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1. Introduction

Computing systems are built in layers. Each layer offers an interface with a collection of services
to its upper neighbors. and it makes these services operational by programming them on top of
the interfaces offered by the lower neighbors. Between an end user interface and the switching
circuitry inside a computer. there are usually many layers, both hardware and software. It is of
vital importance. both for correctness and efficiency, to understand clearly and thoroughly what
happens inside each layer, and what happens when moving up and down across layers.

When speaking of implementation intuitively. we sometimes mean the activity of establishing a
new layer on top of existing ones, and sometimes we mean the result of this activity, i.e. the new
layer itself. In any case. the notion of implementation refers to a relationship between layers.

This paper gives mathematical foundations of {correct) implementation as a relationship between
layers, based on an object-oriented model of layer.

Typically, each layer shows the following concepts: data with operations, variables with the
capability of storing data values, and actions changing the contents of variables. While one or the
other of these concepts might be missing, the main difference is in the level of abstraction. Bits.
switching gates, flipflops, and digital signals is an example of a rather low-level layer, whereas.
say, rclational algebra, databases. and database transactions constitute a somewhat higher level.

Among the many approaches to model aspects of structure and behaviour of computing layers in
a rigorous mathematical setting, there are three complementary theories which have found wide
attention: the algebraic theory of abstract data types dealing with data and operations, the theory
of state machines dealing with states (of variables) changed by actions, and the theory of
processes dealing with actions {or "events") happening in time in some controlled way, in sequence
or concurrently.

We favor an object-oriented approach for modeling layers. The concept of an object in the sense
of object-oriented programming incorporates data, variables (or "attributes” or “slots”), and
actions (or “methods™ or "events”). Moreover, objects can communicate with each other, e.g. by
means of messages. This supports viewing a computing system (one layer) as a community of
interacting objects.

The object concept is not new. Its origins trace back to the class concept in SIMULA (DMN67),
and the module concept of Parnas (Pa72), but it developed and became popular only much later,
with the advent of Smalltalk (GR83). Object-orientation has been proposed as a programming
paradigm by itself (HB77, He77), and this idea has found wide acceptance by now.

In contrast to its practical impact for quite a while (Lo85, DD86, SW87, Di88), mathematical
foundation of object-orientation in all its aspects is still feeble. An interesting early contribution
is (Go75), but only recently the issue has found wider interest (Am86, GM87, AR89). In a series
of papers (SSE87, ESS88, ESS89, ESS90, SEC89), we contributed to a modél of objects, object
types, and aggregation of concurrent, interacting objects. The three complementary theories
mentioned above are reflected in various degrees: an object is considered to be an "observed
process” where the observation is done via attributes, each one capable of holding values from
an arbitrary abstract data type. In defining a category of objects and object morphisms, we take
benefit from algebraic data type theory also in a different, and more interesting respect. As in
the algebraic data type case, colimits play an essential role.
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In this paper, we investigate (correct) implementation as a relationship between an “abstract™
object "built on top” of a community of (possibly interacting) "base” objects. Again, we capitalize
in some analogies with algebraic data types, taking benefit especially from work in (Eh81, Li82).

In section 2, we give motivating background for our object, object morphism, and implemetation
concepts. In section 3, we develop the theory of objects in more detail, showing how object inter-
action and object aggregation can be uniformly handled in categorial terms, and in section 4 we
present our theory of implementing objects over objects. Extensions and encapsulations are intro-
duced as special cases of implementations, and their close relationship to object morphisms is
clarified. Our main technical result is a normal form theorem saying that any regular implemen-
tation, i.e. one composed of any number of extensions and encapsulations, in any order, can be
done in just two steps: first an extension, and then an encapsulation.

We make moderate use of a few category-theoretic notions. The reader may find it helpful to
consult the first chapters of (Go79) where all relevant notions are defined and explained, or any
other textbook on category theory.

2. Motivation

We explain the intuitive background of our object model and the relevant relationships between
objects. Then we outline the idea of what we mean by an implementation of an “abstract” object
over a given community of "base” objects.

Example 2.1: A very simple example of an object is a natural variable nvar , i.e. a variable for

natural numbers. We recognize the following ingredients:
data: the natural numbers (with their operations)
attribute: val, the current value

events: open, bringing the variable into existence,
close, bringing the variable out of existence, and
asg(n), for each nc<IN, assigning value n to the variable. O

Example 2.2: A slightly more elaborate example of an object is an (infinite) array of integers,
indexed by natural numbers. More precisely, we have

data: the natural numbers and the integers,
attributes: conts(n), for each n¢N, the current value of the n-th component.

events: create, bringing the array into existence,
destroy, bringing the array out of existence, and

set(n, i), for each n<IN and each ic<Z, assigning value i to the n-th component. O

Example 2.3: An interesting example of an object is a stack of integers with the following

ingredients :
data: the integers,
aftribute: top, the value of the topmost element,

evenls: new , bringing the stack into existence,
drop, bringing the stack out of existence,
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push{i), for each icZ, putting element i on top of the stack. and
pop, taking the topmost element away . O

Knowing about the data, attributes and events of an object does by no means provide a sufficiently
complete picture of what an object is. We need to know more than its static structure, we need

to know its dynamic behavior. The behavior of an object is specified by answering two questions:
(1}  How can events happen in time ?
(2) Which values are assumed by the attributes ?

Question 1 refers to viewing the event part of an object as a process rather than just a set of
events. It is essential to know about nvar, for instance, that open has to be the first event before

nvar is ready to do anything else, and that close, if it ever happens, is the last event after which

nvar is not ready to do anything, etc. For stack, as another example, we would perhaps like to

impose that we cannot pop the empty stack, i.e. that in any permissable sequence of stack events
starting with new, we would insist to have at least as many push’s as pop’s, etc. These are typical
safety conditions.

It is essential, however, that we can also handle active objects, not only passive ones. Typically,
active objects have to satisfy liveness conditions. As an example, for a user program operating
on a stack, we might want to impose that it may not leave the stack as garbage behind, i.e. it
has to drop the stack eventually once it exists.

Therefore, we need a process model which can deal with both safety and liveness.

There are plenty of process models around, and it is not clear which one is better or even the
best of all for our purposes. In order to facilitate developing ideas, we adopt, for the moment
being, the simplest interleaving model incorporating safety and liveness and allowing for infinite
behaviour: our life cycle model says that a process is a set of streams, i.e. finite or infinite
sequences, over a given alphabet of events (SEC89 treats the finite case). The alphabet may be
infinite, as suggested by the examples above. It is true that we do not capture full concurrency
and internal nondeterminism this way, but we are prepared to substifute a more powerful process
model later on. In this sense, we consider our theory as being paramecterized with respect to the
process model.

Processes as sets of life cycles do not have to be prefix closed! For instance, consider a stack
user program which has to drop the stack eventually once it exists. After performing the trace
<new;push(1);push(l1);pop:push(2)> of stack events (disregarding non-stack events), the program
still has to do something with the stack, whereas after <new;push(l);pop;drop>, we have a
"complete life cycle” of stack events so that the program may terminate. In fact. viewing a
process as a set of complete life cycles and not insisting in prefix closure is the way liveness is
expressed in our model.

Processes do not tell everything about an object. For fully capturing its behavior, we have to
answer the second question posed above.

The values assumed by the attributes depend, of course, on what happened before. For instance,
after a trace, i.e. a finite sequence of events ending with asg(10), the current value of nvar
should be 10. The case of stack is more complicated: the current value of top may depend on an
arbitrarily long trace of events before the point of observation.
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Qur model is to let observations, i.e. sets of attribute-value pairs, be functionally dependent on
traces of events: after each trace, the observation is uniquely determined. We allow, however, for
"non-deterministic” observations in that there may be any number of attribute-value pairs with the
same attribute. This way, one attribute may have any number of values, including none at all.
The intuition is that an empty observation expresses that the value is not known, and more than
one value expresses that it is one of these, but it is unknown which one. The case that the
attribute value is a sef of valtues is different: this is captured by one attribute-value pair where
the value is a set of elements, i.e. an instance of the data type of sets of these elements. Qur

notion of observation is an abstraction and generalization of that of a "record” or “tuple”.
In short, we view objects as "observed processes”, as made precise in section 3.1.

Objects in isolation do not tell everything about the structure and behaviour of a computing system.
Typically, we have object communities where there are many objects around, passive ones like
those in the examples above, or active ones like programs or transactions. These objects interact
with each other, and they are put together to form aggregate objects in a variety of intricate
ways. Therefore, it is essential to study relationships between objects. Qur basic concept for this

is that of an object morphism, general enough for including
- specializations like roadster “—— car
- parts like engine ——> car

- links like owner ———> car

Moreover, our theory can deal with shared parts in a satisfactory way, including event sharing
as the basis for (synchronous and symmetric) communication between objects. In fact, interaction
and aggregation are treated in the uniform mathematical framework of colimits in the category
of objects. More detailed motivation will be given in sections 3.2 and 3.3, respectively.

The central subject of this paper. implementation (or “reification™ or "refinement"), is a very
peculiar relationship between objects that goes beyond morphisms as oulined above. The general

idea of implementing an "abstract” object over a community of "base” objects is to
- translate abstract event streams to base streams, and
- translate base observations back to abstract observations .

This way, the behavior of an abstract object is simulated via the base: after an abstract trace 7,
we "calculate” the abstract observatior (which we do not have directly) in the following way:
we translate 1 to base trace 17, look at the base observation y” after 1”, and translate y” back to
the abstract level, yielding abstract observation y. Of course, y should be the “"correct™ abstract
observation after 1, as laid down in some abstract specification.

Example 2.4: A well known implementation of an integer stack over an integer array indexed by
natural numbers, together with a natural variable as top pointer, would evaluate the top value of

the stack trace
<new;push(2);push(1);pop >

as follows (cf. examples 2,1 to 2.3). Translating to base traces event by event {(for details see
example 4.4), we would obtain, say,

<create;open;asg(0)> <set(0,2);asg(l)> <set(l.1);asg(2)> <asg(l)> .
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At the end of this trace, we have 1 as the natural variable’s value, so that the top value of the
stack is in the 1-component of the array, and we have 2 as this component’s value. From this,
we easily obtain 2 as the current top value of the stack. a

We give more detailed motivation for our approach to implementation in section 4.1.

Since implementations in general are rather complex relationships between objects, the question
naturally arises whether we can "tame™ the concept so that the inter-object relationships become
managable. The latter are harder to deal with than intra-object structure and behaviour. If
possible, the inter-object relationships should be (close to) morphisms.

Extensions and encapsulations are two kinds of implementation which are well-behaved in this
respect. Extensions capture the idea that - within one object - everything is "defined upon” a
proper part, and encapsulation captures the idea to establish an "interface” to an object, abstract-
ing some of the items and hiding the rest. More detailed motivation is given in sections 4.2 and
4.3, respectively.

3. Objects

Objects are observed processes. We first present our (preliminary) life cycle model of processes

and process morphisms. Then we extend processes to objects by adding observations, and process
morphisms are accordinly extented to object morphisms. In the resulting category OB of objects,

we investigate the existence of colimits and show how colimits are used to deal with communities
of interacting objects, and with aggregation of objects into complex objects.

3.1 Processes

In the life cycle process model, a process consists of an alphabet X of events and a set of life
cycles over X. Let X* be the set of finite sequences over X, and let X be the set of w-sequen-
ces over X. By X% we denote the set of streams over X, defined by X%=X*y X%,

Definition 3.1: A process P=(X,A) consists of a set X of events and a set A<XY of life cycles
such that ecA.

The empty life cycle expresses that the process does not do anything, no events happen. The
reason why we impose that each process has the potential of remaining inactive is motivated by
the examples in section 2; before the first event (and after the last one if it ever happens), an
object "does not exist”. It is brought into and out of existence by means of events. And each
object should have the potential of remaining nonexistent. The deeper reason for that comes
from object fypes (which we do not deal with in this paper, cf. ESS90): an object type provides a
large, possibly infinite supply of object instances, and many of these will never be activated.

Referring to examples 2.1 to 2.3, we give the processes underlying objects nvar, array and stack.

Example 3.2: Let P =(X

nvarAnvar) be the following process.

nvar
Xovar = 1 open , close } v X

Apvar = {open}X;sg{close} ,

asg where X,oo = { asg(n) | ncIN } .

i.e. the variable must eventually terminate with a close event, after finitely many assignments.O
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Example 3.3: Let Pypo0=(Xyrray Agrray) be the following process.
Xarray = { create , destroy } u X where Xgop = { set(ni) | nelN a icZ } .
Aarray * {create} X3 {destroy} o {create}X%,

i.e. the array can accept infinitely many assignments without ever being terminated by a destroy
event. 0O

Example 3.4: Let Py, 1= (Xgiack: Astack) e the following process.

X ={new ,drop} u X where pr={p0p} v { push(i) | ieZ }

PP
Agtack = inewtLl{drop} v {newiL2 ,

stack

where LIQX;p is the set of all finite sequences of pop’s and push’s with the property that each
prefix contains at most as many pop as push events, and LZQX‘gp is the set of all w-sequences

where the same holds for each finite prefix. 0

As pointed out in section 2, it is important to study relationships between objects, and, in the first
place, between processes. The simplest relationship is that of being a subprocess, by which we
mean a process over a subset of all events where a certain relationship holds between the life
cycle sets. For intuition, we look at examples 3.2 to 3.4, respectively.

Example 3.5: Let P/, =(X] AL

nvar~ ‘“‘*nvar’ ‘‘nvar
be assigned, and the variable need not terminate”:

) be defined by the restriction "only values up to 1000 can

Xpvar = | open , close } v Xasg Where Xjoo = 1 asg(n) | neN A n<1000 }
Ajvar = {Open}xézg{close} v {open}x;lg)g .
Exnmple 36: Let P:;rray:(xzcirray’/\;rray) be defined by the foliowing idea: "values can Only be

assigned to components up to 1000":

Xarray = { create , destroy } v Xgo; where X, ={ set{ni)} | ncN A icZ A n<1000 }
A;rray = {create}X’s;l{destroy} v {create}xé(é)t 0

Example 3.7: Let Pétack=(xétack'/\;tack) be a (strange) stack which cannot be pushed, but
popped arbitrarily often:

X where X/ ={ pop }

PP PP
{drop} v {new'rXi)‘f)’ 0

stack = { mew ,drop } v X

*

Y
The relationships between the life cycle sets of the corresponding examples 3.5 and 3.2 as well

stack = nev X,

as 3.6 and 3.3 are established by projection, defined as follows.
Definition 3.8: Let X'<X. The projection of a stream »¢X° to X', AL X, is defined recursively
by
el X = ¢
X = {5 e
for each peXC. The projection of a stream set ASX% to X is given by
ALX = { AdX | Aen}

In the examples given above, we obtain only valid life cycles by restriction, i.e.
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ApvarVy Xgvar < Apvar and
Aarray‘l’xérray = Airray

As for the stack examples, neither is Agqqopl Xgpack @ Subset of Agy, i nor the other way round,

both sets are incomparable. Infuitively, we would not accept Pg, .. as a subprocess of Py, ...

because the life cycle sets are largely unrelated. On the other side, we easily accept P;\rray asg

a subprocess of P because the former behaves “"like” the latter, albeit in a restricted way.

array*

The question is whether we should accept P, .. as a "subvariable” of P ,.: we have a subset
of events, but the life cycle set is larger than that obtained by projecting A, .. to Xp,... Our

decision is to accept this situalion as a subprocess relationship, too: the subprocess “contains”
the behavior of the superprocess, but may allow for "more freedom". This decision is justified by
the results described in section 3.3 below.

Summing up, we consider P’=(X",A") to be a subprocess of P=(X,A) iff X’cX and AL X'CA".

It is straightforward to generalize from inclusions to injective mappings among event alphabets,
obtaining injective process morphisms. For the results in section 3.3, however, we have to cope
with arbitrary mappings between event alphabets, also noninjective ones, and it is by no means
straightforward how to generalize the above ideas to that case. The following version is different
from that in (ESS89, ESS90), but it leads to nicer results about colimits and their usefulness for
describing parallel composition, as presented in section 3.3.

Let X be an alphabet of events, and let X" be a finite subset of X. By a permutation of X' we
mean a trace ¢ X * containing each event in X’ exactly once. Thus, the length of 7 coincides
with the cardinality of X’. Let

perm(X’) = { meX’* [ n is a permutation of X" } .
For X =@, we define perm(®)={c}.

Let X| and X, be event alphabets, and let h: Xy~ X, be a mapping. In what follows, we
assume that h™1(e) is finite for each eeX,. h gives rise to a mapping h in the reverse direction.

Definition 3.9: For h as given above, h is defined as follows
(1) For an event eeXq: hie) = perm(h_l(e)) .

(2) For a stream eje;...eX%: hlejey ...) = hley)hley)... .
where juxtaposition denotes concatenation of trace sets.

(3) For a stream set AcX§: h(A) = )\UAF()\)
€

Proposition 3.10: If h:X;“— X, is an inclusion, then we have for each eeX,, A EX% and AQX% :

- _ {e} if eeXl
hle) = { {e} otherwise

Definition 3.11: Let P = (X 1:A1 ) and Po= (XZ’AZ ) be processes. A process morphism h: Pi—Pp,
is a mapping h: X, — X, satisfying the following life cycle inheritance condition:

YageAy IhgeAp = Aqeh()y)
The life cycle inheritance condition is illustrated by the following diagram which commutes if we
interpret * as "pick the right one".
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o}
Mm% X%

*
B (.
Ay = —> XSG X,
If h is injective, there is no choice at * to pick, and we get an ordinary commuting diagram. In
this case, h is a mapping h: A, —> A when restricted to A,.
Theorem 3.12: The processes P=(X,A) and process morphisms h:P; —>P, as defined above
establish a category.

Proof : We have to prove that morphisms compose and that there are isomorphisms. The straight-
forward proof is left to the reader. O

Notation 3.13: The category of processes and process morphisms is denoted by PROC.

In section 3.3, we will investigate the existence of colimits in PROC and its extension OB, the
category of objects, to be introduced in the next section.

3.2 Observations

Observations are sets of attribute-value pairs, abstracting and generalizing the familiar notions
of "record” and "tuple”. Let A be an alphabet of attributes. For each attribute acA, we assume
a data type type(a) which provides a domain of values which a can assume. We admit arbitrary
data types for attributes. Although we do not address object fypes in this paper, we note in passing
that surrogate spaces of object types are data types, too (cf. ESS90), so that “object-valued”
attributes are included.

Definition 3.14 : An observation over A is a set of attribute~value pairs y cf (a,d) lacA ande type(a) 1.
The set of observations over A is denoted by obs(A).

One attribute may have an arbitrary number of values, as motivated in section 2.

We equip a process P=(X,A) with observations by saying which observation is due after each
trace.

Definition 3.15: Let P=(X,A) be a process. An observation structure over P is a pair V=(A,a)
where o : X*—> obs(A) is the (attribute) observation mapping.

Actually, o as defined above does not depend on the life cycle set of P but only on the events.
In practice, we would be interested in the values of « only for prefixes of life cycles, but when
it comes to specification, we usually prefer to specify o independently of A, on a somewhat larger
set of traces. For the sake of mathematical smoothness, we define « as a total mapping on all
traces. "Undefinedness” can still be expressed by empty observations.

Now we are ready for presenting our model of objects as observed processes.

Definition 3.16: On object is a pair ob=(P,V) where P=(X,A) is a process and V=(A,a) is an
observation structure over P.

Referring to examples 3.2 to 3.4, we complete nvar, array and stack to full objects.

Example 3.17: Let the process P be as defined in example 3.2. The object

v

nvar

nvar = (P

nvar’ nvar)
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is given by adding Vovar= (Aqvar: ®nvar)
where Apvar =1 val'}
and %yvarltiasg(n)) = { (val,n) }

for each IeX;var and each ne¢IN. For a trace p not ending with an assignment event, we define
%var(0)=0. o

Example 3.18: Let the process P be as defined in example 3.3. The object

array
array = (Parray ' Varray)

is given by adding Varray:(Aarray'“array)
where Agrray = { conts(n) | neN }
and aa”ay(t;set(n,i)) = (o‘array(T) - {(conts(n),j)!jcZ}) v {(conts(n),i)}
for each trace teX’;”ay. each nelN and each i¢Z. For a trace p not ending with an assignment
event, we define ota"ay(p)=®. 0
Example 3.19: Let the process Py ... be as defined in example 3.4. The object

stack = (Pgqack. Vsrack)
is given by adding Vstack = (Agtack- %stack)
where Agtack = { top }
and tgrack (T3push(i)ipop:t’) = ogyaop(tst?) o

o‘x~:tack('[;pus}1(i)) = {(top,i)}

;tack and all i¢Z. For a trace p to which these rules do not apply, we

define oy, 1 (0)=0. 8]

for all traces 1,177¢X

The observation structure V=(A,a) over a process P=(X,A) (or rather over its event set X) can
be viewed as the behavior description of a stale machine: the states are $=X", the input alphabet
is X, the output alphabet is obs(A), the state transition function §:X»xX*—> X* is defined by
3(x,1)=xT1, and the output function is o: S— obs(A). Via this connection, also a state-machine
model of objects can be established. bringing in the process aspect by letting & be partial and
introducing a special start-stop state (cf. ESS90). Our model, however, is more abstract in that
it does not deal with states explicitly, and this makes the mathematics easier and nicer.

For studying relationships between objects, we first look at the simple case of subobjects. For
intuition, we extend the subprocesses in examples 3.5 and 3.6 to full objects.

Example 3.20: Let P be as defined in example 3.5. Referring to example 3.17, let

nvar
Vivar =(Apvar-%hvar)
Where Afvar = Anvar
and tvar(T) = Apyar(t)

%
for each t¢X[ ;.. Then,

nvar” = (P; Vv;lvar)

nvar'

,

is an object, and Py ..

is a subprocess of P But is nvar” a subobject of nvar ? 0

nvar-

Example 3.21: Let P;array be as defined in example 3.6. Referring to example 3.18, let

3

array - ( array'“;rray)
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where Ajrray = { conts(n) | nelN A n<1000 } < Aarray -
and 0‘;lrray(T) = o‘array(T)
for each TeX;;ray . Then,

array’ = (P;array'vzirray)

.

is an object, and Parray is a subprocess of Parray’ But is array” a subobject of array ? O

The relationship between observations in the corresponding examples 3.17 and 3.20 as well as 3.18
and 3.21 is established by a sort of projection, too.

Definition 3.22: Let A"cA, The projection of an observation ycobs(A) to A" is defined by
yVA ={(a,d) [ (a,d)ey n acA”}
Between array” and array, the following equation is valid for each 71X

;rray (T‘J’X;rray) = aarray(T)‘J’A;rray

array’
o

2

that is, events outside X;array do not have any effect on attributes inside Aarray'

assignment to components beyond 1000 do not affect components up to 1000.
A corresponding equation does not hold between nvar’ and nvar. In fact, for 1=<asg(500);
asg(1500)>, we have 14 X; .. =<asg(500)>, and therefore

1z Xnvar

In fact,

) = 500 # 1500 = o

nvar(T)‘J/A’

.
anvar( nvar

Assignments of values greater than 1000 do have an effect on the value of val in nvar, but they

’

disappear by projecting to X, ...

For an object oby=(P,V ) to be a subobject of ob,=(P;,V,), we expect P| to be a subprocess
of Py, and we want to impose that events outside the subprocess do not have an effect on
attributes inside the subobject. That is, we require that the following observation inheritance
condition holds for all 1¢X3:

al(T‘J/Xl) = cx2(1)\J/A1

As in the case of processes, the problem is to generalize this to a useful concept of object
morphism. Again, the case of injective mappings h: A} —> A, is easy, but we must cope with
noninjective mappings as well. The following general definition of object morphism is justified by
the results in the next section.

Definition 3.23: Let ob;=(P;,V;) and oby=(P,,V,) be objects. Let P;=(X;,A;) and V;=(A;, ;)
for i=1,2. An object morphism h:ob; —> ob, is a pair h=(hx,hA) of mappings where

(1) hy :Py—>P, is a process morphism, and
(2) hA:Al —>A, is a mapping such that
(2.1) types are preserved, i.e. type(a)=type(hA(a)) for all aeAl .
(2.2) the following observation inheritance condition holds:
VTzéxa :‘!Tl €Fx(’f2): d.l(Tl) = FA((lz(T2))
Here, T\A(y)z{(a,d)!aeAl A (hA(a),d)ey} for each observation yeobs(A,). The observation
inheritance condition is illustrated by the following diagram:
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[
X, X} —1— obs(a ) A
*
hxl HXT TT"A lhA
[
X2 XE ‘—”*—2'—> ObS(Az) AZ

As in the case of life cycle inheritance, * stands for "pick the right one”. If hy is injective, there
is no choice so that we get an ordinary commuting diagram.

Theorem 3.24: The objects ob=(P,V) and object morphisms h:oblﬁobz as defined above
establish a category.

The proof is straightforward enough to omit it here.
Notation 3.25: The category of objects and object morphisms is denoted by OB.

There is an obvious forgetful functor U:O0B —> PROC sending each object to its underlying
process and each object morphism to its underlying process morphism.

3.3 Object Communities

In this section, we investigate object communities, i.e. sets of objects and object morphisms
between them. In categorial terms, object communities are diagrams in OB. Of particular interest
are colimits of such diagrams: they provide one object "incorporating” the entire object community,
i.e. a view of the object community as one aggregate object. Also symmetric and synchronous
interaction between objects can be understood this way (as for asymmetric and synchronous
interaction, called "event calling”, cf. SEC89). Therefore, it is important to know when colimits
exist, and to understand the cases where they do not exist.

In this paper, we only give a survey of this part of the theory; we present the material only so
far as it seems useful for understanding implementation which is our main issue here.

The simplest colimits are coproducts. Coproducts exist in OB, and the forgetful functor
U:0B—— PROC preserves coproducts. As it happens, coproducts represent composition by
disjoint interleaving. We first give an example, using the following notation: for any event
alphabets X; and X, and any stream sets A QXOI and A, QX% , let

AplAg = {2 e(XpuXp)P I X eAp A xdXpeAy ).
Please note that this definition also applies to the case where X and X, are not disjoint.

Example 3.26: Let nvar and array be as defined in examples 3.17 and 3.18, respectively. The

disjoint composition of nvar and array is the object

avar {| array = (P, Veom)
where Peom = (Xpvar * Xarray » Anvar l Aarray) ’
Veom = ( Apvar *Agarray » %var 0‘array) ,
and (otpyar ! 0‘array)(T) = tyyar(TV Xpyar) + “array(N’Xarray)

for each TEX:war I X;rray . + denotes disjoint union wich is assumed to be ordinary union in this
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case, since the sets in question are disjoint. There are object morphisms

nvar "——L% nvar || array « -8 > array 1)
given by inclusion. It is straightforward to verify that, whenever there are object morphisms

W g
nvar ob array

then there is a unique morphism k: nvar || array —— ob such that h"=kh and g'=kg. That is,
diagram (1) is a coproduct in OB. Evidently, its forgetful image under U is a coproduct in PROC.
On the underlying event and attribute alphabets and the respective mappings, we have coproducts
in the category SET of sets and {total) mappings. O

Theorem 3.27: OB and PROC have coproducts, and U preserves coproducts.

The proof is straightforward, so we omit it here. In general, the coproduct obl il obz of two objects
is given by the disjoint parallel composition Pl §!P2= (X1+X2,A1 I!Az) of their underlying processes,
extended by the observation Vy [[Vo=(A[+A,, o) llay) where aylfoy(t)=oy (1 X )+ oy (14 X;)
for each teX‘i i XE .

There is a well known construction of general colimits by means of coproducts and coequalizers.
A category is (finitely) cocomplete, i.e. it has all (finite) colimits, iff it has all (finite) coproducts
and all coequalizers. So we turn our interest to coequalizers.

Example 3.28: Suppose we want to synchronize nvar and array on the creation and destruction

events so that "open=create” and “"close=destroy” hold. That is, we have only one creation and
one destruction event, and these work simultaneously for nvar and array.

Let X=1{ hello, bye}, and let oby=((Xp.X). (D.P)) be the object with event alphabet X;,
all possible streams over this alphabet as life cycles, and empty observation structure (obo is
essentially a process). Let f and g be object morphisms given by

oby < nvar{array

g

fX: hello —> open , bye > close ,
gy : hello > create , bye > destroy

Let nvar™ be like nvar, but open and close renamed by hello and bye, respectively, and let array®
be like array, but create and destroy renamed by hello and bye, respectively. Let syn be defined
as follows:

— n n
Xsyn = Xpvar Y Xarray ’
i.e. the union of the event alphabets of nvar® and array®, respectively. Please note that

™ s _
Xnvar " Xarray = {hello, bye} !
A k- ” At!

syn = Mavar ! Marray

i.e. the (nondisjoint ! ) interleaving of the life cycle sets of nvar® and arraz“, respectively.

- AB # -
Asyn - Anvar * Aarray - Anvar * Aarray ’

o B n 8 8
o‘syn(T) = apvar(TV Xgvar) + o‘array(T\l’xarray)

Now there is an object morphism

h:nvar llarray > syn
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sending both open and create to hello, and both close and destroy to bye (so that h is not
injective ! ), and each other item is sent to (the copy of) itself. By construction, we have the
following two coequalizer diagrams in SET:

f

Xg T3 (X aX )X sy
0 - X > nvar’ “‘array syn
f
A h
— A
) T (Anvar+Aarray) - > Asyn

The latter happens to be a coproduct diagram since f, and g, are empty. If h=(hx,hA) is
indeed an object morphism, then the following diagram is a coequalizer diagram in OB:

"X nvarllarray —B 5 sy
That h is indeed an object morphism is easily established. Taking example 3.26 and the standard
construction of pushouts by means of coproducts and coequalizers into account, we have shown

that the following diagram is a pushout in OB. where h,.. and h are the respective parts

array
of h on nvar and array, respectively, coming from the coproduct.

obg *—*—L——> nvar

g hpvar

It is obvious that the forgetful U-image of the above coequalizer and pushout diagrams are
coequalizer and pushout diagrams, respectively, in PROC. ]

This example shows that new objects can be composed via colimits. The construction of syn
demonstrates at the same time our approach to (synchronous and symmetric) interaction by means
of event sharing: by imposing "open=create” and "close=destroy", we have set up an object
community via pushout in which nvar and array share these events, renamed as "hello"” and "bye",

respectively.

Coproducts do always exist in OB, but unfortunately this does not hold for coequalizers so that
OB is not cocomplete. We claim, however, that all "relevant” colimits exist, and that existence
and nonexistence of a colimit gives interesting information about a diagram. For demonstration,
we give a diagram Ple—— Po—% Pz in PROC which does not have a pushout.

Example 3.29: Let X={go,stop}. Then we have the following identity mappings which are object

morphisms:

Po=(X,X%) T P =(X, e, <goistop>})

Py=(X.{e, <stop;go>})
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This diagram does not have a pushout in PROC ! In fact, the only candidate (up to isomorphism)
would be P3=(X,{e}) with the identity maps on X providing a commuting square. This is true
because £ is the only life cycle whose projection to X is in both life cycle sets, that of P, and
that of P, . If we consider, however, the process Py=({e},{e, <e>}), then there are two process
morphisms from P and P, to P4, sending both go and stop to e, but there is no process morphism
from P4 to P4 since, with the only possible event map sending both go and stop to e, the life
cycle inheritance condition is not satisfied.

Please note that the above diagram shows the typical situation of a deadlock: it is impossible to
synchronize on both events, go and stop, if one process insists on go first and then stop, while
the other process insists on stop first and then go. O

The general situation of a coequalizer diagram in OB is given by

h —> 0b3 (2)

Obl

f
g:.gobz

Let ob;=(P;, V;), P;=(X;. A;). Vi=(Aj ;) for i=1.2,3. Let oby, oby. f and g be given. In order
to be a coequalizer, the maps hy and h, and the sets X3 and Aj, respectively, must be
coequalizers in SET. This defines hy, hy, X3 and Ay. We only have to worry about Aj and ®3.
In oder to obtain a coequalizer, Ay should have as many life cycles as possible, as suggested by
the life cycle inheritance condition. But, of course, h has to be an object morphism. So whenever
diagram (2) is a coequalizer, obj must have the maximal set of life cycles such that h satisfies
the life cycle condition, i.e.

Ag={xeXG I hy(XN) n Ay 2D}
As for a3, because of observation inheritance, we must have for each T3EX§:

az(t3) = iy (oy(15))  for some 15 ehy(t3).
This defines a3 uniquely only if the value is independent of the choice of 1,. This condition has
to be satisfied by diagram (2) to be a coequalizer.
Definition 3.30: o, is compatible with hy iff, for each T3eX§ and all 1q, 15 chy{13), we have
a2(11)=a2(T2).
Much more complicated, however, is the conditiobn to be satisfied by the process part so that
diagram (2) is a coequalizer: A, has to satisfy a certain closure condition with respect to hy.
Definition 3.31: A mapping q: X, —> X3 covers hy iff

hx(e)=hx(e’) => qle)=qle’) for all e, e’cXy .
Definition 3.32: A, is closed with respect to hy iff, for each map q: X, —> X3 covering hy
and each life cycle AeA,, we have: whenever reqlp) for some stream peX$%, then there is a
life cycle \ A, satisfying X\ eq(e) nhy(p).
As for intuition: a stream X ¢q(p) is a sequence of "segments" where each segment is a permut-
ation of q_l(e) for some ecX4. The closure condition says, roughly speaking, that the events
within each segment can be rearranged in such a way as to obtain a sequence of finer segments
where each of the latter is a permutation of hs(l(e) for some ecX3.
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Theorem 3.33: Diagram (2) is a coequalizer in OB iff A, is closed with respect to hy and oy is
compatible with hy.

The proof is a little too lengthy to be included in this paper, it will be published elsewhere. Here
we only can point out a few consequences and further ideas around this result.

Obviously, we obtain a coequalizer in PROC when looking at the underlying process diagram, if
only the closure condition is satisfied. That is, the forgetful functor U: OB—— PROC preserves
coequalizers.

As suggested by example 3.29, the closure condition seems to have a lot to do with deadlocks or,
rather, deadlock absence. Without being able to give full clarification here, we would like to
claim that the following conjecture holds true.

Conjecture 3.34: A diagram in PROC has a colimit iff there is no possibility of deadlock.

Of course, the notion of deadlock has to be made precise in our framework before the conjecture
can be proved or disproved. This is subject to further study.

Colimits of arbitrary diagrams in OB (and PROC) can be constructed from coproducts and
coequalizers, as is well known. From the results presented above, the general construction
provides a general necessary and sufficient criterion for a diagram to have a colimit. Going into
more detail, however, is outside the scope of this paper.

4. Implementation

We explain our concept of implementing objects over objects and give a precise definition.
Implementations can be composed so that, by any number of (correct) implementation steps, a
(correct) entire implementation is obtained. Then we study two specific kinds of implementation
in some detail: extension and encapsulation. Our normal form theorem says that, if an object is
implemented stepwise by any number of extensions and encapsulations. in any order, then it can
also be implemented in two steps where the first one is an extension, and the second one is an
encapsulation.

4.1 Concept

Given a collection of objects by,...,b, as an implementation basis, what does it mean to

n
“implement” an abstract object ab "over” this basis ? We give an example in order to provide

some intuitive background.

Example 4.1: Let the basis consist of nvar and array as described in examples 3.17 and 3.18,
respectively. We want to implement the abstract object stack as given in example 3.19 on this
basis. Recall the following items for the objects at hand.

stack: events new , drop , push(int) , pop
attributes  top:int , empty?: bool

array: events create , destroy , set(_rﬁg,i_nt_)
attributes  conts(nat ): int
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nvar: events open , close , asg(nat)
attributes  val:pnat

Intuitively, an implementation of stack over array and nvar would do the following two things:

{1) encode each stack event by a "transaction” over the base, i.e. a sequence of array and

nvar events, for instance (cf. example 2.4):

new > <create;open;asg(0)>

drop t— <close;destroy >

push(i)+— <set{[vall,i};asg([vall+1)>

pop > <asg([vall-1)>
Here, [val] denotes the current value of the attribute val of nvar (assuming deterministic
attributes in this example).

(2) decode each observation over the base attributes as an observation over the stack
attributes, for instance
top < [conts([val]l-1)]
empty? <= equal?([val],0)
Since events from several base objects are interleaved in the above encoding, we should look at
the composite object bas = array llnvar (cf. example 3.26) as being the base, rather than some

collection of base objects. Thus, we may assume that the base is just a single object.

Please note that the base "transaction” by which a stack event is encoded will lead to different

base traces for the same stack event, depending on context. For instance, pop can mean <asg(0)>

or <asg(l)> or ..., and push(l) can mean <set(0,1);asg(1)> or <set(1,1);asg(2)> or . . . , depending
on the value of val in the state where pop or push(l) occurs, respectively.

Each stack life cycle, for instance

*
<new ; push(l) ; push(2) ; pop ; push{l) ; pop ; pop ; drop> ,
can be transformed into a sequence of base events by means of the above encoding:

<create ; open; asg(O) ; set{0,1); asg(1); set(1,2); asg(Z) ;asg(l) ;set(1,1); asg(2); ﬁ\sg(l)zE
asg(0); close ; destroy > .

Thus, encoding amounts to "compiling” stack streams into bas streams. More details about this

compilation will be given in example 4.4 below.

The result of compiling a stack life cycle should be "executable”, i.e. it should be a valid bas

life cycle, and the observations along this life cycle, when decoded as stack observations, should

comply with the specified stack behaviour. For instance, after the initial trace of the above bas

life cycle ending at *, we have
[val] =1
[conts (0)]=1
[conts{1)]=1
This bas observation decodes as the following stack observation:

[top] [conts([val]l-1)] = [conts(0}]= 1
[empty?] = equal?([val],0)=equal?(1,0) = false
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This is the correct observation after the corresponding stack trace, i.e. the initial trace of the

above stack life cycle ending at *. 0

As the example illustrates, it is appropriate to assume that the base consists of a single object
bas. In practice, bas will most often be an aggregate object composed of a collection of objects
which may interact (i.e. bas is the colimit object of some diagram in OB ).
So our problem is the following: given an abstract object ab and a base object bas, what is an
implemetation of ab over bas ? For notational convenience, we index each item of ab by ab (Xab'
Aab,etc.), and similarly for bas and the other objects to follow.
Definition 4.2:: An implementation <y,5> of ab over bas, denoted by <vy,5>:bas D ab , consists of
two mappings,
. ¥O 5 X0
Y: Xgb Xbas -
5: obs(Ap,s) — obs(Ay,) .
such that the following conditions hold:
(1) Y(Aab) S Apas -
(2) agp, = 8 opgg Y
We call vy the encoding {of abstract streams by base streams) and & the decoding (of base
observations as abstract observations).
Condition (1), which we will refer to as the life cycle condition, says that we should obtain valid
base life cycles when encoding valid abstract life cycles. As a consequence, Y can be looked at
as a function from A,y to Ay ... Condition (2), which we will refer to as the observation condition,

says how to calculate abstract observations for abstract traces via encoding, base observation,
and decoding. The conditions are depicted in the following diagram.

: o
Aab C— ng —> X;b _"'—“‘_“‘@“'—") ObS(Aab)
Y (1) Y Y (2) 5
Apass— XPas < Xt —— bS5 opo(ay )
bas bas bas 0Ds\Apag

This definition of implementation is rather abstract. The encoding map vy, in particular, does not
reflect the idea of looking at an abstract event as a base "transaction”. This concept would lead
to state dependent transformation of abstract events into base traces, as illustrated in example 4.1,

which in turn would lead to "compiling” abstract streams to base streams from left to right.

We just keep the "compilation” aspect as a mapping from abstract streams to base streams in our
definition. One way to recover the more constructive left-to-right flavor would be to require
that v be prefix monotone in the sense that, whenever a trace 1 is the prefix of some stream X,
then v(t) is the prefix of y(}). However, we refrain from imposing this condition. We feel that
it is necessary to leave the door open for studying, for instance, "serializable” encodings, i.e. the
"transactions” for subsequent abstract events may interleave in certain ways, or "encodings with
lookahead”, i.e. the trace by which the occurrence of an abstract event is encoded does not only
depend on the "past” (the prefix before that occurrence), but also - to some extent - on the
“future” (the stream to follow).
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Our abstract approach is also partly motivated by the intention to keep the mathematics as smooth
as possible. For the same reason, we refrain from restricting the observation condition to prefixes

of life cycles, although this would be sufficient for the purposes of implementation verification.

The following proposition is an easy consequence of the definition and shows that implementations
can be composed or, the other way round, split into steps.

Proposition 4.3: If <y;,5{>:bas P abs and <Yp.8p> :abs Dab are implementations, so is
<Y1Y9.898y>:basDab.

For the composition of implementations <y,8;> and <y,,3,>, we will use a "bottom-up” notation:

<Y1v51>*<Y2-82> HES <Y1Y2s8251> .
We note in passing that, if both implementations are prefix monotone, so is the composition.

Implementation as defined above is a relationship between objects. It is easy to see, however, that
it is not an object morphism in general. Since we introduced object morphisms as a general tool
for studying relationships between objects, the question naturally arises which implementations
can be expressed by means of morphisms. In the next sections, we study two kinds of implemen-
tation in detail where the first one is not a morphism either, but very close to one, and the
second one is indeed a morphism.

4.2 Extension

The idea of an extension is that it adds "derived” events and attributes to the base, i.e. the new
items are "defined upon” the base items.

Example 4.4: Consider objects stack and bas = array || nvar as in example 4.1. Let an object ext
be defined as follows. The events are given by

Xext = Xpas * Xstack

where the new ("derived") events are those from stack. We want to impose that streams over
stack events are to be "compiled” to base streams, as suggested by example 4.1. In this example,

this is achieved by a left-to-right transliation

T Xext > XPas

defined recursively as follows. Let TeXEas and )\eX%xt, and let [a]T be the value of (base)
attribute a after trace t (i.e. in oy ,.(1)). We make use of an auxiliary function ¢[t](}) giving

the translation of X after 1 has been obtained so far.

(X)) = ¢lel()) where
LD[T](E) =1
¢lrllesn) = ¢[1:e](2) if ecXpyq
¢t new;x) = ¢[r;create;open;asg(0)J(1)

¢Lt1(drop; ) ¢l1:close;destroy J(X)
¢lrJ(push(i);x) = ¢lt;set([vall,,i);asg(lvall +1)1(X) for icint
¢lcllpopsn) = dlusasg(lvall ~1)](1)

The life cycles of ext are just the stack life cycles:

A A

ext - stack
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The attributes of ext are defined by
Aext = Apas * Astack -
and the observation map of ext is given by
daxi{t) = 8(agas(v (1)) for each t<X},, , Wwhere
sly)=y v {(top,[conts([val]y—1)]y) , (empty?,equal?([val]y,O))}
for each observation yeobs(Abas). [a]y denotes the value of attribute a in observation y.

Obviously, <v,8>: bas D stack is an implementation of stack over bas.

The extension of the base bas=array lnvar by the stack object where the stack items

are “defined upon” the base, is depicted in the following diagram.

stack
JAN
array || nvar| ©——-> {array || nvar

The broken arrow indicates inclusions of events and attributes, nothing else. Indeed, these
inclusions do not form an object morphism! It is true that life cycle inheritance Aext‘i’xbasgAbas
holds since Aextgxgtack’ and thus Aext\bxbas—*-@, But observation inheritance does not hold;
for instance, we have

{{val,0)} , whereas

aext( <new>)\1/Abas

Ay qq( <new >4 Xp,o) = o‘bas(E) =0 .

Indeed, stack events do have an effect on base attributes, and this is definitely needed. If we

replace "1¢ Xy, ¢" by "v(1)", however, we obtain valid conditions corresponding to life cycle and
observation inheritance, respectively :
Y(Aext) € Apas
*

Aoyt (VA = oYV Ay g = opac(¥(1))  for each teXgy, .

Intuitively, we may look at the inclusion bas “—> stack as being "like" an object morphism in the

following sense. We may consider a stack stream X as being "equivalent” to its compiled bas
version y()\) in the sense that their executions have the same effect. and if any one of them is
executed, the other one is automatically executed at the same time, i.e. they are like different
designations of the same life cycle. Considering A and y()) as "equivalent" in this sense and
recalling that y(x)gxgas, we might look at "M Xy, and "y(A)" as “equivalent” operations
and, consequently, at the above conditions as being "equivalent” to life cycle and observation
inheritance, respectively. o

Extensions are certain implementations <v,5> : bas > ext where ext “contains” bas, i.e. Xpas=X
and Ay, CAqy - Let

ext
Xy = Xext ~ Xpas -
Ay = Aext ~ Apas

be the sets of "new" events and attributes, respectively. As the example suggests, the encoding

Y+ X%kt ? xgas
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is looked at as a "compiler” transiating streams with possibly new events into base streams. We
do not impose any condition on vy.

It is necessary, however, to impose a condition on §, namely that it leaves base observations
fixed. i.e. y=8(y)\LAbas for ali observations yeobs(Abas). We will refer to this condition as the

extension condition.

Definition 4.5: An extension is an implementation <v,5>:basD ext with Xpass Xext and
ApasSAeyt Such that y=3(y)y Ay, holds for all observations yeobs(Ay,o)-

As illustrated in example 4.4, we can prove that the inclusion h:bas “—> ext is "like” an object
morphism, i.e. life cycle and observation inheritance hold if we replace the operation “)“l’xbas"
by "y(2)".
Lemma 4.6: If <v,5>:bas D ext is an extension, we have

(1) v(Aexe) € Apas

(2) aext(T)\l’Abas = abas(Y(T)) for each ux’;xt
Proof: The first condition is the life cycle condition which is required to hold for any implemen-
tation, and the second one is derived as follows, for each TcX’;xt:

O‘ext(T)\l’Abas = 8(O‘bas(Y(T)))‘l’Abas = 0‘bas(Y(T)) :

by extension condition. a

The situation of an extension being "like" an object morphism at the same time is depicted in the

following diagram.

* Xext
Xext Aext © > X3t 7 Xext > obs(Agy ) Apas
Y Y Y 8] NApas
" %has
Xbas Apas © ” X(l’)as — Xbas > Obs(Abas) Apas

The diagram commutes, with the exception that §(y-l Ay, )#y in general (but $(y)\ Ap,e=y holds,
this is the extension condition).

The practical usefulness of an extension is that, instead of dealing with implementation as a weird
relationship between objects, we can put an essential part "inside an object”, leaving just something
like a morphism as an inter-object relationship. Specificationwise, this means that we can
put the features for implementation specification essentially into those for object specification,
drawing on the established concepts of object morphism specification for handling inter-object

relationships.

Our abstract definition of extension requires that observation decoding 5 behaves well (i.e.
leaves the base observations fixed). Practically, we would achieve this in a way suggested by

example 4.4: with each new attribute acA , we associate a mapping
pq:type(a)) x . . . x type(ar) — type(a)

where ay,....ap are base attributes associated with a as its "domain of dependence”. For any

T
observation yeobS(Abas), we then define
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sy)=y v {(a,q:a(wl,....wl.) lacA,, (ai,wi)ey for 1<i<r, where ay,....a. is

the domain of dependence associated with a } .
Like implementations in general, extensions compose, too, i.e. the composition of extensions is
again an extension.
Lemma 4.7: If <v;.,5;>:basDextl and <y,,5,>:extlDext2 are extensions, so is
<Yl,51>f<72,52> ib.ﬁb_@&,z_ .
Proof: Obviously, Xy, Xext1S Xext2 81d ApyaCA ;1A xq2 - As for the extension condition,

we have for each ycobs(Ay, )

3(y)VApys = 82(51()'))‘J"Abas = (852 (81 (YN Ay N Apas = 51 (YN Apgg =y - o

4.3 Encapsulation

While an extension adds new items which are "defined upon” the base, an encapsulation provides
the means for "abstracting” some items, "hiding" the rest. The simple idea is that an object should
provide an implementation for any of its parts. We show that this holds if the part is an object
in itself whose life cycles as such are valid in the base. Allowing for renaming of events and
attributes which is often needed in practice, we read "part” as "injective morphism” g:ifc —> bas
("ifc” stands for “interface”).
Lemma 48: If g:ifc——>bas is an injective morphism such that gX(Aifc)gAbas , then
<gx.8p” :bas Difc is an implementation.
Proof: The precondition gives the life cycle condition for the implementation, and the observation
condition is deduced from observation inheritance as follows:

Olifc(T) = “ifc(EX(gX(T))) = EA(Olbas(Sx(T))) for each Tix;fc . a
This lemma suggests the following definition of encapsulation.
Definition 4.9: An encapsulation of the base bas by an interface ifc is an implementation of the
form <gy,ga>:basDifc where g=(gy.ga):ifc—>bas is an injective object morphism
satisfying gy (Ajfe) € Apgg -
The latter encapsulation condition means that all ifc life cycles must be valid in bas as such, i.e.
without being interleaved with events not in the encapsulation. Clearly, any object isomorphic to
bas is an encapsulation of bas. In this case, encapsulation amounts to renaming.

The life cycles of an encapsulation are even more tightly coupled with those of the base than
one might suspect at first glance.

Lemma 4.10: If <gx.EA> :bas D ifc is an encapsulation, we have
Ajte = 8x(Apas) -
Proof: From life cycle inheritance, we have
gx (Apas)  Ajfe -
and from the encapsulation condition, we obtain
Aite = ex(ex(Ajge)) < ex{Apas) - u

The situation of an encapsulation being an object morphism at the same time is depicted in the
following diagram.
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c 5 * Yife
Xife Ajfe =™ Xfre < Xjpe — > obs(Ajq,) Ajte
gx ex| |ex  ex| |&x ex| l&x g A
\ * “bas
Xpas Apas ™ X%as & Xbpas — ObS(Abas) Apag

The diagram commutes, with the exception that gx(gx(k))t)\ in general, but Ex(gx()\))=)\ holds.

Example 4.11: We take the object ext constructed in example 4.4 as basis. Let stack be the
object defined in example 3.19. Then stack is an encapsulation of ext. An inclusion morphism
g:stack “—>ext is given by sending each event and attribute in stack to itself in ext. g is
indeed an object morphism: the life cycles are the same, and the observations coincide when
looking only at the new attributes in ext. The situation is depicted by the following diagram.

stack >

A
array || nvar

Here, stack in the left box is the part by which array Il nvar is extended in order to obtain the

extension ext, as described in detail in example 4.4. a
Like implementations in general and extensions in particular, encapsulations compose, 100, i.e. the
composition of two encapsulations is again an encapsulation.

Lemma 4.12: If <Y1,81 >:bas D ifcl and <Yz,82> :ifcl D ifc2 are encapsulations, so is
“Y1 ,81> * <‘Y2,82> :bas D ifc2 .

The proof is easy enough for omitting it.

In a stepwise implementation of a given abstract object ab, the last step often is an encapsulation
which picks those items in the object constructed so far that are needed to represent ab. Therefore,
an encapsulation can also serve as a verification condition rather than a construction step. Our

viewpoint, however, provides a nice uniformity which makes it easier to study composition of
implementations.

4.4 Normal Form

Consider a sequence of objects
_bfl_s=bl ,bz,..A,bm’-’-gll

where there is an implementation of b;,; over b; for 1<i<m-1. By proposition 4.3, there is also
an implementation of ab over bas obtained by composition. If, in particular, all single implemen-
tation steps are extensions or encapsulations, then the entire implementation should also have
some special form.

Definition 4.13: A regular implementation is any composition of extensions and encapsulations, in
any order.

Example 4.14: The extension of example 4.4 and the encapsulation of example 4.11 can be
composed to a regular implementation of stack over bas as depicted in the following diagram.
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stack —

A

array | nvar |~ |array || nvar

O

Without loss of generality, we assume that the last step is an encapsulation (if necessary, we
can add an identity ). The following normal form theorem says that any regular implementation
can be done in just two steps: first an extension and then an encapsulation, as in the above

example.
Theorem 4.15: If <y,5>:bas Dab is a regular implementation, then there are an object ext, an
extension <yy,5{>:basD ext and an encapsulation <y,,3,>:ext P ab such that
<y,8> = <Y1,51> * <~{2'82>
The proof is postponed until after the next lemma which provides the necessary preparation. It

says that, instead of implementing by an encapsulation followed by an extension, we can as well
implement by an extension followed by an encapsulation.

Lemma 4.16: If <gx,EA> : bas D ifc is an encapsulation and <v.5>:ifc D ab is an extension, then
there are an object ext, an extension <Y’,5"> :bas > ext and an encapsulation <gx,'§’A> rext D ab
such that the compositions are the same, i.e. the following holds:

<gX’EA> *<y,8> = <y, 0> * <gX'§lA>
Proof: For the sake of notational simplicity, we assume that gy, g, g, and g are inclusions.
The following diagrams may provide guidance through the proof steps.

Y
x?ib 5 X(i’fc
gx BY
Y
X%xt ? Xgas
§
obs(A b) bx:;obs(A-f )
a T ifc
%ab %ifc
. . VAap ) VAjfe
Xab | Xife
5
obs(Agy) &= ?f:‘; obs{Ay,)
as
X
X,
Oext Vite *bas
* *
Xext . Xbas
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Reversing the four vertical arrows, there are inclusions from top to bottom which are not shown
in the diagram. The right and top faces of the cube represent the given implementations, and the
bottom and left faces represent the ones looked for. We have to define these implementations in
a way which makes the equation in the lemma valid, i.e. which makes the back face of the cube
as well as the square diagram above the cube commutative. From the latter, commutativity of
the front face of the cube follows.

Let X,,=X,p~Xjge and A=A, -Ajp. . The object ext is constructed as follows.

(1) Xext = Xpas * Xy
) A = Agp
) Acxt = Apas * A,
) ext( ) = o as (Y14 Xgp)) v (agp{td Xgp)) for each 1e¢Xgy
The extension <vy',8>:bas] exl is defined by
v{r) = Y(k\l/Xab) for each >‘€Xext

8(y) =y v 8(yLAjg.) for each yeobs(Ay,e) -

(2
3
(4

We have to prove that <vy',8"> is indeed an extension. The life cycle condition is obvious:
Y’(Aext\l’xab) = Y(Aext) € Apgag. because <v,5> is an implementation. As for the observation
condition, we have for each TeXjy,

Uant(1) = dpae{Y (T4 X)) v (agy (td Xgp )
= aas (Y (1)) v 8 (g ({1l Xgp)))
= atpag (Y (1)) v (s (v (DL Ajge)

§ (s (Y (1))

The extension condition is established as follows:

F(y N Apas = (¥ v 8y L AN Apyg
= ¥l Apgg v 8(y\l’Ant‘c)\l’Aifc
y v yVAjg

=Yy
The encapsulation <gy,&> :ext Dab is defined by inclusion of ab in ext, as consiructed above:
€xX + Xab = Xjte * Xy T Xpas t Xy = Xy
gA : Agh TAjrc * Ay T Apgg tA S Aey
Clearly, g’x( ab)‘ abgAext Moreover, in the diagrams given above, the square as well as the

back face of the cube commute: for each keXe t+ We have
YOO Xpe = YOOU X Xipem YAV AG)

since the latter is in X . And for each observation yeobs(Abas), we have
()’)\LAab = (y uslylAj))iay,
=ylAz v S(y\LAlfC)\l/Aab
YV Ajpe v 8(y\l’Alfc)
8y L Ajge)
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The last two equations hold because ApyonA p=Aiper Sy LAjpc) Sobs(Ay,),  and
vV Ay €8(y L Ajp.) . respectively. The latter, in turn, holds because y | Ay, =8{y L Ajpc) 4 Ay

The only thing which is left to prove is that g’::(g’x,g’A) is indeed an object morphism satisfying
the encapsulation condition. The latter is trivially satisfied by construction. Life cycle inheritance

is simple: Agy ¥ X,p= Agp Vv Xap=Agp=Aexi- As for observation inheritance, we conclude for

each 1eX*

ext ' "chasing” through the above cube diagram:

teyt(INVAL = 8, (Y (D)) LA,
Sopas (Y (D)L Ajge)
8(Otifc(Y'(T) N Xifc))
3o (v (74X gp)))
“ab(T J/Xab)

1

Proof of theorem 4.15: By applying lemma 4.16 repeatedly, we can transform any regular imple-
mentation into a two-phase one: in the first phase, we only have extensions, and in the second
phase, we only have encapsulations (at least one. by assumption). By applying lemma 4.7 repeat-
edly, the first phase can be replaced by a single extension. By applying lemma 4.12 repeatedly,
the second phase can be replaced by a single restriction. ]

5. Concluding Remarks

Our concept of implementation as a relationship between objects allows for dealing with different
levels of abstraction, and this means different languages, and this in turn means different logical
systems for reasoning. We feel that implementation (or refinement) concepts working totally
within one fixed language or logical calculus miss an essential point.

In this paper, we concentrate on semantic fundamentals. Of course, the work has to be extended
in several respects. For correctness proofs of implementations, appropriate logical calculi
have to be employed {cf. FS89) , and the interdependencies between logics and semantics have to
be studied carefully. Based on the logical calculi and the semantic fundamentals, a specification
language is needed, together with a specification methodology for using the language, and an
animation system for computer support. The specification language has to be backed by a frinity
of axiomatic, denotational and operational semantics, as put forward by Hennessy (He88).

In a series of papers (ESS88-90, SEC89, FS89), we contributed to this program. In these papers,
several aspects of object-orientation are addressed within our approach which we did not discuss
in this paper. Among them are object types, subtypes, complex types, inheritance, object identity,
and event calling. The integration of these results and their completion towards a coherent theory
of objects is currently under research.

As a specific point for further study, we have to clarify the relationship between colimits and
deadlocks, as put down in conjecture 3.34 above.

A topic not addressed so far is parameterization which has been so succesfully clarified in
algebraic data type theory. Again capitalizing on that theory, we expect morphisms and colimits
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to play an essential role once more, namely in studying parameter assignment and parameter
passing. This is also relevant for implementation: we would like to give parameterized
implementations of parameterized objects. One interesting problem in that respect is compatibility
of parameterization and implementation {cf. Li82 for the corresponding problem in algebraic
data type theory): if ob(x) is a parameterized object and act is an actual parameter object, we
can instantiate to obtain ob(act) and implement this object. On the other hand, we can implement
ob(x) in a parameterized way, leaving X as a formal parameter, and implement act separately.
Can we then instantiate the implementation of ob(x) by that of act, and does that give an
implementation of ob(act) ? These questions - and others - are open for further research.
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