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Abstract. We study the algebra of difference operators that com-
mute with the two-body Ruijsenaars operator, a q-deformation of
the Lamé differential operator, for generic values of the deforma-
tion parameter. The algebra is commutative. It is the algebra of
polynomial functions on an affine hyperelliptic curve Y 2 = P (X2).
We also compute the difference Galois group of the eigenvalue prob-
lem.

1. Introduction

We study the eigenvalue problem Lψ = ǫψ for the “q-Lamé” differ-
ence operator L in one complex variable λ:

Lψ(λ) =
θ(λ− γm, τ)

θ(λ, τ)
ψ(λ+ γ) +

θ(λ+ γm, τ)

θ(λ, τ)
ψ(λ− γ).

Here γ is a complex parameter, τ is a parameter in the upper half
plane, and m is a nonnegative integer.
The theta function is Jacobi’s θ1 function

θ(z, τ) = −
∑

j∈Z+ 1

2

eπij
2τ+2πij(z+ 1

2
).

The difference operator L appears in Sklyanin’s work [S] on the repre-
sentation theory of his elliptic algebra. In fact, if we replace the theta
functions in the numerators by the other three Jacobi functions θα, we
get difference operators that obey with L the commutation relations of
Sklyanin’s algebra.

1Permanent address: D-MATH, ETH-Zentrum, 8092 Zürich, Switzerland.
2Supported in part by NSF grant DMS-9501290.
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The operator L also appears as the simplest non trivial quantum rel-
ativistic Calogero–Moser Hamiltonian, introduced by Ruijsenaars [R]:
L is conjugated to the Ruijsenaars two-body Hamiltonian, and its semi-
classical (or nonrelativistic) version is the Lamé differential operator.
More precisely, as γ → 0, L = 2Id + const γ2ℓ+O(γ4), and ℓ is conju-
gated to

−
d2

dλ2
+m(m+ 1)℘(λ) + const,

the Lamé differential operator of the classical theory of ellipsoidal har-
monics, see [WW]. Here ℘ denotes Weierstrass’ doubly periodic func-
tion with periods 1 and τ .
The eigenvalue problem for the Lamé operator has been studied in

the classical literature. In particular, Hermite gave a formula for eigen-
functions which we would call today of “Bethe ansatz” type [WW]: he
wrote a simple function depending on m parameters, and proved that
this function is an eigenfunction if the parameters are solutions of a set
of m − 1 algebraic equations (or m equations if one wants to specify
the eigenvalue). He also showed that all eigenfunctions with generic
eigenvalue are linear combinations of eigenfunctions obtained by this
construction.
In more modern terminology, the Lamé operator is an example of an

“algebraically integrable” or “finite gap” Schrödinger operator. The
meaning of this is the content of the following theorem, which follows
from the classical results, but whose true paternity appears difficult to
establish, see [DMN], [CV].

Theorem 1.1. There exists a differential operator ℓ2m+1 of order 2m+
1, such that the algebra A of differential operators with meromorphic
coefficients commuting with ℓ is generated by ℓ and ℓ2m+1. Moreover A
is commutative and ℓ 7→ x, ℓ2m+1 7→ y defines an isomorphism from A
to C[x, y]/(y2 − p(x))C[x, y], for some polynomial p of degree 2m+ 1.

In other words the algebra of differential operators commuting with
the Lamé operator is isomorphic to the algebra of polynomial functions
on an affine hyperelliptic curve. This curve is called the spectral curve
of the differential operator ℓ. Hermite’s results can be rephrased as
saying that the spectral curve is birational to a subvariety of the mth

symmetric power of the elliptic curve Eτ = C/Z+ τZ.
In [KZ], Krichever and Zabrodin considered the operator L, and

showed that eigenfunctions are parametrized by points on a hyperel-
liptic curve.
In [FV], we showed that L is proportional to the transfer matrix of

the 2m + 1 irreducible representation of the elliptic quantum group
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Eτ,γ/2(sl2). The Bethe ansatz for this transfer matrix generalizes Her-
mite’s results to the difference case, see [FV], Theorem 3.1, and gives
a formula for eigenfunctions of L parametrized by a Hermite–Bethe
curve Y given by m− 1 equations for m variables on the elliptic curve
Eτ . In the formulation of [KZ], we characterize double Bloch functions
in terms of their zeros. The results in [KZ] and [FV] are complemen-
tary: an “additive” formula for eigenfunctions is given in [KZ], while
a “multiplicative” formula is given in [FV]. In both cases the formula
depend on parameters on a hyperelliptic curve.
In this paper, we study the difference operators commuting with

L. Our result is the following. Let Dγ be the algebra of difference
operators of the form

Mψ(λ) =
b

∑

j=a

Bj(λ)ψ(λ+ jγ), a ≤ b ∈ Z

with 1-periodic meromorphic coefficients Bj . If Ba and Bb are non
zero, we say that M has degree b and length b− a. The degree and the
length of a product is the sum of the degrees and of the lengths of the
factors, respectively.

Theorem 1.2. Suppose that γ is an irrational number. Then there
exists a difference operator N of degree 2m+1 and length 4m+2, such
that the algebra A of operators in Dγ commuting with L is generated
by L and N . Moreover A is commutative and L 7→ X, N 7→ Y defines
an isomorphism from A to C[X, Y ]/(Y 2 − P (X2))C[X, Y ], for some
polynomial P of degree 2m+ 1.

In the difference case, the spectral curve has two involutive auto-
morphisms. The automorphism (X, Y ) 7→ (X,−Y ) corresponds to the
symmetry Sψ(λ) = ψ(−λ) of the eigenvalue problem, as in the differ-
ential case. The automorphism (X, Y ) 7→ (−X,−Y ) corresponds to
the involution USψ(λ) = eπiλ/γψ(−λ) which maps eigenfunctions to
eigenfunctions with opposite eigenvalue.
The operator N can be written explicitly in terms of a remarkable

family of difference operators Ml commuting with L:

Theorem 1.3. Suppose that γ 6= 0 mod Z + τZ. For each generic
l ∈ C there exists a difference operator Ml of the form

Mlψ(λ) =
m
∑

k=0

Al
l−m+2k(λ/γ)ψ(λ+ (l −m+ 2k)γ).
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These operators commute pairwise and obey the relations

LMl =
θ(γ(l −m), τ)

θ(γl, τ)
Ml+1 +

θ(γ(l +m), τ)

θ(γl, τ)
Ml−1,

and the product rules

MlMk =
∑

j

Al
j(k)Mk+j.

Moreover, L is proportional to Mm−1 and N is proportional to Mm+1−
M−m−1.

We can then say, up to change of variable, that Ml is an operator
eigenfunction of the Lamé operator with “eigenvalue” L.
The eigenvalue problem Lψ = ǫψ becomes, after the change of inde-

pendent variable ψ(λ) = u(λ)
∏m

j=1 θ(λ− jγ),

u(λ+ γ) +
θ(λ+ γm, τ)θ(λ− γ(m+ 1), τ)

θ(λ, τ)θ(λ− γ, τ)
u(λ− γ) = ǫ u(λ).

This equation has elliptic coefficients. Note incidentally that if γ ∈
Z+ τZ, the equation has constant coefficients and can be easily solved
in terms of exponential functions.
In the last section of this paper we compute the difference Galois

group, an analogue of the differential Galois group of differential equa-
tions, of this equation in the case of irrational γ. It is the Galois
group of the extension of the difference field of elliptic functions gen-
erated by the solutions. It turns out that this Galois group is Abelian,
in agreement with the philosophy of [BEG], who characterized alge-
braically integrable differential operators by the Abelian nature of the
corresponding differential Galois groups.

2. Elliptic number notation

We assume that γ 6= 0 mod Z + τZ. It is convenient to introduce
a new variable x = λ/γ. In this variable, the step of the difference
operator L is integer, and the periods are ω = γ−1 and ω′ = τγ−1. The
“elliptic number”

[x] =
θ(γx, τ)

θ(γ, τ)

is an odd entire function of x with zeros on the lattice Zω + Zω′ and
has transformation properties

[x+ ω] = −[x], [x+ ω′] = −e−πiτ−2πiγx[x] = −e−
πi
ω
(ω′+2x)[x].
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In this variable, which we use in the rest of this paper, the q-Lamé
operator reads

L =
[x−m]

[x]
T1 +

[x+m]

[x]
T−1, Tjψ(x) = ψ(x+ j).

It will also be convenient to introduce “elliptic binomial coefficients”
and “elliptic factorials”:
[x

n

]

=
[x][x − 1] · · · [x− n+ 1]

[n][n− 1] · · · [1]
,

[x

0

]

= 1, [n]! = [1][2] · · · [n].

3. Bethe eigenfunctions

We review the results of [FV] on the q-Lamé operator. We as-
sume that γ 6= 0 mod Z + τZ. Let us introduce m functions of
t = (t1, . . . , tm) ∈ Cm:

bi(t) =
[ti −m]

[ti +m]

∏

j:j 6=i

[tj − ti − 1]

[tj − ti + 1]
, i = 1, . . . , m.

Theorem 3.1. [FV] Let (t1, . . . , tm, c) be a solution of the Bethe ansatz
equations:

bi(t) = e2γc, i = 1, . . . , m, (1)

such that ti 6= tj mod ωZ+ ω′Z, if i 6= j. Then

ψ(x) = ecγx
m
∏

j=1

[x+ tj ], (2)

is a solution of the q-Lamé equation [x−m]
[x]

ψ(x + 1) + [x+m]
[x]

ψ(x − 1) =

ǫLψ(x), with eigenvalue

ǫL(t) = e−γc [2m]

[m]

m
∏

j=1

[tj +m− 1]

[tj +m]
.

Remark. What was called tj in [FV] is here (tj − 1/2)γ. Also, γ = 2η
in the notation of [FV].
Note that the functions bj have the propery that, for all i, j,

bj(t1, . . . , ti + ω, . . . , tm) = bj(t1, . . . , ti, . . . , tm),

bj(t1, . . . , ti + ω′, . . . , tm) = e4πiγbj(t1, . . . , ti, . . . , tm).

Thus if (t1, . . . , tm, c) is a solution then (t1, . . . , ti+ω, . . . , c) and (t1, . . . , ti+
ω′, . . . , c+2πi) are also solutions. Moreover, the eigenfunctions are the
same for these solutions. Also, the equations and the eigenfunctions
are symmetric under permutations of the t′js. We thus have an action
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of the semidirect product Γ = (ωZ + ω′Z)m×̃Sm on Cm × C, and the
Bethe ansatz equations take place in the quotient: The set of solutions
is

X∞ = {(t, c) ∈ (Cm −D)× C | bj(t) = e2γc, j = 1, . . . , m}/Γ ,

D = ∪i<j{ti = tj mod ωZ+ ω′Z}.

On X∞ we have a Z-action (t, c) 7→ (t, c + πi/γ). The quotient is the
set

X = X∞/Z

determined by the equations bi(t) = bj(t). It is an algebraic subvariety
of the symmetric power of our elliptic curve. The eigenvalue ǫL is a
two-valued function on X . It is a single-valued meromorphic function
on the two-fold covering

X2 = X∞/2Z.

The eigenfunctions associated to points in X∞ which have the same
projection on X2 are proportional, in the sense that they are related
by multiplication by a 1-periodic function.
In other words, a point in X2 parametrizes a one-dimensional vector

space of eigenfunctions over the field K of 1-periodic meromorphic
functions. Note that these eigenfunctions have all the same eigenvalue.
Eigenfunctions associated to points in X2 with the same projection

on X are related by the map U : ψ 7→ eπixψ. They have opposite
eigenvalues.
These varieties can be described rather explicitly in the neighborhood

of c = ∞:

Lemma 3.2. [FV] Let X̄ be the closure of X in the symmetric power
SmE of the elliptic curve C/ωZ+ω′Z. Then X̄ contains the two points
P+ = (−m+ 1, . . . ,−1, 0) and P− = (m− 1, . . . , 1, 0). The irreducible
component(s) of X containing P+ and P− form a curve Y which is
smooth at these two points. In terms of a local coordinate vanishing
at P+, the eigenvalue has the form ǫL = const u−1/2(1 + O(u)), and
e2cγ = const u−1 +O(1).

Let Y2 ⊂ X2 be the double covering of Y . It is a curve on which
the eigenvalue is a single-valued function. The two points P+, P−

are related by the symmetry (t, c) 7→ (−t,−c) of the Bethe ansatz
equations.

Theorem 3.3. [FV] Suppose that γ ∈ C is generic. For generic ǫ ∈ C,
there are precisely two solutions

(t1, . . . , tm, c) and (−t1, . . . ,−tm,−c),
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of the Bethe ansatz equations (1) in X∞ with given eigenvalue ǫL = ǫ.
The corresponding eigenfunctions ψ± are linearly independent over the
field K of 1-periodic meromorphic functions of x, and all solutions of
the q-Lamé equation Lψ = ǫLψ are linear combinations of ψ+, ψ− with
coefficients in K.

Definition: The (many-valued) function on X × C

ψ(t, x) = ecγx
m
∏

j=1

[x+ tj ]

[tj ]

where c is determined by the Bethe ansatz equations, is called the
Baker–Akhiezer function.

The Baker–Akhiezer function is single-valued on X∞ × C.

Lemma 3.4. If M =
∑

j Aj(x)Tj is a difference operator with finitely

many non-zero coefficients Aj such that Mψ(t, ·) = 0 for all t on the
curve Y , then M = 0.

Proof : We consider the equation Mψ(t, x) = 0 in the vicinity of the
point P+ of Lemma 3.2: let k be the largest number so that Ak 6= 0.
Since ψ(t, x+ j)/ψ(t, x) behaves as eγcj ∼ u−j/2 as u→ 0, we see that
for Mψ/ψ to vanish, it is necessary that its leading coefficient Ak(x)
vanishes, a contradiction. Thus M = 0. ✷

4. Difference operators commuting with the q-Lamé
operator

We construct a sequence of difference operators that commute with
the q-Lamé operator L. Let

Ml = Al
l−m(x)Tl−m + Al

l−m+2(x)Tl−m+2 + · · ·+ Al
l+m(x)Tl+m

Usually l is an integer, but we will occasionally take l to be a general
complex number. For k = 0, . . . , m,

Al
l−m+2k(x) = (−1)k

[m

k

]

m−k−1
∏

j=0

[l +m− j][x+m− j]

[x+ l + k − j]

×

k−1
∏

j=0

[l −m+ j][x−m+ j]

[x+ l −m+ k + j]
,

with the understanding that a product over the empty set is one.

Theorem 4.1.

(i) Mm = [2m]!
[m]!

Id, Mm−1 =
[2m−1]!
[m−1]!

L.
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(ii) For all complex numbers l, k, MlMk =MkMl.

Proof : (i) If l = m, all coefficient Al
l−m+2k with k 6= 0 vanish because

of the factor [l −m] in the second product. If k = 0,

Am
0 (x) =

[m

0

]

m−1
∏

j=0

[2m− j] =
[2m]!

[m]!

Similarly, if l = m− 1, the only non-vanishing coefficients are Al
1(x) =

[2m− 1]![x−m]/[m− 1]![x] = Al
−1(−x).

(ii) We first show that Ml commutes with the q-Lamé operator L. The
equation ML = LM for an operator of the form M =

∑

AjTj is
equivalent to the identities

Aj(x)
[x+j+m]

[x+j]
+Aj−2(x)

[x+j−2−m]

[x+j−2]
= Aj(x−1)

[x+m]

[x]
+Aj−2(x+1)

[x−m]

[x]
,

for its coefficients. We have to show that our Al
j, which are zero except

for j in the set {l − m, l − m + 2, . . . , l + m}, are a solution of this
equation. If we insert the formulae, and cancel common factors, we see
that the identity we have to prove is

[l−m+k−1][x−m+k−1][x+l+2k]

[k][x+l+k]
−

[l+k][x+k][x+l+2k−2m−2]

[m−k+1][x+l+k−m−1]

=
[l−m+k−1][x+k][x−m−1][x+l+2k−m−1]

[k][x][x+l+k−m−1]

−
[l+k][x+m+1][x+k−m−1][x+l+2k−m−1]

[m−k+1][x][x+l+k]
.

We make use of the properties of elliptic numbers under translations
by ω = γ−1 and ω′ = γ−1τ . Dividing both sides of this equation by
[x + k] yields an equation, such that all terms are periodic functions
of x with period ω and are multiplied by exp(2πiγ(m− k + 1)), if x is
replaced by x + ω′. The (simple) poles are at x = 0,−l − k,−k and
−l+m−k+1. However, the difference between the left-hand side and
right-hand side has vanishing residue at these poles, as is easily checked,
for any generic value of k. But if α is a generic complex number, the
only entire holomorphic function f such that f(z + ω) = f(z) and
f(z + ω′) = αf(z) is f = 0. Thus the identity is proved for generic,
and, by analiticity for all, values of k.
To complete the proof of the commutativity of Ml and L we have

to check the identity for the coefficients separately in the two extreme
cases j = l − m and j = l + m + 2, for which only two terms are
non-zero. This is easily done.
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This completes the proof of (ii) if l = m − 1. To prove the general
case, note that for any point t ∈ X ,

LMlψ(t, ·) =MlLψ(t, ·) = ǫL(t)Mlψ, (t, ·).

Hence Mlψ(t, ·) is an eigenfunction of L with eigenvalue ǫL(t). By
Theorem 3.3, it is proportional to ψ(t, ·). The same holds for Mk. It
follows that for generic t, [Ml,Mk]ψ(t, ·) = 0. Lemma 3.4 implies then
that [Ml,Mk] = 0. ✷

Lemma 4.2. Let S and U be the operators Sψ(x) = ψ(−x) and Uψ(x) =
eπixψ(x). Then, for all l, MlS = SM−l and UMl = eπi(l−m)MlU .

Proof : The first statement follows from the relation TjS = ST−j and
the identity

Al
j(x) = A−l

−j(−x).

The second follows from the relation UTl−m+2k = eπi(l−m)Tl−m+2kU . ✷

Lemma 4.3. Suppose that γ is irrational and let ω = 1/γ. Let φ(x) =
∏m

k=1[x − k]. Then, for any j ∈ C, the first coefficient of any differ-

ence operatorM =
∑l

k=0Bj−k(x)Tj−k with ω-periodic coefficients Bj−k

which commutes with L has the form Bj(x) = c φ(x)
φ(x+j)

for some constant
c.

Proof : The q-Lamé operator L can be written in the form

L = φ(x)T1φ(x)
−1 + φ(−x)T−1φ(−x)

−1.

It follows that Mφ = φ−1Mφ commutes with T1 + C(x)T−1 for some
C. Thus the coefficient of Tj in Mφ obeys the difference equation
T1f(x) = f(x) or f(x + 1) = f(x). But f is also γ−1-periodic since
M is in Dγ . If γ is irrational, it follows that f is a constant c. Thus
M = cφ(x)Tjφ(x)

−1 + · · · = cφ(x)φ(x+ j)−1Tj + · · · . ✷

Lemma 4.4. Let γ be irrational. If l ≥ m + 1 or if l ≤ −m − 1 then
the Ml has degree l +m and length 2m. If l ∈ {−m,−m + 1, . . . , m}
then Ml has degree |m− l| and length 2|m− l|.

Proof : This amounts to check when the coefficients Al
k vanish, which

is easy, given their factorized form. ✷

Lemma 4.5. Suppose that γ is irrational and let ω = 1/γ. Suppose
that j is either a generic complex number or a negative integer. Then,
any difference operator commuting with L of the form

M = Bj(x)Tj +Bj−2(x)Tj−2 + · · ·+Bj−2l(x)Tj−2l, Bj 6= 0,

with ω-periodic coefficients Bl, has length ≥ 2m.
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Proof : Let us assume that M is nonzero and has length < 2m. The
assumptions on j ensure that Aj−m−2k

j−2k (x) does not vanish identically
for k = 0, 1, 2, . . . Therefore we may subtract from M a suitable linear
combination

Mc = c0Mj−m + c1Mj−m−2 + · · ·+ cm−1Mj−m−2(m−1),

so that the result has degree ≤ j− 2m. We claim that M =Mc. Since
Mc has length ≥ 2m unless all cl vanish (see Lemma 4.4), it then follows
that M = 0, contradiction. To prove our claim, let us suppose that
M −Mc has degree d ≤ j− 2m. The coefficient of Td in M −Mc, must
have the form a φ(x)/φ(x+ d), for some constant a 6= 0. In particular,
it has a pole at x = m− d. On the other hand, this coefficient is equal
to

− c0A
j−m
d (x)− · · · − cm−1A

j−3m+2
d (x), (3)

with no contribution from M , since M has length < 2m. The terms
of this sum are of the form const Al

d(x) with d ≤ l + m − 2, i.e.,
Al

l−m+2k(x) with k ≤ m−1. The pole with largest real part of Al
l−m+2k

is x = −l + m − k, and this real part is smaller than the real part
of m − d = −l + 2m − 2k, if k ≤ m − 1. Therefore (3) is regular at
x = m− d, a contradiction. ✷

Definition: Let S be the involution Sψ(x) = ψ(−x). A difference
operator M is symmetric if MS = SM . It is antisymmetric if MS =
−SM .

Lemma 4.6. Suppose that γ is irrational. Then any symmetric oper-
ator in Dγ that commutes with L is a polynomial in L.

Proof : Suppose that M ∈ Dγ is a symmetric difference operator of
degree j that commutes with L. Let us proceed by induction. If j = 0,
M is a constant multiple of the identity by Lemma 4.3. Let j > 1. The
coefficient of Tj has then the form given in Lemma 4.3. If we subtract
cjL

j from M we obtain a symmetric difference operator of degree at
most j−1, which is a polynomial in L by the induction hypothesis. ✷

Theorem 4.7. If γ is irrational, then all operators in Dγ commuting
with L are polynomials in L and

N =Mm+1 − SMm+1S.

Proof : We proved this for symmetric operators in Lemma 4.6. Assume
that M ∈ Dγ is antisymmetric and commutes with L. If M has degree
d ≥ 2m+ 1, we may subtract a constant multiple of NLd−2m−1, which
is antisymmetric and has degree d by Lemma 4.4, to get an operator of
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smaller degree. This is possible by Lemma 4.3. Thus we may assume
that M is antisymmetric and has degree ≤ 2m. By subtracting from
M a suitable polynomial of L of degree ≤ 2m, we get an operator com-
muting with L and of the form M ′ = B−1(x)T−1 + · · ·+B−2m(x)T−2m.
To apply Lemma 4.5, we write M ′ =M ′

o +M ′
e, where M

′
o = B−1T−1 +

B−3T−3 + · · · is the sum of the odd terms. Both M ′
o, M

′
e commute

then with L, since the property of commutation with L is equivalent
to relations involving only even or odd coefficients. But both M ′

o and
M ′

e are of negative degree and length < 2m, and therefore vanish by
Lemma 4.5. ✷

Thus the algebra A is generated by L and N . Since N is antisym-
metric, its square is symmetric and by Lemma 4.6 we have a relation

N2 = Q(L)

for some polynomial Q. Comparing the degrees we see that Q has
degree 4m+2. By Lemma 4.2, N2 commutes with U , but LU = −UL.
Since the powers Lj of L are linearly independent (they have different
degree), it follows that Q(L) = P (L2) for some polynomial P of degree
2m+ 1.
We are now ready to complete the proof of Theorem 1.2. The fact

that L and N commute and obey this relation means that X 7→ L,
Y 7→ N defines a surjective homomorphism of algebras

h : C[X, Y ]/(Y 2 − P (X2))C[X, Y ] → A

Any element of the left algebra is represented uniquely by a polynomial
of the form f(X) + g(X)Y . Such a polynomial is in the kernel of
h if and only if f(L) + g(L)N vanishes. But this means that the
symmetric and antisymmetric parts f(L) and g(L)N vanish separately.
By considering the coefficient of Tj with highest j, we see inductively
that all coefficients of the polynomial f and g vanish. Thus φ is an
isomorphism.

5. Eigenvalues

In this section we compute the eigenvalues of our commuting op-
erators on the Baker–Akhiezer function ψ(t, x). This eigenvalue map
maps an element of the algebra of commuting difference operators (i.e.,
a function on the hyperelliptic curve) to a two-valued function on the
Hermite–Bethe curve Y and, as will be shown, realizes the birational
equivalence between the hyperelliptic curve and a double covering of
the Hermite–Bethe curve.
We start by describing some remarkable properties of the difference

operators Ml, l ∈ C.
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Proposition 5.1. For all generic complex l,

LMl =
[l +m]

[l]
Ml−1 +

[l −m]

[l]
Ml+1

Proof : If l is generic, then the operator LMl is of degree l+m+1 and
length 2m+ 1 (Lemma 4.4). Therefore, by Lemma 4.3,

LMl = Cl
φ(x)

φ(x+ l +m+ 1)
Tl+m+1 + · · · ,

up to terms of lower degree. Here Cl appears in the coefficient of Tl+m

in Ml: A
l
l+m(x) = Clφ(x)/φ(x+ l +m). It follows that by subtracting

a suitable multiple of Ml+1 from LMl we get an operator of degree
≤ l +m− 1. Similarly, LMl = SLM−lS = C−lφ(−x)/φ(−x− l +m+
1)Tl−m−1 plus terms of higher degree, and we may kill the coefficient
of Tl−m−1 by subtracting a multiple of Ml−1. We conclude that

LMl −
Cl

Cl+1

Ml+1 −
C−l

C−l+1

Ml−1

is an operator of length < 2m commuting with L, and thus vanishes by
Lemma 4.5. The ratios of Cl can easily be computed from the explicit
expression for Al

l+m, and give the desired result. ✷

Thus Ml, viewed as a function of l, is an eigenvector of the q-Lamé
operator in the space of difference operators with “eigenvalue” L.

Lemma 5.2. Let ω = 1/γ. Then Ml+ω =MlTω.

Proof : We have

Ml+ω =
m
∑

k=0

Al+ω
l+ω−m+2kTl+ω−m+2k

=
m
∑

k=0

Al
l−m+2kTl−m+2kTω,

since Al
l−m+2k is ω-periodic as a function of l. ✷

Proposition 5.3.

Mlψ(t, x) = ǫl(t)ψ(t, x),

with eigenvalue

ǫl(t) =
[2m]!ψ(t, l)

[m]!ψ(t,m)
,
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Proof : Let ψ(t, x, l) = Mlψ(t, x) and denote L̂ the q-Lamé operator
acting on the variable l. We then have

L̂ψ(t, x, l) =
[l +m]

[l]
Ml−1ψ(t, x) +

[l −m]

[l]
Ml+1ψ(t, x)

= LMlψ(t, x)

= MlLψ(t, x)

= ǫL(t)Mlψ(t, x).

Let ω = 1/γ. Let ec be the multiplier of ψ(t, x): ψ(t, x+ω) = ecψ(t, x).
Then, by Lemma 5.2, we have ψ(t, x, l + ω) = ecψ(t, x, l). In other
words, both as function of x and as a funcion of l, ψ(t, x, l) is an
eigenfunction of L with the same eigenvalue and multiplier. If t is
generic, there is only one such eigenfunction up to normalization. Thus

ψ(t, x, l) = f(t)ψ(t, l)ψ(t, x),

for some f(t). On the other hand, we know that if l = m, Mm =
[2m]!/[m]! times the identity. This determines f and we get

ψ(t, x, l) =
[2m]!

[m]!

ψ(t, l)ψ(t, x)

ψ(t,m)
.

✷

As a corollary, we see that the relation of Theorem 1.3 is a special
case of more general product rules:

Corollary 5.4. For generic l, m ∈ C,

MlMk =
∑

j

Al
j(k)Mk+j,

where Al
j, j = l −m, l −m + 2, . . . , l +m, are the coefficients defined

in Section 4.

Proof : By Lemma 3.4, it is sufficient to prove this identity for the
eigenvalues ǫl(t). We first note that Proposition 5.3 can be rewritten,
after replacing x by k, as

∑

j

Al
j(k)ψ(t, k + j) = ǫl(t)ψ(t, k).
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Hence,
∑

j

Al
j(k)ǫk+j(t) =

[2m]!

[m]!

∑

j

Al
j(k)

ψ(t, k + j)

ψ(t,m)

=
[2m]!

[m]!
ǫl(t)

ψ(t, k)

ψ(t,m)

= ǫl(t)ǫk(t).

✷

Corollary 5.5. Let N =Mm+1 −M−m−1. Then

Nψ(t, x) = ǫN (t)ψ(t, x),

where

ǫN(t) =
[2m]!

[m]!

(

eγc
m
∏

j=1

[m+ tj + 1]

[m+ tj ]
−e−γc

m
∏

j=1

[m− tj + 1]

[m− tj ]

)

, eγc =
√

bj(t).

The map t 7→ (ǫL(t), ǫN(t)) defines a birational isomorphism from the
double covering Y2 of the Hermite–Bethe curve to the curve {(X, Y ) ∈
C2|Y 2 = P (X2)}.

Proof : The expression for the eigenvalue is taken from Proposition 5.3.
By construction, the function ǫL(t) is a two-to-one rational function

from the closure of Y2 onto P1. The two points in ǫ−1
L (p) for generic

p ∈ P1 are related by the symmetry (t, c) 7→ (−t,−c). The eigenvalue
ǫN is odd under this symmetry, and we thus have a one-to-one (at
generic points) map from Y2 to the hyperelliptic curve. ✷

Remarks.

1. The hyperelliptic curve Y 2 = P (X2) has a double point at infinity
which is resolved into the two points P+ and P− of the double
covering Y2 of the Bethe–Hermite curve. These are the points
at which the eigenvalues of the commuting operators have poles.
Our results can be considered as a degenerate case of the difference
version of Krichever’s construction: to a smooth projective curve
C of genus g, two points P+, P− on it and a generic effective divisor
D of degree g, Krichever [K] associates a Baker–Akhiezer function
ψ(p, x), a properly normalized meromorphic function of p ∈ C
and x ∈ Z with divisor (the formal sum-with-multiplicities of the
poles minus the zeros) x(P+ − P−) + D. To each meromorphic
function f on C which is regular on C − {P+, P−} is associated
a difference operator Mf with integer steps, for which ψ(p, ·) is
an eigenfunction with eigenvalue f(p), and f 7→ Mf is an algebra
homomorphism. In particular, if P is a polynomial of odd degree
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2m + 1 without multiple roots, then the curve Y 2 = P (X2) can
be compactified to a smooth hyperelliptic curve by adding two
points P+, P− at infinity, and one has, upon choosing a divisor,
a pair of commuting difference operators MX and MY . Note that
in general the Baker–Akhiezer function is written in terms of the
Riemann theta function of the hyperelliptic curve, whereas in this
case it can be written purely in terms of an elliptic curve.

2. Note the analogy with “fusion algebras”. LetN i
jk = dimHom(Vi, Vj⊗

Vk) be the dimensions of the space of homomorphisms of, say,
representations of a simple Lie group G. Here Vi are irreducible
finite dimensional representations, labeled by their highest weight
i ∈ P+. Let us introduce difference operators Ml acting on func-
tions on P+ by the formula Mlf(i) =

∑

j N
i
ljf(j). The com-

mutativity and associativity of the tensor product imply that
the operators Ml commute with each other. Moreover, we have
MlMk =

∑

j N
j
lkMj , cf. Corollary 5.4. Let ψ(t, j) = trVj

(t) be the

character of the representation Vj. It is a function of t ∈ T/W ,
the quotient of a Cartan torus by the Weyl group. Then, for
fixed t, the function ψ(t, j) of j is a common eigenfunction of all
difference operators Ml:

Mlψ(t, ·) = ǫl(t)ψ(t, ·), ǫl(t) =
ψ(t, l)

ψ(t, 0)
,

cf. Proposition 5.3. If we replace G by a quantum group at root
of unity, the same formulae apply, except that P+ is replaced
by a finite subset and T is replaced by the set of points of a
finite order N , depending on the order of the root of unity, in the
Cartan torus. In this case, ψ(t, j) has a remarkable interpretation
in terms of representations of SL(2,Z), discovered by E. Verlinde
[V], in the context of conformal field theory. Is there a similar
interpretation in our case?

6. The Galois group

We compute the “difference Galois group” of the q-Lamé equation.
This group is a difference analogue of the differential Galois group of dif-
ferential equations. The computation is motivated by the recent result
of Braverman, Etingof and Gaitsgory [BEG], who, in the differential
case, characterized algebraic integrability by the Abelian property of
the Galois group.
Definition: A difference field is a field F together with an automor-
phism T ∈ Aut(F ). An extension E ⊂ F of difference fields is a subfield
E of a difference field F such that T (E) ⊂ E. An automorphism of a
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difference field F is an automorphism of the field F commuting with
T . The Galois group of an extension E ⊂ F of difference fields is the
group of those automorphisms of F which restrict to the identity on
E.

Let us now consider our difference equation Lψ = ǫψ for fixed generic
ǫ. If we make the change of variables ψ(x) = u(x)

∏m
j=1[x − j], the

equation becomes

u(x+ 1) +
[x+m][x −m− 1]

[x][x− 1]
u(x− 1) = ǫu(x). (4)

This difference equation has coefficients in the field E of elliptic func-
tions with periods ω, ω′. The field E is a difference field with T the
shift Tf(x) = f(x+ 1).
Let F be the differential field generated over E by the meromorphic

solutions of the difference equation (4). It is the field of all rational
functions in the solutions and their images by T j, j ∈ Z, with coeffi-
cients in E.
It follows from Theorem 3.1 that the solutions of (4) are linear com-

binations of u+(x) and u−(x) = u+(−x) with coefficients in K, the field
of meromorphic 1-periodic functions. The solution u+ has the form

u+(x) = ecγx
m
∏

j=1

[x+ tj ]

[x− j]
.

Theorem 6.1. Let γ ∈ R − Q and ǫ be generic. Then the Galois
group of the extension E ⊂ F of difference fields is isomorphic to the
group K× of non-zero meromorphic 1-periodic functions on the complex
plane. A function h ∈ K× corresponds to the automorphism acting on
solutions by u±(x) 7→ h(x)±1u±(x).

To prove the theorem, we first need some auxiliary results.

Lemma 6.2. If Φ is an element of the Galois group then Φ(u±) =
h±1u±, for some h ∈ K×.

Proof : The function u+(x) has constant multipliers as x is shifted by
ω or ω′. Thus Tu+/u+ is an elliptic function. It follows that if a Galois
automorphism sends u+ to a function ũ+, then T ũ+/ũ+ = Tu+/u+.
Thus ũ+ = hu+ for some function h ∈ K×.
Similarly, u+(x)u−(x) is elliptic. Thus if u+ is sent to hu+, then u−

is sent to h−1u−. ✷

Let Ê be the field generated by K and E.
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Lemma 6.3. F = Ê(u+), i.e., the field F consists of rational func-

tions in u+ with coefficients in Ê.

Proof : Notice first that K ⊂ F : an element h ∈ K is the ratio of
solutions hu+/u+. It remains to show that every element of F can

be written as a rational function in u+ with coefficients in Ê. But
the proof of the preceding lemma shows that u− and Tu+ and thus all
solutions, as well as all their images by T j, j ∈ Z, are rational functions
in u+ with coefficients in Ê. ✷

Lemma 6.4. u+ is transcendental over Ê.

Proof : This means that u+ is not the solution of any non-trivial poly-

nomial equation with coefficients in Ê. Suppose that there is such an
equation

P (x, u+(x)) =
∑

Aj(x)u+(x)
j = 0, Aj ∈ Ê.

Since ω is real, there exists a stricly increasing sequence of integers
n1, n2, . . . , so that the distance between nlω and the lattice of inte-
gers converges to zero. Let x be any generic complex number and
set xl = x + nlω. Then liml→∞Aj(xl) = Aj(x), for all j. On the
other hand, u+(xl) = Cnlu+(x), for some non-trivial constant C. Since
P (xl, u+(xl)) = 0 for all l, it follows that all coefficients Aj(x) vanish
at x. But x is arbitrary. Therefore all coefficients vanish identically, a
contradiction. ✷

The proof of Theorem 6.1 can now be completed. What is left to
prove is that, for every h ∈ K×, there exists a unique Galois automor-
phism sending u+ to hu+.
The uniqueness follows from Lemma 6.2 and Lemma 6.3.
To prove existence, we have to show that for all rational functions

f ∈ Ê(X) of one indeterminate, the map

f(u+) 7→ f(hu+), (5)

is well-defined, i.e., independent of the choice of the function f used to
represent an element f(u+) ∈ F , and that it defines an automorphism
of difference fields.
The map is well-defined: if f(u+) = g(u+) for rational functions

f = p/q, g = r/s, then u+ is a solution of the polynomial equation
ps − qr = 0. By Lemma 6.4, this equation must be trivial, meaning
that f = g in Ê(X). In particular f(hu+) = g(hu+).
It is clear that (5) defines an automorphism of fields with inverse

f(u+) 7→ f(u+/h). Let us show that it is an automorphism of difference
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fields. We have Tf(u+) = f̄(u+). The rational function f̄(X) has the
form (Tf)(aX), where a = Tu+/u+ ∈ E and Tf is obtained from f by
acting with T on the coefficients. We have to show that T (f(hu+)) =
f̄(hu+). But since T (hu+) = hT (u+), we have

T (f(hu+)) = (Tf)(hT (u+)) = (Tf)(h a u+) = f̄(hu+).

The proof is complete.
Remark. Our construction is a special case of a more general construc-
tion in higher dimension: a difference field in n dimensions is a field
F together with n commuting automorphisms T1, . . . , Tn. Extensions
and Galois groups are defined as obvious generalizations of the n = 1
case. Suppose that F is a field of functions f(x1, . . . , xn) and Ti are
shift operators

Tif(x1, . . . , xn) = f(x1, . . . , xi + ai, . . . , xn), i = 1, . . . , n.

Let us say that the function g is elementary with respect to the differ-
ence field F if there are functions f1, . . . , fn in F such that g satisfies
the equations

Tig/g = fi, i = 1, . . . , n.

Let

LjF (x1, . . . , xn) = 0, j = 1, . . . , k,

be a system of linear difference equations with coefficients in the differ-
ence field F . Assume that the space of solutions has a basis consisting of
elementary functions. Then the Galois group of this system is Abelian.
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