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Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly 
with its environment, its meaning cannot be presented naturally as an input/output function (as is often 
done in the denotational approach to semantics). In this paper, an alternative is put forth. First, a 
definition is given of what it is for two programs or program parts to be equivalent for all observers; 
then two program parts are said to be observation congruent iff they are, in all program contexts, 
equivalent. The behavior of a program part, that is, its meaning, is defined to be its observation 
congruence class. 

The paper demonstrates, for a sequence of simple languages expressing finite (terminating) behaviors, 
that in each case observation congruence can be axiomatized algebraically. Moreover, with the addition 
of recursion and another simple extension, the algebraic language described here becomes a calculus for 
writing and specifying concurrent programs and for proving their properties. 

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of Program- 
ming Languages-algebraic approaches to semantics 
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1. Introduction 

The denotational approach to the semantics of programming languages has been 
well developed in recent years [ 1, 111 and applied successfully to many nontrivial 
languages. Even languages with parallel constructs have been treated in this way, 
using the power-domain constructions of [3], [7], and [lo]. Indeed for such 
languages there is no shortage of possible denotational models. For example, there 
are several simple variations on the model for processes, introduced in [4]. 

In the face of such an abundance, it is best to recall the motivation for seeking 
such models. They provide a useful mathematical framework for the analysis of 
programs, and for developing logical systems for proving their properties. However, 
if either the mathematics or the logic is to have any relevance, a link must be made 
between the denotational model and the behavior, or operational semantics, of the 
programs. One way of making the link is to demand that the denotational model 
befully abstract with respect to the operational semantics. This means simply that 
two program phrases should have the same denotation if, and only if, the opera- 
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tional meaning of every program remains unchanged when one phrase is replaced 
by the other. 

What exactly is meant by the behavior of nondeterministic or concurrent 
programs is far from clear and in this paper we put forth one possible definition. 
The essence of our approach is that the behavior of a program is determined by 
how it communicates with an observer. We begin by assuming that every program 
action is observable in this way; later we allow that some actions (in particular, 
internal communications between concurrent components) are not observable. 

We apply our d.efinition to a sequence of simple languages for expressing 
programs with finite behavior, and show that in each case it can be characterized 
by algebraic axioms. This leads automatically to a fully abstract model; it is just 
the initial algebra generated by the axioms. Moreover, a proper understanding of 
the finite case seerns a necessary prelude to a study of programs with infinite 
behavior. Such programs may be gained simply by adding recursion to our 
languages. 

In fact, with the alddition of recursion and with a natural extension to allow data 
values to be communicated between concurrently active agents, the simple algebra 
described here becomes a language for writing and specifying concurrent programs 
and for proving their properties. This language was introduced in [5]; it was partly 
the need for a firm basis for the algebraic laws discussed there that led to the 
present study of observation equivalence. 

In Section 2 we present our general framework. In Sections 3-6 we outline and 
summarize our results for the languages considered. Proofs of the main results are 
contained in Appendixes A-C. 

The present paper is a full presentation, complete with proofs, of results first 
announced without proof in [2]. 

2. Observational Equivalence of Processes 

2.1. EQUIVALENCE. In this section we introduce a way of defining equivalence 
between programs t.hat is based entirely on operational considerations; informally, 
two programs are equivalent when no observations can distinguish them. Further, 
two subprograms or program phrases are congruent if the result of placing each of 
them in any progralm context yields two equivalent programs. Then, considering 
the phrases as modules, one can be exchanged for the other in any program without 
affecting the observed behavior of the latter. 

However, much is left vague by this prescription. First, what are obse;ations? 
Second, how can they be used to distinguish programs? In this section we answer 
these two questions, thereby obtaining a precise notion of equivalence, and hence 
also of congruence. Note that the answer to the first question does not determine 
the answer to the second; observations may be used in many different ways to 
distinguish more or fewer programs. We cannot argue that our answer is best, only 
that it is natural; to this end, we give an alternative characterization of the resulting 
equivalence relation in Section 2.2. 

In the case of deterministic sequential programs, the behavior of a program p is 
usually taken to be its input-output function IO(p). Here, an observation of p is 
taken to be a pair of states (or values): an input state and the resulting output state 
(if any). Then proyFams p and q are equivalent, written p - q, if they yield the 
same observation sets; that is, if IO(p) = IO(q). The corresponding congruence 
relation -c is then defined as follows: p -c q if for every suitable program context 
55[ 1, JZb] - .Y[q]. If the language is defined algebraically, that is, by operations 
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for constructing new programs from ones already defined, the wC turns out to be 
the largest congruence relation included in -. 

However, any satisfactory comparison of the behavior of concurrent programs 
must take into account their intermediate states as they progress through a 
computation, because differing intermediate states can be exploited in different 
program contexts to produce different overall behavior (e.g., deadlock). With this 
in mind, we now proceed to a more refined notion of behavioral equivalence, 
which we call observational equivalence. This notion may be defined for objects 
more general than programs, which (for the remainder of the present section) we 
shall call processes. 

Let P, then, be a set of objects that we may think of as processes. We take the 
view that any observation of p E P entails some participation by p itself; p is an 
active participant, as well as the observer. Thus, the act of observing a process 
changes its state. So if we adopt the familiar technique of identifying the state of a 
process with the process itself, we can say that observation changes the process into 
a new process. This change may not be deterministic; hence the effect of a particular 
type of observation-applied to an arbitrary process-may be captured by a binary 
relation over P. In general, we presuppose a set Z of possible types of observation, 
so we then have a set (Ri C P x P, i E I) of observation relations. 

Using these relations, we define a sequence of equivalence relations -” over 
P (n 2 0), in such a way that N~+I C -,,, as follows: 

p m. q ifp, q E P (i.e., m. = P x P); 
p -n+l q if for every i E Z, 

(i) (p, p’) E Ri implies, for some q’, (q, q’) E R; and p’ -,, q’; 
(ii) (q, q’ ) E Ri implies, for some p’, (p, p’) E Ri and p’ -R q’. 

Then p and q are observationally equivalent, written p - q, if p -,, q for every n. 
Thus, we have defined - to be fl, -,,. In fact, we have taken - to be the limit 

n, E”( P x P), where E(S) is defined for any S G P x P as follows: 

(p, q) E E(S) if for every i E Z 

(i) (p, p’) E Ri implies, for some q’, (q, q’) E Ri and (p’, q’) E S; 
(ii) (q, q’ ) E Ri implies, for some p’, (p, p’) E Ri and (p’, q’) E S. 

Now if E has the property that E(fl, Sn) = fl, (E(S,)) for every decreasing 
sequence S, of relations, that is if E is anticontinuous, then it follows from classical 
fixed-point theory that - is the maximum fixed-point of the map E of relations. 

Let us say that R C P x P is image-finite if, for each p E P, (p’ 1 (p, p’) E RJ is 
finite. It turns out that the image-finiteness of each Ri, i E Z, is sufficient to ensure 
that E is anticontinuous, so the following theorem holds (see Appendix A for the 
proof): 

THEOREM 2.1. Zf Ri is image-finite for each i E Z, then - is the maximum 
solution to S = E(S). 

Hitherto we have called i E Z a type of observation, and then an instance 
(p, p’) E Ri is a particular observation (of p). It can also be regarded as a 
communication between p and an observer; in some of the program languages that 
we introduce later we exploit this symmetry by representing communication 
between two processes p and q, running concurrently, as mutual observation 
between the processes. 
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For the present, we can also regard a single observation (p,, p’) E Ri as an 
atomic experimerit by the observer on p. A more complicated experiment may 
consist of a finite isequence of atomic experiments. Let s be the sequence i, , . . , , i, 
in I (n L 0); then an s-experiment on p is a sequence po, . . . , I),, where p. = p and 
(p&l, pk ) E R,. Thus, if p - q and some s-experiment leads from p to p’, then 
(assuming image-finiteness) by Theorem 2.1 there exists an s-experiment on q 
leading to some q’ such that q - q’. If we consider a computation as a sequence of 
experiments (or communications), then the above remarks show that intermediate 
states are compared. In fact, if p is to be equivalent to q, there must be a strong 
relationship between their respective intermediate states. At each intermediate stage 
in the computations, the respective “potentials” must also be the same. The 
alternative characterization of observational equivalence given in Section 2.2 will 
help to shed further light on such intuitive discussions. However the principal 
reason for introducing this alternative characterization in the present paper is to 
justify our interest in the notion of observational equivalence despite its rather 
complicated delin:ition. Moreover, we will find it easier to compare it with simpler 
forms of equivalence that one might be tempted to define. One such equivalence 
is 

P -e q if for every s E P, 
p has an s-experiment if and only if q has an s-experiment. 

This identifies a process with the set of s-experiments that can be performed on it 
and reflects the view of classical automata theory that identifies a machine with 
the language it accepts. The alternative characterization will make apparent the 
difference between observational equivalence and -e and will underline the deli- 
ciencies of the latter. 

2.2. LOGICAL CHARACTERIZATION. The alternative characterization depends 
on the identification of a process with the properties it enjoys. Then we can say 
that two processes are equivalent if and only if they enjoy exactly the same 
properties. This is perhaps more illuminating in its negative form: two processes 
are inequivalent if one enjoys a property that the other does not enjoy. 

There are a number of parameters in this definition. First, it presupposes a set 
ti of properties. Second, we need a notion of a process p E P enjoying a property 
A E & This can be modeled as a binary relation l= C P x &I We write l= in an 
infix manner and ,D I= A may be read “p enjoys the property ‘A.” Let d(p) be the 
set of properties enjoyed by p, that is, 

d(P) = M P I= 4. 

An equivalence between processes can be defined as follows: 

P -sl 4 if M(P) = -Wq) for p, q E P, 

We now introduce a particular set of properties and a particular satisfaction 
relation for which it will follow that 

P-4 if and only if P -d 4. 

The properties in question are rather general, but they depend on the set of 
observation relations (Ri G P x P, i E I) given in the previous section. They are 
best expressed as formulas in a simple modal language 3 Yis defined by extending 
propositional logic with a set of modal operators, 0, one for each observation 
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relation R;. The connectives of propositional logic have their usual meaning and a 

process p will enjoy the property @A, that is, p = @A, if there is an i-experiment 
(p, p’ ) such that p’ enjoys the property A. The language looks deceptively simple, 

but it derives its power from the ability to define the dual modal operators E/ 

from @ using negation. We now give the relevant definitions. 
Let the language Y of formulas be the least set such that 

(ii) A,BEY+AABE~1AE~ 
(iii) AE=YandiEZ+@AEZ 

The satisfaction relation l= C P x 2’ is the least relation such that 

(i) p l= T for all p E P, 
(ii) pl=A A BiffpKAandpl= B, 

(iii) p I= 1A iff not p I= A, 
(iv) pl= @Aifff or some i-experiment (p, p’), p’ I= A. 

In examples and later discussion we adopt the following convenient notations: 

F stands for ‘T, 
A V B stands for l(lA A lB), 

84 
A stands for @ . . . @A, where s = i, . . . i,, n I 1, 

s stands for l@lA. 

We say p is s-deadlocked if there are no s-experiments on p. From the definition 
of the satisfaction relation we can now interpret many simple sentences as assertions 
about the possibility of deadlock. 

Examples 

(a) p l= @T: It is possible to carry out an s-experiment on p. 

(b) p l= ElF: p is s-deadlocked. 
(c) p E @(OF V OF): It is possible, via an s,-experiment, to get into a state 

that is either sz-deadlocked or s3-deadlocked. 
(d) p t= lQ(@F): At the end of any sl-experiment, an s2-experiment that will 

leave the program in a state that is s3-deadlocked is possible. 

Note that it is the interleaving to arbitrary depth of the two model operators 0, Cl 
that gives the language its power. Although we do not here develop 5? into a logic 
for reasoning about programs, it is worth noting that as a language it is endogenous 
by Pnueli’s classification [8]. This means that a formula states something about 
the ‘world’ of a single program, in contrast to exogenous logics such as Dynamic 
Logic [9] where parts of programs may be constituents of formulas. 

Let Y(p) = (A E z p l= A]. Thus, Y(p) is the set of properties enjoyed by the 
process p. 

THEOREM 2.2. If each Ri is imagefinite then 

P-4 if and only if P(P) = -xd. 

This characterization theorem (proved in Appendix A), together with our ex- 
amples, which indicate that in 28 it is possible to discuss deadlocking properties of 
processes, encourages us to believe that our notion of observation equivalence is 
natural. 
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Moreover, we shall see that each connective of 9 is important; by removing 
first negation, then conjunction, from LY we obtain characterizations of progres- 
sively weaker equivalences. It is of some interest to examine these weaker equiva- 
lences, and the rest of the present section is devoted to this task. However, the 
reader may note th;at the work in later sections is only concerned with observational 
equivalence for various sets Ri. 

For any set of formulas Y C 9 let 

p-yq ifforevery AEE pi=A ifandonlyif qi=A. 

If .9 is the empty set then -9 identifies all processes. The larger we make E the 
more discriminating the equivalence relation -9 becomes. Theorem 2.2 states that 
- coincides with -9. The two sets of formulas just mentioned are 

L# = {A E g A does not contain 1) 
/y = (A E A, A does not contain A ). 

It is not difficult to establish that 

THEOREM 2.3 

P -e 4 if and only if P-MY* 

This result emphasizes the weakness of-e; within JV we cannot define q or F, 
which are essential to express properties concerning deadlock. In Section 3.2 we 
will use the experiment relations defined in Section 3.1 to show that, in general, 
-e is weaker than -. We will also give an example to show that it is weaker than 
-Av which in turn is weaker than -. Anticipating these examples, it is reasonable 
to ask if there is a natural characterization of -4 in terms of the experiment 
relations Ri, similar to the characterizations in Theorems 2.2 and 2.3 for -9 and 
-A, respectively. !3uch a characterization can be obtained by considering the 
asymmetric version of the relation E, used in Section 2.1 to define -. 

For any S C P x P let AE(S) be defined by 

(p, q) E AE(S) if for every i E Z, 

(p, p’) E Ri implies, for some q’, (4, 4’) E Ri and (p’q’) E S. 

Let 

(i) IZ, be P x P, 

(ii) Cn+, be A&,). 

and let 

PL4 if for every n 2 0, p iIn q. 

If each Ri is image finite, then we can modify Theorem 2.1 to show that C is the 
maximal solution to S = AE( S). In general the relation & is reflexive and tr&sitive 
but not necessarily symmetric. We let = denote the natural equivalence relation it 
generates, 5 fl 7. Surprisingly it turns out that in general z is much weaker than 
-. An example&l be given in Section 3.2. However, we do have 

THEOREM 2.4. Zf each Ri is imagefinite, then 

P=q if and only if P -A 9. 
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In Section 3.2 we will also present examples that show that -,,, n 2 0 and IIn, 
n 2 0 are true hierarchies; that is, we will give processes pn, q,,, n 2 0 such that 
Pn -n qn, pn Cn qn, and P” *,,+I qn, P,, I$ n+, qn for every n = 0. 

These remarks show that various notions of equivalence of processes can be 
defined starting from either experiment relations or sets of properties that one 
expects processes to enjoy. In the present setting observational equivalence, -, 
seems the most natural and in the remainder of the paper we study its application 
to finite programs. We consider two different types of atomic experiment, and in 
each case we show that the congruence generated by the equivalence can be 
algebraically characterized. 

3. Application to a Simple Nondeterministic Language 

In the previous section we showed how to defme observational equivalence over 
an arbitrary set P of processes or agents in terms of an indexed family (Ri ] i E I) 
of binary relations over P with the finite-image property. 

In this section, we introduce a simple language for defining processes. Intuitively, 
every program in the language defines a nondeterministic finite machine, and, 
associated with every possible action i that a machine can make, we have an 
experiment relation Ri. This relation corresponds to the performance of an action 
i by the machine. In fact, we have two different sets of experiment relations, 
depending on whether or not the machines can perform actions that are not 
observable. This leads to two different observational equivalences -, = over 
programs. 

The language we use for defining machines is simply the word algebra W, over 
a signature Z. This approach has certain advantages. It introduces structure on the 
machines in that each operator in the signature can be viewed as a constructor: a 
method for defining a new machine in terms of existing machines, which are called 
its constituents. Moreover, the behavior of the new machine is uniquely determined 
by the behavior of its constituents. This will be reflected in our definition of the 
experiment relations Ri; the result of applying an experiment to a machine depends 
entirely on what happens when we apply experiments to its constituents. Another 
advantage of this structural view of machines is that we can augment the signature, 
thereby increasing the descriptive power of the language. The definition of the 
experiment relations on the extended language can be given simply by adding 
clauses to cover the new constructors. Indeed, this is the approach in the present 
paper and by Section 5 we have all of the operators of the language CCS [6] in our 
signature apart from recursion. 

In general, - (or =) may not be a congruence with respect to the operations of 
W,; this is to say that a pair of words p, p’ may satisfy p - p’ but there may be a 
context JZ[ ] (i.e., a word with a hole in it, or equivalently a derived unary 
operation over W,) for which U[p] - Z? [p’]. (- is a congruence if and only if 
p - p’ implies Z[p] - %[p’] for every %[ I.) Thus, observational equivalence of 
two words does not guarantee that one may be exchanged for the other without 
observable difference. 

We therefore define observational congruence uc over IV, as follows: 

P -c P’ if for all contexts Z[ 1, Y[p] - %[p’]. 

It is easy to check that this is a congruence, and is moreover the largest congruence 
contained in -. 
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The definition of -C is in general complicated and a direct proof that p -C p’ for 
a particular pair of words p, p’ is quite difficult. Our aim is to provide an alternative 
proof method for dleriving such statements. We isolate properties of-c (and zC) as 
axioms. One can tlhen derive statements such as p -C p’ by using these axioms to 
transform p into ,p” or vice versa. In fact, for each of the languages considered we 
show that -C (and zC) can be characterized completely by an appropriate set of 
axioms; that is, p -rC p’ if and only if we can derive p = p’ from the axioms using 
substitution. In general, this is false if we add recursion to the languages. However, 
the axioms together with some form of induction are a powerful proof method for 
deriving observational congruence. 

In the remainder of this section we present a signature t: I and define experiment 
relations Ri over u/,, in two distinct ways. For each way, we give a set of equational 
axioms that induce exactly the observational congruence determined by the rela- 
tions. 

3.1. THE SIGNATURE Z, = M U (NIL, +). Let M be an arbitrary set, repre- 
senting the atomic actions that may be performed by a program. We shall let p, v 
range over M. The words IV,, may be regarded as perhaps the simplest language 
for finite nondeterministic programs built from M, together with the null program 
NIL, a nullary operator representing termination, and the binary operator + 
representing choice. The members of M, which are unary operators, may be thought 
of as prefixing an atomic action to a program. As an example, the program 

P = PI(PZ(NIU + M(cc~(NILN) 

may first perform ccl only; thereafter, it may perform p2 and terminate, or perform 
pl then ~2 and terminate. 

We now suppose that an atomic experiment consists in observing an atomic 
action; then the relations (R, 1 P E M} are defined as the smallest relations over 
IV,, satisfying the following conditions (we write 14, for R,): 

(-+ 1) AP) 3,. 

(+ 2) If p -% p’, th.en p + q 14, p’. 

(+ 3) If q 14, q’, then p + q 3 q’. 

Thus, the s-experiments (S E M*) possible for the program p above are the paths 
of the following tree: 

PI 

\ ~Q(NIL) clz\ NIL 

We now proceed to examine the observational equivalence - derived from the 
experiment relations R, determined above and its associated congruence -C. First, 
we note that in thins particularly simple case - itself is indeed a congruence, and 
therefore identical with -C. 

PROPOSITION 

(1) - is a congruence relation over W,, . 
(2) - is identical with -C over W=,. 
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PROOF 

145 

(1) It is only necessary to show that pl - p2 implies p(pl) - 4~2) and that 

PI - P2, 41 - 42 imply PI + 41 - p2 + 42. The details are straightforward in 
terms of the definition of - in Section 2. 

(2) -C is the largest congruence included in -, which is clearly - itself. q 

Second, we look for simple “equational” properties of the congruence. It turns 
out that ( IV..,/-,, +, NIL) is an Abelian monoid, with absorption. 

PROPOSITION. The following hold for all pI, ~2, p3 E W2,: 

(1) PI + (Pz + P3) -c (PI + P2) + P3, 

(2) PI +p2 -cP2 +PI, 

(3) PI + PI -c PI, 
(4) PI + NIL -c PI. 

PROOF. In each case, denoting the left and ri 
P from the definition of 3 that q1 3 q iff q2 + 

t sides by ql, q2 we can show 
q; the result then follows di- 

rectly. Cl 

Note that the distributive law p(pI f p2) uC I + p(p2) fails. For consider the 
two programs 

PI = PI(PZ(NIL) + I.Ls(NIL)), 

P2 = /.Q~zWIL)) + M(cL~(NIL)). 

We have pI -% r2(NIL) + pJ(NIL), whereas p2 * pz(NIL) and p2 % 
r3(NIL); neither of the two successors of pz under & is equivalent to the suc- 
cessor of pI . 

The first property proved in the proposition justifies the use of the following 
convenient notation; we write 

,jssn MA in place of ClIPI + *** + CLnPn 

{ 
if n > 0, 

NIL 
if n = 0, 

knowing that the notation is unambiguous up to -C. (From now on, pp stands for 
p(p).) Moreover, the first and fourth properties allows us to assume that any 
program p can be expressed (up to -,) in the form Cr+i=n pipi, where each pi is 
again of the same form. We shall call such an expression a normal form for p. 

This normalization is a necessary tool in proving the main result of the present 
section, namely that the four “equations” of the last proposition are complete, in 
the sense that any other valid equation between programs may be derived from 
them. For we have the following completeness result: 

THEOREM 3.1. The observational congruence -= over W,, is exactly the congru- 
ence induced by the four axioms 

(Al) x + (y + z) = (x + y) + z, 
(A2) x + y = y + x, 
(A3) x + x = x, 
(A4) x + NIL = x. 

PROOF. Let =l be the congruence over W,, induced by (Al)-(A4). By the 
previous proposition, -= satisfies these four axioms, whence p “I q implies p uc q. 

We first prove the converse for normal forms p and q, by induction on their 
structure, noting that p % p’ implies that p’ is a subterm of p. We therefore as- 
sume that p and q take the forms Cm uipi and C,, vja. 
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Assume that p uc q. Since p -% pi, then, for some q’, q % q’ and pi -C q’. 
But q’ must be qj for some j, with vj = pi, and by induction pi =I a. So such a j 
must exist for each i, and by symmetry for each j there exists i such that pi = I a 
also. It then follows from axioms (Al)-(A3) that p s1 q. 

Finally, in the c:ase that p and q are arbitrary programs, it is enough to note that 
the four axioms allow any program to be proved congruent (~1) to its normal 
form. cl 

In view of our axioms, then, it is intuitively clear that IV,,/-, is isomorphic with 
the set of rooted, unordered finite trees whose arcs are labeled by members of M, 
with the extra requirement that no two identically labeled arcs from a node lead 
to identical subtrees. As an example, the two programs pl, ql are represented by 
the distinct trees 

Indeed, we may use our language Yof Section 2 to show that these two programs 
are not congruent (or even equivalent), for in terms of 9’we have 

Pl I= A, 41 t# A, 

where A, is @( @T A @T). 
Theorem 3.1 and the propositions leading up to it set the pattern for the 

remaining five algebraic characterizations of congruences treated in the paper, 
though the details usually are more difficult. 

3.2. EXAMPLES. This section is devoted entirely to examples that substantiate 
the remarks at the end of Section 2.2. We use I+‘,, as processes, whose elements 
are described by trees, and the experiment relations as given by the rules (+ l), 
G+ 2), (- 3). 

Example 1. Let pI , q1 denote the programs 

We have seen in Section 3.1 that 

PI I= AI, 41 F Al, 

where A, is the formula @ (@T A @T). Now A, E JZ, so p1 +A ql. On the 
other hand one can show, by induction on A, that if A E /I: then pI l= A if and 
only if q1 l= A. It follows that pi -,v q1 so that -4 is strictly stronger than -/. Cl 

Example 2. Let ~2, q2 denote the programs 

and 

. 

PI 

A42 
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If A E J%, then p2 l= A if and only if q2 l= A. This depends on the fact that if A E 
/y and NIL l= A then p l= A for every program p. Thus, p2 -X 42. On the other 
hand if A2 denotes 

9 
1 @T, then p2 l= A2 and q2 F A2. From Theorem 2.2 it 

follows that p2 * 42. o - is strictly stronger than -x. Cl 

Example 3. We now show that the sequences -n and Cn, n 1 0, of relations 
are strictly decreasing. For let the pairs pn, qn be defined as follows, for each n 2 0: 

PI PI cc2 

Pn :-. . . . . . . . , 
\ J 

n times 
L r \ 

PI ccl P3 

qn 
:-. . . . . . . . . 

Then it is simple to prove that pn -,, qn and p,, Cn qn, but p,, -n+l qn and p,, I$ n+, 
qn, for each n L 0. Cl 

Turning to the formulas of z we remark that for each n L 0, the relation -,, is 
characterized by the sublanguage Yn of 58 consisting of formulas with nesting at 
most n of the modal operators 0; that is, p -,, q iff Yn(p) = 5$(q). This is in fact 
shown, by induction on ~1, in our proof of Theorem 2.2 given in Appendix A. 

However, Example 3 leaves something to be desired. For it shows that the 
weakness of each -n or Yn follows, in part, from its inability to “examine” a 
program’s behavior beyond its first n actions. 

This weakness can be remedied as follows. We may consider, in place of the 
experiment relations 3, the derived relations 2 for each s E M*, where 

P c1’ 
*-* Pk 

‘4 iff p-k!+ . . . As+, 

We may then define a map E* of relations over P as follows: 

(p, q) E E*(S) if, for all s E M*, 

(i) p L p’ implies, for some q’, q z q’ and (p’, q’) E S, 

(ii) q 5 q’ implies, for some p’, p & p’ and ‘(p’, q’) E S. 

Then we take -z = E*n( P x P), and -* = n,, -z. Now each -f , even -7, can 
“examine” the behavior of programs arbitrarily far into the future. In fact, -: is 
already quite strong; we can state that 

In other words, p -: q iff p and q have exactly the same action sequences. On the 
other hand, in the limit we can show that 

In other words, we have yet another characterization of the observation equivalence. 
But is it necessary to proceed to the limit, setting -* = fl, -,*, or do we have 

-* = -,* already for some finite n? If the latter were so, then our “recursive 
definition” of - would have been misleading. But we can indeed show that the 
sequence of relations -,*, n 2 0, is also strictly decreasing. For this we need a more 
complex sequence of program pairs than Example 3. 



148 M. HENNESSY AND R. MILNER 

Example 4. Let the pairs pn, q,, of programs be defmed as follows, for each 
n z 0: 

40: P3 

I 

Note that pI , q1 alre the programs of Example 1 above. Note also that p,, -e qn for 
all n L 1, since pn and qn have the same action sequences. But, as in Example 3, 

we are able to show (we omit the proof) that p,, -,* qn but p,, *;+I q,, for each n. 
The reader may care to verify this at n = 2: 

Now, finally, it should be clear that if we take Y* to be the formulas defined as 
for Y but with modal operators 0 s , s E M*, then Theorem 2.2 yields 

P -* q iff g*(P) = ~*(d. 

This is no surprise., since -* and - are identical and since Y* is already a derived 
language of Z by setting 

But we also have a. characterization of each -,*: 

P -IF 4 ifl -%Xp) = Z?(q) 

where Y,* is the sublanguage of 9’ in which the modal operators @ may be 
nested to depth at most n. Thus, arbitrary depth of nesting is required in P’*, even 
for its more powerful modal operators, in order to characterize -* fully. Clearly a 
simple nesting of the form @ 

0 

@ is no more powerful than the single operator 
ss ; it is the interleaving of propositional and modal operators that adds power. 

Indeed, we saw in Section 2.2 how the alternation of Owith its dual 0 allowed 
the expression of complex properties concerned with deadlock. 

3.3. UNOBSERVABLE ATOMIC ACTIONS IN 2,. In the system of Section 3.1, 
every atomic action is observable; a program cannot proceed without being 
observed. Let us now suppose that among A4 there are atomic actions that cannot 
be observed; such <an atomic action had no corresponding atomic experiment. For 
the moment we are not concerned with how these actions may arise. In the next 
section we introduce a notion of communication, and then unobservable actions 
will arise from inte:mal communications between subprocesses of the process being 
observed. However, we can analyze the effect of their presence on the observable 
behavior of a program independently of saying how they arise. 
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That their presence does indeed have an effect on observable behavior may be 
seen from the following example. 

Example. Suppose that 7 is an unobservable atomic action, and consider the 
programs 

PI = PI(CLZWW + dNW), 

~2 = P~(cczWW. 

Using the remarks at the end of Section 3.1, these may be represented by the trees: 

When an atomic pi-experiment is performed on pI , one possible result is that it 
changes pI into NIL. This follows because the execution of the action ccl by the 
program pI may be followed by the execution of the unobservable 7 action. 
Intuitively, this is an acceptable pi-experiment since of this sequence of actions 
performed by the program the observer only sees cam. However, the only possible 
result of performing a pi-experiment on p2 is the program pz(NIL). It follows that 
pl is not observationally equivalent to ~2. This inequivalence may also be seen 
using the language Y since 

PI I= A, ~2fA, 

where A is @(l @T). Cl 

For simplicity we assume that T is the only unobservable atomic action. (This 
may be formally justified; if there were two such, 7, and TV, we would arrive at an 
axiom TV = 72(x)-indicating that the replacement of 71 by 72 can affect no 
observation.) We therefore assume M = A U (~1 (T 4 A), and we define a new set 
(Rx ] X E A) of experiment relations as follows. First, define 2 over IV,,, for any 
s = PI . . . p,, E M*(n 2 0), by 

P&P’ iff p = po 3 pj 143 lJn a** *pn =p’. 

Then, writing Rx as a, we define for each X E A 

p 1 p’ iff 
PAP 

P - P’ for some m, n 2 0. 

Thus our new atomic observation A may absorb any finite sequence of unobserv- 

able actions before or after the action A. It is easy to check that each 9 is image- 
finite. 

We obtain now a new observational equivalence relation = over IV,,, using the 
IX definition of Section 2, with the relations .,a[ X E A). This induces, as before, an 

observational congruence zC (the largest congruence contained in =), but this is 
not identical with =. Indeed, the latter in not a congruence. For example, it is easy 
to check that r(NIL) z NIL; but if we place each of these programs in the context 
%[ ] = X,(X2(NIL) + [ 1) we obtain JZ[T(NIL)] + %[NIL] as may be readily 
checked (this is in effect the pair plp2 discussed earlier). 

The fact that = is not identical to zC makes the latter more difficult to analyze 
than the congruence -C of Section 3.1. However, it is easy to show that zC 
distinguishes no more programs than -C. 
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PROPOSITION. For all pI, p2 E W,, 

(a) pI - p2 imphes pI = p2. 
(b) pI mc p2 impks pI =:e p2. 

M. HENNESSY AND R. MILNER 

(a) A simple induction on n will show that - G z~. 
(b) We have -c G - !Z Z. Hence, since zc is the largest congruence contained in 

=, it follows that -c G q. cl 

From this proposition it immediately follows that q satisfies all the axioms that 
characterize uc. 

In addition, it enjoys some properties that indicate that certain occurrences of 7 
may be eliminated from programs. 

PROPOSITION. The following hold for all pI , p2 E Wz,: 

(4 pI + 7~1 zc 7~1. 

(b) C~(PI + 7~2) =c P(Pl + P2) + /.4P2. 

A direct proof of any one of these properties would involve consideration of the 
effect an arbitrary context can have on the terms involved. To avoid this we give 
in Appendix C an alternative characterization of =:c that is much easier to deal 
with. The proof of this proposition then becomes routine. 

One may motivate the new properties by seeing how an observer might attempt 
to distinguish between the two programs in each case. For example, the programs 
in (a) may be represented as 

From these trees it can be seen intuitively that the extra p,-subtree on the left- 
hand side does not change its $+ experiments because 7 is unobservable. Such 
arguments, however, are fraught with danger and should be treated carefully. 

A somewhat surprising result is that these two additional properties are sufficient 
to characterize the new observational congruence. 

THEOREM 3.2. The observational congruence zc over I;, is exactly the congru- 
ence induced by axioms (A l )-(A4) and 

(A5) x + 7x = 7x, 

646) /.4x i- 7Y) = Ax + Y) + PY. 

This theorem is not so immediate as Theorem 3.1, partly because = is not a 
congruence. It involves defining a normal form for programs in WZ,; the most 
important step in deriving the normal form is the use of (A6) to eliminate most 
occurrences of 7 in a program. 

4. Application to a Simple Language for Communication 

4.1. EXTENSION OF THE SIGNATURE. We now extend Zi to the signature 22 by 
adding a binary olperator “ 1 “; it is one of a variety of operators that may be chosen 
to represent the combination of a pair of programs that may proceed concurrently 
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and may also communicate with one another. These two properties are reflected 
by separate new conditions upon the experiment relations 3. One condition (in 
two parts) states that the program p 1 q admits all the experiments that p and q 
admit separately. (Since an atomic experiment corresponds to a single atomic 
action, the simultaneous activity of p and q cannot be observed.) 

(+4) Ifpzp’, thenplq&p’lq. 

(-5) Ifqzq’, thenpIqzplqq’. 

The next condition upon the relations 3 expresses the capability of p and q to 
communicate, in the case that two actions-one by p and one by q-complement 
each other. We take the view that two such actions occurring simultaneously appear 
to an external observer as a single, unobservable action 7. 

To handle the notion of complementary actions, we introduce a little structure 
over M. We assume M = A U (7) as before, and also that A = A U 3 where A is a 
possibly infinite alphabet of names, and that the alphabet 2 of conames is disjoint 
from A and in bijection with it. We represent the bijection and its inverse by an 
overbar (-), and use {a, /3, y) to range over A. Thus E E & and z = (Y. We 
continue to use X to range over A, and ~1, v to range over M = A U (7). 

Communication between p and q may occur when p admits a X-experiment and q 
admits a x-experiment, for some X; the result is a T-action of p I q. 

(46) IfpAp’andq>q’,thenplqI*p’lq’. 

Now taking {% 1~ E M) to be the smallest relations over ?Vz2 satisfying 
(+ 1 )-(+ 6), we obtain an observational equivalence - over Wz2 as in Section 3.1. 
As before, this turns out to be a congruence, so that -C is identical with -. 

Let us now examine properties of-C with respect to the new binary composition 
operator. Intuitively, the behavior of p 1 q is as follows. Its possible first actions are 
just those ofp independently, those of q independently, and those 7 actions resulting 
from complementary pairs of actions by p and q; after such a first action, p and q 
continue to act in parallel. 

To express this as an equation, we use the notation C pipi introduced in Section 
3.1. 

PROPOSITION. If p is C pipi and q is C vi%, then 

PI 4 -c f: dPi I 4) + F vj(P I 4i) + C- 4Pi I C&h 
PFDj 

A few simple examples makes the proposition clear. Note particularly that, in 
the second example, the action /3 may either occur independently or be comple- 
mented by the action p, we shall see later how the complementation can-by 
application of a further operator called restriction-be forced to occur, so that the 
name /3 is used solely for communication between p and q in the composite p 1 q. 

Examples 

tap* + BP2) 174 = 4Pl I Yd + HP2 I 74) + YGPl -f PP2) I d, 
bP1 + BP21 I &I = 4Pl I !%I) + NP2 I m + i%OPI + BP2 I cd + 4P2 Id, 

(C pipi) 1 NIL = z pi(pi 1 NIL) + NIL + NIL. 

Note that the proposition allows “ 1” to be eliminated, by stages, from any word 
in W,,. In fact, it is this property of “ 1 n that allows us to prove that the proposition, 
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taken as an axiom1 schema, is the only interesting property of “ 1” with respect 
to UC. 

(A7) For any WOAS u and v of form C Pi-Xi, z VjVj: 

UlV= C c(i(&Iv) + C vj(UlYj) + C T(XiIyi). 
i i pi=ii 

Now we may state another theorem of complete axiomization. 

THEOREM 4.1. The observational congruence yc over W,, is exactly the congru- 
ence induced by (.A I)-(A4) and (~47). 

Remark. The following laws for “ 1” may be proved to hold over W,, by 
induction on the structure of terms (though they are not deducible from (Al)- 
(A4), (A7) by equational reasoning):. 

Xl(YlZ) = (XIY)IG 
XIV = YIX, 

xlNIL = x. 

4.2. UNOBSERVABLE ACTIONS IN 22. We now ,repeat for ZZ what we did for 
Z,; we wish to treat 7 as an unobservable atomic action (in particular, the 
intercommunication of p and q in p 1 q is not an observable action). If we define 

the experiment relations (3 1 X E A) as we did previously, then we gain an 
observational congruence x, over W,, again. We might expect this to be exactly 
the congruence induced by the axioms (Al)-(A7), but this is not the case, since 
(A6) is not satisfied by =:c over W,,. The reason is that, although one side of (A6) 
may be replaced b!/ the other in any context built from Zi, preserving observational 
equivalence, there are & contexts built using “ 1” in which the replacement does 
not preserve the equivalence. In fact, we shall demonstrate in particular that the 
following instance of (A6) is false: 

a,@NIL + 7NIL) z, @NIL + NIL) + cuNIL. 

For this would imlply the observational equivalence 

rNIL 1 @NIL + TNIL) = rNIL 1 (a(@NIL + NIL) + cuNIL). 

Calling the left and right sides of (1) p and q, respectively, we have 

PS P’ = yNIL 1 (@NIL + TNIL), 

whereas q 2 q’ implies that q’ = q1 or q’ = q2 where 

q1 = rNIL 1(/3NIL + NIL), 
qz = rNIL 1 NIL. 

(1) 

Now if (1) holds, then by definition of = we must have p’ x q1 or p’ = 42. The 
second is impossible since p ’ 2 yNIL 1 NIL whereas q2 $ q; is impossible. Hence 
p’ + qz. On the other hand, we may also show p’ + ql. Since 

p’ & NIL 1 NIL, 

whereas the only <y-experiment for q1 is 

qr & NIL 1 (,&NIL + NIL), 

it is easily seen that NIL 1 NIL + NIL 1 @NIL + NIL). 
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We therefore look for a set of axioms weaker than (Al)-(A7) that characterize 
sc over WZ2. Fortunately, it turns out that only (A6) need be replaced; (Al)-(A5) 
and (A7) are found to be satisfied by =;c over lV+ Our replacement for (A6) is two 
new axioms: 

646.1) dx+~Y)=&+~Y)+PY, 
W-W WY = PY, 1 

(pE1M) 

These axioms are indeed implied by (Al)-(A6). First observe that (A6.2) follows 
by placing x = NIL in (A6) and using the other axioms. Then to get (A6.1) place 
7y for y in (A6): 

/4x + TTY) = P(X + TY) + WY, 

and use two instances of (A6.2). 

THEOREM 4.2. The observational congruence q over W,, is exactly the congru- 
ence induced by (Al)-(A5), (A6. I), (A6.2), and (A7). 

This theorem is the central result of our paper, since the method not only 
generalizes in a routine manner to the corresponding theorem for our next signature 
&, but also applies we believe-with minor adjustments-to many other signatures 
and experiment relations representing concurrent and communicating activity. 
The axioms (Al)-(A$ (A6.1), and (A6.2) seem to be what is required for the 
operators in 2, in the presence of extra operators for communication and concur- 
rency. 

5. Further Operators on Programs 

In the preceding sections we have dealt with the main technical results of the 
present paper. This requires only slight extension to cover the operators of CCS 
[6], and we present the required extension in this section. 

In [4] we considered operators over behaviors corresponding to &, together with 
two other families of operators called relabeling and restriction; in the present 
context, these operators may be described as changing (bijectively) the labels for 
atomic experiments (i.e., permutations of A), and restricting the class of atomic 
experiments to a subset of A. The approach in [6] was to classify behaviors into 
sorts; a sort L was a subset of A, and the behaviors B= of sort L were those that 
employed only members of L as labels. 

Here we do not consider sorts; these may be later introduced and are indeed 
useful in providing a stronger basis for reasoning about realistic programs. More- 
over, we can treat relabeling and restriction as subclasses of a wider family of 
operators indexed by a subset of the partial functions M +P A4 from M to M. To 

this end we extend & to the signature Z3 by adding operators 

We shall postfix these operators. We characterize them operationally by adding a 
further condition for the experiment relations 3: 

(+ 7) If p % p’ and Si is defined, then p[SJ * p’[Sj. 

Now we take 114, I+ E Ml to be the smallest relations over WE, satisfying 
(+ 1 )-(+ 7), and again obtain an observational equivalence - over WE,, which is 
a congruence, so that again -C is identical with -. 
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(Al) x+(y+z)=(x+y)+z 

(A2) x+y=y+x 

(A3) x+x=x 

(A4) x+NIL=x 

(A5) x + TX := TX 

646) /4x + TV) = P(X + Y) + PY 
(A6. I) p(x + ry) = P(X + TV) + py 
(A6.2) hrry = py 

(A7) if u is ZpiXi and v is BUjfi, then u 1 v = Zpi (xi 1 V) + ZVj (U 1 yi) + z,,cj &Xi 1 fi) 

WV (P.4 VI = G4xm if Sp defined 

= NIL othewise 

(A9) (x + ~1 PI = XVI + YISI 
(A 10) NIL[S] = NIL 

/ 

FIGURE I 

TABLE 1. RELATIONSHIP BETWEEN AXIOMS AND CONGRUENCES 

Signature 

Z, = A4 u {NIL, +) 

21 = 2, u I 1 ) 

ZJ = :cz u 9 

Axioms for -c 

(A7)- 

(A7)-(A 10) 

Axioms for se 

(A5), (A6) 

(AS), (A6.11, (A6.2), 

(A7) 

(A5), (A6.1), (A6.2), 
(A7)-(A 10) 

The axioms needed to characterize P’ are the obvious ones: 

(A8) (@)[ S] = $(x[S]) if Sp is defined, NIL otherwise; 
(A9) 0 + YNSI = ~14 + ASI; 

(AlO) NIL[S] = NIL. 

THEOREM 5.1. The observational congruence mc over Wz, is exactly the congru- 
ence induced by (A I)-(A4) and (,47)-(A 10). 

The treatment of experiment relations {A ] X E A) and the corresponding 
observational congruence + over W,, is exactly as it was for Wz2, and by trivially 
adapting the proof of Theorem 4.2 we obtain 

THEOREM 5.2. The observational congruence =, over W,, is exactly the congru- 
ence induced by (A l)-(A5), (A6. l), (A6.2), and (A7)-(A 10). 

6. Conclusions 

We have characterized observational congruence in six cases by equational axioms. 
There are three signatures, Z1 C & G &, with Z3 being a minor variant of the 
signature used in the language CCS [6]. For each of those cases, two classes of 
experiments relations are considered: (3 ] p E Ml when the atomic action T is 
observable, and {.A ] X E A) when T is not directly observable buy may “occur” a 
finite number of ltimes during any atomic experiment. The set of axioms used in 
the paper is given in Figure 1. The correspondence between the axioms and various 
observational congruences may be tabulated as shown in Table I ((Al)-(A4) are 
needed in every case). Furthermore, we believe that the replacement of (A6) by 
two axioms (A6.1) and (A6.2) will be needed with the introduction of any operator 
representing concurrent activity, in place of “ ] “, and that this replacement persists 
with the addition of any reasonable family of partial relabeling operators (even 
multivalued ones, though we restricted consideration to single-valued relabeling). 

The following Appendixes provide detailed proofs of the theorems. 
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Appendix A. Proofs of General Results on Observational Equivalence 

This Appendix is devoted to the proofs of Theorems 2.1 and 2.2. We assume the 
notations and definitions introduced in Section 2. 

THEOREM 2.1. If each Ri is image-finite, then - is the maximal solution to 
S = E(S). 

PROOF. 

(9 

(ii) 

(iii) 

- G E(-) 
Suppose p - q and (p, p’ ) E Ri. Then for each n there exists q,, such that 
P ’ -” qn and (q, q,J E Ri. Since Ri is image finite, there exists q’ such that 
q’ = qn for infinitely many n. But -n is decreasing in n, hence p’ -,, q’ for 
all n, and so p’ - q’; also (q, q’) E Ri. By symmetry it follows that (p, q) E 
E(-); hence - C E(-) since p and q were arbitrary. 
E(-) C - 
We prove by induction on n that (p, q) E E(-) =$ p -n+l q. Let (p, q) E 
E(-) and (p, p’) E Ri. Then (q, q’) E Ri and p’ - q’, for some q’. From (i), 
it follows that (p’, q’) E E(-). By induction, p’ -,, q’. Similarly, if (q, q’) E 
Ri, there exists p’ such that (p, p’) E Ri and p’ -,, q’. Therefore, p -n+l q. 
Let S be any relation such that S = E(S). We prove by induction on n that 
(P, q) E S*P -,,+I q. Let (P, q) E Sand (P, P’) E Rim Then (P, 4) E E(S). 
So (q, q’) E Ri and (p’, q’) E S, for some q’. By induction, p’ -,, q’. From 
symmetry it follows that p -,,+ I q. Therefore, ( p, q) E S + p - q. cl 

THEOREM 2.2. If each Ri is image-finite, then p - q if and only if 9’(p) = 

WC?). 

PROOF. Let 9n G 9’ be the class of formulas with depth at most n of “modal” 
operators Q. Let 5$(p) = (A E L$I p I= A). To establish the theorem it is suffkient 
to show that p -,, q if and only if 5$(p) = 5$(q). We use induction on n. 

(i) n = 0. 
For any p and A E L%, p I= A iff A is logically equivalent to T. So 5&(p) = 
L$$( q) for every p, q and the result follows since p -0 q for every p, q. 

(ii) p -n+l 4 implies %+,(a) = .%+1(q). 
We show by structural induction on A E L4+, that, if p -n+l q and p I= A, 
then q I= A. Let p I= A. If A is T, the result is trivial. Consider now the other 
cases for A. 
(a) A is QB, B E 5%. 

Then (p, p’) E Ri with p’ I= B, for some p’. Since p -n+~ q, there exists 
q’ such that (q, q’) E Ri and p’ -,, q’. By induction on n, q’ I= B. So 
qt=A. 

(b) A is TA’. 
Then not p I= A’. Now if q I= A’. Then by structural induction p I= A’, 
which is a contradiction. Therefore, q k 1A’. 

(c) A is Al A Al. 
Then p I= A, and p K AZ. By structural induction, q I= A, and q I= A2 and 
therefore q k= A. 

(iii) p -,+, q implies .%+I (p) f %+I (4). 
Since p -,,+, q, without loss of generality, we can assume that there is an i and 
p’ such that (p, p’) E Ri, and (4, 4’) E Ri + p’ -, 4’. Since Ri is image- 
finite, let (q,, . . . , qkJ = (q’ 1 (q, 4’) E Ri). By induction, Z(p’) # Yn(qi) for 
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each i, 1 5 i ~2 k. So there are formulas &, . . . , B,, such that p’ I= Bi and not 
qi l= B;, Bi E I$. Then p’ l= B and not qi l= B, where B denotes BI A . . . A 
B,,. Therefore,, p l= @B and not q l= @B, that is, 5$+,(p) # .5~%+~(q). 0 

Appendix B. Proofs of Results Concerning mc 

This Appendix is devoted to the proofs of the completeness of the axiomatizations 
of NC over the three signatures Z,, &, and Zj. Recall that these results deal with 
the case in which all actions, including 7, are observable. 

The result for Zi, concerning axioms (Al)-(A4), was proved as Theorem 3.1. 
The other two theorems, 4.1 and 5.1, will be reduced to Theorem 3.1 by the 
following Extension Lemma. 

Definition B 1. Let Z C Z’; let R be a relation over IV, and R’ over I+‘,, . Then 
R’ is a conservative extension of R if R’ fl W$ C R. 

EXTENSION LEMMA. Let I; C Z’, and let R and R’ be equivalence relations over 
W, and W,, such that R C R’. Let S be an equivalence relation over W,, such that 

(i) S is a conservative extension of R, 
(ii) R’ C S, 

(iii) For each t in Wz,, there exists a normalform nf(t) in Wz such that (t, nf(t)) 
E R’. Then R’ = S. 

PROOF. Suppose (p, q) E S. Then, 

from (iii), (p, nf(p)) E R’ and (q, nf(q)) E R’; 
from (ii), &f(p), nf(q)> E S; 
from (9, (nf(p), nf(q)) E R. 

Therefore, (p, q) E .R’ since R C R’. 0 

Let =2 be the congruence over W,, generated by the axioms (Al)-(A4) and (A7), 
and ‘3 over W,, by ‘(Al)-(A4) and (A7)-(AlO). 

COROLLARY 

(a) Theorem 4.1: For p, q E WE,, p 3 q tj-p -c q. 
(b) Theorem 5.1: For P, 4 E W.,, P ‘3 q iffy mc 4. 

PROOF. We prove (b) only, the proof of (a) being similar. We apply the 
Extension Lemma, with Z = Zi, Z’ = 23, R = =I, R’ = ‘3, and S the observational 
congruence -c over W,,. 

As for Theorem 3.1, we leave it to the reader to show that - is a congruence and 
satisfies the axioms (Al)-(A4) and (A7)-(AlO). This establishes hypothesis (ii) of 
the Extension Lemma. Also by using axioms (A7)-(AlO) all occurrences of “ ] ” 
and [S] can be eliminated from terms in W,,. This establishes hypothesis (iii). It 
remains to show that - is a conservative extension of =I. Let -’ be the observational 
equivalence over Wz,, which uses as experiments the least relations satisfying 
(+l), (+2), and (-3). From Theorem 3.1, p =l q iff p -’ q. A simple proof by 
structural induction will establish that for all p, q E W,,, p - q implies p -’ q. Cl 

Appendix C. Proofs of Results Concerning zc 

This Appendix is mainly devoted to proving the principal result of the paper, 
Theorem 4.2, which deals with the axiomatization of zC over signature Z2; recall 
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that this differs from Theorem 4.1 in that 7 is now unobservable. Section C 1 deals 
with the soundness of the appropriate axioms and Section C2 with their complete- 
ness. The proofs of the analogous Theorems 3.2 and 5.2 for signatures Z1 and L13 
are outlined in Section C3. 

Cl. SOUNDNESS OF THE AXIOMATIZATION OF =, OVER SIGNATURE 2~ Let = 
denote the congruence over W,, induced by the axioms (Al)-(A$ (A6. l), (A6.2) 
and (A7). 

We show that p = q implies p % q. First, generalize the experiment relations 

by defining: p a q if p 5 q for some n > 0. For /I E A U (7) let Der,(p) = 

(qlp& qj. Now let =’ denote the maximal solution to the equation 

s = E’(S), 

where 

(p, q) E E’(S) if for all fl E A U (T), 

(i) p’ E Der,(p) implies (p’, q’) E S, for some q’ E Der,(q). 
(ii) q’ E Der,( q) implies (p’, q’) E S, for some p’ E Der,(p). 

The existence of =’ follows from Theorem 2.1. It must be observed that =’ 
differs from =:c; in particular it will not satisfy axiom (A6.2). But the following 
lemma is enough for our purpose: 

LEMMA 

(a) =’ is a congruence over W,,. 
(b) p ‘= ’ q implies p =‘c q. 

PROOF 

(a) By structural induction on terms. 
(b) By structural induction, we can prove that p =’ q implies p = q, The result 

then follows from (a) since z, is the largest congruence contained in =. Cl 

THEOREM 4.2, PART (i) (SOUNDNESS). For p, q E W,,, p = q implies p x, q. 

PROOF. It is sufficient to show that if aI = a2 is an instance of any axiom then 
4 zc a2. Let al = a2 be an instance of any axiom other than A6.2. In this case it is 
easily seen that for P E A U {T), Der,(al) = Der,(as). It follows that al Z’ a2 and 
therefore by the lemma, al =:c a2. In case of an instance of A6.2, a simple proof by 
induction on Z2 contexts Z[ ] will show that %[a,] = %[a,]. •I 

C2. COMPLETENESS OF THE AXIOMATIZATION OF zc OVER SIGNATURE X2. In 
this section we show that p zc q implies p = q. 

Definition. p is a sumform if it is of the form 2 p/pi, where each pi is a sumform. 
(Note that NIL is a sumform.) 

Definition. p zS q (sumcongruence) if p = q may be proved using (A 1) and (A2) 
alone. That is, =s is the congruence induced by (Al) and (A2). 

ABSORPTION LEMMA. If p E WX, and q = p’ for some p’ that is a p-derivative 
ofp, then pq + p = p. 

PROOF. By induction on the structure ofp. We may assume that p has the form 
ClsisnCLiPi- 
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Case (i). p =: /Li and q s pi. Then p + pq E p + pipi = p using (Al)-(A3). 

Case (ii). p = si and q = d, d E Der,(pi). By induction pi + 7q E pi. Therefore 

p + pq s JJ + pipi + piq using (Al)-(A3), 

-’ P + IdPi + 74) + Cciq, 

E p + pi(pi + 79) from (A6.1), 
= p. 

Case (iii). pi = 7 and q = d, d E Der,(pi). By induction, pi + pq 3 pi. SO 

p + 114 s p + 7pi + pq using (Al)-(A3), 

E P + dPi + Ccd + r4; 

s P + 4Pi + d + Pi + cLq + 1*q, from (AS), 

E P + dPi + /NJ + Pi + MT from (A3), 
= P + 4Pi + W?) from (A5), 
= p. 

DeJinition. A sumform p = C pipi is a proper normal form if 

(i) it is not of the form 7~‘; 
(ii) each pi is a proper normal form; 

(iii) for i # j, pi is not sumcongruent (=J to any pci-derivative of pjpj. 

An improper normalform is rp, where p is a proper normal form. 
A normal form is either a proper or an improper normal form. 

NORMAL FORM LEMMA. Every sumform p is congruent to a normal form. 

PROOF. By induction on the structure of p. Let p be Clsisn pipi+ By induction 
and (A6.2) we m,ay assume that each pi is in proper normal form. Suppose that, 
for some k # j, there exists d E Der,,,( pjpj) such that pk = d. From the Absorption 
Lemma ,.&pk i- pjpj s /Ljipj. SO p E zi+k pipi and the E3Uh IlOW fOllOWS by induction 
on the number of occurrences of duplicate derivatives. Cl 

DERIVATIVE LEMMA. The following are equivalent for normal forms p and q: 

(1) P’s& 
(2) Each p-derivative of p is a sumcongruent to a p-derivative of q, and vice versa. 

PROOF 

(1) implies (2): Immediate. 
(2) implies (1): Let p = C Xidi f C 7ej and p’ = 2 Xl d,! + C Te,! be normal forms 

with sumcongruent derivatives, where Xi, Xi’ E A. 

(A) We first show that each ej is a sumcongruent to some ei and vice versa. 
Take et. Since er E Der,(p), it is sumcongruent to some r-derivative of p’, say el 
or one of its T-derivatives. In the former case, we are done; assume the latter. 

But el is, by assumption, sumcongruent to ej or one of its T-derivatives for some 
j, j # 1 since el is a proper subexpression of e; up :o sumcongruence. In either case 
el is sumcongruent to a T-derivative of rej, a contradiction since p is a normal 
form. 

(B) Next, we show each di sumcongruent to some d[, Xl = Xi, and vice versa. 
Take d,. Since d, E Derx,(p), it is sumcongruent to some &derivative of p’. This 
cannot be a X,-derivative of some Te;-hence of some Tej-since p is normal. 
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Hence, either dl =, dl say, with X; = XI, and we are done, or dl E Der,(d;) up to 
congruence. 

In the latter case d;, a X,-derivative of p’, must be sumcongruent to a X1- 
derivative of some summand of p, not XI dl itself since dl is a proper subexpression 
of d; up to sumcongruence. Hence, d, is sumcongruent to a X,-derivative of the 
same summand, a contradiction since p is normal. 

Combining (A) and (B), p =s q follows. Cl 

THEOREM 4.2, PART (ii) (COMPLETENESS). For p, q E Wz,, p cc q implies p = q. 

PROOF. Since every p E W,, is congruent under = to a sumform (by the axioms, 
especially (A7) to eliminate “ 1”) and thence to a normal form (by the Normal 
Form Lemma), by the Soundness Theorem (Theorem 4.1, Part (i)) it is enough to 
consider normal forms p, q. 

(A) p, q are proper normal forms. We prove by induction on the structure ofp 
and q that, for x0 not in p or q, 

p + q implies Vae k. p I X6 + q I X6, 

where “Vae k.” means “for almost all k”, and ti stands for XO prefixed k times to 
NIL. 

Case 1. q is sumcongruent to a T-derivative of p. Since p is a proper normal 
form, p = pd + Te + . . . with q E Der,(Te) up to sumcongruence. 

(9 CL = 7. Then for arbitrary k 

~I%+‘~dlti, 

X0 whereas q 1 xgk+’ * r implies r = q’ Iti,“, where q’ E Der,( q) or q’ = q, and so 
q’ E Der,(Te) up to sumcongruence. Since p is normal, d +S q’, whence by 
induction 

Vae k. d I X8 + q’ 1%. 

Since the number of possible q’ is finite, we also have 

Vaek.plX6+ql& 

(ii) ~1 # 7. Then for arbitrary k 

r,lXok~ddlti, 

whereas q 1 A$ & r implies r = q’ I& where q’ E Der,( q) and so q’ E Der,( 7e) 
up to sumcongruence. As before, d +s q’, and we previously proceed as in (i). 

Case 2. Neither p nor q is sumcongruent to a T-derivative of the other, and 
p $ q. Then by the Derivative Lemma, without loss of generality, for some p and 
p’, p’ E DerJp) but p’ is sumcongruent to no p-derivative of q. 

(i) cr = T. Then for arbitrary k 

whereas q 1 ti+’ P r implies r = q’ 1 X8, where q’ = q or q’ E Der,( q). In either 
case p’ $ q’, and we proceed as in Case 1. 
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(ii) p # T. Then for arbitrary k 
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whereas q ] Xi :k r implies r = q’ ] X,“, where q’ E Der,(q). Then, p’ +s q’ and 
we proceed as in Case 1. 

(B) p, q are arbitrary normal forms. If p ==c q, then also p + XO =, q + x0, where 
X0 does not occur in. p or q, and both are proper normal forms. Hence by (A) 

p + x0 =s 4 + x0, 

from which p =S q follows. 

C3. PROOFS OF THEOREMS 3.2 AND 5.2 

C3.1. Outline ojrProof of Theorem 5.2. The proof just given for Theorem 4.2 
can be adapted in a trivial manner to obtain Theorem 5.2. The axioms (A8)-(AlO) 
hold for zc and also normal forms exist for the extended language since these 
axioms allow us to eliminate all instances of the operator [S]. 

C3.2. Outline qf Proof of Theorem 3.2. Let = denote the congruence over 
I+‘,, generated by (Al)-(A6). To prove soundness, that is, p = q + p zc q, it is 
more convenient to have a simpler representation of +. 

DetinepZ qifforallpEhU (7) 

(i) p’ E Der,(p) implies p’ = q’, for some q’ E Der,(q). 
(ii) q’ E Der,(q) implies p’ = q’, for some p’ E Der,(p). 

It is easy to see that Z is a congruence contained in = and with a little work it 
can be shown to coincide with zc. With this characterization, it is easy to prove 
that every instance ‘of the axioms (Al)-(A6) satisfies zz, and soundness follows. 

To prove completeness, we use the same approach as in Section C2. This time 
we require a different notion of normal form, in which 7 may only appear at top 
level: 

(i) NIL is a tight normal form. 
(ii) ZpiNi is a normal form if 

(a) each Ni is ;a tight normal form, 
(b) if pi = pj then Ni +s Nj, 
(c) if pi = 7 and pj = X then PjNj is not sumcongruent to any summand 

of Ni. 

(iii) ZiwNi is a tight normal form if 

(a) it is a normal form, 
(b) pi # T, 1 5 i 5 n. 

Using (A5) and (A6), every term in FV,, can be reduced to a normal form. By 
structural induction, we can then prove that N = N’ implies N =S N’ for tight 
normal forms. By extending this result to arbitrary normal forms, the result is 
established. Cl 
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