It is essent ia l  to know about near ,  for ins tance,  that  open has to be the first  event  before  

near is ready to do anything else,  and that  close,  if it ever  happens,  is the last  event  a f te r  which 

near  is not ready to do anything, etc.  For stack, as another  example ,  we would perhaps  like to 

impose that  we cannot  pop the empty stack,  i.e. that  in any permissab le  sequence of s tack  events  

start ing with new, we would insist to have at leas t  as many push's as pop's ,  etc. These are  typical  

safety conditions. 

It is essent ia l ,  however,  that  we can also handle  active objects,  not only passive ones. Typically,  

active objects have to satisfy liveness conditions. As an example ,  for a user  p rogram operat ing 

on a stack, we might want to impose that  it may not leave the s tack  as garbage behind, i.e. it 

has to drop the s tack eventual ly  once it exists.  

Therefore,  we need a process  model which can deal with bo th  safety and l iveness.  

There are plenty of process  models around, and it is not c lea r  which one is be t t e r  or even  the 

best  of all for our purposes.  In order  to fac i l i ta te  developing ideas, we adopt, for the moment  

being, the s implest  in ter leaving model incorporat ing safety and l iveness and al lowing for infinite 

behaviour:  our life cycle model says that  a process  is a set  of s t reams,  i.e. finite or infinite 

sequences,  over a given alphabet  of events (SEC89 t rea t s  the finite case).  The a lphabet  may be 

infinite, as suggested by the examples  above. It is t rue  that  we do not cap ture  full concur rency  

and internal  nondeterminism this way, but we are  p repared  to subst i tute  a more powerful  process  

model la te r  on. In this sense, we consider our theory as being pa rame te r i zed  with r e s p ec t  to the 

process  model. 

Processes  as sets of life cycles do not have to be prefix c losed!  For instance,  consider a s tack 

user program which has to drop the s tack eventual ly  once it exists .  Af ter  performing the t r ace  

<new;push(1) ;push(1) ;pop,push(2)> of s tack events  (disregarding non- s t ack  events) ,  the p rogram 

stil l  has to do something with the stack, whereas  af ter  <new;push(1) ;pop;drop>,  we have a 

"complete  life cycle"  of s tack  events  so that  the p rogram may te rminate .  In fact,  viewing a 

process  as a set of complete life cycles and not insisting in prefix c losure  is the way l iveness is 

expressed in our model. 

Processes  do not te l l  everything about an object.  For fully capturing its behavior ,  we have to 

answer the second question posed above.  

The values assumed by the a t t r ibutes  depend, of course,  on what happened before.  For instance,  

af ter  a t race ,  i.e. a finite sequence of events ending with asg(10), the cur ren t  value  of near  

should be 10. The case of s tack is more complicated:  the cur ren t  value  of top may depend on an 

a rb i t ra r i ly  long t r ace  of events  before  the point of observat ion.  
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Our model is to let  observations,  i.e. sets of a t t r i bu t e -va lue  pairs,  be  funct ional ly  dependent  on 

t r aces  of events:  a f te r  each  t race ,  the observa t ion  is uniquely determined.  We allow, however,  for 

"non-de te rmin i s t i c"  observat ions  in that  the re  may be any number  of a t t r i bu t e -va lue  pairs  with the 

same  at t r ibute .  This way, one a t t r ibu te  may have any number  of values ,  including none at all.  

The intuit ion is tha t  an empty observat ion  expresses  that  the value is not known, and more than 

one va lue  expresses  that  it is one of these,  but it is unknown which one. The ease that  the 

a t t r ibu te  va lue  is a set of values is different:  this is captured  by one a t t r i bu t e -va lue  pair where  

the va lue  is a set  of e lements ,  i.e. an ins tance  of the data type of sets of these  e lements .  Our 

notion of observa t ion  is an abs t rac t ion  and genera l i za t ion  of that  of a " record"  or "tuple".  

In short ,  we view objects  as "observed  processes" ,  as made precise  in sect ion 3.1. 

Objects  in isolat ion do not te l l  everything about the s t ruc tu re  and behaviour  of a computing system. 

Typically,  we have object  commun i t i e s  where  there  are  many objects around, passive ones like 

those in the examples  above, or act ive ones like programs or t ransac t ions .  These objects in te rac t  

with each  other ,  and they are  put toge ther  to form aggrega te  objects  in a var ie ty  of in t r ica te  

ways. Therefore ,  it is essent ia l  to study relationships be tween  objects.  Our basic  concept for this 

is that  of an object  morph ism,  general  enough for including 

- special izat ions  like roads te r  ~ > ca__.~r 

- parts  like engine - - - ~  car  

- l inks  like owner . . . . .  ~ ca___~r 

Moreover ,  our theory can  deal with shared  parts  in a sa t isfactory way, including event  shar ing  

as the basis  for (synchronous and symmet r ic )  communicat ion  be tween  objects .  In fact,  in te rac t ion  

and aggregat ion  a re  t r ea t ed  in the uniform mathemat ica l  f ramework  of col imits  in the ca tegory  

of objects .  More  de ta i led  motivat ion will be given in sections 3.2 and 3.3, respect ively.  

The cen t r a l  subject  of this paper ,  implementa t ion  (or "reif icat ion" or " ref inement") ,  is a very 

pecul ia r  re la t ionship  be tween  objects  that  goes beyond morphisms as oulined above. The genera l  

idea of implement ing  an "abs t rac t "  object  over  a community of "base" objects is to 

- t r ans l a t e  abs t rac t  event  s t r eams  to base  s t reams,  and 

- t r a n s l a t e  base  observat ions  back to abs t rac t  observat ions . 

This way, the behavior  of  an abs t r ac t  object  is s imula ted  via the base: a f te r  an abs t rac t  t r ace  z ,  

we "ca l cu la t e "  the abs t rac t  observat ion  (which we do not have di rect ly)  in the following way: 

we t r ans l a t e  ~ to base  t r ace  ~' ,  look at the base  observat ion y" af ter  T', and t r ans la t e  y" back  to 

the abs t r ac t  level ,  yielding abs t rac t  observa t ion  y. Of  course,  y should be the " co r r ec t "  abs t r ac t  

observa t ion  af ter  ~, as laid down in some abs t rac t  specif icat ion.  

E x a m p l e  2.4:  A wel l  known implementa t ion  of an integer  s tack over  an  integer  array indexed by 

na tu ra l  numbers ,  toge ther  with a na tu ra l  va r iab le  as top pointer ,  would eva lua te  the top va lue  of 

the s tack  t r ace  

< new ;push(2) ;push( l )  ;pop > 

as follows (of. examples  2.1 to 2.3). Transla t ing to base  t races  event by event (for detai ls  see 

example  4.4),  we would obtain,  say, 

< c r e a t e  ;open; asg(0) > < set (0,2); asg(1 ) > < set( t  ,1 ); asg(2) > < asg(1 ) > . 
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At the end of this t race ,  we have 1 as the na tura l  var iab le ' s  value,  so tha t  the top value of the 

s tack is in the 1-component  of the a r ray ,  and we have 2 as this component ' s  value.  From this, 

we easily obta in  2 as the current  top value of the stack. [] 

We give more  de ta i led  motivat ion for our approach to implementa t ion  in sect ion 4.1. 

Since implementa t ions  in genera l  are  r a the r  complex  relat ionships be tween  objects ,  the question 

na tura l ly  ar ises  whe ther  we can  " tame"  the concept  so that  the in te r -ob jec t  re la t ionships  become 

managable.  The l a t t e r  are harder  to deal with than in t ra -ob jec t  s t ruc tu re  and behaviour.  If  

possible,  the in te r -ob jec t  re la t ionships  should be  (close to) morphisms.  

Extensions and encapsulat ions are two kinds of implementa t ion  which are  w e l l - b e h a v e d  in this 

respect .  Extens ions  capture  the idea that  - within one object - everything is "defined upon" a 

proper  part ,  and encapsula t ion  captures  the idea to es tab l i sh  an " in ter face"  to an object,  a b s t r a c t -  

ing some of the i tems and hiding the rest .  More  deta i led  motivat ion is given in sect ions 4.2 and 

4.3, respect ively.  

3. Objects 

Objects  are observed  processes .  We first p resent  our (prel iminary)  life cycle  model of processes  

and process morphisms.  Then we extend  processes  to objects by adding observat ions ,  and process  
morphisms a re  accordinly  ex ten ted  to object  morphisms.  In the resul t ing  category OB of objects ,  

we invest igate  the exis tence  of colimits and show how colimits are  used to deal with communit ies  

of in teract ing ob jec t s ,  and with aggregat ion of objects  into complex objects ,  

3.1 Processes 

In the life cycle  process  model,  a process  consists  of an a lphabet  X of events  and a set of life 

cycles  over X. Le t  X * be  the set of finite sequences  over  X, and le t  X ° be  the set of o - s e q u e n -  

ces over X. By X ° we denote the set of streams over  X, defined by X ° = X * u  X ° .  

Defini t ion 3.1: A process P=(X,A)  consists  of a set  X of events and a set  Ac-X ° of life cycles 

such that  E ~A. 

The empty l ife cycle  expresses  that  the process  does not do anything, no events  happen. The 

reason  why we impose that  each process  has the potent ia l  of remaining inactive is mot ivated  by 

the  examples  in sec t ion  2: before  the first  event  (and af te r  the las t  one if it ever  happens),  an 

object "does not exist".  It is brought  into and out of exis tence  by means of events.  And each  

object  should have the potent ia l  of remaining nonexis tent .  The deeper  reason  for that  comes 

from object types (which we do not deal with in this paper ,  cf. ESS90): an object  type provides a 

large,  possibly infinite supply of object  ins tances ,  and many of these  will never  be act ivated.  

Referr ing to examples  2.1 to 2.3, we give the processes  underlying objects  n e a r ,  a r ray  and s tack.  

Example 3.2: Let  Pnvar  = (Xnva r ,Anva r )  be the following process.  

Xnvar  = { open , c lose  } u Xasg where  Xasg = { asg(n) ] n~lN } . 

Anvar : {open}Xasg{close} 

i.e. the var iab le  must eventual ly  t e rmina te  with a close even t ,  af ter  finitely many assignments .  0 
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Example 3.3: Let Parray=(Xarray,Aarray)  be the following process. 

Xarray = { create , destroy } u Xse t where Xse t = { set(n,i) I nslN A iEZ } . 

Aarray = {create}Xset{destroy} ~J {create}X~e t 

i.e. the array can accept infinitely many assignments without ever being terminated by a destroy 

event. O 

Example 3.4: Let Pstack =(Xstack,Astack)  be the following process. 

Xstac k =  { new , drop } u Xpp where Xpp = { pop } u { push(i) I i~Z } 

Astack = {new}Ll{drop} u {new}L2 

where LlC-X~p_ is the set of all  finite sequences of pop's and push's with the property that each 

prefix contains at most as many pop as push events, and L2~Xt~p is the set of all  t~-sequences 

where the same holds for each finite prefix. £3 

As pointed out in section 2, it is important to study relationships between objects, and, in the first 

place, between processes. The simplest relationship is that of being a subprocess, by which we 

mean a process over a subset of all  events where a certain relationship holds between the life 

cycle sets. For intuition, we look at examples 3.2 to 3.4, respectively. 

Example 3.5: Let Pnvar = (Xnvar,  Anvar) be defined by the restriction "only values up to 1000 can 
be assigned, and the variable need not tei 'minate": 

Xnvar = { o p e n ,  close } u Xasg where Xasg = { asg(n) I n~lN A ng l000  } 

A;~va  r = {openIX~g{close} ~, {open}X;~g 

Example  3.6: Let Parray = (Xarray,  Aarray) be defined by the following idea: "values can only be 

assigned to components up to 1000": 

Xarray = { create , destroy } ~, Xse t where Xse t = { set(n,i) I n~N ^ i~Z ^ n~1000 } 
,~ 

Aarray = {create}Xset{destroy} u {ereate}Xs~ t 

Example 3.7: Let Pstack=(X~tack, Astack) be a (strange) stack which cannot be pushed, but 

popped arbitrari ly often: 

Xstac k = { new , drop } u Xpp where Xpp = { pop } 

A~tack = {new}X~;{drop} u {new}Xp~ [3 

The relationships between the life cycle sets of the corresponding examples 3.5 and 3.2 as well 

as 3.6 and 3.3 are established by projection, defined as follows. 

Def'mition 3.8: Let X'c~X. The projection o f  a stream X ~ X ° to X', X+X ' ,  is defined recursively 

by 
e+X" = E 

x(p+X' )  if x,X" 
xp-~ X" 

p+ X" otherwise 

for each p E X °. The projection of  a stream set A c_ X o to X" is given by 

A,bX" = { X,bX" 1 ),cA } 

In the examples given above, we obtain only valid life cycles by restriction, i.e. 
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Anvar,~Xnvar c Anvar and 

Aar ray~Xar ray  = Aarray 

As for the stack examples,  neither is Astack,b Xstac k a subset of Astac k nor the other way round, 

both sets are incomparable. Intuitively, we would not accept Pstack as a subprocess of  Pstack'  

because the life cycle sets are largely unrelated.  On the other side, we easily accept Parray as 

a subprocess of Pa r r ay '  because the former behaves "like" the lat ter ,  albeit in a res t r ic ted way. 

The question is whether we should accept Pnvar as a "subvariable" of Pnvar: we have a subset 

of events, but the life cycle  set is larger than that obtained by projecting Anvar to Xnvar .  Our 

decision is to accept this situation as a subproeess relationship, too: the subprocess "contains" 

the behavior of the superprocess, but may allow for "more freedom". This decision is justified by 

the results described in section 3.3 below. 

Summing up, we consider P '=(X' ,A' )  to be a subprocess of P = ( X , A )  iff X'c-X and A.~X'C-A ". 

It is straightforward to general ize from inclusions to injective mappings among event alphabets, 

obtaining injective process morphisms. For the results in section 3.3, however, we have to cope 

with arbitrary mappings between event alphabets,  also noninjective ones, and it is by no means 

straightforward how to general ize the above ideas to that ease. The following version is different 

from that in (ESS89, ESS90), but it leads to nicer results about colimits and their usefulness for 

describing paral le l  composition, as presented in section 3.3. 

Let X be an alphabet of events, and let X" be a finite subset of X. By a permutation of X" we 

mean a trace 7z ~ X ' *  containing each event in X" exact ly  once. Thus, the length of 7t coincides 

with the cardinality of X'.  Let  

perm(X') = { ~ X ' *  [ ~t is a permutation of X" } . 

For X ' = ~ ,  we define perm(~)={~}. 

Let X 1 and X 2 be event alphabets, and let h : X  1 ...... ->X 2 be a mapping. In what follows, we 

assume that h - l ( e )  is finite for each e~X 2. h gives rise to a mapping h in the reverse  direction. 

Dermition 3.9: For h as given above, h is defined as follows 

(1) For an event e c X 2 :  h(e)  = perm(h-l(e)) . 

(2) For a s t ream e l e 2 . . . ~ X ~ :  h ' ( e l e 2 . . .  } = h(e  1 )h(e  2) . . . .  

where juxtaposition denotes concatenation of t race sets. 

(3) For a s t ream set Ac-X~:  h'(A) = ~ A h ( X )  

Proposition 3.10: If  h :  XlC---> X 2 is an inclusion, then we have for each e c X 2 ,  X~X ~ and Ac-X~ : 

f {e} if e , X  1 Re) 
t {E} otherwise 

~(x)-- x , x ~  

g(A)-- ^ , x  1 
Definition 3.11 : Let  P 1 ; (X 1'  A 1 ) and P 2 ;  (X 2 '  A2 ) be processes.  A process morphism h : P 1 ~ P2 

is a mapping h : X  1 ~ X 2 satisfying the following life cycle inheritance condition: 

VX2~A 2 3 X I ~ A  1 : X l ~ h ( X  2) 

The life cycle inheritance condition is i l lustrated by the following diagram which commutes if we 

interpret  * as "pick the right one". 
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A1 c_ > X ]  X 1 

4 
A2 c_ ____~ X~ X 2 

If  h is injective, there is no choice at * to pick, and we get an ordinary commuting diagram. In 

this case, h is a mapping h :  A2-----~A 1 when res t r ic ted  to A 2. 

Theorem 3.12: The processes P = ( X , A )  and process morphisms h : P  1 >P2 as defined above 

establish a category.  

Proof :  We have to prove that morphisms compose and that there are isomorphisms. The s traight-  

forward proof is left  to the reader.  [] 

Notation 3.13: The category of processes and process morphisms is denoted by PROC. 

In section 3.3, we will investigate the exis tence of colimits in PROC and its extension OB, the 

category of objects, to be introduced in the next section. 

3.2 Observations 

Observations are sets of a t t r ibute-value  pairs, abstracting and generalizing the familiar notions 

of "record" and "tuple".  Let  A be an alphabet of attributes. For each attribute aEA,  we assume 

a data type type(a) which provides a domain of values which a can assume. We admit arbitrary 

data types for attributes. Although we do not address object types in this paper, we note in passing 

that surrogate spaces of object types are data types, too (el. ESS90), so that "object-valued" 

attributes are included. 

Dermition 3.14 : An observation over A is a set of a t t r ibute-value  pairs y c{ (a, d) I a~A ^ d~ type(a) }. 
The set of observations over A is denoted by obs(A). 

One attribute may have an arbitrary number of values, as motivated in section 2. 

We equip a process P = ( X , A )  with observations by saying which observation is due after each 

t race .  

Definition 3,15: Let P = ( X , A ) b e  a process. An observation structure over P is a pair V = ( A . ~ )  

where c t :X*  ) obs(A) is the (attribute) observation mapping. 

Actual ly,  0t as defined above does not depend on the life cycle set of P but only on the events. 

In pract ice ,  we would be interested in the values of ct only for prefixes of life cycles,  but when 

it comes to specification, we usually prefer  to specify ¢t independently of A, on a somewhat larger  

set of traces.  For the sake of mathematical  smoothness, we define ct as a total  mapping on all  

traces.  "Undefinedness" can still  be expressed by empty observations. 

Now we are ready for presenting our model of objects as observed processes.  

Dermition 3.16: On object is a pair ob=(P ,V)  where P = ( X , A )  is a process and V=(A,  ct} is an 

observation structure over  P.  

Referring to examples 3.2 to 3.4, we complete  nvar,  array and stack to full objects. 

Example  3.17: Let  the process Pnvar be as defined in example 3.2. The object 

nvar = (Pnvar 'Vnvar )  
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is given by adding Vnvar = (Anvar '  ~nvar) 

where Anvar  = { val 1 

and Ctnvar(X;asg(n)) = { (va t ,n )  } 

for each ~cXnvar  and each n ~ q .  For a t race  # not ending with an assignment event,  we define 

OCnvar(P) = (~. [] 

Example  3.18: Let the process  Parray be as defined in example  3.3. The object 

a r ray  = (Pa r r ay ,Va r r ay )  

is given by adding Varray  = (Aarray,  Ctarray) 

where Aar ray  = { eonts(n) [ n~BI } 

and Ctarray(~;set(n,i)) = (Ctarray(Z) - { ( c o n t s ( n ) , j ) i j ~ 7 .  }) u { (eonts(n) ,  i )}  

for each t race  ~cXar ray ,  each n~BI and each i~Z.  For a t race  9 not ending with an assignment 

event, we define C~array(P)=(~. [] 

Example  3.19: Let  the process  Pstack be as defined in example  3.4.  The object 

s tack = (Ps taek ,Vs taek)  

is given by adding Vstac  k = (Astac k,c~stack) 

where As tac  k = { top } 

and cZstack(~ ;push(i);pop ;x') = ~stack(X ;~') 

Ctstaek(~;push(i)) = { (top, i )  } 

for al l  t races  z,~ ~Xstac  k and al l  i ( Z .  For a t race  p to which these rules do not apply, we 

define C~stack(P)=~. [] 

The observation s t ructure  V=(A,oc)over  a process  P = ( X , A )  (or ra ther  over its event set X) can 

he viewed as the behavior description of a state machine: the s ta tes  are S= X*, the input alphabet  

is X, the output alphabet  is obs(A), the s ta te  transit ion function ~ :XxX*-- ->X* is defined by 

~ ( x , z ) = xz ,  and the output function is ~:S-->obs(A). Via this connection, also a s ta te -machine  

model of objects can be established, bringing in the process  aspect  by lett ing ~ be par t ia l  and 

introducing a special  s t a r t - s top  state (el. ESS90). Our model, however, is more abst ract  in that 

it does not deal with s tates  expl ici t ly ,  and this makes the mathematics  easier  and nicer. 

For studying relationships between objects,  we first look at the simple case of subobjects. For 

intuition, we extend the subprocesses in examples  3.5 and 3.6 to full objects.  

Example  3.20: Let Pnvar be as defined in example  3.5. Referr ing to example 3.17, let  

Vnvar =(Anvar,  C~nvar ) 

where Anvar  = Anvar 

and OCnvar(~ ) = OCnvar(~ ) 

for each ~ ~ Xnvar.  Then, 

nvar" = (Pnvar 'Vnvar )  

is an object, and Pnvar is a subprocess of Pnvar" But is nvar" a subobject of nvar ? [] 

Example  3.21: Let Par ray  be as defined in example  3.6. Referr ing to example  3.18, let  

Var ray  = (Aarray,Ctarray)  
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Aarray = { conts(n) I n~lN ^ n~1000 } c Aarray , where 

and ~array(~) = CCarray(X) 

for each z ~ Xarray.  Then, 

a r r ay '=  (Parray,Varray) 

is an object, and Parray is a subprocess of Parray" But is array" a subobject of array ? [3 

The relationship between observations in the corresponding examples 3.17 and 3.20 as well as 3.18 

and 3.21 is established by a sort of projection, too. 

DeFinition 3.22: Let A'~A. The projection of an observation ycobs(A) to A" is defined by 

y-hA" = { (a,d) [ (a,d)~y ^ a~A" } 

Between array" and array, the following equation is valid for each ~ ~Xarray: 

¢~array ('c-~ Xarray ) = O~array(T),~Aarray 

that is, events outside Xarray do not have any effect on attributes inside Aarray.  In fact, 

assignment to components beyond 1000 do not affect components up to 1000. 

A corresponding equation does not hold between nvar" and nvar. In fact, for ~=<asg(500); 

asg(lSO0)>, we have ~*Xnvar = <asg(500)>, and therefore 

% v a r ( ~ * X n v a r )  = 500 ~ IS00 = % v a r ( ~ ) * g ~ v a r  

Assignments of values greater than 1000 do have an effect on the value of val in nvar, but they 

disappear by projecting to Xnvar. 

For an object Obl=(P1,V1) to be a subobject of ob2=(P2,V2),  we expect P1 to be a subprocess 

of P2'  and we want to impose that events outside the subprocess do not have an effect on 

attributes inside the subobject. That is, we require that the following observation inheritance 
condition holds for all x ¢ X~ : 

~1(~¢Xl) = ~2(~)¢A1 
As in the case of processes, the problem is to generalize this to a useful concept of object 

morphism, Again, the case of injective mappings h : A  t --~A 2 is easy, but we must cope with 

noninjeetive mappings as well. The following general definition of object morphism is justified by 

the results in the next section. 

DeVmition 3.23: Let Obl=(P1 ,Vi )  and ob2=(P2,V2) be objects. Let Pi=(Xi, Ai ) and Vi=(Ai, cq) 

for i=1 ,2 .  An object morphism h:ob  1 >ob 2 is a pair h=(hx,hA) of mappings where 

(1) h X :P1 - - - - )P2  is a process morphism, and 

(2) h A : A 1 - - - ) A  2 is a mapping such that 

(2.1) types are preserved, i.e. type(a)=type(hA(a)) for all a~A 1 , 

(2.2) the following observation inheritance condition holds: 

v~2~x~ ~1 ~hx(~2): ~1(~1) -- hg(~2(~2)) 
Here,-hA(Y)={(a,d)la~A1 ^ (hA(a),d)~y} for each observation y cobs(A2). The observation 

inheritance condition is illustrated by the following diagram: 
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X 1 X]  ~1 - -  > obs(A1) A I 

X 2 X~ ~2 > obs(A2 ) A2 

As in the case of life cycle inheritance, * stands for "pick the right one". If h X is injective, there 

is no choice so that we get an ordinary commuting diagram. 

Theorem 3.24: The objects ob=(P ,V)  and object morphisms h : o b  I - -+ob 2 as defined above 

establish a category. 

The proof is straightforward enough to omit it here. 

Notation 3.25: The category of objects and object morphisms is denoted by OB. 

There is an obvious forgetful functor U:OB PROC sending each object to its underlying 

process and each object morphism to its underlying process morphism. 

3.3 Object Communities 

In this section, we investigate object communities, i.e. sets of objects and object morphisms 

between them. In categorial terms, object communities are diagrams in OB. Of part icular  interest  

are colimits of such diagrams: they provide one object "incorporating" the entire object community, 

i.e. a view of the object community as one aggregate object. Also symmetric and synchronous 

interaction between objects can be understood this way (as for asymmetric and synchronous 

interaction, called "event calling", cf. SEC89). Therefore, it is important to know when eolimits 

exist, and to understand the eases where they do not exist. 

In this paper, we only give a survey of this part of the theory; we present the material  only so 

far as it seems useful for understanding implementation which is our main issue here. 

The simplest colimits are coproducts. Coproduets exist in OB, and the forgetful funetor 

U:OB >PROC preserves coproducts. As it happens, coproduets represent composition by 

disjoint interleaving. We first give an example, using the following notation: for any event 

alphabets X 1 and X 2 and any s t ream sets A 1 -cX~ and A2c-X ~ , let 

A I [ IA 2 = { X ~ ( X 1 u X 2  )° t X + X I c A  1 ^ X + X 2 ~ A  2 } . 

Please note that this definition also applies to the case where X 1 and X 2 are not disjoint. 

Example 3.26: Let nvar and array be as defined in examples 3.17 and 3.18, respectively. The 

disjoint composition of nvar and array is the object 

nvar I[ array = (aeom,Vcom) 

where Pcom = { Xnvar + Xarray ' Anvar [] Aarray) ' 

Vco m = ( Anvar + Aarray , ~Xnvar tt C~array} , 

and (¢Xnvar II Ctarray)(Q = OCnvar(~,b Xnvar) + Ctarray(Z,b Xarray} 

for each x~Xnvar tl Xa r r ay .  + denotes disjoint union wich is assumed to be ordinary union in this 
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case, since the sets in question are disjoint. There are object morphisms 

h g 
nvar ~ > nvar [1 array < - -  array (1) 

given by inclusion. It is straightforward to verify that, whenever there are object morphisms 

h" g" 
nvar > ob < array , 

then there is a unique morphism k: nvar l[array > ob such that h ' = k h  and g ' = k g .  That is, 

diagram (1) is a coproduct in OB. Evidently, its forgetful image under U is a eoproduct in PROC. 

On the underlying event and attribute alphabets and the respective mappings, we have coproducts 

in the category SET of sets and (total) mappings, t3 

Theorem 3.27: OB and PROC have coproduets, and U preserves coproducts. 

The proof is straightforward, so we omit it here. In general,  the coproduct ob 1 Ilob 2 of two objects 

is given by the disjoint para l le l  composition P 1 H P2 = ( X 1 + X 2' A 1 I[ A 2 ) of their underlying processes, 

extended by the observation V 1 [[V2=(AI+A2,c~I Ilc~ 2) where C~lllC~2(T)=C~l(X,bXl)+ c~2(z-~X2) 

for each ~ X ~  t lX~.  

There is a well  known construction of general colimits by means of coproducts and coequalizers. 

A category is (finitely) cocomplete, i.e, it has all  (finite) cotimits, iff it has all  (finite) coproducts 

and all coequalizers. So we turn our interest  to coequalizers. 

Example 3.28: Suppose we want to synchronize nvar and array on the creation and destruction 

events so that "open=create"  and "close=destroy" hold. That is, we have only one creation and 

one destruction event, and these work simultaneously for nvar and array.  

Let X0={ hello,  bye}, and let o b 0 = ( ( X 0 , X ~ ) ,  (~3,~3)) be the object with event alphabet X 0,  

all  possible streams over this alphabet as life cycles, and empty observation structure (ob 0 is 

essentially a process). Let f and g be object morphisms given by 

f 
ob 0 . . ~ _ ~  nvar i[ array 

f x :  hello ~ open , bye ~ close , 

g x  : hello ~-~ create , bye ~ destroy 

Let nvar** be like nvar,  but open and close renamed by hello and bye, respectively, and let array** 

be like array,  but create  and destroy renamed by hello and bye, respectively. Let svn be defined 

as follows: 
I t  I t  

Xsy n = Xnvar u Xarray , 

i.e. the union of the event alphabets of nvar** and array**, respectively. Please note that 

t, ** - { hello,  bye } ! Xnvar n Xarray - 
** I t  

Asy n = Anvar [I Aarray , 

i.e. the (nondisjoint ! ) interleaving of the life cycle sets of nvar** and array #, respectively. 
** I t  

Asy n = Anvar + Aarray = Anvar + Aarray , 

0Csyn(~) = 0~nvar (~ d ~ #  Xnvar ) * *  + 0Car r ay('~ d ~ * *  Xarray ) * *  . 

Now there is an object morphism 

h : t~var [] array sYn 
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sending both open and crea te  to hello, and both close and destroy to bye (so that h is not 

in jec t ive! ) ,  and each other i tem is sent to (the copy of) itself. By construction, we have the 

following two coequal izer  diagrams in SET: 

fx 
x° ---gx 

_ _ _ _ . )  h x 
(Xnvar + Xarray)  - Xsy n 

) (Anvar + Aarray)  Asyn 

f > nvarHarray h ) sen o_ vb. . . . . . . .  + ............. 
g 

That h is indeed an object morphism is easily established. Taking example  3.26 and the standard 

construction of pusbouts by means of coproducts and coequalizers into account, we have shown 

that the following diagram is a pushout in OB. where hnvar and harray are the respect ive parts 

of h on near and array,  respect ively,  coming from the coproduct. 

ob 0 f ~ nvar 

array ~ 
...... harray 

It is obvious that the forgetful U-image of the above coequalizer  and pushout diagrams are 

coequalizer and pushout diagrams, respect ively,  in PROC. O 

This example shows that new objects can be composed via colimits. The construction of s_.LO_ 

demonstrates at the same time our approach to (synchronous and symmetric)  interaction by means 

of event sharing: by imposing "open=crea te"  and "close=destroy",  we have set up an object 

community via pushout in which near and a~ray share these events, renamed as "hello" and "bye", 

respectively.  

Coproducts do always exist in OB, but unfortunately this does not hold for coequalizers  so that 

OB is not cocomplete.  We claim, however, that al l  "relevant"  colimits exist,  and that exis tence 

and nonexistence of a colimit gives interesting information about a diagram. For demonstration, 

we give a diagram P1 ~---- P 0 - - - ~  P2 in PROC which does not have a pushout. 

Example  3.29: Let X = { go, stop }. Then we have the following identity mappings which are  object 

morphis ms: 

p o = ( X , X  o) c f __5 p l = ( X , { s , < g o ; s t o p > } )  

P 2 = ( X , { E ,  <stop;go> }) 

fA 

gA 

The lat ter  happens to be a coproduet diagram since fA and gA are empty. If h = ( h x , h A )  is 

indeed an object morphism, then the following diagram is a coequalizer  diagram in OB: 
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This diagram does not have a pushout in PROC ! In fact, the only candidate (up to isomorphism) 

would be P3=(X,{E})  with the identity maps on X providing a commuting square. This is true 

because E is the only life cycle  whose projection to X is in both life cycle sets, that of P1 and 

that of P2" If we consider, however,  the process P4 = ({e}, { E, < e> }), then there are two process 

morphisms from P l  and P2 to P4 '  sending both go and stop to e, but there is no process morphism 

from P3 to P4 since,  with the only possible event map sending both go and stop to e,  the life 

cycle  inheritance condition is not satisfied. 

Please  note that the above diagram shows the typical situation of a deadlock: it is impossible to 

synchronize on both events,  go and stop, if one process insists on go first and then stop, while 

the other process insists on stop first and then go. [] 

The general  situation of  a coequal izer  diagram in OB is given by 

f h 
ob 1 ~> ob 2 -> ob 3 (2) g 

Let obi=(Pi,  Vi), P i=(Xi ,  Ai). Vi=(Ai ,  c q)  for i = 1 , 2 . 3 .  Let ob 1, ob 2, f and g be given. In order 

to be a coequalizer ,  the maps h x and h A and the sets X 3 and A 3. respect ively,  must be 

coequalizers  in SET. This defines h X , h A,  X 3 and A 3 . We onty have to worry about A 3 and c¢ 3. 

In oder to obtain a coequalizer ,  A 3 should have as many life cycles as possible, as suggested by 

the life cycle inheritance condition. But, of course, h has to be an object morphism. So whenever 

diagram (2) is a coequal izer ,  ob 3 must have the maximal set of life cycles such that h satisfies 

the life cycle  condition, i.e. 

A 3 : { X eX 3 I h ' x (X  ) c~ A 2 ~ ~) } 

As for ~x 3. because of observation inheritance, we must have for each ~3 E X~: 

cc3(z3) = hA(CC2(z2)) for some z 2 ~ h x ( ' ~ 3 )  . 

This defines c~ 3 uniquely only if the value is independent of the choice of ~2' This condition has 

to be satisfied by diagram (2) to be a coequalizer.  

OeVmition 3.30: o¢ 2 is compatible with h X iff, for each x3cX~ and all  Zl ,Z2 ~hx(z3), we have 

c¢2(Zl)= c¢2(~2). 

Much more complicated,  however,  is the conditiobn to be satisfied by the process part so that 

diagram (2) is a coequal izer :  A 2 has to satisfy a cer ta in  closure condition with respect to h X. 

Definition 3.31 : A mapping q : X 2 - - - - )  X 3 covers h x iff 

h x ( e ) = h x ( e ' )  ~ q ( e ) = q ( e ' )  for al l  e , e ' E X  2 . 

Definition 3.32: A 2 is closed with respect to h X iff, for each map q : X  2 - - )  X 3 covering h X 

and each life cycle  XeA 2, we have: whenever ) ,eq(p)  for some stream psX~,  then there is a 

life cycle X'~A 2 satisfying X 'eq (~)nh 'x (p ) .  

As for intuition: a s t ream X eq(p) is a sequence of "segments" where each segment is a permut-  

ation of q - l ( e )  for some e~X 3. The closure condition says, roughly speaking, that the events 

within each segment can be rearranged in such a way as to obtain a sequence of finer segments 

where each of the la t ter  is a permutation of h ~ ( e )  for some e e X  3. 
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Theorem 3.33: Diagram (2) is a coequal izer  in OB iff A 2 is closed with respect to h X and c~ 2 is 

compatible with h X. 

The proof is a l i t t le  too lengthy to be included in this paper, it will be published elsewhere.  Here  

we only can point out a few consequences and further ideas around this result.  

Obviously, we obtain a coequal izer  in PROC when looking at the underlying process diagram, if  

only the closure condition is satisfied. That is, the forgetful functor U:OB----> PROC preserves  

eoequalizers.  

As suggested by example  3.29, the closure condition seems to have a lot to do with deadlocks or, 

rather,  deadlock absence. Without being able to give full clarif icat ion here, we would like to 

c la im that the following conjecture holds true. 

Conjecture 3.34: A diagram in PROC has a colimit iff there is no possibility of deadlock. 

Of course, the notion of deadlock has to be made precise in our framework before the conjecture 

can be proved or disproved. This is subject to further study. 

Colimits of arbitrary diagrams in OB (and PROC) can be constructed from coproducts and 

coequalizers,  as is well  known. From the results presented above, the general  construction 

provides a general  necessary and sufficient cri terion for a diagram to have a colimit. Going into 

more detail, however,  is outside the scope of this paper. 

4. Implementation 

We explain our concept of implementing objects over objects and give a precise definition. 

Implementations can be composed so that, by any number of (correct)  implementation steps, a 

(correct)  entire implementation is obtained. Then we study two specific kinds of implementation 

in some detail: extension and encapsulation. Our normal form theorem says that, if an object is 

implemented stepwise by any number of extensions and encapsulations, in any order, then it can 

also be implemented in two steps where the first one is an extension, and the second one is an 

encapsulation. 

4.1 Concept 

Given a col lect ion of objects b 1 . . . . .  b n as an implementation basis, what does it mean to 

"implement" an abstract object ab "over" this basis ? We give an example  in order to provide 

some intuitive background. 

Example  4.1: Let  the basis consist of nvar and array as described in examples 3.17 and 3.18, 

respectively.  We want to implement the abstract object stack as given in example  3.19 on this 

basis. Recal l  the following items for the objects at hand. 

s tack:  events new , drop , push(int) , pop 

attributes top : inAt , empty? : bool 

array:  events create  , destroy , se t (na t , in t )  

attributes conts(9_~ ) : in_At 
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nvar:  events  open , c lose , a sg (na t )  

a t t r ibutes  val  : na__[ 

Intui t ively,  an  implementa t ion  of s tack over  a r ray  and nvar  would do the following two things:  

(1) encode each  s tack  event by a " t ransac t ion"  over  the base,  i.e. a sequence of a r ray  and 

nvar  events ,  for ins tance  (of. example  2.4):  

new ~ < c rea te  ; open;  asg(0) > 

drop ~--~ < close ; destroy > 

push( i ) ~--) < set ( [val  ], i ) ;  a sg ( [va l ]+ l  ) > 

pop r---> < a s g ( [ v a l ] - I  ) > 

Here ,  [ va l ]  denotes  the cur ren t  value  of the a t t r ibu te  val of nvar  (assuming determinis t ic  

a t t r ibutes  in this example) .  

(2) decode each  observat ion  over  the base  a t t r ibutes  as an observa t ion  over  the s tack  

a t t r ibu tes ,  for ins tance  

top <--~ [ c o n t s ( [ v a l ] -  1)] 

empty? ~-~ e q u a l ? ( [ v a l ] , 0 )  

Since events  f rom severa l  base  objects  are  in t e r l eaved  in the above encoding, we should look at 

the composi te  object  bas = a r r ay l l nva r  (of. example  3.26) as being the base,  r a the r  than some 

co l l ec t ion  of base  objects.  Thus, we may assume that  the base  is just  a single object .  

P lease  note that  the base  " t ransac t ion"  by which a s tack  event is encoded will lead to different  

base  t races  for the same s tack  event ,  depending on context .  For instance,  pop can mean  <asg(0)> 

or <asg(l)> or . . . .  and push( l )  can  mean  <set(O,1);asg(1)> or <set(1,1);asg(2)> or . . . .  depending 

on the va lue  of val  in the s ta te  where  pop or push( l )  occurs,  respect ively .  

Each  s tack  life cycle ,  for ins tance  

<new ; push( l )  ; push(2) ; pop ; push( l )  ; pop ; pop ; drop > , 

can  be t r ans fo rmed  into a sequence of base  events  by means of the above encoding: 

< c r e a t e  ; o p e n ;  asg(0) ;  set (0 ,1) ;  asg(1) ;  s e t ( l , 2 ) ;  asg(2) ;  asg(1);  se t ( l ,1)  ; asg(2) ;  a sg ( l )*  

asg(O) ; c lose ; destroy > 

Thus, encoding amounts to "compiling" s tack  s t reams  into ba___~s s t reams.  More  detai ls  about this 

compi la t ion  will  be given in example  4.4 below. 

The resu l t  of compil ing a s tack life cycle  should be "executab le" ,  i.e. it should be a val id ba___ss 

l ife cycle ,  and the observat ions  along this l ife cycle,  when decoded as s tack  observat ions,  should 

comply with the specified s tack behaviour .  For instance,  af ter  the init ial  t r ace  of the above ba.__ss 

l ife cycle  ending at *,  we have 

[ v a i l  = 1 

[conts  (0)]  = 1 

[ c o n t s ( l ) ]  = 1 

This ba....~s observa t ion  decodes as the fol lowing s tack  observa t ion:  

[ t op ]  = [ c o n t s ( [ v a l ] - l ) ]  = [conts(O )] = 1 

[ e m p t y ? ]  = e q u a l ? ( [ v a l ] , O ) =  equal?(1 ,O)  = false 
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This is the correct  observation after the corresponding stack trace,  i.e. the initial t race of the 

above stack life cycle  ending at +. [] 

As the example i l lustrates,  it is appropriate to assume that the base consists of a single object 

ba__ss. In practice,  ba__~s will most often be an aggregate object composed of a col lect ion of objects 

which may interact  (i.e. ba__ss is the colimit object of some diagram in OB ).  

So our problem is the following: given an abstract object ab and a base object ba_~s, what is an 

implemetation of a__b_b over ba__ss ? For notational convenience, we index each i tem of ab  by ab (Xab,  

Aab,etc .  ), and similarly for bas and the other objects to follow. 

Def'mition 4.2:: An implementation <y,B> of ab over  ba._s, denoted by <y,~> :bas Dab , consists of 

two mappings, 

7 :  XaCb - - - +  Xl~a s 

: obs(Aba s) > obs(Aab) , 

such that the following conditions hold: 

(1) "~(Aab) c Abas 

(2) CXab = ~ ~bas ¥ 

We call  y the encoding (of abstract  streams by base streams) and ~ the decoding (of base 

observations as abstract  observations). 

Condition (1), which we will refer  to as the life cycle condition, says that we should obtain valid 

base life cycles when encoding valid abstract life cycles.  As a consequence, ~" can be looked at 

as a function from Aab to Aba s . Condition (2). which we wilt refer  to as the observation condition, 
says how to ca lcula te  abstract observations for abstract t races via encoding, base observation, 

and decoding. The conditions are depicted in the following diagram. 

, °Ca b 
Aa b c____~ X~ b 6___D Xa  b ~ obs(Aab) 

AbasC____~ X~as (____D X~as ~bas ) obs(Abas ) 

This definition of implementation is rather abstract.  The encoding map y, in particular,  does not 

ref lect  the idea of looking at an abstract event as a base "transaction". This concept would lead 

to state dependent transformation of abstract events into base traces,  as i l lustrated in example  4.1, 

which in turn would lead to "compiling" abstract streams to base streams from left to right. 

We just keep the "compilation" aspect as a mapping from abstract s treams to base streams in our 

definition. One way to recover  the more constructive le f t - to- r ight  flavor would be to require 

that "( be prefix monotone in the sense that, whenever a t race ~ is the prefix of some s t ream )~, 

then T(~) is the prefix of 7(X). However ,  we refrain from imposing this condition. We feel that 

it is necessary to leave the door open for studying, for instance, "ser ial izable"  encodings, i.e. the 

"transactions" for subsequent abstract events may inter leave in certain ways, or "encodings with 

lookahead", i.e. the t race by which the occurrence of an abstract event is encoded does not only 

depend on the ?past" (the prefix before that occurrence) ,  but also - to some extent - on the 

"future" (the s t ream to follow). 
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Our abstract  approach is also partly motivated by the intention to keep the mathematics as smooth 

as possible. For the same reason, we refrain from restr ict ing the observation condition to prefixes 

of  life cycles,  although this would be sufficient for the purposes of implementation verification. 

The following proposition is an easy consequence of the definition and shows that implementations 

can be composed or, the other way round, split into steps. 

Proposition 4.3: If  <`(1,81>:bas Dabs and <`(2,82>:abs Dab are implementations, so is 

~'f1`(2,8281 > :bas  Dab .  

For the composition of implementations <`(1 '~1 > and <,(2,82 >, we will use a "bottom-up" notation: 

<'(1,81>*<`(2,82 > := <`(1`(2,8281> • 

We note in passing that, if both implementations are prefix monotone, so is the composition. 

Implementat ion as defined above is a relationship between objects. It is easy to see, however, that 

it is not an object morphism in general.  Since we introduced object morphisms as a general  tool 

for studying relationships between objects, the question naturally arises which implementations 

can be expressed by means of morphisms. In the next sections, we study two kinds of implemen- 

tation in detail where the first one is not a morphism either, but very close to one, and the 

second one is indeed a morphism. 

4 . 2  E x t e n s i o n  

The idea of an extension is that it adds "derived" events and attributes to the base ,  i.e. the new 

items are  "defined upon" the base items. 

Example  4.4 : Consider objects stack and ba___ss = array II nvar as in example  4.1. Let  an object ex__!t 

be defined as follows. The events are  given by 

Xex t = Xba s + Xstac k 

where the new ("derived") events are  those from stack. We want to impose that streams over 

s tack events are  to be "compiled" to base streams,  as suggested by example  4.1. In this example,  

this is achieved by a le f t - to - r igh t  translat ion 

o 
`( : Xex  t - - ~  Xga s 

defined recurs ively  as follows. Let T~ X~a s and ),~ X~x t, and let [a]  z be the value of (base) 

attribute a after t race z (i .e.  in ~Xbas('Q). We make use of an auxil iary function ~[z](X) giving 

the translat ion of )~ after T has been obtained so far. 

~(x)  = ¢[~](x)  , where 

+[x](e;)~) = ~b[x;e]()~) if e~Xba  s 

~b[x ](new;)~ ) = ~[x ;create;open;asg(O)](X) 

qb[x ](drop ;), ) = ~[x :close ;destroy ](),) 

~[z](push(i);) ,)  : ~ [~ ;se t ( [va l Jz , i ) ; asg( [va l ]z+l ) ] ( ) ,  ) for i~in_tt 

kb[z ](pop;k) : ~[z ;asg([valJz-  1)](), ) 

The life cycles of  ex__tt are just the stack life cycles  : 

Aex t : Astac k • 
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The attributes of ext are defined by 

Aex t = Aba s + Astac  k • 

and the observation map of ex__At is given by 

<Xext('c) = ~(Ctbas(Y(z))) for each z ~ X e x  t , where 

~(y) = y u { (top, [conts ( [va l ]y-  1 ) ]y ) ,  (empty?,  equal?([val]y ,0))} 

for each observation y ~ obs(Abas). [a]y denotes the value of attribute a in observation y. 

Obviously, <~(,~> : bas D stack is an implementation of stack over ba___~s. 

The extension of the base ba__.~s = array ][ nvar by the stack object where the stack items 

are "defined upon" the base, is depicted in the following diagram, 

[ array 1t nvar [ c _ _ _ +  

s t ~ k  

l array ]L nvar 

The broken arrow indicates inclusions of events and attributes, nothing else. Indeed, these 

inclusions do not form an object morphism! It is true that life cycle inheritance Aext~XbasC-Abas 

c o and thus holds since A e x t - X s t a c  k, Aext~Xbas=(3 .  But observation inheritance does not hold; 

for instance, we have 

Ctext (<new>)~gbas  = {(va l ,0)}  , whereas 

CCbas(<new >d/Xbas) = C~bas(E ) = (3 • 

Indeed, stack events do have an effect  on base attributes, and this is definitely needed. If  we 

replace "Z6Xbas"  by "y(z)", however,  we obtain valid conditions corresponding to life cycle and 

observation inheritance, respect ively : 

Y(Aext ) c_ Abas 

<Xext(~),bAba s = ~(Ctbas(Y('t)))~Aba s = C~bas(T(~)) for each ~ X e x  t . 

Intuitively, we may look at the inclusion ba_~s c___)stack as being "like" an object morphism in the 

following sense. We may consider a stack s tream k as being "equivalent" to its compiled ba__ss 

version "((X) in the sense that their executions have the same effect ,  and if any one of them is 

executed,  the other one is automatical ly executed at the same time, i.e. they are like different 

designations of the same l ife cycle.  Considering X and "f(X) as "equivalent" in this sense and 

recall ing that y ( k ) ~ X ~ a  s ,  we might look at " k ~ X b a s "  and "y(X)" as "equivalent" operations 

and, consequently, at the above conditions as being "equivalent" to life cycle  and observation 

inheritance, respect ively.  0 

Extensions are cer ta in  implementations <'f,~> : ba__ss ~> ext  where ex__! "contains" bas,  i.e. Xbas c - Xex t 

and AbasC-Aext . Let  

X v = Xex t -  Xba s , 

A v = Aex t - Aba s 

be the sets of "new" events and attributes, respect ively.  As the example  suggests, the encoding 

: X~xt > Xgas 
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is looked at as a "compiler"  translating streams with possibly new events into base streams. We 

do not impose any condition on "f. 

It is necessary,  however, to impose a condition on ~, namely that it leaves base observations 

fixed, i.e. y= ~(y)d, Aba s for all  observations y c o b s ( A b a s ) .  We will refer  to this condition as the 

e x t e n s i o n  cond i t i on .  

DeFinition 4.5: An e x t e n s i o n  is an implementation <-f£> :ba___~s D ext with XbasC-Xext and 

AbasC-Aext such that y=~(y)J~Aba s holds for all  observations y ~ o b s ( A b a s ) .  

As i l lustrated in example  4.4, we can prove that the inclusion h :ba_._ss c___)ex__~t is "like" an object 

morphism, i.e. life cycle  and observation inheritance hold if we replace the operation " ) , ~ X b a s "  

by "-((X)' .  

Lemma 4.6 : If  <'L ~> : ba._~s D ext  is an extension, we have 

(1) "f(Aext) ~ Aba s 

(2) Ctext(Z)-~Aba s = Ctbas(Y(z)) for each z~Xex  t 

Proof :  The first condition is the life cycle  condition which is required to hold for any implemen-  
, 

tation, and the second one is derived as follows, for each z~Xex t :  

CXext(z)~Aba s = ~(C~bas(Y(z)))q, gba  s = C~bas(Y(z) ) , 

by extension condition. U 

The situation of an extension being "like" an object morphism at the same time is depicted in the 

following diagram. 

c o 6 _ .  * C%xt 
Xext  Aext > Xex  t X e x t  ~' obs{Aext) Abas 

Xbas Abas c ) Xgas 6--"  X~a s CCbas ~ obs (Abas )  Aba s 

The diagram commutes,  with the except ion that 8(Y~Abas)~y in general  (but ~(y)-~Abas=Y holds, 

this is the extension condition). 

The pract ical  usefulness of an extension is that, instead of dealing with implementation as a weird 

relationship between objects,  we can put an essential part "inside an object", leaving just something 

like a morphism as an inter-object  relationship. Specificationwise, this means that we can 

put the features for implementation specification essential ly into those for object specification, 

drawing on the established concepts of object morphism specification for handling inter-object  

relationships. 

Our abstract  definition of extension requires that observation decoding ~ behaves wel l  (i.e. 

leaves the base observations fixed). Pract ical ly ,  we would achieve this in a way suggested by 

example  4.4:  with each new attr ibute a~A v,  we associate a mapping 

~Oa: t ype (a  1 ) × . . . × t ype (ar )  t ype (a )  

where a I . . . . .  a r are base attributes associated with a as its "domain of dependence". For any 

observation y~obs(Abas), we then define 
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~(y)=  y v {(a,qOa(W 1 . . . . .  w r) a~A v ,  ( a i ,  wi)~y for l~ i~r ,  where a I . . . . .  a r is 

the domain of dependence associated with a } . 

Like implementations in general,  extensions compose, too, i.e. the composition of extensions is 

again an extension. 

Lemma 4.7:  If  < ' f l '$1  > :has ~ e s t l  and < ' f 2 ' 5 2 > : e x t l  ~¢x t2  are extensions,  so is 

<~(1 '~1 > ,* <T2'52 > : bas D ext2 . 

Proof:  Obviously, Xbas-  c X e x  t 1 c_ Xext  2 and AbasC-Aext 1C-Aext2" As for the extension condition, 

we have for each y~obs(Abas): 

S(y),bAba s = S2(Sl(y))4~Abas = (~2(51(y))d, A e x t l ) ¢ A b a s  = ~l(y) ,~Abas = y . U 

4.3 Encapsulation 

While an extension adds new items which are "defined upon" the base, an encapsulation provides 

the means for "abstracting" some items, "hiding" the rest. The simple idea is that an object should 

provide an implementation for any of its parts. We show that this holds if the part is an object 

in i tself  whose life cycles as such are valid in the base. Allowing for renaming of events and 

attributes which is often needed in practice,  we read "part" as "injective morphism" g : if.._£ --~ bas 

("ife" stands for "interface") .  

Lemma 4.8:  If g:if__£----~ba____ss is an injective morphism such that gx(Aifc)C-Abas , then 

<gx,g-A > : ba__ss [) if__£ is an implementat ion.  

Proof: The precondition gives the life cycle condition for the implementation, and the observation 

condition is deduced from observation inheritance as follows: 

~ifc(Z) = c t i f c (gx (gx (z ) ) )=  gA(ctbas(gx(Q))  for each ~EXi*fc . i3 

This lemma suggests the following definition of encapsulation. 

Dermition 4.9: An encapsulation of the base ba___~s by an interface if_.__c is an implementation of the 

form <gx,  gA > : bas D if___q where g= ( g x '  gA) : if_.._£ ) ba.._ss is an injective object morphism 

satisfying gx(Ai fe )  c Aba s .  

The la t ter  encapsulation condition means that all  ire life cycles must be valid in bas as such, i.e. 

without being interleaved with events not in the encapsulation. Clear ly,  any object isomorphic to 

is an encapsulation of ba._.._~s. In this case, encapsulation amounts to renaming. 

The life cycles of an encapsulation are even more tightly coupled with those of the base than 

one might suspect at first glance.  

Lemraa 4.10: If  < g x , g A  > : ba_..~s D if_._£ is an encapsulation, we have 

Air c = gx(Abas)  • 

Proof:  From life cycle  inheritance, we have 

~x(Abas)  c Aifc , 

and from the encapsulation condition, we obtain 

Air c = g 'x (gx(Ai fc ) )  ~ g'x(Abas) . E3 

The situation of an encapsulation being an object morphism at the same time is depicted in the 

following diagram. 
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c _ _  ~ ~_D * ctifc 
Xifc Aifc ' > X ifc X ire > obs(Aifc) Aifc 

Xbas AbasC____.~ Xgas ~___D X~as Ctbas _> obs(Abas ) Abas 

The diagram commutes, with the exception that gX(g-X(X))~-X in general ,  but gx (gx (X) )=X holds. 

Example  4.11: We take the object ex_.3t constructed in example 4.4 as basis. Let  stack be the 

object defined in example  3.19, Then stack is an encapsulation of ex_~t, An inclusion morphism 

g : s t a e k  c___~ ex_~t is given by sending each event and attribute in stack to i tself  in ex_._L g is 

indeed an object morphism: the life cycles  are the same, and the observations coincide when 

looking only at the new attributes in ex___!. The situation is depicted by the following diagram. 

stack 

I1 nvar 

Here ,  s tack in the left  box is the part by which array il nvar is extended in order to obtain the 

extension ex__3t, as described in detail in example  4.4.  

Like implementations in general and extensions in part icular ,  encapsulations compose, too, i.e. the 

composition of two encapsulations is again an encapsulation. 

Lemma 4.12: If <~'I'~1 > :ba___ss ~ ifcl and <~(2,~2 > :i_f~ (> ire2 are eneapsulat ions,  so is 

<Y1 ,~1 > * <T2 ,~2 > : ba.._.ss D ifc2 . 

The proof is easy enough for omitting it. 

In a stepwise implementation of a given abstract object a__bb, the last step often is an encapsulation 

which picks those items in the object constructed so far that are needed to represent  a__b.b. Therefore,  

an encapsulation can also serve  as a verification condition rather than a construction step. Our 

viewpoint, however,  provides a nice uniformity which makes it easier to study composition of 

implementations. 

4 .4  Normal Form 

Consider a sequence of objects 

b a s = b  1 , b 2 . . . . .  b m = a b  

where there is an implementation of b i .  1 over b i for 1 ~ i ~ m - 1 .  By proposition 4.3, there is also 

an implementat ion of a_b_b over  bas obtained by composition. If, in part icular ,  all  single implemen- 

tation steps are extensions or eneapsulations, then the entire implementation should also have 

some special form. 

Detrmition 4.13: A regular implementat ion is any composition of extensions and encapsulations, in 

any order. 

Example  4.14: The extension of example  4.4 and the encapsulation of example  4,11 can be 

composed to a regular  implementation of  stack over ba_~s as depicted in the following diagram. 
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I stack ( :~ 
A 

[ array II nvar ] c ) arr..aY.. )1 nva(. 

[] 

Without loss of generality, we assume that the last step is an encapsulation (if necessary, we 

can add an identity). The following normal form theorem says that any regular implementation 

can be done in just two steps: first an extension and then an encapsulation, as in the above 

example. 

Thoorem 4.15: If <V,~> :bus ~a_h is a regular implementation, then there are an object ext, an 

extension <y1,51 > :bus ~> ext and an encapsulation <y2,32> :ext Dab such that 

<y,~> = <y1,31 >* <y2,~2 > 

The proof is postponed until after the next lemma which provides the necessary preparation. It 
says that, instead of implementing by an encapsulation followed by an extension, we can as well 

implement by an extension followed by an encapsulation. 

Lemma 4.16: If <gx,gA > : bas D ifc is an encapsulation and <y,~> :ifc Dab is an extension, then 

there are an object ext, an extension < ' (Y> : bas D ext and an encapsulation <g'x,g'A > : ext D a__bb 

such that the compositions are the same, i.e. the following holds: 

<gx,gA > * <y,5> : <y',3"> * <g'x,g'A > 
P r o o f :  For the sake of notational simplicity, we assume that gx '  gA' g 'x '  and g'A are inclusions. 

The following diagrams may provide guidance through the proof steps. 

"r > Xi c 

c Y Xex t -) Xgas 

o b s ( A a b  ) ( . ) obs(Aif e) 

C~ab/ [ c~i fc /  | 
/ |&Aab / l~Aifc 

Xab ~ - ~  ) Xi*fe 
I ~ 5'  s 

T obs(Aext) - ~ ~  ob (Aba s) 

[ / C ( e x t  "~Xifc I / O C b a  s 

* _ _  ) X~a s Xext y, 
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Reversing the four ver t ica l  arrows,  there are  inclusions from top to bottom which are not shown 

in the diagram. The right and top faces of the cube represent the given implementations, and the 

bottom and left  faces represent  the ones looked for. We have to define these implementations in 

a way which makes the equation in the lemma valid,  i.e. which makes the back face of the cube 

as wel l  as the square diagram above the cube commutative.  From the lat ter ,  commutativity of 

the front face of the cube follows. 

Let  X ~ = X a b - X i f  c and A ~ = A a b - A i f  c .  The object ex__[t is constructed as follows. 

(1) Xex t = Xba s + X~ 

(2) Aex t = Aab 

(3) Aex t = Aba s + A~ 

(4) Ctext(X)= C~bas(Y(X-,~Xab))u (Ctab(Z-~Xab)) for each x~Xex  t . 

The extension <y',6"> :bas D ext  is defined by 

y'(X) = y ( X ~ X a b )  for each )~X~ext 

$'(y) = y u 6(Y~Aifc)  for each y~obs(Aba s) . 
We have to prove that <y',5"> is indeed an extension. The life cycle  condition is obvious: 

y-(Aext,i ,  Xab) = Y(Aext ) c Abas ' because <%6> is an implementation. As for the observation 
, 

condition, we have for each ~ ~ X e x t :  

Ctext(Z ) = Ctbas(Y('r-,~Xab)) u (Ctab(,-,~ Xab)) 

= Ctbas(Y'(z))u 6(c~ifc(y(z,bXab)) ) 

= Ctbas(Y'(~)) u 6(Ctbas(Y'(z))-~Aifc) 

= 6" (Ctbas(y'(z))) 

The extension condition is established as fol lows:  

6"(y),~Aba s = ( y  u ~(Y~Aifc)),,~Aba s 

= Y~Aba  s u 6(Y~Aifc)q,  Aif  c 

= y u y-~Aif  c 

= y  

The encapsulation <g 'x ,g~> : ext  Dab is defined by inclusion of ab in ex_~t, as constructed above: 

g 'x  : Xab = Xifc + Xv c ~ Xba s + X~ = Xex t 

g'A : Aab =Aifc  + A v c  ) Aba s +A~; =Aex  t . 

Clear ly ,  g'x(Aab) = Aab = Aex t . Moreover ,  in the diagrams given above, the square as wel l  as the 

back face of the cube commute: for each X ~ X ex t, we have 

y ' ( X ) ~ X i f  c = y ( )~ ,bXab)~Xifc  = Y()~-,~Aab) 

since the la t ter  is in X~f c . And for each observation y ~ obS(Abas), we have 

6"(y)~Aab = (y  u ~(yq, A i f c ) ) ~ A a b  

= Y ~ A a b  u ~(y,~Aifc) ,~Aab 

= y ,bAi f  c u 6(y-,~Aifc) 

= ~ (y,~ Aifc) 
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The last two equations hold because Aba s n Aab=Aif c, 5(Y~Aifc)C_obs(Aab) ' and 

y,~Aif c c_ 5(y.bAifc) ' respectively. The latter, in turn, holds because y-bAifc = 5(y,~Aifc)~Aif c. 

The only thing which is left to prove is that g'=(g'x,gA) is indeed an object morphism satisfying 

the encapsulation condition. The latter is trivially satisfied by construction. Life cycle inheritance 

is simple: Aex t ~ Xab = Aab .~ Xab = Aab = Aex t . As for observation inheritance, we conclude for 
, 

each ZeXex t , "chasing" through the above cube diagram: 

C%xt(~)~Aab = S'(%as(,;'(~)))&Aab 

= 5(%as('((~) }.~Aifc) 

= ~ (ctifc('((~)* Xifc) ) 

= ~(Cqfc(-¢(~ ~Xab))) 

= Ctab('~ ,~ Xab ) 

Proof of theorem 4.15 : By applying lemma 4.16 repeatedly, we can transform any regular imple- 

mentation into a two-phase one: in the first phase, we only have extensions, and in the second 

phase, we only have encapsulations (at least one. by assumption). By applying lemma 4.7 repeat- 

edly, the first phase can be replaced by a single extension. By applying lemma 4.12 repeatedly, 

the second phase can be replaced by a single restriction. [3 

[3 

5. Concluding Remarks  

Our concept of implementation as a relationship between objects allows for dealing with different 

levels of abstraction, and this means different languages, and this in turn means different logical 

systems for reasoning. We feet that implementation (or refinement) concepts working totally 

within one fixed language or logical calculus miss an essential point. 

In this paper, we concentrate on semantic fundamentals. Of course, the work has to be extended 

in several respects. For correctness proofs of ihaplementations, appropriate logical calculi 

have to be employed (cf. FS89),  and the interdependencies between logics and semantics have to 

be studied carefully. Based on the logical calculi and the semantic fundamentals, a specification 

language is needed, together with a specification methodology for using the language, and an 

animation system for computer support. The specification language has to be backed by a trinity 

of axiomatic, denotational and operational semantics, as put forward by Hennessy (He88). 

In a series of papers (ESS88-90, SEC89, FS89), we contributed to this program. In these papers, 

several aspects of object-orientation are addressed within our approach which we did not discuss 

in this paper. Among them are object types, subtypes, complex types, inheritance, object identity, 

and event calling. The integration of these results and their completion towards a coherent theory 

of objects is currently under research. 

As a specific point for further study, we have to clarify the relationship between colimits and 

deadlocks, as put down in conjecture 3.34 above. 

A topic not addressed so far is parameterization which has been so succesfully clarified in 

algebraic data type theory. Again capitalizing on that theory, we expect morphisms and colimits 
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to play an essential role once more, namely in studying parameter assignment and parameter 

passing. This is also relevant for implementation: we would like to give parameterized 

implementations of parameterized objects. One interesting problem in that respect is compatibility 

of parameterization and implementation (ef. Li82 for the corresponding problem in algebraic 

data type theory): if ob(x) is a parameterized object and act is an actual parameter object, we 

can instantiate to obtain oh(act) and implement this object. On the other hand, we can implement 

ob(x) in a parameterized way, leaving x as a formal parameter,  and implement act separately. 

Can we then instantiate the implementation of ob(x) by that of act. and does that give an 

implementation of ob(act)?  These questions - and others - are open for further research. 
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