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ALGEBRAIC INDEPENDENCE OF MAHLER FUNCTIONS
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Abstract. General theorems are proved on the algebraic independence of Mahler
functions in several variables and their values at algebraic points.

1. Introduction and results. Using Nesterenko’s results, we have a satisfactory
result (Nishioka [9]) on the algebraic independence of the values of Mahler functions
of one variable. However we have been unable to get such a result in the case of several
variables (see Topfer [11]). Here we study the algebraic independence of the following
Mahler functions and their values by Mahler’s method.

Let 2= (w;;) be an n x n matrix with nonnegative integer entries. If z=(z,, ..., z,)
is a point of C”, we define a transformation Q: C"— C" by

n n
Qz=< [Tz 11 zj-"'”').
j=1 j=1

Let K be an algebraic number field, f,(z), ..., f,.(z) power series of n variables z,, ..., z,
with coefficients in K, convergent in an n-polydisc U around the origin. We assume that
f1(2), ..., f(z) satisfy a functional equation of the form

f(2) £1(92) b:(2)
(M ;] -4 ( : > ),
1ol fol@2) bal2)

where A is an m x m matrix with entries in K and b,(z) are rational functions of z,, ..., z,
with coefficients in K. Furthermore we suppose that the matrix Q and an algebraic point
a=(ay,...,0q,), where o; are nonzero algebraic numbers, have the following four
properties.
(I) € isnon-singular and none of its eigenvalues is a root of unity.

Let p be the maximum of the absolute values of the eigenvalues of Q. Then p is
an eigenvalue of Q (Gantmacher [1]) and p>1.
(I1) Every entry of the matrix Q* is O(p*) as k tends to infinity.

If every eigenvalue of Q of the absolute value p is a simple root of the minimal
polynomial of 2, then the property (II) is fulfilled.
(1) If we put Q*a=(P, ..., «®), then
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log|loaf?|< —cp*, 1<i<n,

for all sufficiently large k, where c is a positive constant.
(IV) If f(z) is any nonzero power series of n variables with complex coefficients which
converges in some neighborhood of the origin, then there are infinitely many natural
numbers k such that f(Q*x)+#0.

Masser [7] gives a property which is equivalent to (IV).

The power series f1(z2), . .., f,(z) are said to be linearly independent over K modulo
K(zy, ...,z) (K[zy, ..., 2, ) if e fi(@)+ - +¢,ff2) ¢ K(zy, - - -, 2,) (K[24, ..., 2,]) for
any cy, ..., ¢,€ K which are not all zero.

THEOREM 1. Suppose ac U. If fi(2), ..., f(2) (r <m) are linearly independent over K
modulo the rational function field K(z,, ..., z,), then fi(®), ..., f(a) are algebraically
independent.

COROLLARY. IfaeU, then

trans.degg K(f1(®), . . ., fru(0)) = trans.degg,, K(z)(f1(2), . . ., ful2)).

THEOREM 2. Suppose that all b,(z) in the functional equation (1) are polynomials.
If fi(2), ..., f(2) (r<m) are linearly independent over K modulo the polynomial ring
K[z, ..., z,], then f1(%), ..., f(a) are algebraically independent for oe U.

Kubota [2] and Loxton-van der Poorten [3] study the case where the matrix 4 is
diagonal. We note that they need the further assumption that Q*x (k> 0) are not poles
of bz).

In Section 2, we shall study the algebraic independence of the functions fi(z), . ..,
f.(2), and in Section 3, the algebraic independence of the values f,(a), ..., f,,(2). Finally
in Section 4, we shall give some examples.

ACKNOWLEDGEMENT. The author would like to express her gratitude to the
referees for their suggestions.

2. Algebraic independence of Mahler functions. Let C be a field of characteristic
0, L the rational function field C(z,, ..., z,) and M the quotient field of the formal
power series ring C[[z,, ..., z,]]. Let 2 be an nxn matrix with nonnegative integer
entries which is nonsingular and has no roots of unity as eigenvalues. We define an
endomorphism 7: M - M by

f@=/Qz) (feM),

where Qz is defined as in Section 1.
The following lemma, which is more general than Lemma 1 in Loxton-van der
Poorten [4], can be proved in the same way.
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LEMMA 1. If ge M satisfies
g'=cg+d, c,deC,
then geC.

Proor. From the theory of nonnegative matrices (cf. Gantmacher [1]), the matrix
2 has a positive eigenvalue p(> 1) such that no eigenvalue of Q has modulus exceeding
p, and to this dominant eigenvalue there corresponds a nonnegative eigenvector « such
that Qu=pu. By renumbering the variables, if necessary, we may take u="(u,, ..., U,
0,...,0) with u,, ..., u,>0. This forces 2 to have the partitioned form

Q:<A B>,
0 D

where 4 is mxm and D is (n—m)x (n—m) and A4 and D are nonsingular and have no
roots of unity as eigenvalues.

We prove the lemma by induction on #. The lemma is immediate in the case n=1.
We put

(R=<u, ) | ueN" ={Ro, Ry, ...}, O=Ro<R,<---,
where <,u9 u>=ﬂ1u1+ T Uty for.u:(:uls R :un)s u=(u17 ) un)' Iff(Z)EC[[Zl, s

z,]], we can decompose it as follows:

f(2)=§fx(2), with f)= Y f.2*,

{mu>=R

where R runs through the sequence {R,},., and each fr(z) is a polynomial in

z'=(zy, ..., z,) of which the coefficients are power series of z'=(z,,,, ..., z,). Note
that, if we write z;=y;s* for 1 <j<n, then

fR@=frs®,  [a(Qz)=fa(Qy)s".
We suppose g(z) #0 and

9(z)=p(2)/q(z),  p(2), 9(z2)eC[[zy, ..., z,]].
Letting p(z)=Y . Pr(z), 4(z) = xqg(z). we have

(*) (; pR(Qy)S"RX; qR(y)sR>
=c @ pR(y)sR>(§ qr(Qy) S”R> +d <§ qR(y)sR)@ qr(Qy) s”R> -

Take the least R; and R; such that pg (y)#0 and gg,(y)#0, respectively. We ob-
serve that R;=R,;. For if R;>R;, then the term with least degree in s on the left
hand side above is pg (2y)qg,(#)s*® " ® and that of the right hand side above is
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dqg,()qg,(Q2y)s®*#%i, a contradiction. In the case R;<R;, we can also deduce a
contradiction. Hence R;=R; and comparing the coefficients of the terms of lowest
degree in s of both sides, we have

Pr.(2Y)qr,(¥)=cPr,(¥)qr,(£2Y) + dqr (y)qr,(2y) .

We shall show below that this implies pgp (v)/qz,(y)€ C. We omit the subscript R;. We
can write p(y) and ¢(y) as polynomials in y' =(y,, ..., y,.), say,

PO =Y P, W*,  ay)=Y. g )y",

where the coefficients are power series in y'=(V,41, ..., V,). Then

p(Qky) — Z pﬂ(Dky//)yuu(BDk* 1+ ABDk 2+ + Ak~ 1B)y/uA" ,
"

q(Qky) —_ Z qu(Dky”)y”“(BDk_ L4+ ABDK= 24 - + Ak~ 1B)yluA" .
u

We define the rank of a term ay’®, with a#0, to be u. Ranks are ordered lexico-
graphically. For k=0,1,2,..., let u,4* and v, 4* be the exponents of the terms of
lowest rank in the polynomials p(2*y) and ¢(Q*y), respectively. The ranks g, and v,
are uniquely determined since A4 is nonsingular. Because v, has only finitely many
possibilities, there are a vector v and an infinite set A of nonnegative integers such
that v,=v for any ke A. Since y, also has only finitely many possibilities, there are
nonnegative integers h, ke A such that A<k and p,=p, (= ). Since
p(y)

Qh
4 ;.y) —ch + (" Y+t 24+ 1),
q(2"y) 4q()

pE2y) _ . P0)
9@y q)

+(Ck_1+(,’k_2+"'+1)d,

we have

PEY) _ an P
9(2') 9(2')

Therefore

P(R4)q(Q"y) =" "p(Q"y)q(Q%) + d'q(Q)q(2"y) .
The terms of lowest rank of p(Q*y)q(2"y), p(2"y)q(R*y) and ¢(Q*y)q(Q"y) are p, A*+
v A", u, A" +v, A4* and v, A*+v, A", respectively. Hence two of these are equal and so

p=v. Comparing the coefficients of the terms of lowest rank on the left and right
hand sides, we get
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pAD*y")q (D"y"y=c*""p (D"y")q,(D*y"y+d'q,(D*y")q (D"Y") .

By the induction hypothesis, pu(D"y”)zaqu(D"y”) for some aeC”*, and therefore
p.(y")=aq,y"). If we put r(y)=p(y)—aq(y), then r(y) has no term of rank p=v and

H2y)q(y) = p(Qy)a(y) — aq(L2y)q(y)
=cp(y)q(2y) +dq(y)a(2y) — aq(2y)q(y)

=cr(y)q(Q2y) +(ca+d—a)q(y)q(Qy) .

If r(y)#0, we can apply the above construction to r(y) in place of p(y) and reach a
contradiction. Thus r(y)=0 and pg,(y)=aqg,(y), where a=ca+d. Next we shall prove
that pg,(y)=aqg,(y) for any j>i by induction on j. We may assume ¢ #0. We compare
the coefficients of s**¢*®/ on both sides of (x). If pR;+ R;=pR; + R, for some (i’, j) #
(i, /), (i’,j' =1i), we can easily see that i’, j’<j. By the induction hypothesis, we get

Pr. V) =aqg,(y),  Pr.(V)=0aqg,(y).

Hence
aqr,(2Y)qr,(y)=pr.(2Y)qr,(y) = cPr,(¥)qr,(2y) + dqg (y)q&,(£2y) -
Dividing both sides by gg,(£2y), we get
aqg,(y)=cpg,(y)+dqg,(y) -

Since a—d=ca and c¢#0, we have pg (y)=aqg,(y). Hence the assertion is proved and
we get g(z)=p(z)/q(z)=a.

THEOREM 3. Suppose that fi;e M (i=1,...,k,j=1, ..., n(i)) satisfy the functional
equation

i a; 0 Jit by
. B a(2[)1 a; . N .
firn(i) aﬁll()i)l T af.l()i) ni)— 1 a; fin(i) bin(i)
where a;, d)eC, a;#0, a®_,#0 and be L. If f;; (i=1,...,k,j=1,..., n(i)) are alge-
braically dependent over L, then there exist a nonempty subset {i,,...,i,} of {1,...,k}

and nonzero elements c,, ..., ¢, of C such that

a4y =-""=4a, g=cifin+ - +efiael.

Here g satisfies g*=a,,g+c b, ;+ - +¢,b; 5.

i,

ProoF. We prove the theorem by induction on Z;‘:l n(i). We assume that
Z?=1 n(i)>1 and that f;; i=1,... k,j=1,..., n(i)) are algebraically dependent over L.
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By the induction hypothesis we may assume f;; (i=1,...,k, j=1,..., n(i)) except fi,u
are algebraically independent over L. Let X;;(i=1,..., k, j=1,..., n(i)) be indeterminates
and define an endomorphism 7 of the polynomial ring M[X] by

Ta=a' (aeM),

TX: 4 0 Xin by
ay  q : :
= . +
0) e D
TX, ) n(iy1 Giyniy~1  F Xiniy i niiy

There exists a nonconstant polynomial Fe L[ X] such that F(f)=0. We may assume
F to be irreducible. Put

F=Y b, X" (bjel).
I

Then

TF(f)=; b?(f’)’=<z bzf’) =0.

I
As a polynomial of X,,4,, F divides TF. Since F is irreducible in L[X], F divides TF
in L[ X]. Comparing the total degrees of F and TF, we have
TF=aF for some aelL.
The nonzero monomials of F can be ordered lexicographically with
X < X< <Xy <Xo < <X -

We may assume that the coefficient of the largest term of F is 1. Comparing the
coefficients of the largest terms of TF and aF, we get aeC. Let P be a polynomial
with the least total degree among the nonconstant elements of L[ X] such that

TF=aF+c for some a,ceC.
Suppose that
2) TP=aqP+c, a,ceC.
We denote by D;; the derivation 6/0X;;. Then we have
&;TD; o P=D;,,TP=D,,(aP+c)=aD,;,,P .
Since
total deg D; ,, P <totaldeg P,

D; P must belong to L. By Lemma 1 we obtain
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D oP=cipyeC.

Then Q=P-Zf=lci"(i)X,-,,(,-) is a polynomial of X;; (i=1,...,k, j=1,..., n(i)—1) with
coefficients in L. Since

D; iy 1TQ=a,TD; - 1Q=aTD,; 5 P,
k n(r)

Dy 1TQ =D, py_1\ aP+c— 21 Con(ry 21 a;?)t‘)ers+brn(r)
r= s=

=aD;,;_P— cin(i)a;i()i) n(i)—1
and
totaldeg D, ;- ; P <totaldeg P,
D, ;- P must belong to L. By Lemma 1,
Diwiy-1P=Cinp-1€C.
Continuing this, we obtain

P=Y ¢ X;+b  (c;eC bel).
ij
By the equality (2),

(3) TP=}, ci(aX+afi_ X+ +d X, + b))+
iJj

=a<z cin,-,-+b>+c .
ij

Let {i,, ..., i} be the set of i for which there exists nonzero c¢;; for some j and define
Jy=max{j|c; ;#0}, I<h<r.

Comparing the coefficient of X;

nln

on the left hand side with the right hand side in (3),
we have ¢, ;,a;, =ac,,;, and therefore g, =---=a; =a. Assume J,>1 for some h.
Comparing the coefficient of X}, ; _; in (3), we have

(in) —
Cin do@anan—17 Ciy 5, — 181, = ACy g, — 1 -

This contradicts the assumption a$, _, #0. Therefore J,=1 for every 4 and
P= Z CiiXiy1 + b, c,1#0, belL.
h=1

By the equality (3),
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TP= Y c,-hl(a,-hX,-h1+bih1)+b’=a< Y cith,-h1+b>+c
h=1 h=1
and therefore
Y ciabitb=ab+c.
h=1

By this we obtain

< Z CintSin1 +b> =3 i (afin +bi;.1)+bt=a< Y CintSint +b>+c.

h=1

By Lemma 1, Z;= . Cin1Si,1 +b must belong to C. This completes the proof.

THEOREM 4. Let f(2), ..., f.{2) € M satisfy the functional equation (1), where A is
an m x m matrix with entries in C and b(z)e L. If f|, ..., f,, are algebraically dependent
over L, then there exist ¢y, ..., c,€C, not all zero, such that

m

Y c.fieL.
i=1
ProOF. When det A =0, the assertion is trivial. Thus we assume det A#0. Let
B=P !4 'P be the Jordan canonical form of the matrix A~!, where B and P are
m x m matrices with entries in the algebraic closure C of C. Then we have

flt fl bl fl bl
P Dl =PpH47 D AT =BP~!| : |—-P 147t .
Sm S by Sm by,
By applying Theorem 3 to the matrix B, there exists a nonzero vector (c,, ..., ¢,)eC™
such that
Si
g@)=(cy,...,c )P * 1elzy,...,z,).
Sm

Putting (d,, ..., d,)=(cy,...,c,)P~ ", we get
g=d1f1+ e +dmfm’
where d,, ..., d, are not all zero. We can put

g=p/q, peClzy,....z,], qeClz;,...,2,].

Let feC[[z,,...,z,]] be a common denominator of f;, ..., f,. There exist elements
Bi, ..., B, of C which are linearly independent over C such that d,, ..., d, and the
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coefficients of p are linear combinations of §,, ..., f, over C. Comparing the coefficients
of B; in the equality

qu1d1+ o +qumdm=fp ’
we complete the proof.
Lemma 2. If A, BeC[z,,..., z,] are coprime, then so are A and B".

PrOOF. We may assume C to be algebraically closed. Assume that an irreducible
polynomial P divides both A® and B*. Let x=(x,, ..., x,) be a generic point of the
algebraic variety defined by P over C. Since A%(x)=B%(x)=0, we know that Qx is a zero
of both 4 and B. By the fact that

trans.deg. C(Q2x) =trans.deg.C(x)=n—1,

Qx is a generic point of the algebraic variety defined by an irreducible polynomial Q
over C. Hence Q divides both 4 and B, a contradiction.

THEOREM 5. Let fi,...,fn,€M satisfy the assumptions of Theorem 4 and
bi(z)eClzy,...,z,) forevery i. If f1, . .., f., are algebraically dependent over L, then there
exist ¢y, ..., cy,€C, not all zero, such that

m

Z ¢ fi€Clzy,y ..., 2,].

i=1

ProoF. When det 4 =0, the assertion is trivial. We thus assume det A #0. In the
same way as in the proof of Theorem 4, we get ge C(zy, ..., z,), where g satisfies a
functional equation

g'=ag+b, aecC, bel[zy,...,z,].
Put g=A/B, where A, Be C[z,, ..., z,] are coprime. Then by Lemma 2, A% and B® are

coprime and
BA*=aAB "+ bBB".

Therefore B° divides B and B divides B*. Hence B'/Be C. By Lemma 1, B must belong
to C and so geC[z,, ..., z,]. We can complete the proof in the same way as in the
proof of Theorem 4.

3. Algebraic independence of the values of Mahler functions. The following
lemma was proved by Loxton and van der Poorten (cf. [9]). We restate it here for the
reader’s convenience.

LemMa 3. Suppose that Q, a satisfy the properties (1)—-(1V) and

Yo=Y 3 e,

i=1j=1
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where 0; are distinct nonzero complex numbers and g;)(z)e C[[zy, ..., z,]] are regular at
the origin. If y(Q*a, k)=0 for all sufficiently large k, then g;(z)=0 for every i, j.

Proor. We prove this by induction on ) ?_ d;. If }7_ d;=1, the lemma is true
by the property (IV). Let Zfz (4>1 and g(z)=g,, (z)#0. We may assume 0,=1.
Consider

&(z; x)=g(QzW(z; X)—gle)(Qz; X+1)*121 ,21 05x’” 1h,,(2)+dilx’ "hy(x)
where
hj(2)=9(Qz)g,;(z) — 9(2) Z( )gqs(QZ) (j=1,....,d,—1)
and

1
hij(2)=9(Q2)9;;(2) — 99(Z)Z< _1>gis(92) (j=1....q=1,j=1,....d).

5

Now, &(£2%«; k)=0 for all sufficiently large &, so by the induction hypothesis, /;(z) and
h;;(2) are all identically zero. Since

ha,-1(2)=9(R2)g44,-1(2) = 9(2)G g a, - 1(Q2) +(dy — 1)g,4,(Q2)) =

we have

9qd,— 1(2) _ Yaa,- 1(Q2)
9(z) 9(Qz)

By Lemma 1, g,,, -1(z)/g(z)€ C, and so d,~1=0. By the assumption Zledi> 1, we
know that ¢>2 and

+d,—1.

h14,(2)=9(Q2)g14,(2)—0,9(2)9,14,(22)=0 .

Thus g,,4,(2)/g(z)e C by Lemma 1. Since 6, #1, we have g,,,(z)=0. By the induction
hypotbhesis, g;,(z) are all identically zero.

THEOREM 6. Suppose that f,(z),...,f(2)eK[[z4, .-, z,]] satisfy the functional
equation (1), Q, a satisfy the properties (I) (V) and for all k>0, Q*aec U and b,(z) are
defined at Q*a. If f(2), ..., [,(2) are algebraically independent over K(z,, ..., z,), then
f1(0), ..., fr(@) are algebraically independent.

We note that f(z), ..., f,{(z) are algebraically independent over K(z,, ..., z,) if and

only if they are algebraically independent over C(z,, ..., z,).
PrOOF. We may assume that «,,...,a, and the eigenvaluesk of A are all con-
tained in K. Since f1(2), ..., f,.(z) are algebraically independent over K(z,, ..., z,), we

have det 4 #0. By the functional equation (1), we have
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k—1 X . k-1 . .
f@=Af( Q2+ Y, Ab(Qiz)=A*f(Q*2)+bM(z), b(z)= Y Ab(Qiz).
j=0 =0
Replacing € by any convenient power of 2, we may assume that the multiplicative
subgroup generated by the eigenvalues of A4 is torsion free. Assume that fi(a), ..., f,,(®)
are algebraically dependent. Then there is a relation of algebraic dependence

> TS (@) foa)m =0,

=, ..., Hm)
lpl=pi+-+pm=<L

where 7, are integers not all zero. Let ¢, (u=(yy, ..., 4,), | | <L) be indeterminates
and put

Fz;n= _(Z | LS Sl =2 1, [
S "

We define 1 by the equality

F(z; )= t,f(e)' =Y t (A*f(Q2) + O =Y 1P f(Q*z)" .

Let X110 ey Ximsenv» Xt « s Xoams Wis -« o5 Was V1, « - - » ¥y DE Indeterminates and put
x PPN X w L3
11 1m 1 Y1
2, : : Sk =), T,(t; x; yw*.
u u
Xm1 Xnim Wi Ym

Then (¥ =T,(t; A*; b*(2)) and
F(z;t)=F(Q*z; T(t; A*; b%(z))) .
Therefore
4 0= F(a; 1) = F(Q*¢; T(t; A*; b®(w) .
We note that T,(t; A%; b'V(z))=1,. Put
V(1)={QW)eK[]|QT(r; A*; y))=0 for any k=>0}.
ProroSITION 1. V(1) is a prime ideal of K[t].

Proor. Q(T(t; A*;y)) is a linear recurrence with characteristic roots in a torsion
free group. Here a linear recurrence is a sequence of the form

q
Y gdk)os, k>0,
i=1

where g,(x), ..., g,(x) are polynomials in x and 0,, ..., 8, are the characteristic roots.



62 K. NISHIOKA

Suppose that Q,, Q,eK[t] and Q,0,€V(1). Then for every k, at least one of
Q,(T(t; A*; y)) and Q,(T(t; A*; y)) is zero. Thus one of these linear recurrences has
infinitely many zeros, and so it is a zero linear recurrence by Skolem-Lech-Mahler’s
theorem.

ProrosiTiON 2. If P(z;t) is a polynomial in the variables z=(z,, ..., z,) and t=
(t,), then the following assertions are equivalent.

(i) P(Q%«; T(z; A*; b*)))=0 for all large k.

(i) If P(z;t)=),0.(t)z" then Q,(t)e V(z) for every A.

PrOOF. Assume (i) and put
QAT (z; A% f(2)— A*W) =3 Ry (kyw* .

Then R,,(k) are linear recurrences and since b®(a)= f () — A* f(Q*w),

P(Q*a; T(t; A*; b¥(@) =), 3, R, (k) f (Q ) (@) .

By Lemma 3, R, (k) are zero linear recurrences since z, f1(z), ..., f(z) are algebraically
independent over K. Hence
QiT(e; A*; f(a)—A'W)=0
for every k>0. Since wy, ..., w, are variables,
0iT(x; A*; y)=0
for every k>0 and so Q;(t)e V(z). The converse is immediate.

DEFINITION.  If P(z; £)=), p;(t)z* is a formal power series in the variables z,, ...,
z, with coefficients in K[¢t], then the index of P(z;t) is defined to be the least integer
| 4| for which P,(t)¢ V(7). If there are no such integers, we define the index of P(z; t) is 0.

By Proposition 1, we have
index(P,(z; t) P,(z; t))=index P,(z; t)+index P,(z; 1) .
PrOPOSITION 3. index F(z;t)<oo.

PrROOF. F(z;1)#0, since fi(z),...,f.(2) are algebraically independent. By the
property (IV), there exists k, such that F(Q*u; 1) #0. Suppose that

F(z; t)=§: pit)z*

and index F(z; t)=oco. Then p,(t)e V(1) for every A and therefore

F(Qo; 1)=) pT(t; A®; BO(Qom)))(Q¥oa)* =0,
A
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a contradiction.

Let p be a nonnegative integer, R(p) the K-vector space of polynomials in K[¢t]
of degree at most p in each ¢,, and d(p) the dimension over K of the factor space
R(p)=R(p)/(R(p) n V(7)). The coset containing a polynomial P(t) of R(p) in R(p) is
denoted by P(r).

PROPOSITION 4. d(2p)<2%-*V7d(p).

ProoF. Every polynomial Q(t) € R(2p) can be written in the form
o=X (l_[ tff“”’) 20,
& 14

where & ranges through the functions from {u},,<. to {0,1} and Q(f)e R(p). Let

P(O)=TT, 2. If {3,(0)...., Gap®)} is a basis of R(p), then {P()01)};, generates
RQ2p).

PROPOSITION 5. Let p be a sufficiently large natural number. Then there are
polynomials Py(z;t),..., Pz;t)e K[z; t] with algebraic integer coefficients and degrees
at most p in each variable such that the following assumptions are satisfied.

(1) index Py(z; t)< 0.

(i) index(}.7_, Puz; )F(z; tf)=ci(p+ 1)} *n where c, is a positive constant.

Proor. If {QP(1),..., OP\(1)} is a basis of R(p) over K, a typical polynomial
P,(z;t) can be expressed in the form
_ ) _
Pyz; t)=; Py(n)zt, Pu)= '21 g 0iP(0) (9n1:€K) .
Let

E(z;0)= hgo Py(z; O)F(z; ) :ZA: E(t)z* .

Then E,(tf)e R(2p) and we obtain expressions for the E,(t) which can be written in
terms of Q7(t),..., O%F)(1). The coefficients of 0P(r) (i=1, ..., d(2p)) are a system
of d(2p) homogeneous linear forms of g,,; over K whose simultaneous vanishing is equiv-
alent to E,(t)=0. If we wish E(z; t) to have index at least equal to J=[2"¢*V™ '(p 4

1)1 *77'1—1, then we have to solve a system of <J+n_ 1>d(2p)(sJ"d(2p)) homogeneous
n
linear equations in (p+1)"* 1d(p) variables g,,;. By Proposition 4, we have
(p+ 1" ld(p) > J2C Y7 d(p) = J"d(2p) .

This implies that there is a function E(z; t) with index I >J such that index Py(z; t) # o
for some h. Let r be the smallest among such # and put
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Eolz; t)=hi Pyz; OF(z; )"
Then
I=index F(z; t)'Ey(z; t)=rindex F(z; t)+index Ey(z; t) .
By Proposition 3, we have
index Eo(z; t)>c,(p+ 1)1 1,
and so E(z;t) satisfies (i) and (ii).

Let E(z;t) be the := o Pilz; F(z; t)* in Proposition 5, and I=index E(z;t). In
what follows, ¢y, c,, ... are positive constants independent of k, p while ¢,(p), c5(p); - --
are positive constants depending on p and independent of k.

PrOPOSITION 6. If k> c,(p), then
log| E(Q¥x; T(x; A*; b®(2)) | < —cs(p+ 1) 'k
Proof. By the equality
f(@)=A*f(Q*0)+b™(a)
we have | h*(a)| < ck and
| T(z; 4 bW <ck .

E(z; t) is a polynomial in the variables ¢ with degree at most 2p in each variable whose
coefficients are power series convergent in U. Letting

E(Zu t):z gv(z) tv > gv(z) :ZA: gvlzl ’

we have
gl < CG(P)C"/lI
and
b -3(Zo )
A Y
Therefore

|E(Qa; T(z; A bP@) < Y. cal(p)eh e8| (2 )| .
|Al=1

By the property (I11), |a® | <& for some &< 1. Therefore, if k> ¢, o(p), then
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| E(@¥a; T(t; A*; b®(@)) | <cq(p)elt Y (2

i=1 A1,..., An=0
A

<neg(p)cBi(cqe?) (1 —cqe? )
This implies the proposition.

If o is an algebraic number, we denote by |«| the maximum of the absolute
values of the conjugates of « and by den(x) the least positive integer such that den(o)a
is an algebraic integer, and we set |la| =max{|a|, den(x)}. Let ae K* and D =den(a).
[ Ngo(Da)|>1, since Ng,o(Da) is a nonzero integer. Hence we have the so-called
fundamental inequality

| ZD—[K:Q]m—[K:QHI > ||afl —2[K:Q1
If o is a conjugate of a, then for the same reason,

|(00) | < DRI 101~ 1K1
Since N o(Da)a ™! is an algebraic integer,
den(e™") < | Ngp(Do) | < flar|| 120
Therefore we have ||o ™! < ||a|| 2%,
ProrosITION 7. If k> c4(p), then
log| E(Q*a; T(z; A*; b))l < cspp .
ProoF. By the equality (4), we have
E(Q*a; T(t; A% b™(0))) = Po(Q*x; T(z; A*; b¥(a)) .

Letting A*=(a®), we have [a| <ck. By the property (II), we obtain ||b(Q"0)| <c5"
and so

k=1
16l <k [T m(ciesm<c§".
j=0

Therefore
IT,(z; A*; b)) < c§"
and
1Po(@4a; T(x; A*; BP@)I <cio(p)ets -
This implies the proposition.

Now we can complete the proof of Theorem 6. By Proposition 2, there exists
k>max(c,(p), c4(p)) such that
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Po(QFa; T(t; A*; B®(a))) #0 .
By Propositions 6 and 7 and the fundamental inequality, we get
—ey(p+ D) k> —2[K: Qcsppt
Hence
ex(p+ 1) <2[K: Qlesp,
a contradiction, if p is large.
LemMa 4. Let C be a field and F a subfield of C. If
flzy, .., z)eCllzy, .-, 21N Flzq, ..., 2,) »
then there exist polynomials A(z,, ..., z,), B(zy,...,z,)eF[z,,..., z,] such that
[z z)=Alzy, ..., 2,)/Blzys .. -5 2,) 5 B©,...,0)0#0.
Proor. There are relatively prime polynomials A(zy,...,z,) and B(zy,...,z,) in
F[z,,...,z,] such that

[z, z)=Alzq, ..., 2,)/B(zq, ..., 2,) .

We shall show that every prime factor P of B satisfies P(0, ..., 0)#0. We may assume
F to be algebraically closed. Then F{t}=|J”_  F((t'™) is algebraically closed, where ¢
is a variable. We have the expression

P=Pd+Pd,_1+"'+P0, Pd5£0,
where P; is the sum of the terms of total degree i. Changing the variables z; to z; as

zy=z2y, z;=zi+¢z), c€eEF(i=2),

we obtain
P(zy,...,z)=Py1, ¢y, ..., )2+ (the sum of the terms of degree <d—1 in z}).
We can choose ¢,, ..., c, so that Py(1, ¢,, ..., ¢,) #0. Therefore we may assume
P(zy,...,z)=az+Py_1(z3 ..., 2)28 1+ - + Po(23, ..., 2,) , aeF* .

We can choose g,, ..., g, € F[[t]] which are algebraically independent over F and satisfy
g{0)}=0. Then P(X, g,, ..., g,) € F[[tJ][X] and the coefficient of the largest degree is a.
Suppose that P(0,...,0)=0. Then Py(0,...,0)=0 and therefore there exists a root
g€ F{t} of P(X, gs,...,4,)=0 such that ¢g,(0)=0. (g,, ..., g,) is a generic point of the
algebraic variety defined by P(X, ..., X,)=0 over F. By the equality

fy,....z)B(zy,...,2)=A(z4, ..., z,) ,

we have
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O=f(g15""gn)B(gl’--"gn)=A(g19._.,gn)'

Hence P must divide A4, a contradiction.

PROOF OF THEOREMS 1 AND 2. Let {f(2), ..., f(2)} (r <s) be a maximal set whose
elements are linearly independent over K modulo K(z,, ..., z,). Then f,,(2), ..., f.(2)
are linear combinations over K modulo K(z,, ..., z,). Therefore f,(z), ..., f{z) satisfy a
functional equation of the form (1) and we may assume s =m without loss of generality.
By Theorem 4, f,(z), ..., f.(z) are algebraically independent over K(z,, ..., z,). Since

b(z)= f(z)—Af(Qz)e(K[[zy, ..., z,]]",
by Lemma 4 we have expressions
bi(Z)’—_pi(Z)/qi(Z) ’ pi(Z)’ qi(z) € K [Zl’ LERE] Zn] H qi(os R 0)7é0 .

There exists a positive integer k, such that if k>k,, then Q*acU and g{(Q*x)#0
(i=1,..., m). By Theorem 6, f;(Q2*a), ..., f,(Q0) are algebraically independent. Since

ko—1

Ab(2)= f(z)— AX f(Q*zye C[[zy—ay, ..., z,—a,]]1 N K(zy — gy .., Z,— ) ,
=0

J

we obtain
fla)y=A*f(Q*x)+ B, BeK™,

by Lemma 4. The values fi(x), ..., f,,(2) are algebraically independent, since det 4#0.
We can prove Theorem 2 similarly by using Theorem 5.

4. Examples. Let d be an integer greater than 1 and put
flx,2)= ) xFz%.
k=0

Then f(x, z), 8f]ox(x, z), ..., 0'f]0x'(x, z) satisfy
f(x, 2)=xf(x, z%)+z

U =Y (x, #4115, 2
ox 0x
N o

(x, Z)ZXW(X, Zd)+lF(x, Zd) .

ox*
Let a,,...,a, be distinct nonzero algebraic numbers. By Theorem 3, 8f/0x'(a;, 2)
(i=1,...,n,1=0) are algebraically independent over C(z), since a,,..., a, are distinct
and fl(a;, z)¢ C(z). 2=(d) and a nonzero algebraic number o with absolute value less



68 K. NISHIOKA

than 1 satisfy the properties (I)-(IV). Therefore 8'//0xa; o) (i=1,...,n,/>0) are
algebraically independent by Theorem 1. Hence we have the following theorem.

THEOREM 7. Let d be an integer greater than 1, o« a nonzero algebraic number with
absolute value less than 1, and g(x)=} " 0<>c"’°x". Then g(x) is an entire function and
g"a) (ae @, 1>0) are algebraically independent.

Nishioka [8] proved that the function ) ° ~o*x* has the same property as the
function g(z).
Next we consider the power series

o [ho]
Fw(zlﬂ 22): Z Z 2;1”222 s
h

1=1 hy=1
where w is quadratic irrational and O<w<1. F,(z,,z,) converges in the domain
{lz,1<1,]zy]|2,|°<1} and
F(z, )= Y [kw]z".
k=1
For suitable algebraic numbers o, &,, the transcendence of F, (o, «,) is proved in
Mahler [5]. Now we shall prove the following theorem:

THEOREM 8. Let a,, o, be algebraic numbers with 0 <|o,|<1, O0<|oy ||y |?<1.
Then

ohthp
2 (aty, ) (4,=0,,,=0)

0z 9z
are algebraically independent.

CoROLLARY. Let f(z)=F (z, 1), and let o be an algebraic number with 0 <|a|< 1.
Then fP(a) (I>0) are algebraically independent.

PrROOF. Let w be expanded in continued fraction

1
w=
1
a, +
a,+
Define wq, wq, ... by
l 1
w:wo— | = s
a; +w, a, +w,

Because of the equality (see Mahler [5]),
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vil 2111,4+1+pu2%u+1 +qu
F (2, z,)=(=1)F, (z5z%, 25>~ 1z9 1)+ -yr
e )= (D F A 2 0+ T (SO
where q,/p, is the v-th convergent of w, we may assume without loss of generality that
0<]oyl, |®,] <1 and o is expanded in a purely periodic continued fraction. Let v be
an even period of the continued fraction of w and

Q:< P 4 >
pv—l qv—l
Then we have

F (21, 2) = F (24, 2,)) + b(z4, 25) b(zy, )€ Qz4, 25) -

Letting D, =z,0/0z,, D, =1z,0/0z,, we know that D'* D}¥F (z,, z,) is a linear combination
of {Di'D'F, (Qzy, z,))}n, +8,=1,+1, Modulo O(z;, z,). We need the following:

TueoreMm (Mabhler [5]). Suppose that the characteristic polynomial of Q is ir-
reducible over Q and that Q has an eigenvalue p which is greater than the absolute values
of all other eigenvalues. We denote by A, the (i, j)-cofactor of the matrix Q—pl. If

Y | 4; lloglo;1 <0,

i=1
then Q and a=(a,, ..., o,) satisfy the properties ()—(1V).

Nishioka [10] proves the algebraic independence of the functions D'D%F (z,, z,)
({,=0, ,>0). By Theorem 1 we complete the proof.
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