ALGEBRAIC K-THEORY AND SUMS-OF-SQUARES FORMULAS

DANIEL DUGGER AND DANIEL C. ISAKSEN

Abstract

We prove a result about the existence of certain 'sums-of-squares' formulas over a field F. A classical theorem uses topological K-theory to show that if such a formula exists over \mathbb{R}, then certain powers of 2 must divide certain binomial coefficients. In this paper we use algebraic K-theory to extend the result to all fields not of characteristic 2 .

1. Introduction

Let F be a field. A classical problem asks for which values of r, s, and n does there exist an identity of the form

$$
\left(x_{1}^{2}+\cdots+x_{r}^{2}\right)\left(y_{1}^{2}+\cdots+y_{s}^{2}\right)=z_{1}^{2}+\cdots+z_{n}^{2}
$$

in the polynomial ring $F\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right]$, where the z_{i} 's are bilinear expressions in the x 's and y 's. Such an identity is called a sums-of-squares formula of type $[\boldsymbol{r}, \boldsymbol{s}, \boldsymbol{n}]$. For the history of this problem, see the expository papers [L, Sh].

The main theorem of this paper is the following:
Theorem 1.1. Assume F is not of characteristic 2. If a sums-of-squares formula of type $[r, s, n]$ exists over F, then $2^{\left\lfloor\frac{s-1}{2}\right\rfloor-i+1}$ divides $\binom{n}{i}$ for $n-r<i \leq\left\lfloor\frac{s-1}{2}\right\rfloor$.

As one specific application, the theorem shows that a formula of type [13, 13, 16] cannot exist over any field of characteristic not equal to 2 . Previously this had only been known in characteristic zero. (Note that the case $\operatorname{char}(F)=2$, which is not covered by the theorem, is trivial: formulas of type $[r, s, 1]$ always exist).

In the case $F=\mathbb{R}$, the above theorem was essentially proven by Atiyah [At] as an early application of complex K-theory; the relevance of Atiyah's paper to the sums-of-squares problem was only later pointed out by Yuzvinsky [Y]. The result for characteristic zero fields can be deduced from the case $F=\mathbb{R}$ by an algebraic argument due to K. Y. Lam and T. Y. Lam (see [Sh]). Thus, our contribution is the extension to fields of non-zero characteristic. In this sense the present paper is a natural sequel to [DI], which extended another classical condition about sums-of-squares. We note that sums-of-squares formulas in characteristic p were first seriously investigated in [Ad1, Ad2].

Our proof of Theorem 1.1, given in Section 2, is a modification of Atiyah's original argument. The existence of a sums-of-squares formula allows one to make conclusions about the geometric dimension of certain algebraic vector bundles. A computation of algebraic K-theory (in fact just algebraic K^{0}), given in Section 3, determines restrictions on what that geometric dimension can be-and this yields the theorem.

Atiyah's result for $F=\mathbb{R}$ is actually slightly better than our Theorem 1.1. The use of topological $K O$-theory rather than complex K-theory yields an extra power of 2 dividing some of the binomial coefficients. It seems likely that this stronger
result holds in non-zero characteristic as well and that it could be proved with Hermitian algebraic K-theory.
1.2. Restatement of the main theorem. The condition on binomial coefficients from Theorem 1.1 can be reformulated in a slightly different way. This second formulation surfaces often, and it's what arises naturally in our proof. We record it here for the reader's convenience. Each of the following observations is a consequence of the previous one:

- By repeated use of Pascal's identity $\binom{c}{d}=\binom{c-1}{d-1}+\binom{c-1}{d}$, the number $\binom{n+i-1}{k+i}$ is a \mathbb{Z}-linear combination of the numbers $\binom{n}{k+1},\binom{n}{k+2}, \ldots,\binom{n}{k+i}$. Similarly, $\binom{n}{k+i}$ is a \mathbb{Z}-linear combination of $\binom{n}{k+1},\binom{n+1}{k+2}, \ldots,\binom{n+i-1}{k+i}$.
- An integer b is a common divisor of $\binom{n}{k+1},\binom{n}{k+2}, \ldots,\binom{n}{k+i}$ if and only if it is a common divisor of $\binom{n}{k+1},\binom{n+1}{k+2}, \ldots,\binom{n+i-1}{k+i}$.
- The series of statements

$$
2^{N}\left|\binom{n}{k+1}, 2^{N-1}\right|\binom{n}{k+2}, \ldots, 2^{N-i+1} \left\lvert\,\binom{ n}{k+i}\right.
$$

is equivalent to the series of statements

$$
\left.2^{N} \left\lvert\, \begin{array}{c}
n \\
k+1
\end{array}\right.\right), 2^{N-1}\left|\binom{n+1}{k+2}, \ldots, 2^{N-i+1}\right|\binom{n+i-1}{k+i} .
$$

- If N is a fixed integer, then 2^{N-i+1} divides $\binom{n}{i}$ for $n-r<i \leq N$ if and only if 2^{N-i+1} divides $\binom{r+i-1}{i}$ for $n-r<i \leq N$.
The last observation shows that Theorem 1.1 is equivalent to the theorem below. This is the form in which we'll actually prove the result.
Theorem 1.3. Suppose that F is not of characteristic 2. If a sums-of-squares formula of type $[r, s, n]$ exists over F, then $2^{\left\lfloor\frac{s-1}{2}\right\rfloor-i+1}$ divides the binomial coefficient $\binom{r+i-1}{i}$ for $n-r<i \leq\left\lfloor\frac{s-1}{2}\right\rfloor$.
1.4. Notation. Throughout this paper $K^{0}(X)$ denotes the Grothendieck group of locally free coherent sheaves on the scheme X. This group is usually denoted $K_{0}(X)$ in the literature.

2. The main proof

In this section we fix a field F not of characteristic 2 . Let q_{k} be the quadratic form on \mathbb{A}^{k} defined by $q_{k}(x)=\sum_{i=1}^{k} x_{i}^{2}$. A sums-of-squares formula of type $[r, s, n]$ gives a bilinear map $\phi: \mathbb{A}^{r} \times \mathbb{A}^{s} \rightarrow \mathbb{A}^{n}$ such that $q_{r}(x) q_{s}(y)=q_{n}(\phi(x, y))$. We begin with a simple lemma:
Lemma 2.1. Let $F \hookrightarrow E$ be a field extension, and let $y \in E^{s}$ be such that $q_{s}(y) \neq 0$. Then for $x \in E^{r}$ one has $\phi(x, y)=0$ if and only if $x=0$.

Proof. Let $\langle-,-\rangle$ denote the inner product on E^{k} corresponding to the quadratic form q_{k}. Note that the sums-of-squares identity implies that

$$
\left\langle\phi(x, y), \phi\left(x^{\prime}, y\right)\right\rangle=q_{s}(y)\left\langle x, x^{\prime}\right\rangle
$$

for any x and x^{\prime} in E^{r}. If one had $\phi(x, y)=0$ then the above formula would imply that $q_{s}(y)\left\langle x, x^{\prime}\right\rangle=0$ for every x^{\prime}; but since $q_{s}(y) \neq 0$, this can only happen when $x=0$.

Let V_{q} be the subvariety of \mathbb{P}^{s-1} defined by $q_{s}(y)=0$. Let ξ denote the restriction to V_{q} of the tautological line bundle $\mathcal{O}(-1)$ of \mathbb{P}^{s-1}.
Proposition 2.2. If a sums-of-squares formula of type $[r, s, n]$ exists over F, then there is an algebraic vector bundle ζ on $\mathbb{P}^{s-1}-V_{q}$ of rank $n-r$ such that

$$
r[\xi]+[\zeta]=n
$$

as elements of the Grothendieck group $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$ of locally free coherent sheaves on $\mathbb{P}^{s-1}-V_{q}$.
Proof. We'll write $q=q_{s}$ in this proof, for simplicity. Let $S=F\left[y_{1}, \ldots, y_{s}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{s-1}. By $\left[\mathrm{H}\right.$, Prop. II.2.5(b)] one has $\mathbb{P}^{s-1}-V_{q}=$ Spec R, where R is the subring of the localization S_{q} that consists of degree 0 homogeneous elements. The group $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$ is naturally isomorphic to the Grothendieck group of finitely-generated projective R-modules.

Let P denote the subset of S_{q} consisting of homogeneous elements of degree -1 , regarded as a module over R. Then P is projective and is the module of sections of the vector bundle ξ. To see explicitly that P is projective of rank 1 , observe that there is an split-exact sequence $0 \rightarrow R^{s-1} \rightarrow R^{s} \xrightarrow{\pi} P \rightarrow 0$ where $\pi\left(p_{1}, \ldots, p_{s}\right)=\sum p_{i} \cdot \frac{y_{i}}{q}$ and the splitting $\chi: P \rightarrow R^{s}$ is $\chi(f)=\left(y_{1} f, y_{2} f, \ldots, y_{s} f\right)$.

From our bilinear map $\phi: \mathbb{A}^{r} \times \mathbb{A}^{s} \rightarrow \mathbb{A}^{n}$ we get linear forms $\phi\left(e_{i}, y\right) \in S^{n}$ for $1 \leq i \leq r$. Here e_{i} denotes the standard basis for F^{r}, and $y=\left(y_{1}, \ldots, y_{s}\right)$ is the vector of indeterminates from S. If f belongs to P, then each component of $f \cdot \phi\left(e_{i}, y\right)$ is homogeneous of degree 0 -hence lies in R.

Define a map $\alpha: P^{r} \rightarrow R^{n}$ by

$$
\left(f_{1}, \ldots, f_{r}\right) \mapsto f_{1} \phi\left(e_{1}, y\right)+f_{2} \phi\left(e_{2}, y\right)+\cdots+f_{r} \phi\left(e_{r}, y\right)
$$

We can write $\alpha\left(f_{1}, \ldots, f_{r}\right)=\phi\left(\left(f_{1}, \ldots, f_{r}\right), y\right)$, where the expression on the right means to formally substitute each f_{i} for x_{i} in the defining formula for ϕ. If $R \rightarrow E$ is any map of rings where E is a field, we claim that $\alpha \otimes_{R} E$ is an injective map $E^{r} \rightarrow E^{n}$. To see this, note that $R \rightarrow E$ may be extended to a map $u: S_{q} \rightarrow E$ (any map $\operatorname{Spec} E \rightarrow \mathbb{P}^{s-1}-V_{q}$ lifts to the affine variety $q \neq 0$, as the projection map from the latter to the former is a Zariski locally trivial bundle). One obtains an isomorphism $P \otimes_{R} E \rightarrow E$ by sending $f \otimes 1$ to $u(f)$. Using this, $\alpha \otimes_{R} E$ may be readily identified with the map $x \mapsto \phi(x, u(y))$. Now apply Lemma 2.1.

Since R is a domain, we may take E to be the quotient field of R. It follows that α is an inclusion. Let M denote its cokernel. The module M will play the role of ζ in the statement of the proposition, so to conclude the proof we only need show that M is projective. An inclusion of finitely-generated projectives $P_{1} \hookrightarrow P_{2}$ has projective cokernel if and only if $P_{1} \otimes_{R} E \rightarrow P_{2} \otimes_{R} E$ is injective for every map $R \rightarrow E$ where E is a field (that is to say, the map has constant rank on the fibers)-this follows at once using [E, Ex. 6.2(iii),(v)]. As we have already verified this property for α, we are done.
Remark 2.3. The above algebraic proof hides some of the geometric intuition behind Proposition 2.2. We outline a different approach more in the spirit of [At].

Let $G r_{r}\left(\mathbb{A}^{n}\right)$ denote the Grassmannian variety of r-planes in affine space \mathbb{A}^{n}. We claim that ϕ induces a map $f: \mathbb{P}^{s-1}-V_{q} \rightarrow G r_{r}\left(\mathbb{A}^{n}\right)$ with the following behavior on points. Let $[y]$ be a point of \mathbb{P}^{s-1} represented by a point y of \mathbb{A}^{s} such that $q_{s}(y) \neq 0$. Then the map $\phi_{y}: x \mapsto \phi(x, y)$ is a linear inclusion by Lemma 2.1.

Let $f([y])$ be the r-plane that is the image of ϕ_{y}. Since ϕ is bilinear, we get that $\phi_{\lambda y}=\lambda \cdot \phi_{y}$ for any scalar y. This shows that $f([y])$ is well-defined. We leave it as an exercise for the reader to carefully construct f as a map of schemes.

The map f has a special property related to bundles. If η_{r} denotes the tautological r-plane bundle over the Grassmannian, we claim that ϕ induces a map of bundles $\tilde{f}: r \xi \rightarrow \eta_{r}$ covering the map f. To see this, note that the points of $r \xi$ (defined over some field E) correspond to equivalence classes of pairs $(y, a) \in \mathbb{A}^{s} \times \mathbb{A}^{r}$ with $q(y) \neq 0$, where $(\lambda y, a) \sim(y, \lambda a)$ for any λ in the field. The pair (y, a) gives us a line $\langle y\rangle \subseteq \mathbb{A}^{s}$ together with r points $a_{1} y, a_{2} y, \ldots, a_{r} y$ on the line.

One defines \tilde{f} so that it sends (y, a) to the element of η_{r} represented by the vector $\phi(a, y)$ lying on the r-plane spanned by $\phi\left(e_{1}, y\right), \ldots, \phi\left(e_{r}, y\right)$. This respects the equivalence relation, as $\phi(\lambda a, y)=\phi(a, \lambda y)$. So we have described our map $\tilde{f}: r \xi \rightarrow \eta_{r}$. We again leave it to the reader to construct f as a map of schemes.

One readily checks that \tilde{f} is a linear isomorphism on geometric fibers, using Lemma 2.1. So \tilde{f} gives an isomorphism $r \xi \cong f^{*} \eta_{r}$ of bundles on $\mathbb{P}^{s-1}-V_{q}$.

The bundle η_{r} is a subbundle of the rank n trivial bundle, which we denote by n. Consider the quotient n / η_{r}, and set $\zeta=f^{*}\left(n / \eta_{r}\right)$. Since $n=\left[\eta_{r}\right]+\left[n / \eta_{r}\right]$ in $K^{0}\left(G r_{r}\left(\mathbb{A}^{n}\right)\right)$, application of f^{*} gives $n=\left[f^{*} \eta_{r}\right]+[\zeta]$ in $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$. Now recall that $f^{*} \eta_{r} \cong r \xi$. This gives the desired formula in Proposition 2.2.

The next task is to compute the Grothendieck group $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$. This becomes significantly easier if we assume that F contains a square root of -1 . The reason for this is made clear in the next section.

Proposition 2.4. Suppose that F contains a square root of -1 and is not of characteristic 2. Let $c=\left\lfloor\frac{s-1}{2}\right\rfloor$. Then $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$ is isomorphic to $\mathbb{Z}[\nu] /\left(2^{c} \nu, \nu^{2}=-2 \nu\right)$, where $\nu=[\xi]-1$ generates the reduced Grothendieck group $\tilde{K}^{0}\left(\mathbb{P}^{s-1}-V_{q}\right) \cong \mathbb{Z} / 2^{c}$.

The proof of the above result will be deferred until the next section. Note that $K^{0}\left(\mathbb{P}^{s-1}-V_{q}\right)$ has the same form as the complex K-theory of real projective space $\mathbb{R} P^{s-1}[\mathrm{~A}$, Thm. 7.3]. To complete the analogy, we point out that when $F=\mathbb{C}$ the space $\mathbb{C} P^{s-1}-V_{q}(\mathbb{C})$ is actually homotopy equivalent to $\mathbb{R} P^{s-1}[\mathrm{Lw}, 6.3]$. We also mention that for the special case where F is contained in \mathbb{C}, the above proposition was proved in [GR, Theorem, p. 303].

By accepting the above proposition for the moment, we can finish the
Proof of Theorem 1.3. Recall that one has operations γ^{i} on $\tilde{K}^{0}(X)$ for any scheme X [SGA6, Exp. V] (see also [AT] for a very clear explanation). If $\gamma_{t}=1+\gamma^{1} t+$ $\gamma^{2} t^{2}+\cdots$ denotes the generating function, then their basic properties are:
(i) $\gamma_{t}(a+b)=\gamma_{t}(a) \gamma_{t}(b)$.
(ii) For a line bundle L on X one has $\gamma_{t}([L]-1)=1+t([L]-1)$.
(iii) If E is an algebraic vector bundle on X of rank k then $\gamma^{i}([E]-k)=0$ for $i>k$.
The third property follows from the preceding two via the splitting principle.
If a sums-of-squares identity of type $[r, s, n]$ exists over a field F, then it also exists over any field containing F. So we may assume F contains a square root of -1 . If we write $X=\mathbb{P}^{s-1}-V_{q}$, then by Proposition 2.2 there is a rank $n-r$ bundle ζ on X such that $r[\xi]+[\zeta]=n$ in $K^{0}(X)$. This may also be written as
$r([\xi]-1)+([\zeta]-(n-r))=0$ in $\tilde{K}^{0}(X)$. Setting $\nu=[\xi]-1$ and applying the operation γ_{t} we have

$$
\gamma_{t}(\nu)^{r} \cdot \gamma_{t}([\zeta]-(n-r))=1
$$

or

$$
\gamma_{t}([\zeta]-(n-r))=\gamma_{t}(\nu)^{-r}=(1+t \nu)^{-r} .
$$

The coefficient of t^{i} on the right-hand-side is $(-1)^{i}\binom{r+i-1}{i} \nu^{i}$, which is the same as $-2^{i-1}\binom{r+i-1}{i} \nu$ using the relation $\nu^{2}=-2 \nu$. Finally, since ζ has rank $n-r$ we know that $\gamma^{i}([\zeta]-(n-r))=0$ for $i>n-r$. In light of Proposition 2.4, this means that 2^{c} divides $2^{i-1}\binom{r+i-1}{i}$ for $i>n-r$, where $c=\left\lfloor\frac{s-1}{2}\right\rfloor$. When $i-1<c$, we can rearrange the powers of 2 to conclude that 2^{c-i+1} divides $\left({ }^{r+i-1}{ }_{i}\right)$ for $n-r<i \leq c$.

3. K-THEORY OF DELETED QUADRICS

The rest of the paper deals with the K-theoretic computation stated in Proposition 2.4. This computation is entirely straightforward, and could have been done in the 1970's. We do not know of a reference, however.

Let $Q_{n-1} \hookrightarrow \mathbb{P}^{n}$ be the split quadric defined by one of the equations
$a_{1} b_{1}+\cdots+a_{k} b_{k}=0(n=2 k-1) \quad$ or $\quad a_{1} b_{1}+\cdots+a_{k} b_{k}+c^{2}=0(n=2 k)$.
Beware that in general Q_{n-1} is not the same as the variety V_{q} of the previous section. However, if F contains a square root i of -1 then one can write $x^{2}+y^{2}=$ $(x+i y)(x-i y)$. After a change of variables the quadric V_{q} becomes isomorphic to Q_{n-1}. These 'split' quadrics Q_{n-1} are simpler to compute with, and we can analyze the K-theory of these varieties even if F does not contain a square root of -1 .

Write $D Q_{n}=\mathbb{P}^{n}-Q_{n-1}$, and let ξ be the restriction to $D Q_{n}$ of the tautological line bundle $\mathcal{O}(-1)$ of \mathbb{P}^{n}. In this section we calculate $K^{0}\left(D Q_{n}\right)$ over any ground field F not of characteristic 2. Proposition 2.4 is an immediate corollary of this more general result:
Theorem 3.1. Let F be a field of characteristic not 2. The $\operatorname{ring} K^{0}\left(D Q_{n}\right)$ is isomorphic to $\mathbb{Z}[\nu] /\left(2^{c} \nu, \nu^{2}=-2 \nu\right)$, where $\nu=[\xi]-1$ generates the reduced group $\tilde{K}^{0}\left(D Q_{n}\right) \cong \mathbb{Z} / 2^{c}$ and $c=\left\lfloor\frac{n}{2}\right\rfloor$.
Remark 3.2. We remark again that we are writing $K^{0}(X)$ for what is usually denoted $K_{0}(X)$ in the algebraic K-theory literature. We prefer this notation partly because it helps accentuate the relationship with topological K-theory.
3.3. Basic facts about K-theory. Let X be a scheme. As usual $K^{0}(X)$ denotes the Grothendieck group of locally free coherent sheaves, and $G_{0}(X)$ (also called $\left.K_{0}^{\prime}(X)\right)$ is the Grothendieck group of coherent sheaves [Q, Section 7]. Topologically speaking, $K^{0}(-)$ is the analog of the usual complex K-theory functor $K U^{0}(-)$ whereas G_{0} is something like a Borel-Moore version of $K U$-homology.

Note that there is an obvious map $\alpha: K^{0}(X) \rightarrow G_{0}(X)$ coming from the inclusion of locally free coherent sheaves into all coherent sheaves. When X is nonsingular, α is an isomorphism whose inverse $\beta: G_{0}(X) \rightarrow K^{0}(X)$ is constructed in the following way [H, Exercise III.6.9]. If \mathcal{F} is a coherent sheaf on X, there exists a resolution

$$
0 \rightarrow \mathcal{E}_{n} \rightarrow \cdots \rightarrow \mathcal{E}_{0} \rightarrow \mathcal{F} \rightarrow 0
$$

in which the \mathcal{E}_{i} 's are locally free and coherent. One defines $\beta(\mathcal{F})=\sum_{i}(-1)^{i}\left[\mathcal{E}_{i}\right]$. This does not depend on the choice of resolution, and now $\alpha \beta$ and $\beta \alpha$ are obviously the identities. This is 'Poincare duality' for K-theory.

Since we will only be dealing with smooth schemes, we are now going to blur the distinction between G_{0} and K^{0}. If \mathcal{F} is a coherent sheaf on X, we will write [$\left.\mathcal{F}\right]$ for the class that it represents in $K^{0}(X)$, although we more literally mean $\beta([\mathcal{F}])$. As an easy exercise, check that if $i: U \hookrightarrow X$ is an open immersion then the image of [F]] under $i^{*}: K^{0}(X) \rightarrow K^{0}(U)$ is the same as [$\left.\left.\mathcal{F}\right|_{U}\right]$. We will use this fact often.

If $j: Z \hookrightarrow X$ is a smooth embedding and $i: X-Z \hookrightarrow X$ is the complement, there is a Gysin sequence [Q, Prop. 7.3.2]

$$
\cdots \rightarrow K^{-1}(X-Z) \longrightarrow K^{0}(Z) \xrightarrow{j!} K^{0}(X) \xrightarrow{i^{*}} K^{0}(X-Z) \longrightarrow 0
$$

(Here $K^{-1}(X-Z)$ denotes the group usually called $K_{1}(X-Z)$, and i^{*} is surjective because X is regular). The map j ! is known as the Gysin map. If \mathcal{F} is a coherent sheaf, then $j_{!}([\mathcal{F}])$ equals the class of its pushforward $j_{*}(\mathcal{F})$ (also known as extension by zero). Note that the pushforward of coherent sheaves is exact for closed immersions.
3.4. Basic facts about \mathbb{P}^{n}. If Z is a degree d hypersurface in \mathbb{P}^{n}, then the structure sheaf \mathcal{O}_{Z} can be pushed forward to \mathbb{P}^{n} along the inclusion $Z \rightarrow \mathbb{P}^{n}$; we will still write this pushforward as \mathcal{O}_{Z}. It has a very simple resolution of the form $0 \rightarrow \mathcal{O}(-d) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{Z} \rightarrow 0$, where \mathcal{O} is the trivial rank 1 bundle on \mathbb{P}^{n} and $\mathcal{O}(-d)$ is the d-fold tensor power of the tautological line bundle $\mathcal{O}(-1)$ on \mathbb{P}^{n}. So $\left[\mathcal{O}_{Z}\right]$ equals $[\mathcal{O}]-[\mathcal{O}(-d)]$ in $K^{0}\left(\mathbb{P}^{n}\right)$. From now on we'll write $[\mathcal{O}]=1$.

Now suppose that $Z \hookrightarrow \mathbb{P}^{n}$ is a complete intersection, defined by the regular sequence of homogeneous equations $f_{1}, \ldots, f_{r} \in k\left[x_{0}, \ldots, x_{n}\right]$. Let f_{i} have degree d_{i}. The module $k\left[x_{0}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{r}\right)$ is resolved by the Koszul complex, which gives a locally free resolution of \mathcal{O}_{Z}. It follows that

$$
\begin{equation*}
\left[\mathcal{O}_{Z}\right]=\left(1-\left[\mathcal{O}\left(-d_{1}\right)\right]\right)\left(1-\left[\mathcal{O}\left(-d_{2}\right)\right]\right) \cdots\left(1-\left[\mathcal{O}\left(-d_{r}\right)\right]\right) \tag{3.4}
\end{equation*}
$$

in $K^{0}\left(\mathbb{P}^{n}\right)$. In particular, note that for a linear subspace $\mathbb{P}^{i} \hookrightarrow \mathbb{P}^{n}$ one has

$$
\left[\mathcal{O}_{\mathbb{P}^{i}}\right]=(1-[\mathcal{O}(-1)])^{n-i}
$$

because \mathbb{P}^{i} is defined by $n-i$ linear equations.
One can compute that $K^{0}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}^{n+1}$, with generators $\left[\mathcal{O}_{\mathbb{P}^{0}}\right],\left[\mathcal{O}_{\mathbb{P}^{1}}\right], \ldots,\left[\mathcal{O}_{\mathbb{P}^{n}}\right]$ (see [Q, Th. 8.2.1], as one source). If $t=1-[\mathcal{O}(-1)]$, then the previous paragraph tells us that $K^{0}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}[t] /\left(t^{n}\right)$ as rings. Here t^{k} corresponds to $\left[\mathcal{O}_{\mathbb{P}^{n-k}}\right]$.
3.5. Computations. Let $n=2 k$. Recall that $Q_{2 k-1}$ denotes the quadric in $\mathbb{P}^{2 k}$ defined by $a_{1} b_{1}+\cdots+a_{k} b_{k}+c^{2}=0$. The Chow ring $\mathrm{CH}^{*}\left(Q_{2 k-1}\right)$ consists of a copy of \mathbb{Z} in every dimension (see [DI, Appendix A] or [HP, XIII.4-5], for example). The generators in dimensions k through $2 k-1$ are represented by subvarieties of $Q_{2 k-1}$ which correspond to linear subvarieties $\mathbb{P}^{k-1}, \mathbb{P}^{k-2}, \ldots, \mathbb{P}^{0}$ under the embedding $Q_{2 k-1} \hookrightarrow \mathbb{P}^{2 k}$. In terms of equations, \mathbb{P}^{k-i} is defined by $c=b_{1}=\cdots=b_{k}=0$ together with $0=a_{k}=a_{k-1}=\cdots=a_{k-i+2}$. The generators of the Chow ring in degrees 0 through $k-1$ are represented by subvarieties $Z_{i} \hookrightarrow \mathbb{P}^{2 k}(k \leq i \leq 2 k-1)$, where Z_{i} is defined by the equations

$$
0=b_{1}=b_{2}=\cdots=b_{2 k-1-i}, \quad a_{1} b_{1}+\cdots+a_{k} b_{k}+c^{2}=0
$$

Note that $Z_{2 k-1}=Q_{2 k-1}$.
The following result is proven in [R, pp. 128-129] (see especially the first paragraph on page 129):
Proposition 3.6. The group $K^{0}\left(Q_{2 k-1}\right)$ is isomorphic to $\mathbb{Z}^{2 k}$, with generators $\left[\mathcal{O}_{\mathbb{P}^{0}}\right], \ldots,\left[\mathcal{O}_{\mathbb{P}^{k-1}}\right]$ and $\left[\mathcal{O}_{Z_{k}}\right], \ldots,\left[\mathcal{O}_{Z_{2 k-1}}\right]$.

It is worth noting that to prove Theorem 3.1 we don't actually need to know that $K^{0}\left(Q_{2 k-1}\right)$ is free - all we need is the list of generators.

Proof of Theorem 3.1 when n is even. Set $n=2 k$. To calculate $K^{0}\left(D Q_{2 k}\right)$ we must analyze the localization sequence

$$
\cdots \rightarrow K^{0}\left(Q_{2 k-1}\right) \xrightarrow{j_{1}} K^{0}\left(\mathbb{P}^{2 k}\right) \rightarrow K^{0}\left(D Q_{2 k}\right) \rightarrow 0 .
$$

The image of $j!: K^{0}\left(Q_{2 k-1}\right) \rightarrow K^{0}\left(\mathbb{P}^{2 k}\right)$ is precisely the subgroup generated by $\left[\mathcal{O}_{\mathbb{P}^{0}}\right], \ldots,\left[\mathcal{O}_{\mathbb{P}^{k-1}}\right]$ and $\left[\mathcal{O}_{Z_{k}}\right], \ldots,\left[\mathcal{O}_{Z_{2 k-1}}\right]$. Since \mathbb{P}^{i} is a complete intersection defined by $2 k-i$ linear equations, formula (3.4) tells us that $\left[\mathcal{O}_{\mathbb{P}^{i}}\right]=t^{2 k-i}$ for $0 \leq i \leq k-1$.

Now, $Z_{2 k-1}$ is a degree 2 hypersurface in $\mathbb{P}^{2 k}$, and so $\left[\mathcal{O}_{Z_{2 k-1}}\right]$ equals $1-[\mathcal{O}(-2)]$. Note that

$$
1-[\mathcal{O}(-2)]=2(1-[\mathcal{O}(-1)])-(1-[\mathcal{O}(-1)])^{2}=2 t-t^{2}
$$

In a similar way one notes that Z_{i} is a complete intersection defined by $2 k-1-i$ linear equations and one degree 2 equation, so formula (3.4) tells us that

$$
\left[\mathcal{O}_{Z_{i}}\right]=(1-[\mathcal{O}(-1)])^{2 k-1-i} \cdot(1-[\mathcal{O}(-2)])=t^{2 k-1-i}\left(2 t-t^{2}\right) .
$$

The calculations in the previous two paragraphs imply that the kernel of the $\operatorname{map} K^{0}\left(\mathbb{P}^{2 k}\right) \rightarrow K^{0}\left(D Q_{2 k}\right)$ is the ideal generated by $2 t-t^{2}$ and t^{k+1}. This ideal is equal to the ideal generated by $2 t-t^{2}$ and $2^{k} t$, so $K^{0}\left(D Q_{2 k}\right)$ is isomorphic to $\mathbb{Z}[t] /\left(2^{k} t, 2 t-t^{2}\right)$. If we substitute $\nu=[\xi]-1=-t$, we find $\nu^{2}=-2 \nu$.

To find $\tilde{K}^{0}\left(D Q_{2 k}\right)$, we just have to take the additive quotient of $K^{0}\left(D Q_{2 k}\right)$ by the subgroup generated by 1 . This quotient is isomorphic to $\mathbb{Z} / 2^{k}$ and is generated by ν.

This completes the proof of Theorem 3.1 in the case where n is even. The computation when n is odd is very similar:

Proof of Theorem 3.1 when n is odd. In this case Q_{n-1} is defined by the equation $a_{1} b_{1}+\cdots+a_{k} b_{k}=0$ with $k=\frac{n+1}{2}$. The Chow ring $\mathrm{CH}^{*}\left(Q_{n-1}\right)$ consists of \mathbb{Z} in every dimension except for $k-1$, which is $\mathbb{Z} \oplus \mathbb{Z}$. The generators are the Z_{i} 's $(k-1 \leq$ $i \leq 2 k-2$) defined analogously to before, together with the linear subvarieties $\mathbb{P}^{0}, \mathbb{P}^{1}, \ldots, \mathbb{P}^{k-1}$. By $\left[\mathrm{R}\right.$, pp. 128-129], the group $K^{0}\left(Q_{n-1}\right)$ is again free of rank $2 k$ on the generators $\left[\mathcal{O}_{Z_{i}}\right]$ and $\left[\mathcal{O}_{\mathbb{P}^{i}}\right]$. One finds that $K^{0}\left(D Q_{n}\right)$ is isomorphic to $\mathbb{Z}[t] /\left(2 t-t^{2}, t^{k}\right)=\mathbb{Z}[t] /\left(2 t-t^{2}, 2^{k-1} t\right)$. Everything else is as before.

References

[A] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632.
[Ad1] J. Adem, On the Hurwitz problem over an arbitrary field I, Bol. Soc. Mat. Mexicana (2) 25 (1980), no. 1, 29-51.
[Ad2] J. Adem, On the Hurwitz problem over an arbitrary field II, Bol. Soc. Mat. Mexicana (2) 26 (1981), no. 1, 29-41.
[At] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
[AT] M. F. Atiyah and D. O. Tall, Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253-297.
[DI] D. Dugger and D. C. Isaksen, The Hopf condition for bilinear forms over arbitrary fields, preprint, 2003.
[E] D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.
[GR] A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective space, Invent. Math. 10 (1970), 298-304.
[H] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, 1977.
[HP] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Vol. II, Cambridge University Press, 1952.
[L] K. Y. Lam, Topological methods for studying the composition of quadratic forms, Quadratic and Hermitian Forms, (Hamilton, Ont., 1983), pp. 173-192, Canadian Mathematical Society Conference Proceedings 4, Amer. Math. Soc., 1984.
[Lw] P. S. Landweber, Fixed point free conjugations on complex manifolds, Ann. Math. (2) 86 (1967), 491-502.
[Q] D. Quillen, Higher algebraic K-theory I, Algebraic K-theory, I: Higher K-theories (Proc. Conf. Battelle Memorial Inst., Seattle, 1972), pp. 85-147, Lecture Notes in Mathematics 341, Springer, 1973.
[R] L. Roberts, Base change for K_{0} of algebraic varieties, Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, 1972), pp. 122-134, Lecture Notes in Mathematics 342, Springer, 1973.
[SGA6] Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6), by P. Berthelot, A. Grothendieck, and L. Illusie, Lecture Notes in Mathematics 225, Springer, 1971.
[Sh] D. B. Shapiro, Products of sums of squares, Expo. Math. 2 (1984), 235-261.
[Y] S. Yuzvinsky, Orthogonal pairings of Euclidean spaces, Michigan Math. J. 28 (1981), 131-145.

Department of Mathematics, University of Oregon, Eugene, OR 97403
Department of Mathematics, Wayne State University, Detroit, MI 48202
E-mail address: ddugger@math.uoregon.edu
E-mail address: isaksen@math. wayne.edu

