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Abstract. In this paper, we prove the algebraic independence over C(z) of the gener-
ating functions of pattern sequences defined in distinct 〈q, r〉-numeration systems. Our result
asserts that any nontrivial linear combination over C of pattern sequences chosen from distinct
〈q, r〉-numeration systems can not be a linear recurrence sequence. As an application, we give
a linear independence over C of the pattern sequences.

1. Introduction and main results. Let q ≥ 2 and r be fixed integers with r ∈
{0, 1, . . . , q − 2}. Any positive integer n is uniquely expressed as

n =
k∑

i=0

aiq
i, ai ∈ Σq,r , ak > 0 ,

for an integer k ≥ 0, where Σq,r := {−r, 1 − r, . . . , 0, 1, . . . , q − 1 − r} ⊃ {0, 1}. The
set of all finite nonempty strings of elements in Σq,r is denoted by Σ∗

q,r . Then the string of
〈q, r〉-digits

(n)q,r := ak · · · a1a0 ∈ Σ∗
q,r

is called the 〈q, r〉-expansion of n. The 〈q, 0〉-expansion is the ordinary q-ary expansion.
These numeration systems are called 〈q, r〉-numeration systems.

For w ∈ Σ∗
q,r , we write wk = ww · · · w (k times). In particular w0 denotes the empty

word. If w �= 0l for any l ≥ 1, we say that w is a nonzero pattern. For a nonzero pattern
w ∈ Σ∗

q,r , we define eq,r (w; 0) = 0 and eq,r (w; n) (n ≥ 1) to be the number of (possibly
overlapping) occurrences of w in the 〈q, r〉-expansion of n. Here, in evaluating eq,r(w; n) for
n ≥ 1, we suppose that the 〈q, r〉-expansion of n has an arbitrary long string of zeros on the
left. The resulting sequence {eq,r(w; n)}n≥0 is called the pattern sequence for the pattern w

in the 〈q, r〉-numeration system (cf. Allouche and Shallit [1]).
Define the generating function of the pattern sequence for w ∈ Σ∗

q,r by

f (w; z) :=
∑
n≥0

eq,r (w; n)zn .

For any fixed integer q ≥ 2 and any patterns w1, . . . , wm ∈ Σ∗
q,0, Uchida [10] gave nec-

essary and sufficient conditions for the generating functions f (w1; z), . . . , f (wm; z) to be
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algebraically dependent over C(z). Shiokawa and the author [7, 8] generalized this results
to any fixed 〈q, r〉-numeration systems and studied the linear relations between the pattern
sequences. Recently, the author [9] proved that the generating functions of pattern sequences
defined in distinct q-ary number systems are algebraically independent over C(z).

In this paper, we prove the algebraic independence over C(z) of the generating functions
of pattern sequences defined in distinct 〈q, r〉-numeration systems. The tools to prove the
following main theorem are also similar to those in [9], however we need some different
techniques.

THEOREM 1.1. Let wq,r ∈ Σ∗
q,r (q = 2, 3, . . . , r = 0, 1, . . . , q − 2) be any nonzero

patterns. Then the functions

(1) fq,r (z) =
∑
n≥0

eq,r(wq,r ; n)zn (q = 2, 3, . . . , r = 0, 1, . . . , q − 2)

are algebraically independent over C(z). Furthermore, the values fq,r (α) (q = 2, 3, . . . ,

r = 0, 1, . . . , q − 2) are algebraically independent over Q for any algebraic number α with
0 < |α| < 1.

Applying Theorem 1.1, we see that any nontrivial linear combination over C of the func-
tions (1) cannot be a rational function, namely,

m∑
q=2

q−2∑
r=0

cq,rfq,r (z) /∈ C(z)

for an arbitrary integer m ≥ 2 and cq,r ∈ C not all zero. Hence we have the following
corollary.

COROLLARY 1.2. Let wq,r ∈ Σ∗
q,r (q = 2, 3, . . . , r = 0, 1, . . . , q − 2) be any

nonzero patterns and cq,r ∈ C not all zero. Then the linear combination of the pattern se-
quences

{ m∑
q=2

q−2∑
r=0

cq,r eq,r (wq,r ; n)

}
n≥0

cannot be a linear recurrence sequence. In particular, the sequences {eq,r(wq,r ; n)}n≥0 (q =
2, 3, . . . , r = 0, 1, . . . , q − 2) are linearly independent over C.

EXAMPLE 1.3. Let w = ak · · · a0 be a nonzero pattern with ai ∈ {0, 1}. Then
e2,0(w; n) and e3,1(w; n) indicate the number of occurrences of w in the binary and the bal-
anced ternary expansions of n, respectively, and any nontrivial linear combination over C

{c1e2,0(w; n) + c2e3,1(w; n)}n≥0

cannot be a linear recurrence sequence.
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EXAMPLE 1.4. For any integer q ≥ 2, the pattern sequences

{e2,0(1; n)}n≥0, {e3,0(1; n)}n≥0, {e3,1(1; n)}n≥0, . . . ,

{eq,0(1; n)}n≥0, . . . , {eq,q−2(1; n)}n≥0 ,

which are defined by the number of “1” appearing in each 〈q, r〉-numeration systems of n, are
linearly independent over C.

2. Some properties of pattern sequences. In this section, we show as Proposition
2.1 a non-periodicity for the linear combination of the pattern sequences defined in distinct
〈qi, ri〉-numeration systems (i = 1, . . . ,m). Proposition 2.1 will be used in the proof of
Theorem 1.1 (see Section 4).

PROPOSITION 2.1. Let q ≥ 2 be a fixed integer, m ≥ 1 be any integer, and wqi,ri
∈

Σ∗
qi ,ri

(i = 1, 2, . . . ,m, ri ∈ {0, 1, . . . , qi − 2}) be arbitrary nonzero patterns. Then for any
ci ∈ C (i = 1, . . . ,m), not all zero, the sequence

{c1eq,r1(wq,r1; n) + c2eq2,r2
(wq2,r2

; n) + · · · + cmeqm,rm(wqm,rm; n)}n≥0

cannot be purely periodic with a period ql (l ≥ 1).

To prove Proposition 2.1, we need some lemmas. In what follows, let q ≥ 2 and r ∈
{0, 1, . . . , q − 2} be fixed integers. For any nonzero pattern w = bl−1bl−2 · · · b0 ∈ Σ∗

q,r with
bi ∈ Σq,r , let |w| denote the length l and put

ν(w) :=




l−1∑
k=0

bkq
k if

l−1∑
k=0

bkq
k > 0 ,

ql +
l−1∑
k=0

bkq
k otherwise .

By definition, 0 < ν(w) < ql . The following Lemma 2.2 is a generalization of [9, Lemma 1]
to the case of 〈q, r〉-numeration systems with r = 1, 2, . . . , q − 2.

LEMMA 2.2. Let m ≥ 1 and d ≥ 0 be integers. Then for any nonzero pattern w ∈
Σ∗

qm,r with w �= 0l1 (l ≥ 0), we have

(2) eqm,r(w; ν(w)qd) =
{

1 if d ≡ 0 (mod m) ,

0 otherwise .

PROOF. In the case of r = 0, the equality (2) holds for all nonzero patterns w ∈ Σ∗
qm,0

(cf. [9, Lemma 1]). Let r ≥ 1 and

(3) w = 0l1ak · · · a00l2, aj ∈ Σqm,r , ak, a0 �= 0, l1, l2 ≥ 0 .

Then we have

(ν(w))qm,r =
{

ak · · · a00l2 if ak > 0 ,

10l1ak · · · a00l2 otherwise .

If d is divisible by m, noting that ak, a0 �= 0, we see that the pattern w appears just once in the
〈qm, r〉-expansion of ν(w)qd . Hence the equality (2) holds for this case. In what follows, we
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assume that d is not divisible by m and put d = mh+ u, where h ≥ 0 and u (1 ≤ u ≤ m − 1)

are integers.
Here we prove (2) with assuming ak > 0. The case ak < 0 is proved similarly. Let

(4) (ν(w)qu)qm,r = bsbs−1 · · · b00l2 ∈ Σ∗
qm,r , bj ∈ Σqm,r , bs > 0 .

Then we have (ν(w)qd)qm,r = (ν(w)qu(qm)h)qm,r = bsbs−1 · · · b00l2+h with s = k or k + 1,
since

k + 1 + l2 = |(ν(w))qm,r | ≤ |(ν(w)qu)qm,r | ≤ |(ν(w)qm)qm,r | = k + 2 + l2 .

Suppose on the contrary that eqm,r(w; ν(w)qd) ≥ 1, that is, the pattern w appears at least once
in the expansion (4). If s = k, then w = 0l1bkbk−1 · · · b00l2 , which implies ν(w) = ν(w)qu

from (4). This is impossible, and hence s = k + 1. We distinguish the two cases.
Case I. l2 = 0. If l1 ≥ 1, noting that bk+1 �= 0, we see that the pattern w = 0l1ak · · · a0

coincides with 0l1bk+1bk · · · b1. Hence we obtain by (4)

ν(w)qm + b0 = ν(bk+1 · · · b1)q
m + b0 = ν(bk+1 · · · b1b0) = ν(w)qu ,

so that

0 < ν(w) = −b0

qm − qu
≤ qm − 2

qm − qu
< 2 ,

which implies ν(w) = 1, namely w = 0l11. By the assumption, this is a contradiction.
Suppose that l1 = 0. Then the pattern w must be of the form either w = bk+1 · · · b1

or w = bk · · · b0. In a similar way to the case l1 ≥ 1, we can show w �= bk+1 · · · b1. If
w = bk · · · b0, then

ν(w) + bk+1(q
m)k+1 = ν(bk · · · b0) + bk+1(q

m)k+1 = ν(bk+1 · · · b1b0) = ν(w)qu ,

so that bk+1q
m(k+1) = ν(w)(qu − 1). Since u ≥ 1, the positive integers qm(k+1) and qu − 1

are coprime, and hence ν(w) ≡ 0 (mod qm(k+1)). This implies aj = 0 for all j = 0, . . . , k in
(3), a contradiction.

Case II. l2 ≥ 1. In the case of l1 ≥ 1, the pattern w must be the form w = 0l1bk+1 · · ·
b1b00l2−1 with b0 = 0. Hence we have by (4)

ν(w) = ν(bk+1 · · · b1b00l2−1) = ν(w)qu−m ,

a contradiction.
If l1 = 0, then w = bk+1 · · · b1b00l2−1 (b0 = 0) or w = bk · · · b00l2 . By the same

way as above, we can deduce w �= bk+1 · · · b1b00l2−1 (b0 = 0). Furthermore, we see that
w �= bk · · · b00l2 by a similar way to the proof of Case I. �

For the patterns w = 0l1 ∈ Σ∗
qm,r (l ≥ 0), we prepare the following lemma;

LEMMA 2.3. Let w ∈ Σ∗
qm,r be of the form w = 0l1 for some l ≥ 0. Then for any

integer k ≥ 1, we have

eqm,r (w; ν(wk)qd) =
{
k if d ≡ 0 (mod m) ,

0 or 1 otherwise .
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PROOF. The assertion is trivial for the case that d is divisible by m. Suppose that d is
not divisible by m and put d = mh + u, where h ≥ 0 and u (1 ≤ u ≤ m − 1) are integers. If
qu ∈ Σqm,r , we have

(ν(wk)qd)qm,r = (ν(wk)qu(qm)h)qm,r = qu(0lqu)k−10h ,

so that eqm,r(w; ν(wk)qd) = 0. If qu /∈ Σqm,r , then b := −(qm−qu) ∈ Σqm,r and (qu)qm,r =
1b ∈ Σ∗

qm,r . Noting that b < 0, we have for w = 0l1

(ν(wk)qd)qm,r =
{

1(b + 1)k−1b0h if l = 0 ,

1b(0l−11b)k−10h otherwise ,

where b, b + 1 ∈ Σqm,r \ {1}. Hence eqm,r (w; ν(wk)qd) = 1 and the lemma is proved. �

Let m ≥ 2 be an integer. Define

(5) Sm−1 := {(k1, k2, . . . , km−1) ∈ Zm−1 ; 0 ≤ kj ≤ j − 1}
and its subset

(6) Sm−1,n := {(k1, k2, . . . , km−1) ∈ Sm−1 ; k1 + · · · + km−1 = n}
for each n = 0, 1, . . . , (m − 1)(m − 2)/2. Note that Sm−1 = ⋃

n≥0 Sm−1,n.

LEMMA 2.4 (cf. [9, Lemma 2]). For any integer m ≥ 2, there exist integers d1 and d2

with 0 ≤ d1 < d2 ≤ m − 1 such that∑
n≥0

n≡d1 (mod m)

�Sm−1,n �=
∑
n≥0

n≡d2 (mod m)

�Sm−1,n ,

where �Sm−1,n is the number of elements in Sm−1,n.

PROOF OF PROPOSITION 2.1. We prove the lemma by induction on m. The assertion
is trivial for m = 1. Indeed, for any pattern w ∈ Σ∗

q,r and the integer nj := ν(wj ) > 0,
we have eq,r (w; nj ) → ∞ as j → ∞. Let m ≥ 2 and assume the assertion for lower m.
Suppose on the contrary that there exist ci ∈ C not all zero such that the sequence

(7) {c1eq,r1(wq,r1; n) + c2eq2,r2
(wq2,r2

; n) + · · · + cmeqm,rm(wqm,rm; n)}n≥0

is purely periodic with a period ql for some l ≥ 1. We may assume cm �= 0. Let d1 and d2

(0 ≤ d1 < d2 ≤ m − 1) be integers as in Lemma 2.4 and

Nj =
0∑

k1=0

1∑
k2=0

· · ·
m−2∑

km−1=0

qk1+···+km−1−dj +DLl(1+k1+mk2+···+mm−2km−1) , j = 1, 2 ,

where D := lcm(1, 2, . . . ,m − 1) and L is a sufficiently large integer. Since N1, N2 ≡ 0
(mod ql) and the sequence (7) is periodic with the period ql , we get

(8)
m∑

i=1

cieqi,ri
(wqi,ri

; aN1) =
m∑

i=1

cieqi,ri
(wqi,ri

; aN2)
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for any integer a > 0. On the other hand, in a similar way to the proof of [9, Theorem 1], we
can prove

(9) eqi,ri
(wqi ,ri

; aN1) = eqi ,ri
(wqi,ri

; aN2) , i = 1, 2, . . . ,m − 1 .

Hence, combining (8) and (9), we obtain for any integer a > 0

eqm,rm(wqm,rm; aN1) − eqm,rm(wqm,rm; aN2) = 0 .

In what follows, we show the existence of the integer a > 0 satisfying

(10) eqm,rm(wqm,rm; aN1) �= eqm,rm(wqm,rm; aN2)

and deduce a contradiction. We distinguish two cases.
Case I. wqm,rm �= 0l1 for any l ≥ 0. For the integer a = ν(wqm,rm), we have by Lemma

2.2

eqm,rm(wqm,rm; aNj ) =
0∑

k1=0

· · ·
m−2∑

km−1=0

eqm,rm(wqm,rm; aqk1+···+km−1+m−dj +DL)

= �

{
(k1, . . . , km−1) ∈ Sm−1 ;

m−1∑
i=1

ki ≡ dj (mod m)

}

=
∑
n≥0

n≡dj (mod m)

�Sm−1,n, j = 1, 2 ,

where Sm−1 and Sm−1,n are the finite sets defined by (5) and (6), respectively. Hence we
obtain (10) by Lemma 2.4.

Case II. wqm,rm = 0l1 for some l ≥ 0. We may assume∑
n≥0

n≡d1 (mod m)

�Sm−1,n <
∑
n≥0

n≡d2 (mod m)

�Sm−1,n .

Let a = ν(wm!
qm,rm

). Then we have

eqm,rm(wqm,rm; aN1) = m!
∑
n≥0

n≡d1 (mod m)

�Sm−1,n +
∑
n≥0

n�≡d1 (mod m)

δn�Sm−1,n ,

where δn := eqm,rm(wqm,rm; aqn−d1+DL). By Lemma 2.3, δn = 0 or 1 for each n ≥ 0. Hence,
noting that ∑

n≥0
n�≡d1 (mod m)

�Sm−1,n ≤
∑
n≥0

�Sm−1,n = �Sm−1 < m! ,

we obtain the inequalities

eqm,rm(wqm,rm; aN1) < m!
∑
n≥0

n≡d2 (mod m)

�Sm−1,n ≤ eqm,rm(wqm,rm; aN2) ,

which implies (10). Therefore Proposition 2.1 is proved. �
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3. Lemmas for the proof of Theorem 1.1. We prepare some lemmas for proving
Theorem 1.1. In the next section, we show Theorem 1.1 by using these lemmas together with
Proposition 2.1.

LEMMA 3.1 (Nishioka [6, Corollary]). Let K be an algebraic number field and
d1, . . . , dt ≥ 2 be integers with log di/ log dj /∈ Q if i �= j . Suppose that fi,j (z) ∈ K[[z]]
(i = 1, . . . , t, j = 1, . . . ,m(i)) satisfy the functional equations

fi,j (z) = fi,j (z
di ) + bi,j (z), bi,j (z) ∈ K(z) .

If for each i, fi,1(z), . . . , fi,m(i)(z) are algebraically independent over K(z) and all fi,j (z)

converge at an algebraic number z = α with 0 < |α| < 1, then the values

fi,j (α) (i = 1, . . . , t, j = 1, . . . ,m(i))

are algebraically independent over Q.

LEMMA 3.2 (Kubota [2], Loxton and van der Poorten [3]; see also Nishioka [5, The-
orem 3.2.1]). Let d ≥ 2 be an integer. Suppose that g1(z), . . . , gm(z) ∈ C[[z]] are alge-
braically dependent over C(z) and satisfy the functional equations

(11) gi (z
d) = gi (z) + ai(z) ai(z) ∈ C(z) , i = 1, 2, . . . ,m .

Then there exist constants c1, . . . , cm ∈ C not all zero such that

c1g1(z) + c2g2(z) + · · · + cmgm(z) ∈ C(z) .

The following lemma is a generalization of [7, Lemma 3], which is the case L = d2 − 1
of the lemma.

LEMMA 3.3. Let d ≥ 2, l ≥ 1, and L ≥ 1 be arbitrary integers. Suppose that
c(z) ∈ C(z) satisfies the functional equation

(12) c(zd) = c(z) + 1 − zL

1 − zdlL
a(z) , a(z) ∈ C[z] .

Then there exists b(z) ∈ C[z] such that

(13) c(z) = 1 − zL

1 − zdl−1L
b(z)

with deg b(z) ≤ −L + d−1 max{dlL, L + deg a(z)}. Here we understand deg 0 = −∞.

PROOF. Similarly to the proof of [7, Lemma 3], we see that there exists h(z) ∈ C[z]
such that c(z) = h(z)/(1 − zdl−1L) and

h(zd) = (1 + zdl−1L + z2dl−1L + · · · + z(d−1)dl−1L)h(z) + (1 − zL)a(z) .

Let ζ be an arbitrary L-th root of unity. Substituting z = ζ di
(i = 1, 2, . . . ) into the above

identity, we have h(ζ di+1
) = dh(ζ di

), so that h(ζ di
) = dih(ζ ) for every i ≥ 1. If h(ζ ) �= 0,

then |h(ζ di
)| → ∞ as i → ∞, a contradiction. Hence b(z) = h(z)/(1 − zL) ∈ C[z] and
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we obtain the form (13). Next we estimate the degree of b(z). Substituting c(z) in (13) to the
equation (12) and multiplying the both sides by (1 − zdlL)/(1 − zL), we have

1 − zdlL

1 − zdl−1L
b(z) = 1 − zdL

1 − zL
b(zd) − a(z) .

If the degree of the first term of the right-hand side is not greater than that of the left-hand
side, we get deg b(z) ≤ (dl−1 − 1)L. Otherwise, the degree of the first term coincides with
deg a(z), so that deg b(z) = −L + (deg a(z) + L)/d . The lemma is proved. �

4. Proof of Theorem 1.1. Let N be the set of positive integers and M be a subset of
N defined by

M = {q ∈ N ; q �= an for any a, n ∈ N, n ≥ 2} .

Then log q1/ log q2 /∈ Q for distinct integers q1, q2 ∈ M and

N \ {1} =
⋃
q∈M

{q, q2, . . . } (disjoint union) .

We can choose distinct integers q1, . . . , qt ∈ M such that the set of nonzero patterns

wi,j,r ∈ Σ∗
q

j
i ,r

(i = 1, 2, . . . , t, j = 1, 2, . . . ,m(i), r = 0, 1, . . . , q
j

i − 2)

includes the nonzero patterns given in Theorem 1.1. Let

(14) fi,j,r (z) =
∑
n≥0

e
q

j
i ,r

(wi,j,r ; n)zn

(i = 1, . . . , t , j = 1, . . . ,mi , r = 0, . . . , q
j

i −2). By [7, Lemma 5], the functions (14) satisfy
Mahler type functional equations

(15) fi,j,r (z) = 1 − zq
j
i

zr (1 − z)
fi,j,r (z

q
j
i ) + zν(wi,j,r )

1 − zq
j |wi,j,r |
i

.

We transform the functions fi,j,r (z) into the functions which satisfy the functional equation

(11). Let L and ui,j,r be positive integers defined by L = ∏t
i=1

∏m(i)
j=1(q

j
i − 1) and ui,j,r =

rL/(q
j
i − 1), respectively. Multiplying the both sides of (15) by zr(1− z) and substituting zL

for z, we get

zrL(1 − zL)fi,j,r (z
L) = (1 − zq

j
i L)fi,j,r (z

q
j
i L) + z(r+ν(wi,j,r ))L(1 − zL)

1 − zq
j |wi,j,r |
i L

.

Noting that rL = −ui,j,r + q
j
i ui,j,r , we obtain the functional equation

(16) Fi,j,r (z) = Fi,j,r (z
q

j
i ) + zν(wi,j,r )L−ui,j,r (1 − zL)

1 − zq
j |wi,j,r |
i L

,

where

(17) Fi,j,r (z) := z−ui,j,r (1 − zL)fi,j,r (z
L) ∈ Q[[z]] .
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Using (16) repeatedly, we have

(18) Fi,j,r (z) = Fi,j,r (z
q

Di
i ) +

Di/j−1∑
k=0

zq
kj
i (ν(wi,j,r )L−ui,j,r )

1 − zq
kj
i L

1 − zq
j |wi,j,r |+kj

i L

,

where Di = lcm(1, 2, . . . ,m(i)).

PROOF OF THEOREM 1.1. Suppose on the contrary that the first assertion of Theorem
1.1 does not holds, namely, the functions fi,j,r (z) (i = 1, . . . , t, j = 1, . . . ,m(i), r =
0, . . . , qi−2) defined by (14) are algebraically dependent over C(z). Then so are the functions
Fi,j,r (z), and hence the values Fi,j,r (α) (i = 1, . . . , t, j = 1, . . . ,m(i), r = 0, . . . , qi −2)

are algebraically dependent over Q for any algebraic number α with 0 < |α| < 1 (cf.
Nesterenko [4, Lemma 2.3]). Therefore by Lemma 3.1 together with (16), the functions
Fi,j,r (z) (j = 1, . . . ,m(i), r = 0, . . . , qi − 2) are algebraically dependent over Q(z) for
some fixed i (1 ≤ i ≤ t).

Thus, for a fixed integer q ≥ 2 we may assume that the functions

Fj,r (z) = z−uj,r (1 − zL)
∑
n≥0

eqj ,r (wj,r ; n)zLn, wj,r ∈ Σ∗
qj ,r

,

(j = 1, . . . ,m, r = 0, 1, . . . , qj − 2) are algebraically dependent over Q(z), where uj,r :=
rL/(qj − 1). By (18)

(19) Fj,r (z) = Fj,r (z
qD

) +
D/j−1∑
k=0

zqkj (Lν(wj,r )−uj,r )
1 − zqkj L

1 − zq
j |wj,r |+kj

L
,

with D := lcm{1, 2, . . . ,m}, and by Lemma 3.2 there exist constants cj,r ∈ C not all zero
such that

R(z) :=
m∑

j=1

qj −2∑
r=0

cj,rFj,r (z) ∈ C(z) .

Without loss of generality, we may assume cm,rm �= 0 for some rm (0 ≤ rm ≤ qm − 2). Using
(19) we obtain

R(z)= R(zqD
) +

m∑
j=1

qj −2∑
r=0

D/j−1∑
k=0

cj,r z
qkj (Lν(wj,r)−uj,r )

1 − zqkj L

1 − zq
|wj,r |j+kj

L

= R(zqD
) + 1 − zL

1 − zqDlL
a(z) ,

where l := max{|wj,r | ; 1 ≤ j ≤ m, 0 ≤ r ≤ qj − 2} and

a(z) =
m∑

j=1

qj −2∑
r=0

D/j−1∑
k=0

cj,r z
qkj (Lν(wj,r )−uj,r )

1 − zqkj L

1 − zL

1 − zqDlL

1 − zq
|wj,r |j+kj

L
.
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Since |wj,r |j + kj ≤ (|wj,r | + D/j − 1)j ≤ Dl, we get a(z) ∈ C[z] with deg a(z) ≤
(qDl − 1)L if a(z) �= 0. Hence, applying Lemma 3.3 with d = qD and c(z) = R(z) ∈ C(z),
we see that there exists b(z) ∈ C[z] such that

(20) R(z) = 1 − zL

1 − zqD(l−1)L
b(z) ,

where deg b(z) ≤ (qD(l−1) − 1)L if b(z) �= 0. By the expression (20) and the definition of
R(z), we have

b(z) = 1 − zqD(l−1)L

1 − zL

m∑
j=1

qj −2∑
r=0

cj,rFj,r (z)

= (1 − zqD(l−1)L)
∑
n≥0

m∑
j=1

qj −2∑
r=0

cj,r eqj ,r (wj,r ; n)znL−uj,r

= Q(z) +
∑
n≥0

m∑
j=1

qj −2∑
r=0

(dj,r (n + qD(l−1)) − dj,r (n))znL+qD(l−1)L−uj,r ,(21)

where dj,r (n) := cj,r eqj ,r (wj,r ; n) and

Q(z) :=
qD(l−1)−1∑

n=0

m∑
j=1

qj −2∑
r=0

dj,r (n)znL−uj,r ∈ C[z] .

It is easily seen that deg Q(z) ≤ (qD(l−1)−1)L if Q(z) �= 0. Hence, noting that the exponents
of the power series of the right-hand side in (21) are greater than (qD(l−1) − 1)L for every n,
j , and r , we obtain b(z) = Q(z) and

(22)
∑
n≥0

m∑
j=1

qj −2∑
r=0

(dj,r (n + qD(l−1)) − dj,r (n))znL+qD(l−1)L−uj,r = 0 .

Define the finite sets

T = {(j, r) ; 1 ≤ j ≤ m, 0 ≤ r ≤ qj − 2} ,

Tβ = {(j, r) ∈ T ; r/(qj − 1) = β} .

Then there exist distinct rational numbers β1, . . . , βk such that T = ⋃k
i=1 Tβi . In the power

series expansion of the left-hand side in (22), if the exponents of z for (n, j, r) = (n1, j1, r1)

and for (n2, j2, r2) are the same, namely

n1L + qD(l−1)L − uj1,r1 = n2L + qD(l−1)L − uj2,r2 ,

then we have

|n1 − n2| =
∣∣∣∣ r1

qj1 − 1
− r2

qj2 − 1

∣∣∣∣ < 1 ,
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so that n1 = n2 and (j1, rj1), (j2, rj2) ∈ Tβi for some i. Hence we obtain

∑
(j,r)∈Tβi

(dj,r (n + qD(l−1)) − dj,r (n)) = 0 , n ≥ 0

for each i = 1, 2, . . . , k, that is, the sequence
{ ∑

(j,r)∈Tβi

dj,r (n)

}
n≥0

=
{ ∑

(j,r)∈Tβi

cj,r eqj ,r (wj,r ; n)

}
n≥0

is purely periodic with a period qD(l−1). In particular, noting that cm,rm �= 0, we see that there
exist constants cj ∈ C not all zero and rj (j = 1, . . . ,m, rj ∈ {0, . . . , qj − 2}) such that

{ m∑
j=1

cj eqj ,rj
(wj,rj ; n)

}
n≥0

is purely periodic with a period qD(l−1). This contradicts Proposition 2.1, and therefore the
functions fi,j,r (z) (i = 1, . . . , t, j = 1, . . . ,m(i), r = 0, . . . , qi − 2) defined by (14) are
algebraically independent over C(z).

The algebraic independence of the values of the functions fi,j,r (z) follows immediately.
Indeed, if fi,j,r (β) are algebraically dependent over Q for some algebraic number β with
0 < |β| < 1, then by (17) so are the values Fi,j,r (α) for α = β1/L. This contradicts the
algebraic independence of the F ’s as we have already proved above, and the proof of Theorem
1.1 is completed. �
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