J. Korean Math. Soc. 40 (2003), No. 3, pp. 447-460

ALGEBRAIC KERNEL FUNCTIONS AND
REPRESENTATION OF PLANAR DOMAINS

MooONJA JEONG AND MASAHIKO TANIGUCHI

ABSTRACT. In this paper we study the non-degenerate n-connected
canonical domains with n > 1 related to the conjecture of S. Bell in
[4]. They are connected to the algebraic property of the Bergman
kernel and the Szegé kernel. We characterize the non-degenerate
doubly connected canonical domains.

1. Introduction

On a bounded planar domain, the Bergman kernel function and the
Szegb kernel function play important role to reveal the properties of the
holomorphic map between two domains. For example, on a simply con-
nected planar domain, the Riemann mapping function is expressed in
terms of the Szegé kernel function (see [6], [12]). The new discovery in
[12] that the Szegd kernel is the solution to a Kerzman-Stein Fredholm
integral equation of the second kind with C* kernel and inhomogeneous
term becomes a very effective way to represent the Szegd kernel numer-
ically and so the Riemann mapping can be expressed explicitly via the
Szegd kernel (see [13], [16]).

On the other hand, the classical kernel functions can be written by
using conformal mapping since these kernel functions transform under
biholomorphic mapping (see [2]). The Bergman kernel function associ-
ated to a simply connected domain is a rational combination of basic
functions including Riemann mapping function and so is the Szegé ker-
nel function. We also have the transformation formula for the Bergman
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kernel and the Szeg6 kernel under proper holomorphic mappings from
a bounded finitely connected planar domain onto the unit disc (see [1}],
[10]). So we can get the properties of the classical kernel functions from
the properties of the given holomorphic functions by help of those trans-
formation formula and vice versa (see [3]). But the connection between
the kernels on finitely connected domains and the kernels on the unit
disc are much weaker than direct pull backs. So the transformation law
of the kernels under proper mappings is not so powerful as the transfor-
mation law of the kernels under biholomorphic mappings.

In addition to the transformation formula for the kernels under proper
mappings from a bounded finitely connected planar domain onto the unit
disc, the Riemann surface was introduced to prove the result that the
Bergman kernel function and the Szegé kernel function associated to a
finitely connected domain are generated by finitely many basic functions
(see [4]).

In [4] and [5], S. Bell posed the following problem while he was seeking
the domain with algebraic Bergman kernel.

ProOBLEM 1.1. Can every non-degenerate n-connected planar domain
with n > 1 be mapped biholomorphically onto a domain of the form

n—1
e T
{zEC. z+k:12_bk <r}

with complex numbers a; and by, and a positive 7?7

In this note we give the answer (by constructing a suitable Riemann
surface). Also we give related open problems and solve them for n = 2.

2. Preliminaries

In this paper, a non-degenerate n-connected planar domain is a sub-
domain §2 of the Riemann sphere C such that C — Q consists of exactly
n connected components each of which contains more than one point.

Let Q2 be a given non-degenerate n-connected planar domain with C®
smooth boundary bQ2. Then by using the classical Riemann mapping
theorem n times if necessary, we can assume that b{) consists of exactly
n smooth simple closed curves. Let bQ2 consist of the n non-intersecting
C® simple closed curves 7; with parametrization z;(t), 0 < t < 1,
Jj=1,...,n. Let T be the complex unit tangent function on b{2 defined

by T(z(t)) = 2;(t)/25(t)].
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The Bergman kernel is the kernel for the orthogonal projection of
L?() onto its subspace H?(§2) consisting of holomorphic functions. The
Szegé kernel is the kernel for the orthogonal projection of L2(b(2) onto
the Hardy space H2(bQ) in L?(b2) consisting of L? boundary values
of holomorphic functions. The Bergman kernel B(z,w) and the Szegd
kernel S(z,w) are related by the identity

n—1
B(z,w) = 47S8(z,w)* + Z Ak Hj(2) Hy (w),
ij=1
where the function H J’(z) is the derivative of a multi-valued holomorphic
function H; which is obtained by analytically continuing around (2 a
germ of w; + tv where v is a local harmonic conjugate for wj, j =
1,...,n—1.

Fix a point a in §2, and let f, be the Ahlfors map associated to the
pair (£2,a). Among all holomorphic functions h which map into the
unit disc with h(a) = 0, the Ahlfors map f, is the unique function
which maximizes |h/(a)| with f.(a) > 0. Here for the definition and
properties of the Ahlfors maps, see [2]. In particular, f, maps properly
and holomorphically onto the unit disc. Moreover, f, can be extended to
a continuous map of £ onto the closed unit disc so that every component
7; of b§2, where j = 1,...,n, is mapped homeomorphically onto the unit
circle.

The Ahlfors map can be expressed as the quotient of the Szeg6 kernel
and the Garabedian kernel via

S5(z,a)

fa(z) = IG.a)

for z € Q. The Garabedian kernel L(z, a) is the kernel for the orthogonal
projection from L2(bQ) onto the orthogonal complement of H2(b2) and
is represented by

1 1

L(z’a)zﬁz—a

+ Hy(z),

where H, is holomorphic on a neighborhood of Q. The Garabedian
kernel L(z,a) and the Szegé kernel S(z,a) are related via the identity

S(a,z) = —iL(z,a)T(2)

for a € , z € bS).

The Szeg6 kernel S(z,a) has exactly n — 1 zeroes aj,ag,...,a,-1 in
Q and S(a,a) > 0. The simple zero of f, at a comes from the simple
pole of L(z,a) at a. Note that f.(a) = 27S(a,a). The n-to-one map f,
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must have n — 1 zeroes besides the one at a and these zeroes coincide
with the zeroes of S(z,a) since L{z,a) is nonvanishing.

The transformation formula for the Szegé kernel gives rise to a nice
formula for the Riemann mapping function, i.e., if f, is the Riemann
mapping from a simply connected domain § onto the unit disc, then

/ _ S(z,a)2
= S ey

where S(z,a) is the Szeg6 kernel associated to Q2 (see [2], [12]).

3. Algebraic kernel functions

A holomorphic function A(z, w) of two complex variables on an open
set in € x C is algebraic if there is a holomorphic polynomial P(a, z, w)
of three complex variables such that A satisfies P(A(z,w), z,w) = 0. It
is well-known that a function H(z,w), which is holomorphic in z and
w on a product domain ; x o, is algebraic if and only if, for each
fixed b, the function H(z,b) is algebraic in z, and for each fixed a, the
function H(a,w) is algebraic in w (see [7]). We say that the Bergman
kernel function B(z,w) associated to a domain (2 is algebraic if it can
be written as R(z,w), where R is a holomorphic algebraic function of
two variables on {(z, W) : (z,w) € Q x Q}. Because the Bergman kernel
is hermitian, B(z, w) is algebraic if and only if, for each point b € €, the
function B(z,b) is algebraic function of z.

Let € be a non-degenerate n-connected planar domain with smooth
real analytic boundary and let U be the unit disc. Suppose that f :
0 — U is a proper holomorphic map. It is well known that f extends
holomorphically past the boundary of € and that f’ is nonvanishing on
b§). S. Bell extended f to_a meromorphic function on the double of
in the following way. Let 2 denote the double of 2 and let R(z) denote
the antiholomorphic involution on 2 that fixes b{2. Let R(2) denote the
reflection of € in € across the boundary. Since f (z) = 1/f(2) for z € b
and R(z) = z on bQ, it follows that

f(z) =1/f(R(z)) for z € b2
The function on the left-hand side of this formula is holomorphic on €,
the function on the right-hand side is meromorphic on R(2), and two
functions extend continuously to b2 from opposite sides and agree on
b§. Hence the function given by f(z) on Q and 1/f(R(z)) on R(Q) is
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a meromorphic extension of f on 2. See [4], [5] for this meromorphic
extension of f on Q. Here we note that (2 is a compact Riemann surface.

The above argument gives an idea to prove the following lemma which
induces the fact that every non-degenerate n-connected planar domain
Q, where n > 1, is representable as ! = {z € C : |f(z)] < 1} with a
suitable rational function f of degree n.

LEMMA 3.1. Let Q be a non-degenerate n-connected planar domain.
Let a be a point in  and let f, :  — U be the Ahlfors mapping from
Q) to the unit disc U. There is a compact Riemann surface R (without
boundary) of genus 0 and a holomorphic injection ¢ of §) into R such
that

faor

can be extended to a meromorphic function, say F, on R.

The proof of Lemma 3.1, which is crucial for Theorem 3.4, is in [11],
but for convenience we give it here.

Proof. Since there are only a finite number of zeros of f,, there is a
positive constant p such that p < 1 and that

D={(eC:p<|¢| <1},

is contained in U — X where X = {f,(z) € U : f,(2) = 0}. Hence every
component W;, where j =1,...,n, of f;~ 1(D) is mapped biholomorphi-
cally onto D by the restriction fq|w,, of fo to Wj.

Now we construct a compact Riemann surface R by using the Ahlfors
map f, to attach discs to the exterior of §) along each boundary curve.
More precisely, we consider the disjoint union R of € and n copies V)
(j=1,...,n)of

V={¢CeC:p<|(l}U{oc}.

Identify every subdomain W; of Q with the subdomain D; of V; corre-
sponding to D by the biholmorphic map corresponding to faIW].. Then
the resulting set, which we denote by R = R/f,, has a natural com-
plex structure induced from those on 2 and on every Vj, and hence is
a Riemann surface. Here the natural inclusion map ¢ of Q into R is a
holomorphic injection, and using the complex coordinate (; on the copy
V; corresponding to ¢ on V', we have

fao L—I(Cj) =(
on D; by the definition.
Now, since topologically R is obtained from Q by attaching a disc
along each boundary curves of Q, R is a simply connected compact
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Riemann surface without boundary, and hence in particular, is of genus
0. Also we can extend F = f, o™ ! to a meromorphic function on the
whole R by setting F(¢;) = ¢ and F{oc0) = oo on the whole V; for every
J O

The following uniformization theorem (which is also called the gen-
eralized Riemann mapping theorem) is classical and well-known. As
references, we cite, for instance, [8] and [9].

ProposITION 3.2 (Klein, Koebe and Poincaré). Every simply con-
nected Riemann surface is mapped biholomorphically onto one of

e the unit disc U,

e the complex plane C, and

e the Riemann sphere C.

By using the above proposition, we get the following lemma.

LEMMA 3.3. There is a biholomorphic map h of the above Riemann
surface R onto the Riemann sphere C, and hence F o h™! is a rational
function.

In [11], we get the following theorem by using Lemma 3.1 and Lemma
3.3.

THEOREM 3.4. Every non-degenerate n-connected planar domain with
n > 1 is mapped biholomorphically onto a domain Wy, a,.....a, 1.b1.60.....b,
ak
z+
> Toh

defined by
{z eC: < 1}
k=1

with suitable complex numbers ay and by,.

REMARK 3.5. It is well known that the reduced Teichmiiller space
T(€) of a non-degenerate n-connected planar domain {2 can be identified
with the Fricke space of a Fuchsian model G of 2 (see [9]). Since G is
a free real Mébius group with n — 1 hyperbolic generators, T(2) is real
(3n — 6)-dimensional if n > 2.

n—1

The domain Wo, 45,0, 1,b1,bs,...5n_, it Theorem 3.4 contains 2(n—1)
complex, i.e. 4n — 4 real, parameters. Every representation of a domain
in the above theorem is actually associated with an n-sheeted branched
covering of the unit disc by © and so we need many more number of
parameters in a representation in Theorem 3.4 than Teichmiiller param-
eters for T(12).



Algebraic kernel functions and representation of planar domains 453

Theorem 3.4 is considered as a natural generalization of the classical
Riemann mapping theorem for simply connected planar domains. It
has importance in the sense that every domain Wy, 45, a,_1.,61,b2,....bn_1
defined as in Theorem 3.4 has algebraic kernel functions. To be precise,
the theorem in [4] is as follows.

PrOPOSITION 3.6. Let 2 be a non-degenerate n-connected planar
domain with n > 1. The following conditions are equivalent.

1. The Bergman kernel associated to §2 is algebraic.

2. The Szegé kernel associated to §) is algebraic.

3. There is a proper holomorphic mapping f : & — U which is alge-
braic.

4. Every proper holomorphic mapping from §} onto the unit disc U
is algebraic.

The function f defined by

ag

n-1
fal7a27-~-7an—1,b17b27~~-abn—l (z) =z+ kz_l Z— by

is a proper holomorphic mapping from Wy, 4, a4 _1.b1,b2,...b,_; ODtO the
unit disc U which is algebraic. Hence the above proposition implies the
following corollary.

COROLLARY 3.7. Every non-degenerate n-connected planar domain
with n > 1 is biholomorphic to a domain Wy, 4, a,_1,b1,bs,....b with
algebraic Bergman kernel and algebraic Szegé kernel.

n—1

4. Open problems and an example

Now we pose the following natural problems for our canonical do-
mains.

PROBLEM 4.1. Determine the locus B,, in C?*2 of
(a1,a2,...,an_1,b1,b2,...,bp1)

such that the corresponding domain

aj
z— by

n—1
z+ Z
k=1

is a non-degenerate n-connected planar domain.

y

WahaQ’--'»anAlabl7b2,---7bn71 = {Z eC:
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We call this locus B, the coefficient body for non-degenerate n-conn-
ected canonical domains. Clearly, B, N1I; is empty for every j, where

II; = {(a1,02,...,an-1,b1,b9,...,by_1) € cn—2. aj = 0}.

PROBLEM 4.2. Fix a point (aj,as,...,an—1,b1,b2,...,bp_1) in By,
and let
W = Waias.....an1,b1,b2,bn1
be the corresponding n-connected canonical domain. Determine the sub-
set E(W) of B, consisting of all points which correspond to n-connected
canonical domains biholomorphically equivalent to W.

We call E(W) the leaf in B, for W.

REMARK 4.3. For every such non-degenerate n-connected canonical
domain W, the subset E(W) is a non-empty proper subset of B,, by
Theorem 3.4. Also note that E(W) contains an element with a; > 0.
Actually, if E(W) contains an element with a; = re?® ¢ R, where r > 0
and 6 € R, then by changing the variable z to e®/2z, we have such a
point in E(W) as desired.

Now we discuss the case that n = 2. It is well-known (cf. [5]) that
Ar)={z€C: |z+ 27} <r}

is a doubly connected domain with smooth real analytic boundary curves
if r > 2 and the mapping
1

fr(2) = -

is a proper holomorphic map from A(r) onto the unit disc which gives
a 2-sheeted branched covering of U by A(r). Moreover, since f.(z) =
(1/7)(1 —272), £ also gives a 2-sheeted covering of the Riemann sphere

A

C by itself branched over +2/r for every positive r.

(z+271)

REMARK 4.4. It is well-known that two doubly connected domains
are mutually biholomorphic if and only if the modulus of them are the
same. Here the modulus of the doubly connected domain {1 < |z| < s} is
log s by definition. By using the standard results in [14], S. Bell observed
in [5] that the modulus m(r) of A(r) is a continuous increasing function
of r, which goes to zero as r approaches to 2 from above and which goes
to co as r — 00. So every non-degenerate doubly connected domain is
biholomorphic to exactly one of A(r) with r > 2.

First, we determine the coefficient body for the doubly connected
canonical domains.
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THEOREM 4.5. For a complex number a, let a' be a complex number
such that (a’)? = a. Then
By = {(a,b) €C?:a#0,b+2a'| < 1,]b—2d'| <1}
(which is independent of the choice of a').

Proof. Take any (a,b) in C? with a # 0, and consider the correspond-
ing rational function

fa,b(z) = Z+ z— b
Then since the zeros of fé’b are b+ a’, we see that f,p is a 2-sheeted
covering of the Riemann sphere C by itself branched over f,,(b+ a’) =
b+ 2ad, for every a # 0. Hence the following lemma, which is easy to
see, implies the assertion. O
LEMMA 4.6. The preimage f;g(U) of the unit disc U is
1. disconnected if and only if

b+2d|>1 and |b-2d|>1,
2. a simply connected domain if and only if
b+2d/|>1>|b—2d| or |b+2d|<1<]b—2d,

and
3. a doubly connected domain if and only if

b+2d'| <1 and |b—2d|<1.

REMARK 4.7. For (a,b) € C? to be in By, (a,b) should satisfy |a| <
1/4,|b| < 1.

Next to determine the leaves in Bg, we show the following theorem.

THEOREM 4.8. Fix r > 2 and a point (a,b) in By. Then the corre-
sponding domain W, is biholomorphic to A(r) if and only if there is a
biholomorphic map T(z) of the unit disc U onto itself such that

T({b+2a'}) = {£2/r}.

Proof. First assume that W, is biholomorphic to A(r). Then W,
and A(r) are mapped biholomorphically onto the same R = {z € C :
pl < |z| < p} with p = e™™/2. Also it is known that for every
holomorphic functions m(z) on R which gives a 2-sheeted covering of R
onto U, m'(z) has two zeros which can be written as +e* with a suitable
real 6. (Actually, the sheet-interchange I(z) of the coveringm: R — U is
a conformal automorphism of R which maps {|z| = p~1} onto {|z] = p}
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and whose fixed points are exactly the zeros of 7'(z). And it is well-
known that such a conformal automorphism 7(z) of R should be %% /2
with a suitable real 6.)

Now fix a biholomorphic mappings wg 4(2) and wr(z), respectively, of
W, and of A(r) onto R. Then since f, 40 w;})(z) and f, o w;1(z) give
2-sheeted coverings of R onto U, we may assume that

wap(bta) =41,  wp(£l) ==+l

by changing the variable z on R to €z with some suitable € R if
necessary. Thus, if we set

9(2) = w; ! o wep(2),

then g(z) maps Wy biholomorphically onto A(r), and maps b + a’ to
+1.
Recall that every A(r) has the canonical biholomorphic involution

which fixes {£1} pointwise, the image of which by f, is {£2/r}, and
interchanges the sheets of the covering f, : A(r) — U. Hence

Jap(z) =gt o Jog(z)

is a biholomorphic involution of W, ;, which fixes {b £ a'} pointwise,
the image of which by f,5 is {b £ 2a’}, and interchanges the sheets of
the covering by f,p : Wap — U. In particular, for every zo € W,
the preimage {zg, Jo5(20)} of fa5(20) by fap(2) is mapped by g(z) onto
{9(20), J(g(20))}, which is the preimage of f,(g(20)) by fr(2).

Thus for every a € U, g(z) maps the preimage f o bl (a) bijectively onto
the preimage f, !(3) with some unique 3 with |3| < 1. This implies that
g(z) induces a bijection T'(z) of U onto itself, which is biholomorphic as
is seen from the construction.

Next suppose that there is a biholomorphic map T(z) of the unit disc
U onto itself such that

T({bx2d'}) = {£2/r}.
Then the following lemma shows the desired assertion. 0

LEMMA 4.9. The map T'(z) can be lifted to a biholomorphic map of
Wep onto A(r).
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Though this is a well-known fact, we include a sketch of a proof
for the sake of convenience. Recall that every A(r) has the canonical
anticonformal automorphism

which fixes the unit circle S! pointwise, and the image f.(S!) is the
segment L = [-2/r,2/r].

Now cut U by L, then the preimage f (U — L) consists of two
connected components, say D, each of which is biholomorphic to U — L
and bounded by two analytic Jordan curves. Similarly, cut U by T-1(L),
then since T (L) is a circular arc connecting b + 2a’, the preimage

fa, bl(U — T~Y(L)) also consists of two connected components, say Dib,

each of which is biholomorphic to U — T~}(L) and bounded by two
analytic Jordan curves.
In particular, f,! has single-valued branches A which map U — L
biholomorphically onto D, respectively. Thus, on D:b set
gi(z) = hr:!: oTo fa,b~

Then we can see that g*(z) has the same continuous boundary values
on the common boundary of D;tb. Thus the classical theorem of Panlevé

implies that g*(2) determines a biholomorphic map of W, ; onto A(r).

A
YETER
In particular,

E(A(r)) N {(a,0) € C*} = {(a,0) € C? : |a| = r2}.

Proof. Since

COROLLARY 4.10. For every given r > 2,
4a’
1—(b+2a)(b— 2a")

E(A(r)) = {(a, b) € By :

z—(2/r)

5 = Ty
maps U biholomorphically onto U, S(2/r) =0, and S(—2/r) = 4r/(4 +
r2), there is a biholomorphic map T'(z) of the unit disc U onto itself
such that

T({b+2d'}) = {£2/r}

if and only if there is a biholomorphic map T(z) of the unit disc U onto
U such that

T(b+2d')=0, |T(b—2d)|=4r/(4+71?).
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Thus using
_ ’
T(z) = L—i——%l
1—-(b+2d)z2
we have the assertion.
In particular, if (a,0) € E(A(r)), then
[4a/|  4r
1+ 4]a/|2 4+72
implies that |a’| = 1/r or r/4. Since (a,0) € Bo, |a’| < 1/2 by Theorem
4.5. Hence |a| = =2 for r > 2 and the converse also holds. a

Finally, we give examples of a set which contains exactly one point
of every leaf E(A(r)).

EXAMPLE 4.11. For every real positive a satisfying 0 < a < 1/4, set
a
Wa,oz{zE(C:|z+;| <1}

Note that W, o becomes the disjoint union of two simply connected
domains as a becomes bigger than 1/4. By replacing z/r by z in the
defining function f(z) = (z + 271)/r of A(r), we get directly that each
doubly connected domain is biholomorphic to W, g with a = r2. It
means that, in the family {W o} with 0 < a < 1/4, there are no pair of
mutually biholomorphic domains and the set {(a,0) € C?:0 < a < 1/4}
contains a point of every leaf E(A(r)).
Also for a real positive a,

W_a,0={ze<c;|z—g|<1}

is biholomorphic to W, by the map z — ¢z. So we can say that, in
the family {W_,0} with 0 < a < 1/4, there are no pair of mutually
biholomorphic domains and the set {(—a,0) € C? : 0 < a < 1/4}
contains a point of every E(A(r)).

More generally, for a real 8 and a real positive a,
ea
Wei()a’o ={zeC:|z+

1

<)
is btholomorphic to W, o by the map z — €*/2z by Remark 4.3. Hence
in the family {Weie, o} with 0 < a < 1/4, there are no pair of mutually
biholomorphic domains and the set {(¢?a,0) € C? : 0 < a < 1/4}
contains a point of every E(A(r)).



Algebraic kernel functions and representation of planar domains 459

References

[1] S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans.
Amer. Math. Soc. 270 (1982), 685-691.

2] , The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC
Press, Boca Raton, 1992.

[3] , Complerity of the classical kernel functions of potential theory, Indiana

(4]

(5]

Univ. Math. J. 44 (1995}, 1337-1369.

, Finitely generated function fields and complezity in potential theory in

the plane, Duke Math. J. 98 (1999), 187-207.

, A Riemann surface attached to domains in the plane and complezity in
potential theory, Houston J. Math. 26 (2000), 277-297.

[6] S. Bergman, The kernel function and conformal mapping, Math Surveys 5, Amer.
Math. Soc., Providence, 1950.

{7] S. Bochner and W. Martin, Several Complex Variables, Princeton Math. Ser. 10,
Princeton Univ. Press, Princeton, 1948.

[8] H. M. Farkas and I. Kra, Riemann Surfaces, Grad. Texts in Math. 71, Springer-
Verlag, 1980.

[9] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmiiller Spaces, Springer-
Verlag, Tokyo, 1992.

[10] M. Jeong, The Szegd kernel and rational proper mappings between planar do-
mains, Complex Variables Theory Appl. 23 (1993), 157-162.

[11] M. Jeong and M. Taniguchi, Bell representation of finitely connected planar do-
mains, Proc. Amer. Math. Soc., To appear.

[12] N. Kerzman and E. M. Stein, The Cauchy kernel, the Szegé kernel, and the
Riemann mapping function, Math. Ann. 236 (1978), 85-93.

(13] N. Kerzman and M. Trummer, Numerical conformal mapping via the Szegd ker-
nel, Special issue on numerical conformal mapping, J. Comput. Appl. Math. 14
(1986), 111-123.

[14] O. Lehto, Univalent Functions and Teichmiiller Spaces, Grad. Texts in Math.
109, Springer-Verlag, New York, 1987.

[15] S. M. Natanzon, Hurwitz spaces, Topics on Riemann surfaces and Fuchsian
Groups, London Math. Soc. Lecture Note Ser. 287 (2001), 165-177.

[16] M. Trummer, An efficient implementation of a conformal mapping method based
on the Szegd kernel, SIAM J. Numer. Anal. 23 (1986), 853-872.

Moonja Jeong

Department of Mathematics

The University of Suwon

Suwon 445-743, Korea

E-mail: mjeong@mail.suwon.ac.kr



460 Moonja Jeong and Masahiko Taniguchi

Masahiko Taniguchi

Department of Mathematics
Graduate school of Science

Kyoto University

Kyoto 606, Japan

E-mail: tanig@kusm.kyoto-u.ac.jp



