ALGEBRAIC INTEGERS AS SPECIAL VALUES OF MODULAR UNITS

JA KYUNG KOO, DONG HWA SHIN AND DONG SUNG YOON

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 373-1, Korea (jkkoo@math.kaist.ac.kr; shakur01@kaist.ac.kr; yds1850@kaist.ac.kr)

(Received 23 August 2010)

Abstract Let $\varphi(\tau) = \eta(\frac{1}{2}(\tau+1))^2/\sqrt{2\pi}\exp\{\frac{1}{4}\pi\mathrm{i}\}\eta(\tau+1)$, where $\eta(\tau)$ is the Dedekind eta function. We show that if τ_0 is an imaginary quadratic argument and m is an odd integer, then $\sqrt{m}\varphi(m\tau_0)/\varphi(\tau_0)$ is an algebraic integer dividing \sqrt{m} . This is a generalization of a result of Berndt, Chan and Zhang. On the other hand, when K is an imaginary quadratic field and θ_K is an element of K with $\mathrm{Im}(\theta_K)>0$ which generates the ring of integers of K over \mathbb{Z} , we find a sufficient condition on m which ensures that $\sqrt{m}\varphi(m\theta_K)/\varphi(\theta_K)$ is a unit.

Keywords: Dedekind eta function; modular functions; automorphic functions

2010 Mathematics subject classification: Primary 11F20 Secondary 11F03

1. Introduction

The Dedekind eta function $\eta(\tau)$ is defined to be the infinite product

$$\eta(\tau) = \sqrt{2\pi} e^{\pi i/4} q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad \tau \in \mathfrak{H},$$
(1.1)

where $q = e^{2\pi i \tau}$ with $i = \sqrt{-1}$ and $\mathfrak{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$. Define a function

$$\varphi(\tau) = \frac{1}{\sqrt{2\pi}} \frac{\eta((\tau+1)/2)^2}{\eta(\tau+1)} = \prod_{n=1}^{\infty} (1 + q^{n-1/2})^2 (1 - q^n), \quad \tau \in \mathfrak{H},$$
 (1.2)

which is identical to Jacobi's $\theta(\tau) = \sum_{n=-\infty}^{\infty} q^{n^2/2}$, by Jacobi's triple product identity [1, p. 36]. Motivated by Ramanujan's evaluation of $\varphi(mi)/\varphi(i)$ for some positive integers m [10] which are algebraic numbers, Berndt $et\ al.$ proved the following theorem.

Theorem 1.1 (Berndt et al. [2, Theorem 4.4]). Let m and n be positive integers. If m is odd, then $\sqrt{2m}\varphi(mni)/\varphi(ni)$ is an algebraic integer dividing $2\sqrt{m}$, while if m is even, then $2\sqrt{m}\varphi(mni)/\varphi(ni)$ is an algebraic integer dividing $4\sqrt{m}$.

In this paper we shall first revisit the theorem and improve it when m is odd, as follows.

Theorem 1.2. Let m be a positive integer and let $\tau_0 \in \mathfrak{H}$ be imaginary quadratic. Then $2\sqrt{m}\varphi(m\tau_0)/\varphi(\tau_0)$ is an algebraic integer dividing $4\sqrt{m}$. In particular, if m is odd, then $\sqrt{m}\varphi(m\tau_0)/\varphi(\tau_0)$ is an algebraic integer dividing \sqrt{m} .

For $(r_1, r_2) \in \mathbb{Q}^2 - \mathbb{Z}^2$, the Siegel function $g_{(r_1, r_2)}(\tau)$ is defined by

$$g_{(r_1,r_2)}(\tau) = -q^{\mathbf{B}_2(r_1)/2} e^{\pi i r_2(r_1-1)} (1-q_z) \prod_{n=1}^{\infty} (1-q^n q_z) (1-q^n q_z^{-1}), \quad \tau \in \mathfrak{H}, \quad (1.3)$$

where $\mathbf{B}_2(x) = x^2 - x + 1/6$ is the second Bernoulli polynomial and $q_z = e^{2\pi i z}$ with $z = r_1 \tau + r_2$. We shall express the function $\varphi(m\tau)/\varphi(\tau)$ as a product of certain etaquotient and Siegel functions (Lemma 2.6 (i)). Also, we shall prove Theorem 1.2 in § 3 by using integrality of Siegel functions over $\mathbb{Z}[j(\tau)]$ [6, § 3], where

$$j(\tau) = \left(\frac{\eta(\tau)^{24} + 2^8 \eta(2\tau)^{24}}{\eta(\tau)^{16} \eta(2\tau)^8}\right)^3 = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots$$

is the well-known $modular\ j$ -function [3, Theorem 12.17].

On the other hand, let K be an imaginary quadratic field with discriminant d_K , and define

$$\theta_K = \begin{cases} \frac{\sqrt{d_K}}{2} & \text{for } d_K \equiv 0 \pmod{4}, \\ \frac{-1 + \sqrt{d_K}}{2} & \text{for } d_K \equiv 1 \pmod{4}, \end{cases}$$
 (1.4)

which generates the ring of integers of K over \mathbb{Z} . Ramachandra showed in $[9, \S 6]$ that if N ($N \ge 2$) is an integer with more than one prime ideal factor in K, then $g_{(0,1/N)}(\theta_K)^{12N}$ is a unit. This fact, together with Shimura's Reciprocity Law (Proposition 4.6), enables us to prove the following theorem in $\S 4$.

Theorem 1.3. If m ($m \ge 3$) is an odd integer whose prime factors split in K, then $\sqrt{m}\varphi(m\theta_K)/\varphi(\theta_K)$ is a unit.

2. Arithmetic properties of Siegel functions

In this section we shall examine some arithmetic properties of Siegel functions. For the classical theory of modular functions, we refer the reader to [8,11].

For each positive integer N, let $\zeta_N = e^{2\pi i/N}$ and let \mathcal{F}_N be the field of meromorphic modular functions of level N whose Fourier coefficients belong to the Nth cyclotomic field $\mathbb{Q}(\zeta_N)$.

Proposition 2.1. For each positive integer N, \mathcal{F}_N is a Galois extension of $\mathcal{F}_1 = \mathbb{Q}(j(\tau))$ whose Galois group is isomorphic to

$$\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1_2\} = G_N \cdot \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1_2\},$$

where

$$G_N = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} : d \in (\mathbb{Z}/N\mathbb{Z})^* \right\}.$$

Here, the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \in G_N$$

acts on $\sum_{n=-\infty}^{\infty} c_n q^{n/N} \in \mathcal{F}_N$ by

$$\sum_{n=-\infty}^{\infty} c_n q^{n/N} \mapsto \sum_{n=-\infty}^{\infty} c_n^{\sigma_d} q^{n/N},$$

where σ_d is the automorphism of $\mathbb{Q}(\zeta_N)$ induced by $\zeta_N \mapsto \zeta_N^d$. Also, for an element $\gamma \in \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1_2\}$ let $\gamma' \in \mathrm{SL}_2(\mathbb{Z})$ be a preimage of γ via the natural surjection $\mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1_2\}$. Then γ acts on $h \in \mathcal{F}_N$ by composition

$$h \mapsto h \circ \gamma'$$

as a fractional linear transformation.

Proof. See [8, Chapter 6, Theorem 3].

Proposition 2.2. Let $(r_1, r_2) \in (1/N)\mathbb{Z}^2 - \mathbb{Z}^2$ for some integer $N \ge 2$.

- (i) $g_{(r_1,r_2)}(\tau)$ is integral over $\mathbb{Z}[j(\tau)]$. Namely, $g_{(r_1,r_2)}(\tau)$ is a zero of a monic polynomial whose coefficients are in $\mathbb{Z}[j(\tau)]$.
- (ii) Suppose that (r_1, r_2) has the primitive denominator N (that is, N is the smallest positive integer such that $(Nr_1, Nr_2) \in \mathbb{Z}^2$). If N is composite (that is, N has at least two prime factors), then $g_{(r_1, r_2)}(\tau)^{-1}$ is also integral over $\mathbb{Z}[j(\tau)]$.
- (iii) $g_{(r_1,r_2)}(\tau)$ is holomorphic and has no zeros and poles on \mathfrak{H} . Furthermore, $g_{(r_1,r_2)}(\tau)$ (respectively, $g_{(r_1,r_2)}(\tau)^{12N/\gcd(6,N)}$) belongs to \mathcal{F}_{12N^2} (respectively, \mathcal{F}_N).

Proof.

- (i) See [**6**, § 3].
- (ii) See [7, Chapter 2, Theorems 2.2 (i)].
- (iii) See [7, Chapter 2, Theorem 1.2, and Chapter 3, Theorem 5.2].

Remark 2.3. Let $g(\tau)$ be an element of \mathcal{F}_N for some positive integer N. If both $g(\tau)$ and $g(\tau)^{-1}$ are integral over $\mathbb{Q}[j(\tau)]$ (respectively, $\mathbb{Z}[j(\tau)]$), then $g(\tau)$ is called a *modular unit* (respectively, *modular unit over* \mathbb{Z}) of level N. As is well known, $g(\tau)$ is a modular unit if and only if it has no zeros or poles on \mathfrak{H} (see [7, Chapter 2, § 2] or [6, § 2]). Hence, $g_{(r_1,r_2)}(\tau)$ is a modular unit for any $(r_1,r_2) \in \mathbb{Q}^2 - \mathbb{Z}^2$, by (iii). Moreover, if (r_1,r_2) has a composite primitive denominator, then $g_{(r_1,r_2)}(\tau)$ is a modular unit over \mathbb{Z} , by (ii).

We recall the necessary transformation formulae of Siegel functions.

Proposition 2.4. Let $r = (r_1, r_2) \in \mathbb{Q}^2 - \mathbb{Z}^2$.

(i) We have

$$g_{-r}(\tau) = g_{(-r_1, -r_2)}(\tau) = -g_r(\tau).$$

(ii) For

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

we get

$$g_r(\tau) \circ S = \zeta_{12}^9 g_{rS}(\tau) = \zeta_{12}^9 g_{(r_2, -r_1)}(\tau),$$

$$g_r(\tau) \circ T = \zeta_{12} g_{rT}(\tau) = \zeta_{12} g_{(r_1, r_1 + r_2)}(\tau).$$

Hence, we obtain that, for any $\gamma \in SL_2(\mathbb{Z})$,

$$g_r(\tau) \circ \gamma = \varepsilon g_{r\gamma}(\tau)$$

with ε a 12th root of unity (depending on γ).

(iii) For $s = (s_1, s_2) \in \mathbb{Z}^2$ we have

$$g_{r+s}(\tau) = g_{(r_1+s_1,r_2+s_2)}(\tau) = (-1)^{s_1s_2+s_1+s_2} e^{-\pi i(s_1r_2-s_2r_1)} g_r(\tau).$$

(iv) Let $r \in (1/N)\mathbb{Z}^2 - \mathbb{Z}^2$ for some integer $N \geq 2$. Each element

$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 in $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1_2\} \simeq \operatorname{Gal}(\mathcal{F}_N/\mathcal{F}_1)$

acts on $g_r(\tau)^{12N/\gcd(6,N)}$ by

$$(g_r(\tau)^{12N/\gcd(6,N)})^{\alpha} = g_{r\alpha}(\tau)^{12N/\gcd(6,N)} = g_{(r_1a+r_2c,r_1b+r_2d)}(\tau)^{12N/\gcd(6,N)}.$$

Proof. (i)–(iii) See [6, Proposition 2.4].

Remark 2.5. The expression $r\alpha$ in (iv) is well defined by (i) and (iii).

Lemma 2.6.

(i) We can express $\varphi(\tau)$ as

$$\varphi(\tau) = -\frac{1}{\sqrt{2\pi}}\eta(\tau)g_{(1/2,1/2)}(\tau).$$

(ii) We get

$$g_{(0,1/2)}(\tau)g_{(1/2,0)}(\tau)g_{(1/2,1/2)}(\tau) = 2e^{\pi i/4}.$$

(iii) If $m \ (m \ge 3)$ is an odd integer, then we have the relation

$$\frac{g_{(1/2,1/2)}(m\tau)}{g_{(1/2,1/2)}(\tau)} = (-1)^{(m-1)/2} \prod_{k=1}^{m-1} g_{(1/2,1/2+k/m)}(\tau).$$

Proof. (i) By the definition (1.3) we have

$$g_{(1/2,1/2)}(\tau) = -q^{\mathbf{B}_2(1/2)/2} e^{-\pi i/4} (1 + q^{1/2}) \prod_{n=1}^{\infty} (1 + q^{n+1/2}) (1 + q^{n-1/2})$$
$$= -e^{-\pi i/4} q^{-1/24} \prod_{n=1}^{\infty} (1 + q^{n-1/2})^2.$$

One can then obtain the assertion by the definition (1.1) of $\eta(\tau)$ and the infinite product expansion (1.2) of $\varphi(\tau)$.

(ii) It follows from the definition (1.3) that

$$\begin{split} g_{(0,1/2)}(\tau)g_{(1/2,0)}(\tau)g_{(1/2,1/2)}(\tau) &= -2\mathrm{e}^{-3\pi\mathrm{i}/4}\prod_{n=1}^{\infty}(1+q^n)^2(1-q^{n-1/2})^2(1+q^{n-1/2})^2\\ &= 2\mathrm{e}^{\pi\mathrm{i}/4}\prod_{n=1}^{\infty}(1+q^n)^2(1-q^{2n-1})^2\\ &= 2\mathrm{e}^{\pi\mathrm{i}/4}\prod_{n=1}^{\infty}\frac{(1-q^{2n})^2}{(1-q^n)^2}\cdot\frac{(1-q^n)^2}{(1-q^{2n})^2}\\ &= 2\mathrm{e}^{\pi\mathrm{i}/4}. \end{split}$$

(iii) By the definition (1.3) we obtain

$$\begin{split} \frac{g_{(1/2,1/2)}(m\tau)}{g_{(1/2,1/2)}(\tau)} &= \frac{-q^{mB_2(1/2)/2}\mathrm{e}^{-\pi\mathrm{i}/4}(1+q^{m/2})\prod_{n=1}^{\infty}(1+q^{mn+m/2})(1+q^{mn-m/2})}{-q^{B_2(1/2)/2}\mathrm{e}^{-\pi\mathrm{i}/4}(1+q^{1/2})\prod_{n=1}^{\infty}(1+q^{n+1/2})(1+q^{n-1/2})} \\ &= q^{(1-m)/24}\prod_{n=1}^{\infty}\left(\frac{1+q^{m(n-1/2)}}{1+q^{n-1/2}}\right)^2 \end{split}$$

and

$$\begin{split} \prod_{k=1}^{m-1} g_{(1/2,1/2+k/m)}(\tau) \\ &= \prod_{k=1}^{m-1} \left(-q^{B_2(1/2)/2} \exp\left\{ \pi \mathrm{i} \left(\frac{1}{2} + \frac{k}{m} \right) \left(-\frac{1}{2} \right) \right\} \\ & \times \left(1 + q^{1/2} \zeta_m^k \right) \prod_{n=1}^{\infty} (1 + q^{n+1/2} \zeta_m^k) (1 + q^{n-1/2} \zeta_m^{-k}) \right) \end{split}$$

$$= (-1)^{m-1} e^{\pi i (1-m)/2} q^{(1-m)/24} \prod_{k=1}^{m-1} \prod_{n=1}^{\infty} (1 + q^{n-1/2} \zeta_m^k) (1 + q^{n-1/2} \zeta_m^{-k})$$

$$= (-1)^{(1-m)/2} q^{(1-m)/24} \prod_{n=1}^{\infty} \prod_{k=1}^{m-1} (1 + q^{n-1/2} \zeta_m^k)^2 \quad \text{because } m \text{ is odd}$$

$$= (-1)^{(1-m)/2} q^{(1-m)/24} \prod_{n=1}^{\infty} \left(\frac{1 + q^{m(n-1/2)}}{1 + q^{n-1/2}} \right)^2$$

by the identity

$$\frac{1+X^m}{1+X} = \frac{1-(-X)^m}{1-(-X)} = \prod_{k=1}^{m-1} (1-(-X)\zeta_m^k).$$

This proves (iii).

3. Proof of Theorem 1.2

Let

$$\Delta(\tau) = \eta(\tau)^{24} = (2\pi)^{12} q \prod_{n=1}^{\infty} (1 - q^n)^{24}, \quad \tau \in \mathfrak{H},$$

be the modular discriminant function.

Proposition 3.1. Let $\tau_0 \in \mathfrak{H}$ be imaginary quadratic.

- (i) $j(\tau_0)$ is an algebraic integer.
- (ii) Let a, b and d be integers with ad > 0 and gcd(a, b, d) = 1. Then

$$\frac{a^{12}\Delta((a\tau_0+b)/d)}{\Delta(\tau_0)}$$

is an algebraic integer dividing $(ad)^{12}$.

Proof.

- (i) See [8, Chapter 5, Theorem 4].
- (ii) See [8, Chapter 12, Theorem 4] or [4].

Remark 3.2. Case (ii) is the most important special case of the prime factorizations of $\Delta(\alpha \tau_0)/\Delta(\tau_0)$ ($\alpha \in M_2^+(\mathbb{Z})$); this was proved by Hasse for all factorizations.

Proposition 3.3. Let m be a positive integer and $\tau_0 \in \mathfrak{H}$ be imaginary quadratic.

- (i) $\sqrt{m\eta(m\tau_0)/\eta(\tau_0)}$ is an algebraic integer dividing \sqrt{m} .
- (ii) $2g_{(1/2,1/2)}(m\tau_0)/g_{(1/2,1/2)}(\tau_0)$ is an algebraic integer dividing 4. In particular, if m is odd, then $g_{(1/2,1/2)}(m\tau_0)/g_{(1/2,1/2)}(\tau_0)$ is a unit.

Proof. (i) Applying Proposition 3.1 (ii) with (a, b, d) = (m, 0, 1), we see that

$$m^{12} \frac{\Delta(m\tau_0)}{\Delta(\tau_0)} = \left(\sqrt{m} \frac{\eta(m\tau_0)}{\eta(\tau_0)}\right)^{24}$$

is an algebraic integer dividing m^{12} . We then get the assertion by taking the 24th root.

(ii) We obtain by Lemma 2.6 (ii) that

$$2\frac{g_{(1/2,1/2)}(m\tau_0)}{g_{(1/2,1/2)}(\tau_0)} = e^{-\pi i/4}g_{(0,1/2)}(\tau_0)g_{(1/2,0)}(\tau_0)g_{(1/2,1/2)}(\tau_0)\frac{g_{(1/2,1/2)}(m\tau_0)}{g_{(1/2,1/2)}(\tau_0)}$$
$$= e^{-\pi i/4}(g_{(0,1/2)}(\tau_0)g_{(1/2,0)}(\tau_0))g_{(1/2,1/2)}(m\tau_0).$$

By Propositions 2.2 (i) and 3.1 (i) we know that the values $g_{(0,1/2)}(\tau_0)g_{(1/2,0)}(\tau_0)$, $g_{(1/2,1/2)}(\tau_0)$, $g_{(0,1/2)}(m\tau_0)g_{(1/2,0)}(m\tau_0)$ and $g_{(1/2,1/2)}(m\tau_0)$ are algebraic integers. Moreover, since

$$(g_{(0,1/2)}(\tau_0)g_{(1/2,0)}(\tau_0))g_{(1/2,1/2)}(\tau_0) = (g_{(0,1/2)}(m\tau_0)g_{(1/2,0)}(m\tau_0))g_{(1/2,1/2)}(m\tau_0)$$
$$= 2e^{\pi i/4}$$

by Lemma 2.6 (ii), both $g_{(0,1/2)}(\tau_0)g_{(1/2,0)}(\tau_0)$ and $g_{(1/2,1/2)}(m\tau_0)$ are algebraic integers dividing 2. Hence, the value $2g_{(1/2,1/2)}(m\tau_0)/g_{(1/2,1/2)}(\tau_0)$ is an algebraic integer dividing $2 \cdot 2 = 4$.

Next, suppose that $m \ (m \ge 3)$ is odd. Recall the relation

$$\frac{g_{(1/2,1/2)}(m\tau)}{g_{(1/2,1/2)}(\tau)} = (-1)^{(m-1)/2} \prod_{k=1}^{m-1} g_{(1/2,1/2+k/m)}(\tau)$$

given in Lemma 2.6 (iii). Since each vector

$$\left(\frac{1}{2}, \frac{1}{2} + \frac{k}{m}\right)$$

has a composite primitive denominator, $g_{(1/2,1/2+k/m)}(\tau)$ is a modular unit over \mathbb{Z} by Proposition 2.2 (ii); hence, so is $g_{(1/2,1/2)}(m\tau)/g_{(1/2,1/2)}(\tau)$. Therefore, the value $g_{(1/2,1/2)}(m\tau_0)/g_{(1/2,1/2)}(\tau_0)$ is a unit by Proposition 3.1 (i).

Now we are ready to prove Theorem 1.2. Let m be a positive integer and let $\tau_0 \in \mathfrak{H}$ be imaginary quadratic. By Lemma 2.6 (i) we have

$$2\sqrt{m}\frac{\varphi(m\tau_0)}{\varphi(\tau_0)} = \sqrt{m}\frac{\eta(m\tau_0)}{\eta(\tau_0)} \cdot 2\frac{g_{(1/2,1/2)}(m\tau_0)}{g_{(1/2,1/2)}(\tau_0)}.$$

Thus, it follows from Proposition 3.3 (i) and (ii) that $2\sqrt{m}\varphi(m\tau_0)/\varphi(\tau_0)$ is an algebraic integer dividing $4\sqrt{m}$. Likewise, if m is odd, then

$$\sqrt{m} \frac{\varphi(m\tau_0)}{\varphi(\tau_0)} = \sqrt{m} \frac{\eta(m\tau_0)}{\eta(\tau_0)} \cdot \frac{g_{(1/2,1/2)}(m\tau_0)}{g_{(1/2,1/2)}(\tau_0)}$$
(3.1)

is an algebraic integer dividing \sqrt{m} . This completes the proof of Theorem 1.2.

On the other hand, when $\tau_0 = ni$ we are able to improve Theorem 1.1 as a corollary.

Corollary 3.4. Let m and n be positive integers. If m is odd, then $\sqrt{m}\varphi(mni)/\varphi(ni)$ is an algebraic integer dividing \sqrt{m} , while if m is even, then $2\sqrt{m}\varphi(mni)/\varphi(ni)$ is an algebraic integer dividing $4\sqrt{m}$.

Remark 3.5. Berndt *et al.* [2] used only the argument of Proposition 3.1 (ii) in order to achieve Theorem 1.1.

4. Proof of Theorem 1.3

Lemma 4.1. Let $m \ (m \ge 2)$ be an integer. Then we have the following identities.

(i)
$$\prod_{\substack{a,b\in\mathbb{Z},\\0\leqslant a,b< m,\ (a,b)\neq (0,0)}}g_{(a/m,b/m)}(\tau)^{12m}=m^{12m}.$$

(ii)
$$\prod_{k=1}^{m-1} g_{(0,k/m)}(\tau) = \mathrm{i}^{m-1} \left(\sqrt{m} \frac{\eta(m\tau)}{\eta(\tau)} \right)^2.$$

Proof. (i) See [7, Example, p. 45].

(ii) We deduce from the definition (1.3) that

$$\begin{split} \prod_{k=1}^{m-1} g_{(0,k/m)}(\tau) \\ &= \prod_{k=1}^{m-1} (-q^{B_2(0)/2} \zeta_{2m}^{-k} (1 - \zeta_m^k) \prod_{n=1}^{\infty} (1 - q^n \zeta_m^k) (1 - q^n \zeta_m^{-k})) \\ &= \mathrm{i}^{m-1} m q^{(m-1)/12} \prod_{n=1}^{\infty} \left(\frac{1 - q^{mn}}{1 - q^n} \right)^2 \\ &\qquad \qquad \text{by the identity } \frac{1 - X^m}{1 - X} = 1 + X + \dots + X^{m-1} = \prod_{k=1}^{m-1} (1 - X \zeta_m^k) \\ &= \mathrm{i}^{m-1} \left(\sqrt{m} \frac{\eta(m\tau)}{\eta(\tau)} \right)^2 \quad \text{by the definition (1.1)}. \end{split}$$

Remark 4.2. Let $\tau_0 \in \mathfrak{H}$ be imaginary quadratic. By Propositions 2.2 (i), 3.1 (i) and Lemma 4.1 (i) we see that $\prod_{k=1}^{m-1} g_{(0,k/m)}(\tau_0)$ is an algebraic integer dividing m. It then follows from Lemma 4.1 (ii) that $\sqrt{m}\eta(m\tau_0)/\eta(\tau_0)$ is an algebraic integer dividing \sqrt{m} . This gives another proof of Proposition 3.3 (i) without using the usual argument of Hasse (namely, Proposition 3.1 (ii)).

From now on, we let K be an imaginary quadratic field and θ_K be as in (1.4). We denote by H_K and $K_{(N)}$ the Hilbert class field and the ray class field modulo N ($N \ge 1$) of K, respectively.

Proposition 4.3 (main theorem of complex multiplication).

$$K_{(N)} = K\mathcal{F}_N(\theta_K) = K(h(\theta_K)) : h \in \mathcal{F}_N$$
 is defined and finite at θ_K).

Proof. See [8, Chapter 10, Corollary to Theorem 2] or [11, Chapter 6].

Proposition 4.4.

- (i) If N $(N \ge 2)$ is an integer with more than one prime ideal factor in K, then $g_{(0,1/N)}(\theta_K)^{12N}$ is a unit in $K_{(N)}$.
- (ii) If $m \ (m \ge 3)$ is an odd integer, then $(\sqrt{m}\varphi(m\theta_K)/\varphi(\theta_K))^2$ is an algebraic integer in $K_{(48m^2)}$.

Proof. (i) See [9, §6].

(ii) We see that

$$\left(\sqrt{m}\frac{\varphi(m\tau)}{\varphi(\tau)}\right)^{2} = \left(\sqrt{m}\frac{\eta(m\tau)}{\eta(\tau)}\right)^{2} \left(\frac{g_{(1/2,1/2)}(m\tau)}{g_{(1/2,1/2)}(\tau)}\right)^{2} \text{ by Lemma 2.6 (i)}$$

$$= (-1)^{(1-m)/2} \prod_{k=1}^{m-1} g_{(0,k/m)}(\tau)g_{(1/2,1/2+k/m)}(\tau)^{2}$$
by Lemmas 4.1 (ii) and 2.6 (iii). (4.1)

And $(\sqrt{m}\varphi(m\tau)/\varphi(\tau))^2$ belongs to \mathcal{F}_{48m^2} by Proposition 2.2 (iii). Therefore,

$$(\sqrt{m}\varphi(m\theta_K)/\varphi(\theta_K))^2$$

lies in $K_{(48m^2)}$ by Proposition 4.3, which is an algebraic integer by Theorem 1.2.

Remark 4.5. In [5] Jung *et al.* showed that if K is an imaginary quadratic field other than $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, then the singular value $g_{(0,1/N)}(\theta_K)^{12N}$ in Proposition 4.4 (i) is in fact a primitive generator of $K_{(N)}$ over K, which is called a *Siegel-Ramachandra invariant* (see [7, Chapter 11, § 1] or [9]).

On the other hand, we have the following explicit description of Shimura's reciprocity law, due to Stevenhagen [12], which connects the class field theory with the theory of modular functions.

Proposition 4.6 (Shimura's Reciprocity Law). Let $\min(\theta_K, \mathbb{Q}) = X^2 + BX + C \in \mathbb{Z}[X]$. For every positive integer N the matrix group

$$W_{K,N} = \left\{ \begin{pmatrix} t - Bs & -Cs \\ s & t \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}) \colon t, s \in \mathbb{Z}/N\mathbb{Z} \right\}$$

gives rise to the surjection

$$W_{K,N} \to \operatorname{Gal}(K_{(N)}/H_K),$$

 $\alpha \mapsto (h(\theta_K) \mapsto h^{\alpha}(\theta_K)),$

where $h \in \mathcal{F}_N$ is defined and finite at θ_K . Its kernel is given by

$$\operatorname{Ker}_{K,N} = \begin{cases} \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\} & \text{if } K = \mathbb{Q}(\sqrt{-1}), \\ \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\} & \text{if } K = \mathbb{Q}(\sqrt{-3}), \\ \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} & \text{otherwise.} \end{cases}$$

Proof. See $[12, \S 3]$.

Proposition 4.7. If $m \ (m \ge 2)$ is an integer whose prime factors split in K, then $\sqrt{m}\eta(m\theta_K)/\eta(\theta_K)$ is a unit.

Proof. We get from Lemma 4.1 (ii) that

$$\left(\sqrt{m}\frac{\eta(m\theta_K)}{\eta(\theta_K)}\right)^{24m} = \prod_{k=1}^{m-1} g_{(0,k/m)}(\theta_K)^{12m}.$$
(4.2)

For each $1 \leq k \leq m-1$, let us write

$$\frac{k}{m} = \frac{a}{b}$$
 with relatively prime positive integers a and b.

Note that b has more than one prime ideal factor in K, by the assumption on m. Thus, $g_{(0,1/b)}(\theta_K)^{12b}$ is a unit in $K_{(b)}$, by Proposition 4.4 (i). On the other hand, since

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in W_{K,b} / \operatorname{Ker}_{K,b} \simeq \operatorname{Gal}(K_{(b)} / H_K),$$

we deduce that

$$(g_{(0,1/b)}(\theta_K)^{12b})^{(a\ 0\ a)} = (g_{(0,1/b)}(\tau)^{12b})^{(a\ 0\ a)}(\theta_K) \quad \text{by Proposition 4.6}$$

$$= \Big(g_{(0,1/b)(a\ 0\ a)}(\tau)^{12b}\Big)(\theta_K) \quad \text{by Proposition 2.4 (iv)}$$

$$= g_{(0,a/b)}(\theta_K)^{12b},$$

which is also a unit. Therefore, $\sqrt{m}\eta(m\theta_K)\eta(\theta_K)$ becomes a unit, by the relation (4.2).

П

Now, we can prove Theorem 1.3. Let m ($m \ge 3$) be an odd integer whose prime factors split in K. Since both $\sqrt{m}\eta(m\theta_K)/\eta(\theta_K)$ and $g_{(1/2,1/2)}(m\theta_K)/g_{(1/2,1/2)}(\theta_K)$ are units by Propositions 4.7 and 3.3 (ii), the conclusion follows from (3.1) with $\tau_0 = \theta_K$.

Corollary 4.8. Let $m \ (m \ge 3)$ be an odd integer whose prime factors p satisfy $p \equiv 1 \pmod{4}$. Then $\sqrt{m}\varphi(mi)/\varphi(i)$ is a unit.

Proof. If we take $K = \mathbb{Q}(\sqrt{-1})$, then $\theta_K = i$. For each prime factor p of m, the fact that $p \equiv 1 \pmod{4}$ implies that p splits in K [3, Corollary 5.17]. Therefore, we get the assertion by applying Theorem 1.3.

We close this section by evaluating $\sqrt{m}\varphi(mi)/\varphi(i)$ when m=3 and 5, explicitly.

Example 4.9. We shall first estimate $\sqrt{3}\varphi(3i)/\varphi(i)$. If $K = \mathbb{Q}(\sqrt{-1})$, then $\theta_K = i$ and $H_K = K$ [3, Theorem 12.34]. By Proposition 4.6 we have

$$Gal(K_{(6)}/K) \simeq W_{K,6} / \operatorname{Ker}_{K,6}$$

$$= \left\{ \alpha_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix}, \ \alpha_4 = \begin{pmatrix} 3 & -2 \\ 2 & 3 \end{pmatrix} \right\}.$$

Since

$$x = \left(\sqrt{3} \frac{\varphi(3i)}{\varphi(i)}\right)^{24} = g_{(0,1/3)}(i)^{12} g_{(0,2/3)}(i)^{12} g_{(1/2,5/6)}(i)^{24} g_{(1/2,7/6)}(i)^{24} \quad \text{by (4.1)}$$
$$= g_{(0,1/3)}(i)^{24} g_{(1/2,1/6)}(i)^{48} \quad \text{by Proposition 2.4 (i) and (iii)}$$
$$\approx 72\,954,$$

x lies in $K_{(6)}$ by Propositions 2.2 (iii) and 4.3. Hence, its conjugates $x_k = x^{\alpha_k}$ $(1 \le k \le 4)$ over K are

$$x_1 = g_{(0,1/3)}(i)^{24} g_{(1/2,1/6)}(i)^{48},$$

$$x_2 = g_{(2/3,1/3)}(i)^{24} g_{(5/6,1/6)}(i)^{48},$$

$$x_3 = g_{(1/3,1/3)}(i)^{24} g_{(1/6,1/6)}(i)^{48},$$

$$x_4 = g_{(2/3,0)}(i)^{24} g_{(5/6,1/2)}(i)^{48}$$

with some multiplicity by Propositions 4.6 and 2.4 (iv). We claim that the minimal polynomial of x over K has integer coefficients. Indeed, since x is a real algebraic integer by definition (1.2) and Theorem 1.2, we have

$$[\mathbb{Q}(x):\mathbb{Q}] = \frac{[K(x):K]\cdot[K:\mathbb{Q}]}{[K(x):\mathbb{Q}(x)]} = \frac{[K(x):K]\cdot 2}{2} = [K(x):K],$$

from which the claim follows. Thus, x is a zero of the polynomial

$$(X - x_1)(X - x_2)(X - x_3)(X - x_4) = (X^2 - 72954X + 729)^2$$

whose coefficients can be determined by numerical approximation with the aid of a computer. Therefore, we obtain

$$\sqrt{3} \frac{\varphi(3i)}{\varphi(i)} = \sqrt[24]{x} = \sqrt[24]{36477 + 21060\sqrt{3}} = \sqrt[4]{3 + 2\sqrt{3}}.$$

Example 4.10. Next, we consider $\sqrt{5}\varphi(\sqrt{5}i)/\varphi(i)$. Let $K = \mathbb{Q}(\sqrt{-1})$. By Proposition 4.6 we have

$$Gal(K_{(10)}/K)$$

$$\simeq W_{K,10}/ Ker_{K,10}$$

$$= \left\{ \alpha_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 & -4 \\ 4 & 1 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 1 & -6 \\ 6 & 1 \end{pmatrix}, \ \alpha_4 = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}, \right.$$

$$\alpha_5 = \begin{pmatrix} 2 & -5 \\ 5 & 2 \end{pmatrix}, \ \alpha_6 = \begin{pmatrix} 2 & -7 \\ 7 & 2 \end{pmatrix}, \ \alpha_7 = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \ \alpha_8 = \begin{pmatrix} 4 & -5 \\ 5 & 4 \end{pmatrix} \right\}.$$

Since

$$x = \left(\sqrt{5} \frac{\varphi(5i)}{\varphi(i)}\right)^{120} = g_{(0,1/5)}(i)^{120} g_{(0,2/5)}(i)^{120} g_{(1/2,1/10)}(i)^{240} g_{(1/2,3/10)}(i)^{240}$$
 by Proposition 2.4 (i) and (iii)

 $\approx 41473935220454921602871195774259272002$

x lies in $K_{(10)}$ by Propositions 2.2 (iii) and 4.3. Its conjugates $x_k = x^{\alpha_k}$ $(1 \le k \le 8)$ over K are

$$x_{1} = x_{5} = x_{7} = x_{8} = g_{(0,1/5)}(i)^{120}g_{(0,2/5)}(i)^{120}g_{(1/2,1/10)}(i)^{240}g_{(1/2,3/10)}(i)^{240},$$

$$x_{2} = g_{(4/5,1/5)}(i)^{120}g_{(3/5,2/5)}(i)^{120}g_{(9/10,1/10)}(i)^{240}g_{(7/10,3/10)}(i)^{240},$$

$$x_{3} = x_{6} = g_{(1/5,1/5)}(i)^{120}g_{(2/5,2/5)}(i)^{120}g_{(1/10,1/10)}(i)^{240}g_{(3/10,3/10)}(i)^{240},$$

$$x_{4} = g_{(3/5,2/5)}(i)^{120}g_{(1/5,4/5)}(i)^{120}g_{(3/10,7/10)}(i)^{240}g_{(9/10,1/10)}(i)^{240},$$

with some multiplicity by Propositions 4.6 and 2.4 (iv). So x is a zero of the polynomial

$$(X^2 - 41473935220454921602871195774259272002X + 1)^4$$

which shows that x is a unit. Therefore, we get

$$\sqrt{5} \frac{\varphi(5i)}{\varphi(i)} = \sqrt[120]{x}$$

$$= \sqrt[120]{20736967610227460801435597887129636001}
+9273853844735993106095069260699853880\sqrt{5}$$

$$= \sqrt[10]{682 + 305\sqrt{5}}.$$

Acknowledgements. This research was partly supported by the Basic Science Research Program through the NRF of Korea funded by MEST (2010-0001654). D.H.S. is partly supported by a TJ Park Postdoctoral Fellowship.

References

- 1. B. C. Berndt, Ramanujan's notebooks, III (Springer, 1991).
- B. C. BERNDT, H. H. CHAN AND L. C. ZHANG, Ramanujan's remarkable product of theta-functions, Proc. Edinb. Math. Soc. 40 (1997), 583-612.
- 3. D. A. Cox, Primes of the form $x^2 + ny^2$: Fermat, class field, and complex multiplication (Wiley-Interscience, New York, 1989).
- 4. M. DEURING, Die Klassenkörper der Komplexen Multiplikation, Enzyklopädie der mathematischen Wissenschaften, Volume 12, Issue 10, Part II (Teubner, Stuttgart, 1958).
- 5. H. Y. Jung, J. K. Koo and D. H. Shin, Ray class invariants over imaginary quadratic fields, *Tohoku Math. J.* **63** (2011), 413–426.
- 6. J. K. KOO AND D. H. SHIN, On some arithmetic properties of Siegel functions, *Math. Z.* **264** (2010), 137–177.
- D. Kubert and S. Lang, Modular units, Grundlehren der mathematischen Wissenschaften, Volume 244 (Spinger, 1981).
- 8. S. LANG, Elliptic functions, 2nd edn (Spinger, 1987).
- K. RAMACHANDRA, Some applications of Kronecker's limit formula, Annals Math. (2) 80 (1964), 104–148.
- S. RAMANUJAN, *Notebooks*, two volumes (Tata Institute of Fundamental Research, Bombay, 1957).
- 11. G. SHIMURA, Introduction to the arithmetic theory of automorphic functions (Iwanami Shoten and Princeton University Press, 1971).
- P. STEVENHAGEN, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, in Class field theory: its centenary and prospect, Advanced Studies in Pure Mathematics, Volume 30, pp. 161–176 (Mathematical Society of Japan, Tokyo, 2001).