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Deterministic blind beamforming algorithms try to separate
superpositions of source signals impinging on a phased antenna
array by using deterministic properties of the signals or the
channels such as their constant modulus or directions-of-arrival.
Progress in this area has been abundant over the past ten years
and has resulted in several powerful algorithms. Unlike optimal or
adaptive methods, the algebraic methods discussed in this review
act on a fixed block of data and give closed-form expressions
for beamformers by focusing on algebraic structures. This
typically leads to subspace estimation and generalized eigenvalue
problems. After introducing a simple and widely used multipath
channel model, the paper provides an anthology of properties that
are available, as well as generic algorithms that exploit them.
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I. INTRODUCTION

In the context of array signal processing, beamforming
is concerned with the reconstruction of source signals from
the outputs of a sensor array. This can be done either by
coherently adding the contributions of the desired source
or by nulling out the interfering sources. The latter is an
instance of the more general problem of source separation.

Classically, beamforming requires knowledge of a look
direction, which is the direction of the desired source. Blind
beamforming tries to recover source signals without this
information, relying instead on various structural properties
of the problem.

The first blind beamforming techniques proposed were
based on direction finding. The direction of each incoming
wavefront is estimated, at the same time producing a
beamformer to recover the signal from that direction. This
requires that at least that the antenna array is calibrated. If a
source comes in via several directions (coherent multipath),
then direction finding is more complicated. Depending on
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the situation, we also need to consider delay spread. Thus,
the applicability of these techniques is very much dependent
on the channel conditions and in general requires a small
number of well-defined propagation paths per source.

More recently, new types of blind beamformers have
been proposed that are not based on specific channel
models, but instead exploit properties of the signals. A
striking example is the constant modulus algorithm (CMA),
which separates sources based on the fact that their base-
band representation has a constant amplitude, such as is the
case for FM or phase modulated signals. A prime advantage
is that these beamformers are not dependent on channel
properties or array calibration. For man-made signals, such
as those encountered in wireless communications, signal
properties are often well known and accurate, leading to
robust algorithms. Several other properties are available,
for example, cyclostationarity caused by the bauded nature
of digital communication signals or introduced by small
differences in carrier frequencies. Ultimately, sources can
be separated based on their statistical independence, which
is a somewhat weaker, but generally valid property.

1) Deterministic Blind Beamforming:In view of the
above, it is clear that blind beamforming is a wide field,
even if we limit ourselves to source separation. To restrict
ourselves further, we will not consider stochastic techniques
here at all (cf. the paper by Cardoso in this issue),
and address cyclostationarity properties only marginally.
This leaves a field that can be called “deterministic blind
beamforming,” which makes strong structural assumptions
on the scenario, but in exchange requires only a modest
number of samples. In particular, deterministic methods do
not exploit the source statistics, but the can can provide
exact results based on only a finite amount of data, at least
under noise-free conditions. They are usually derived by
first looking at how a source separation problem could be
solved in the absence of noise, and then making sure that
the algorithm still behaves robustly when noise is added.
This often leads to elegant algorithms that have good
performance, albeit suboptimal from a statistical point of
view.
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A second distinction is that we will only look at algebraic
techniques acting on a block of data, as opposed to adaptive
(updating) techniques useful for tracking. The latter are
often gradient descent techniques based on cost-function
minimization, where the cost derives from forcing one of
the structural properties or from a maximum-likelihood
(ML) criterion. Updating algorithms generally have a lower
computational complexity and can track a nonstationary
channel, but they place a larger demand on the number of
samples and need time to converge so that their relevance
depends on the requirements of the application. Issues
are unpredictable convergence speed, possible convergence
to suboptimal solutions, and initialization of the iteration.
A considerable problem in the context of source sepa-
ration with adaptive techniques is that of recoveringall
independent signals. In contrast, the algebraic techniques
considered here typically find all separating beamformers
jointly as the collection of eigenvectors of an associated
eigenvalue problem. This makes them more reliable, but
at a computational cost. Also, a model order selection is
essential but often not trivial. The simplicity of the adaptive
techniques have made these the only algorithms that have
been implemented in actual current-day systems (cf. the
paper by Treichler, Larimore, and Harp, this issue). With
the advent of powerful DSP’s and more finite-data burst
oriented problems, this may change in the future.

Similar problems with local minima and initialization
hold for optimal ML techniques, which act on a block
of data and try to optimize an often highly nonlinear
cost function at great computational expenses. Algebraic
techniques can provide a good initial point in the search
for the optimal solution. For small sample sizes, the benefit
of the optimization step is not necessarily worth the effort.

A related topic is that of blind identification or equaliza-
tion of convolutive channels, which is very similar except
that more structure is available and only one signal is to be
recovered (the others being echoes). Blind equalization is
discussed in depth in the paper by Tong and Perreau in this
issue (see also [50]). The main distinctive point in blind
beamforming considered here is the interest in recovering
all impinging signals.

The paper is thus centered around algebraic techniques
for deterministic blind beamforming. We consider two
classes of algorithms: those that are based on channel
properties and others based on signal properties. Despite
the fact that these properties are widely differing, the
resulting algorithms show a remarkable homogeneity. All
are subspace-based techniques and end with a generalized
eigenvalue problem: the beamformers are found as the
eigenvectors of a simultaneous diagonalization problem in
which several matrices can be diagonalized by the same
(eigenvector) matrix. The message of the paper is that
joint diagonalization isthe fundamental problem for source
separation.

2) Application Example:By nature of this class of al-
gorithms (i.e., they act on short data blocks with very
specific structures) we will be mostly interested in applica-
tions for wireless communications. An example of a blind

beamforming application in this area is the separation of
aircraft transponder signals. Civil air traffic control uses
a “secondary surveillance radar” (SSR) to identify and
track aircraft [121], [122]. After interrogation by a ground
radar station, the aircraft responds with a short data burst,
providing information on its call number, airspeed, and
altitude. In the newly developed SSR Mode-S, aircraft
are individually addressable, but implementation of this
standard has been slow. The system as it is currently
used has a single carrier frequency at 1090 MHz for all
return signals. It frequently occurs that several aircraft are
triggered by an interrogation beam, so that ground stations
receive a superposition of several data bursts, partially
overlapping in time and frequency. Data bursts are short
(56 or 112 bits) and do not contain training symbols. Thus,
it would be very interesting to separate two or three of such
messages using blind beamforming techniques. Besides
direction finding, there are several opportunities for this,
since signals are stochastically independent, carriers are
not exactly the same (there is a tolerance of 3 MHz), and
the data modulation is simple (pulse-amplitude modulation
with alphabet 0, 1 ) [102], [123].

3) Outline: The paper first introduces a compact data
model by which multipath propagation channels can be
described (Sections II and III). We distinguish between
instantaneous and convolutive models. This is followed
by an overview of properties that are available in this
context (Section IV) which forms the center of the paper.
The second part is a more detailed anthology of example
algorithms (Sections VI and VII), which, starting at a
moderate level, requires an increasing proficiency in linear
algebra techniques on the part of the reader.

II. PHYSICAL CHANNEL MODEL

The propagation of signals through a radio channel is
fairly complicated to model. A correct treatment would
require a complete description of the physical environment,
which is not very suitable for the design of signal processing
algorithms. To arrive at a more useful parametric model we
have to make simplifying assumptions regarding the wave
propagation. Provided this model is reasonably valid, we
can, in a second stage, try to derive statistical models for
the parameters to obtain agreement with measurements. The
purpose of this section is to discuss a simple channel model
that can be used for array signal processing.

A. Delays of Narrow-Band Signals

Let us start with a well-known but important property
of narrow-band signals which says that a short time delay
translates to a phase shift. In signal processing, narrow-band
signals are usually represented by their lowpass equivalents
[6]. A real-valued bandpass signal with center frequency,
such as received by an antenna, can be written as

real

where the baseband signal is the complex envelope of
the received signal . It is obtained from by demod-
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Fig. 1. A linear array receiving a far field point source.

ulation: multiplying the received signal with and
followed by low-pass filtering.

In array signal processing, we are interested in the effect
of small delays on the narrow-band baseband signal.
A delay on results in

real

so that the complex envelope of the delayed signal is
. If the bandwidth of is

sufficiently small so that , then standard
Fourier analysis yields , so that

for

The well-known conclusion is that, for narrow-band signals,
time delays shorter than the inverse bandwidth amount to
phase shifts of the baseband signal. This is fundamental in
phased array signal processing.

B. Antenna Array Response

Let us consider a simple linear array consisting of
identical antenna elements, as in Fig. 1. A narrow-band
point source is present in the far field and is modulated
at carrier frequency . If the distance between the array and
the source is large in comparison to the extent of the array,
the wave incident on the array is approximately planar. The
angle to the normal is the direction of arrival (DOA) of
the plane wave.

Let be the response of a single antenna element
to a signal from direction . We usually assume that the
frequency response of the antenna is flat over the band of
interest: , where is the antenna gain
pattern. If the antennas are omnidirectional, then ,
a constant scalar.

The baseband signal at the location of the first (reference)
antenna element is called ; it differs from by a
delay and a complex attenuation (the path loss). The signal
received by an antenna at a distance ofwavelengths from
the reference location experiences an additional delay. If

is small compared to the inverse bandwidth of , we
may set , where the phase shift can
be related to the angle of arrival by

An antenna array with elements at locations receives
signals . Col-
lecting the signals received by the individual elements into
a vector , we obtain

...
...

where the array response vector is the response of the
array to a planar wave with direction. The array manifold
is the curve traced out by the vector when is varied

If the curve does not intersect itself, then knowledge of
the array manifold allows to be determined from , i.e.,
direction finding. The common factor does not play
a major role in this and is often omitted or lumped into
the complex attenuation factor of the channel between the
transmitter and receiver.

A uniform linear array (ULA) has elements equally
spaced at . All delays between two consecutive array
elements are the same, so that

...
(1)

Antenna responses are usually expressed in terms ofrather
than since this is what is actually measured by the array. If

wavelengths, there is a one-to-one relation between
and . The specific structure of the array manifold of a

ULA admits convenient estimation of and subsequently
from using algebraic techniques.

C. Parametric Multipath Propagation Model

A commonly used parametric channel model for radio
propagation is a multiray scattering model, also known as
Jakes’ model (after [1], see also [2], [3], [9], and [10]). In
this model, the signal follows a number of distinct paths
on its way from the source to the receiver, referred to as
multipath rays. These arise from scattering, reflection, or
diffraction of the radiated energy due to objects that lie in
the environment. Apart from attenuation (fading), multipath
propagation can also cause spreading of the signal in time,
frequency and space, with significant effects on the received
signal.

The scattering of the signal in the environment can be
specialized into three stages: scattering local to the source
at surrounding objects, reflections on distant objects of the
few dominant rays that emerge out of the local clutter, and
scattering local to the receiver (see Fig. 2). Let us ignore
the latter for the moment and assume that there arerays
bouncing off remote objects such as hills or tall buildings.
The received parametric signal model is then usually written
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Fig. 2. Multipath propagation channel model.

as the convolution

(2)

where is a vector consisting of the antenna outputs,
is the array response vector, and the impulse response
collects all temporal aspects, such as pulse shaping,

and transmit and receive filtering. The model parameters
of each ray are its (mean) angle-of-incidence, (mean)
path delay , and path loss . The latter parameter lumps
the overall attenuation, all phase shifts, and possibly the
antenna response as well.

Each of the rays is itself composed of a large number of
“mini-rays” due to scattering close to the source, all with
roughly equal angles and delays, but arbitrary phases. This
can be described by extending the model with additional
parameters such as the standard deviations from the mean
angle and mean delay , which depend on the radius
(aspect ratio) of the scattering region and its distance to the
remote scattering object [8], [29]. For macroscopic models,
the standard deviations are generally small (less than a
few degrees, and a fraction of) and are usually, but not
always, ignored.

The local scattering, however, has a major effect on the
statistics and stationarity of . For example, if all local rays
have equal amplitude, then is the sum of a large number
of arbitrary complex numbers, each with equal modulus
but random phase, which gives a complex Gaussian
distribution. Consequently, its amplitude has a Rayleigh
distribution (hence the name Rayleigh fading). A second
effect is that is really (slowly) time varying:
if the source is in motion, then the Doppler shifts and
the varying location change the phase differences among
the rays so that the sum can be totally different from one
time instant to the next. The maximal Doppler shift
is given by the speed of the source (in m/s) divided by
the wavelength of the carrier. Thecoherence timeof the
channel is inversely proportional to , roughly by a factor
of 0.2; can be considered approximately constant for
time intervals smaller than this time [2], [3], [11]. Angles
and delays are generally assumed to be stationary over
much longer periods.

Table 1 Typical Delay and Doppler Spreads in
Cellular Applications at 900 MHZ

Finally, scattering local to the receiver eventually results
in the reception of a number of rays with roughly equal
delays, but largely differing DOA’s. The corresponding
fading parameters have more or less equal amplitudes but
different phases. This type of scattering is not present if the
receiver is clear from local obstacles, e.g., on a mast, but
may prevail otherwise.

D. Typical Channel Parameters

Angle spread, delay spread, and Doppler spread are im-
portant characterizations of a radio channel, as it determines
not only the amount of equalization that is required, but also
the amount of diversity that can be obtained. In the context
of mobile cellular telephony, typical channel delays and
Doppler spreads that can occur at 900 MHz are provided
in Table 1 [2], [3] (see also references in [9]).

The delay spread determines the maximal symbol rate
for which no equalization is required. The inverse of the
delay spread is proportional to thecoherence bandwidth[1],
[2], [11]. Narrow-band signals with a bandwidth sufficiently
smaller than the inverse of the delay spread experience a
flat channel (in the frequency domain) that does not require
equalization; is essentially a scalar and can be lumped
with .

As noted before, the inverse of the Doppler frequency de-
termines the coherence time, and thus the maximal temporal
window in block processing algorithms, or the required
speed of adaptation in adaptive algorithms.

The inverse of the angle spread (in radians) determines
the coherence distancein wavelengths, which gives an
indication of the minimal distance by which two antennas
have to be spaced to enable separation of two disparate
rays within this spread by (classical) spatial separation tech-
niques. Rays without much angle spread have essentially
the same -vector.

Angle spreads are strongly dependent on the geometry
of the environment and have not yet been studied as
thoroughly as delay spreads. Current research suggests that
most outdoor channels can be modeled adequately by a
small number of dominant rays and that in open or suburban
terrain most energy is often concentrated in a single ray in
the direction of the mobile [12], with relatively small angle
and delay spreads. Moreover, multiple rays usually have
widely separated angles.

The first-generation American analog cellular AMPS
system (FDMA) and the more recent digital IS-54 system
(TDMA) have narrow-band signals at 25–30 kHz, with
carrier frequencies in the 900 MHz band [3]. The symbol
period for IS-54 is 41.6 s. With delay spreads as in Table
1, it is seen that the symbol period is (much) larger in
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(a) (b)

Fig. 3. (a) Spatial beamformer with an I-MIMO channel and (b) space-time linear equalizer with
an FIR-MIMO channel.

all cases, so that the channel is usually instantaneous, not
convolutive (except perhaps in hilly terrains, where some
equalization may be needed). A data block in IS-54 spans
6.67 ms (162 bits). With a Doppler spread of 100 Hz, data
is stationary over a fraction of 10 ms so that beamforming
must be adaptive over the time slot.

The GSM system (TDMA) has signals with a bandwidth
of 200 kHz in blocks (time slots) of 577s [3]. The data
transmission rate is 270 kb/s, giving a symbol period of 3.7

s. Thus, in hilly terrains the delay spread spans maximally
five symbol periods, and equalization is necessary. The
delay spread is less than one symbol period in most urban
settings, and only minor equalization is required in this case.
In other cases, the reception is more like an instantaneous
mixture. The fading is stationary within the data block even
for high Doppler shifts. Data blocks belonging to the same
source are spaced at 5 ms, so fading is not stationary in
going from one block to the next, although delays and
angles might be the same.

In summary, knowledge of the delay spread and Doppler
spread allows us to decide,grosso modo, if an instantaneous
or a convolutive channel model is appropriate, and whether
it is time invariant or time varying over the data block.

III. D ATA MODEL FOR SIGNAL PROCESSING

In Section II, we have looked at a channel model based
on physical properties of the radio channel. Though useful
for generating simulated data, a detailed model is not al-
ways suitable for identification purposes, e.g., if the number
of parameters is large, if the angle spreads within a cluster
are large so that parameterization in terms of directions is
not possible, or if there is a large and fuzzy delay spread.
In these situations, it is more appropriate to work with an
unstructured model, where the channel impulse responses
are posed simply as arbitrary multichannel finite impulse
response (FIR) filters. It is a generalization of the physical
channel model considered earlier, in the sense that at a later
stage we can still specify the structure of the coefficients.

A. I-MIMO Model

Assume that source signals are trans-
mitted from independent sources at different locations.
If the delay spread is small, then what we receive at the
antenna array will be a simple linear combination of these

signals

where, as before, is a stack of the output of the
antennas. We will usually write this in matrix form

...

Suppose we sample with a period, normalized to ,
and collect a batch of samples into a matrix , then

where and
. The resulting model is called an instanta-

neous multi-input multi-output model, or I-MIMO for short.
It is a generic linear model for source separation, valid when
the delay spread of the dominant rays is much smaller than
the inverse bandwidth of the signals, e.g., for narrow-band
signals, in line-of-sight situations or in scenarios where
there is only local scattering. Even though this appears to
limit its applicability, it is important to study it in its own
right, since more complicated convolutive models can often
be reduced by blind equalization techniques to .

The objective of beamforming for source separation is
to construct a left-inverse of , such that ,
hence [see Fig. 3(a)]. This will recover the
source signals from the observed mixture. It immediately
follows that in this scenario it is necessary to have

to ensure interference-free reception, i.e., not more
sources than sensors. If we already know (part of), e.g.,
because of training, then ,
where denotes the Moore–Penrose pseudoinverse of
[105]–[107], here equal to its right inverse, anddenotes a
complex conjugate transpose. Blind beamforming is to find

with knowledge only of .
If we adopt the multipath propagation model, thenis

endowed with a parametric structure: every columnis a
sum of direction vectors with different fadings .
If the th source is received through rays, then

...
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If each source has only a single ray to the receiver array
(a line-of-sight situation), then each is a vector on the
array manifold, and identification will be relatively straight-
forward. The more general case amounts to decomposing
a given -vector into a sum of vectors on the manifold,
which makes identification much harder.

To summarize the parametric structure in a compact way,
we usually collect all -vectors and path attenuation
coefficients of all rays of all sources in single matrices

and

diag

To sum the rays belonging to each source into the single
-vector of that source, we define a selection matrix

... (3)

where and denotes an vector consisting
of 1’s. Together, this allows us to write the full (noise-free)
I-MIMO data model as

(4)

B. FIR-MIMO Model

Assume again that source signals are
transmitted from independent sources, but moreover that
they are now received through a convolutive channel. To
limit ourselves to a practical and interesting case, let us
assume that the signals are digital with a common pulse
period, so that they can be described by a sequence of
dirac pulses

For convenience, we normalize the symbol period to .
The signal emitted by a source is a convolution of
by the pulse shape function , e.g., a raised cosine
(generalized sinc function), which gives

After propagation through the channel, the signal is
received by an array of sensors, with outputs

. The impulse response of the channel
from source to the th sensor, , is a convolution of
the pulse shaping filter and the actual channel response
from to . We can include any propagation delays
and delays due to unsynchronized sources in as well.
The data model is written compactly as the convolution

where

...
...

...

...

At this point, we make the assumption that thechannels
associated to each sourceare FIR filters of (integer)

length at most , i.e., for . The
maximal channel length among all sources is denoted by

. An immediate consequence of the FIR assumption is
that, at any given moment, at most consecutive symbols
of signal play a role in .

Suppose that we sample each at a rate of times
the symbol rate, and collect samples during symbol
periods. Then we can construct a data matrixcontaining
all samples as

...
...

(5)

has size ; its th column contains the
spatial and temporal samples taken during theth interval.
Based on the FIR assumption, it follows that has a
factorization

(6)

where

...
...

.. .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

(7)

and in this context , a -dimensional vector.
The matrix represents the unknown space-time channel,
whereas contains the transmitted symbols.has a
block-Toeplitz structure: it is constant along the diagonals.
This structure is a consequence of the time-invariance of
the channel. Note that if the channels do not all have the
same length , then certain columns of are equal to zero.

A linear equalizer in this context can be written as a
vector which combines the rows of to generate an
output . In the model so far, we can only equal-
ize among the antenna outputs (simple beamforming) and

1992 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



among the samples within one sample period (polyphase
combining). More generally, we would want to filter over
multiple sample periods, leading to a space-time equalizer.
For a linear equalizer with a length of symbol periods,
we have to augment with horizontally shifted
copies of itself

..
.

..
.

. .
.

. .
.

. .
.

. .
.

. .
.

Each column of is a regression vector—the memory of
the filter. Using , a general space-time linear equalizer
can be written as , which combines
snapshots of antennas [see Fig. 3(b)]. The augmented
data matrix has a factorization

..
.

..
.

.. .
. . .

. . .
. . .
. . .

. . .
. . .

(8)

where has size and
the shifts of to the left are each over positions.

has a block-Hankel structure, i.e., it is constant along
antidiagonals. has the same structure as . A
necessary condition for space-time equalization (the output

is equal to a row of ) is that is tall, which gives
minimal conditions on in terms of [57].
Unlike spatial beamforming, it will not be necessary to
find ; it suffices to reconstruct a single block row of

, which can be done with space-time equalizers .
Nonlinear equalizer structures are possible, e.g., by using
feedback, but they are not discussed here.

C. Connection to the Parametric Multipath Model

For a single source, recall the multipath propagation
model (2), valid for specular multipath with small cluster
angle spread

(9)

where is the pulse shape function by which the signals
are modulated, is the array response vector function,
and is the complex path attenuation.

Suppose as before that has finite duration and is
zero outside an interval . Consequently, has
the same support for all . At this point, we can define a
parametric “time manifold” vector function , collecting

samples of

...

If we also construct a vector with samples of

...

then it is straightforward to verify that (9) gives

...

where denotes a Kronecker product, defined for vectors
and as

...

Thus, the multiray channel vector is a weighted sum of
vectors on the space-time manifold . Because
of the Kronecker product, this is a vector in an -
dimensional space, with more distinctive characteristics
than the -dimensional -vector in a scenario without
delay spread. The connection ofwith as in (7) is that

vec , i.e., is a stacking of all columns of in
a single vector.

We can define, much as before, parametric matrix func-
tions

diag

and let denote a columnwise Kronecker product
(Khatri–Rao product). This gives .
Extending now to sources, we see that the -sized
matrix in (7) can be rearranged into an matrix

where is the selection matrix defined in (3) that sums the
rays into channel vectors. now plays the same
role as in the previous section. Each of its columns is
a vector on the space-time manifold.
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Table 2 Signal-Channel Structural Properties

IV. PRINCIPLES OFBLIND BEAMFORMING

A summary of the noise-free data models developed so
far is

I-MIMO:

FIR-MIMO:
(10)

The first part of these model equations is generally valid
for linear time invariant channels, whereas the second part
is a consequence of the adopted multiray model.

Based on this model, the received data matrixor has
several structural properties. In several combinations, these
are often strong enough to allow to find the factors(or )
and (or ) from knowledge of or alone. Very often,
this will be in the form of a collection of beamformers (or
space-time equalizers) such that each beamformed
output is equal to one of the source signals, so
that it must have the properties of that signal. Properties
are listed in Table 2 and discussed below.

A. Matrix Structure

1) Toeplitz Structure:The fixed baud rate of communi-
cation signals, along with time invariance, result in the fact
that has a factorization in which is block Hankel and

is block Toeplitz. This is a strong property and allows,
for example, the blind equalization of unknown channels
carrying unknown digital signals with equal baud rates. It
cannot be used for source separation, but it is very useful
for reducing the FIR-MIMO problem to the
instantaneous problem [56], [57].

Several techniques are available nowadays: the original
methods, which are phrased in a stochastic context and use
the asymptotic diagonality of the source covariance matrix
[51], closely related linear prediction (LP) methods [53],
[54], and “deterministic” subspace-based methods working
directly on and exploiting either the Hankel structure
of [52], [53], [55] or the Toeplitz structure of [56],
[57]. Closely related to these are the cross-relation method
[58] and the mutually referenced equalizer method [59]. It
is possible to incorporate partial knowledge of the channel
into some of the methods, in particular the fact that the
pulse shape function is usually known [60]–[62]. This
puts an additional linear constraint on the channel impulse

response vector and may lead to important improvements
in accuracy.

The subspace-based methods exploit the linear nature of
the underlying problem and work well if the channel length
is known and well defined but might fail otherwise. The LP
methods are robust against channel-length overestimation
but rely on longer data sequences and a sufficiently large
first channel coefficient. (The latter problem is overcome
by a “multistep approach” [63].) See [50] and the paper
by Tong and Perreau in this issue for a more complete
overview.

2) Training Sequences:If training symbols are present in
the signal, then a number of columns ofor are known.
This number should be such that this known submatrixis
a wide matrix, in which case it generally has a right inverse

. This directly allows estimation of or as ,
where is the corresponding window of the data matrix.
With or known, there are a large number of suitable
space-time equalizers (e.g., zero-forcing, minimum mean-
square error, decision-feedback), differing in performance,
complexity, and symbols/noise assumptions. Techniques are
standard, and the literature is abundant.

A topic of increasing interest is that ofsemiblindtech-
niques, where it is assumed that some training symbols are
available, but perhaps not sufficient for channel estimation.
Also, it is felt that use of additional structures such as
the Toeplitz structure can significantly improve the channel
estimates obtained from the use of training symbols only
[64]. Only a few algorithms are known at this point, e.g.,
[65]–[67].

3) Low Rank Factors:An important property used by
many algorithms is that is a low rank factoriza-
tion: if are large enough, then is a tall matrix
and is a wide matrix. This has several implications, most
notably

full column rank

full row rank

row row

col col

where row and col stand for the row span and column
span of the matrix argument, respectively. Almost any blind
separation/equalization method is (implicitly) based on this
low-rank property: knowing and assuming full rank
factors, we have a basis for the row span ofand the
column span of , and it remains to find the (hopefully
unique) matrix in this row or column span that has the
required structural properties, such as the Toeplitz structure,
or any of the structures to follow. Also, as mentioned
earlier, the low rank property is necessary in general even
if is known, since any space-time equalizer is a row of
a left inverse of . For this, it is required that is tall.

B. Signal Modulation Structure

The signal modulation structure includes the instanta-
neous amplitude and phase of the modulated signal, and
also the symbol constellation. Some typical modulation
structures are listed below.
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1) Constant Modulus:In many wireless applications, the
transmitted waveform has a constant modulus (CM). This
occurs, e.g., in FM modulation, or in phase modulation,
as in GSM. So-called CMA’s can separate arbitrary linear
superpositions of such signals by finding out which lin-
ear combinations of the antenna outputs give back
signals that have the CM property. Solutions are generally
unique up to an arbitrary phase offset. The CM property
is extremely robust and can be used for blind equalization,
as well as source separation [88]–[93]. Most algorithms
are based on iterative cost-function minimization, and a
lot of recent research effort has been on proving global
convergence and on initialization issues (see the paper by
Johnsonet al. in this issue for an overview and references).
An algebraic technique is given in Section VII-A.

2) Finite Alphabet: Another important structure in dig-
ital communication signals is their finite alphabet (FA).
The modulated signal is a linear or nonlinear map of an
underlying finite alphabet, e.g., for signals with
a binary phase-shift keyed (BPSK) constellation. As with
the CM property, it is possible to separate arbitrary linear
combinations of FA signals in a more or less unique way,
given a minimal amount of samples [96]–[101]. For small
constellation sizes [BPSK or quadrature PSK (QPSK)],
this works very well. For high constellation sizes, only
iterative algorithms are known and their performance is
quite dependent on an initialization close to the solution.
Often, the CMA’s can be used to provide an initial point,
even if the constellation does not exactly have a CM
property.

3) Distributional Properties and Independence:More gen-
erally, if the source distribution is known and not Gaussian,
separation is possible by restoring the distribution func-
tions at the output of the beamformer, e.g., by using ML
techniques. Even if the distributions are not known, we
can restore distributional properties expressing the inde-
pendence of sources. This is a vast area of research with
many directions (cf. [75] and the paper by Cardoso in
this issue). Algebraic methods are possible by using higher
order stochastic moments and functions thereof, such as
cumulants (e.g., see [76]–[84]). Source independence is
generally applicable and very useful for audio and seismic
applications, such as the separation of several speakers
using multiple microphones. Because it is a stochastic prop-
erty, the number of samples that are required is typically
an order of magnitude larger than in the case where we can
use deterministic CM or FA properties to pose conditions
on every individual sample.

C. Temporal and Spectral Structure

The temporal structure relates to as well, but now
with regard to its temporal properties. These can include
knowledge of its pulse shape function and, in the case of
CDMA signals, knowledge of the source codes, but also
certain statistical properties for sources that are temporally
nonwhite.

1) CDMA Codes: In direct-sequence CDMA, the emitted
“chip symbols” are in fact modulations of low-rate

source symbols by known code vectors of length

(The code vectors are different for each source.) Because
the only unknowns are the , this reduces the number
of unknowns in by a factor . The source symbols
can be recovered, e.g., by row span template matching
techniques [43]–[45], which are essentially straightforward
least squares (LS) algorithms.

2) Temporally Nonwhite and Independence:If the sources
are independent and temporally nonwhite, separation is
possible by using the fact that the cross-covariance and
cross-cumulants of the signals at the output of the beam-
former should be zero for all time lags. For example

range.

This allows the separation of sources, but in this form it
cannot be used to equalize them. Often, the second-order
conditions are sufficient to find the beamformer; examples
of algebraic techniques for this are in [85]–[87]. Some
details are provided in Section VII-D.

3) Cyclostationarity: Many signals exhibit cyclostation-
ary properties, i.e., their cyclic autocorrelation function

is wide-sense stationary
and has spectral lines at selective lagsand frequencies

[68]. This reflects that the signal is correlated with
frequency-shifted versions of itself and is typically caused
by periodicities such as the symbol rate in bauded com-
munication signals, or residual carrier frequencies after
demodulation. If two sources have spectral peaks for dif-
ferent , then they can be separated based on this
[68]–[70]. It is usually required that these parameters are
known, although they can be estimated in specific cases.
Recent research focuses on the explicit introduction of
cyclostationarity at the transmitter, to facilitate separation
at the receiver. An elementary scheme for this is simply to
repeat the block or part of it [71], [72], or to deliberately
introduce small carrier offsets by additional modulations
with a periodic sequence [73].1 Channel identification based
on cyclostationarity properties is possible as well (e.g., see
[74]). As with high-order statistics methods, these methods
may in general require a considerable amount of data to
yield reliable results, as convergence may be slow.

For digital communication signals, a straightforward way
in which the cyclostationarity property can be expressed is
by oversampling the antenna outputs, at Nyquist rate rather
than the symbol rate. The multiple samples obtained during
one symbol period presumably give independent linear
combinations of the same transmitted bits, just as antennas
give independent linear combinations from sampling in
space. This fact was noted first in [51] and has generated
a lot of interest (e.g., see [52]–[58]). It is the underlying
reason why we could factor in (6) as , where

1An example algorithm that separates binary sources based on small
differences in carrier frequencies is given in Section VII-C.
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becomes a Toeplitz structure, and this structure then
induces the more general in (8), where has a
similar block-Hankel structure. Although this was initially
called a second-order technique, the Toeplitz structure is a
deterministic rather than a stochastic property, i.e., valid
for any data size and independent of source correlation
properties.

D. Parametric Structures

Parametric structures are induced by the parametric mul-
tipath model (and extensions of it) that we have derived
in Section II. We use the fact that the columns ofor
do not take just any value, but have the specific forms

and , where
the parametric structure of and is known and the
parameters can be estimated. It makes sense to use such
models if the number of parameters is much smaller than,
e.g., the number of coefficients in an unstructured FIR
model.

1) The Spatial Manifold:In the I-MIMO model in (10),
each column of is a linear combination of array response
vectors , each of which is on the array manifold.
If the array manifold is known, e.g., by calibration or
from structural considerations, then we can try to fit the
column span of (hence ) to the appropriate linear
combinations. This will work if the number of rays is not
large and if the calibration data is reliable. For this purpose,
a large number of direction finding techniques have been
proposed (see the recent overview in [18]). Among the
high-resolution algorithms, the MUSIC algorithm [19] is
still very popular, although it is now encompassed by the
more general WSF and MODE techniques [20]–[23], which
provide asymptotically ML-optimal performance. These are
iterative optimization algorithms that need a starting point
of sufficient accuracy. Attractive closed-form algebraic
techniques are possible if the geometry of the array has
a shift-invariance structure, as exhibited for example by a
uniform linear array (ULA), and this has led to the well-
known ESPRIT algorithm and variants thereof [24]–[26].2

The ESPRIT algorithm is discussed in Section VI-A. It is
readily extended to two-dimensional direction finding of
both azimuth and elevation [31]–[35]. Most DOA models
assume point sources. However, the array manifold model
can be generalized to include the effects of small angle
spreads [29], [30].

2) The Temporal Manifold:Similarly, in (10), each col-
umn of is a linear combination of vectors of the
form , where is the temporal mani-
fold function, the sampled response to an incoming pulse

. If the specular multipath model holds true and
the number of rays is not large, all received signals are
constructed from several delays of , hence they can be
viewed as superpositions of a number of vectors . The
temporal manifold is usually known to a good accuracy
since it depends only on the pulse-shaping function and the

2For a ULA, the MODE algorithm can be made closed-form as well
[22].

receiver filters, both of which are under tight control. If
the spatial manifold is unknown or deemed unreliable, or if
the angular spread is complicated and diffuse, we can still
fit to the temporal manifold and leave the spatial domain
unconstrained.

Otherwise, with knowledge of both the spatial and tem-
poral manifold, we can attempt to do a joint estimation of
all angles and delays by fitting to the space-time manifold
[36]–[40] (see Section VI-C).

3) Residual Carrier Frequencies:Independent narrow-
band sources modulated at high frequencies rarely have
exactly the same carrier frequency. Consequently, after
demodulation, the cochannel sources have unequal residual
carrier frequencies, with only partially overlapping spectra.
If the spectral properties of the sources are known or if
we sample sufficiently fast so that we can use stationarity
properties of the sources, the residual carrier frequencies
can be estimated and the sources can be separated, even
if the array manifold is unknown. This can be regarded as
a special case of cyclostationarity. An example is given
in Section VI-D.

V. PREPROCESSING

In the previous section, we have listed a number of
properties that are available for blind source separation
and equalization. The corresponding algorithms can be
broadly classified into row span and column span methods.
A row span method is a method that still works even if
we premultiply or with an arbitrary full rank matrix
on the left; this changes the mixing matrix but leaves the
row span invariant. Similarly, column span methods are
invariant to multiplication at the right. Algorithms that use
only properties of and are column span methods: all
information is contained in a basis of the column span of

. This reflects the fact that no constraints are placed on.
Methods based on properties of the signals are usually row
span methods. In special cases, it is possible to translate
row span information into column span information by
stacking the data into block Hankel matrices. This occurs
for example for the residual carrier property.

In this second part of the paper, Sections VI and VII give
detailed examples of algebraic column span and row span
methods to illustrate a few of the deterministic properties
listed before. All algorithms can work with a basis of either
the row span or the column span of the data matrix. The
construction of this basis is a common and elementary pre-
processing step, and is the topic of this section. In algebraic
methods, it is often the main computational bottleneck as
well.

A. Subspace Estimation, SVD

Consider again the noise-free data model , where
has size , has size , and .
has rows but the rank of is generically equal to:

each antenna output (row of ) is a linear combination
of only source signals (rows of ). If we know ,
then with linear algebra techniques we can find a basis
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for this row span, i.e., a matrix with rows such that
row row row . At the same time, has
only independent columns, and not , and we can find
a basis for it, i.e., a matrix with columns such that
col col col .

The numerically preferred way to obtain these bases
is to compute a singular value decomposition (SVD)
[105]–[107], which is a decomposition of as

where and contain the orthogonal bases ,
, and is a diagonal matrix with

positive real numbers—the nonzero singular values. These
are usually sorted in nondecreasing order. The columns
of and rows of are called the singular vectors.
There is a well-known connection to eigenvalue problems:
since , it is seen that contains the
same eigenvectors as the empirical data covariance matrix,
and are the corresponding eigenvalues. The singular
values give important information on the conditioning of
the problem: signals with low power or two signals with
similar -vectors (e.g., close directions-of-arrival) give rise
to small singular values. can be interpreted as a whitened
data matrix, since . It can be written as

: its columns are obtained from those of by
a filtering operation. This whitening operation is sometimes
called a Mahalanobis transformation.

With noise present, the data model becomes

where is the additive noise term. is no longer rank
deficient but has full rank . It is here that the SVD
becomes useful: the SVD of can be written as

(11)
where and are square , ,

, and is diagonal and partitioned into“large”
and “small” singular values. The same decomposition
holds in the noise-free case, but then with .
Under mild conditions, one can show that the new basis

is a good approximation to the noise-free basis(and
asymptotically equal to it), provided that the noise singular
values, the entries of , are substantially smaller than the
signal singular values, the entries of. Alternatively, we
have to assume a sufficiently large number of samples and
spatially/temporally white noise so that the noise covariance
is a multiple of the identity matrix. The signal singular
values depend on the signal + noise power, the number
of samples, and the separation between the sources [cf.
Fig. 4(a) and (b)]. The noise singular values depend on the
noise power and the number of samples[cf. Fig. 4(a)
and (c)]. The new is equal to the old , but augmented
with some noise power. The row space spanned by the new

can be viewed as an LS estimate of the subspace spanned
by the noise-free . Thus, a rank- approximation of is

, which is known as taking the truncated SVD.

(a) (b) (c)

Fig. 4. Singular values ford = 2 sources,M = 5 antennas,
N = 10 samples. (a) Well-separated case: large gap between signal
and noise singular values. (b) Signals from close directions results
in a small signal singular value. (c) Increased noise level increases
noise singular values.

Fig. 5. Conceptual beamformer structure.

We will use the SVD of and subsequent truncation to
rank as a first step in almost all our processing. This is
useful for several reasons: 1) if the rank ofwithout noise
is much smaller than , then prefiltering by or
will remove an equal ratio of noise; 2) parameter estimation
is much easier from a minimal basis than from a full matrix;
and 3) after truncation, a stabilized inverse ofas needed
in certain (MMSE-type) receivers is .
An untruncated full rank inverse can lead to severe noise
enhancement due to the inversion of small singular values.

Since we hardly ever use the diagonal property of,
except perhaps to estimate the rank of, simpler subspace
estimation methods have been proposed to estimate a basis

of the principal column span. These schemes are also
suitable for adaptive algorithms that update the estimate as
more data columns are observed, and either start from
knowledge of the noise power, providing a level at which to
truncate the rank [109]–[111], from knowledge of the rank
of , e.g., if the number of sources is known [112], [113],
or converge to the SVD under stationary conditions [114].
Automatic detection of the rank without knowledge of the
noise power or the number of sources/rays is a considerable
problem which deserves additional research.

B. Beamformer Structure

Let us assume that has full column rank (independent
directions) and has full row rank (independent signals).
Introduce the truncated SVD

(12)
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Then and span the same subspace, so that there is a
invertible matrix such that

(13)

Substitution gives , so that

(14)

is a beamformer which will recover from . Hence,
the main problem in blind beamforming is to construct the
matrix based on properties of or (or both). Note that
it is sufficient to constructany (orthogonal) basis of the
column span of ; we do not need the singular vectors,
only the subspace they span.

Since (where the
are the columns of and the are the rows of ), it
is clear that we cannot expect to recover the ordering of
signals. Usually, we also have to permit the exchange of a
phase factor between and , or even any scalar factor
if the power of the signals or the norm of vectorsis not
specified.

VI. EXAMPLES OF COLUMN SPAN METHODS

The next two sections will elaborate on the properties
listed in Section IV by demonstrating examples of how
these properties can be turned into algebraic algorithms
to find in (13). We first look at column span methods,
which work on properties of or . Section VII will then
go into row span methods that exploit properties of. For
ease of description, we will always pretend a noiseless case
where is rank deficient. In the presence of noise, the
first computational step is an SVD or subspace estimation,
followed by a rank truncation which reduces
to the quasi-noiseless case , in the notation of
(11). The subsequent steps of the algorithms will remain
unchanged. Of course, a correct treatment of the noise
is very important—this makes the difference between a
good and a bad algorithm. But looking at the noiseless
case is sufficient to understand the functioning of most
deterministic algorithms.

A. No Multipath

We start with a simple scenario, in which there is
no multipath and sources have only one ray toward the
receiving antenna array. Since no delays are involved, all
measurements are simply instantaneous linear combinations
of the source signals, i.e., . Each source has only
one ray, so that the data model is refined to ,
where are the array response
vectors, diag are the fading parameters,
and the rows of contain the signals.

Computationally attractive ways to compute and
hence are possible for certain regular antenna array
configurations for which becomes a shift-invariant or
similar recursive structure. One well-studied example of
such a structure is that obtained from a ULA. For such an
array, with interelement spacing wavelengths, we have

seen that

...
(15)

where is the direction-of-arrival.
The ESPRIT algorithm [24] is a well-known and elegant

technique to find the factorization by using
shift-invariance properties of

...
...

(16)

Let us define

...

as a diagonal matrix of parameters, and selection matrices

which will select the first and last rows of ,
respectively. The Vandermonde structure ofensures that

which is a direct expression of the shift-invariance of the
array. To use this property for estimating and from
the data , we first compute an SVD

where has columns which together span the column
space of . Since the same space is spanned by the columns
of , there must exist a invertible matrix such that

Let us define

Then the shift-invariance of implies that

where consists of the top rows of .
Since and are diagonal matrices and commute, we
have . For ,

is “tall” and has a left-inverse , so that

Since is a diagonal matrix, this is an eigenvalue equation:
contains the eigenvectors of (scaled arbitrarily

to unit norm), and the entries of on the diagonal are
the eigenvalues. The blind beamformer is given by

. Thus, source separation in this case is essentially
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an eigenvalue problem. (This turns out to be the case for
many algebraic algorithms.) If the antennas are spaced by,
at most, half a wavelength, then the DOA’s are directly
recovered from , otherwise they are ambiguous. Because
the rows of are determined only up to a scaling, the
fading parameters cannot be recovered unless we know
the average power of each signal. This is of course inherent
in the problem definition.

There are many important refinements and extensions to
this algorithm. We can use the fact that all are on the
unit circle along with the centro-symmetric structure of the
array to augment the data matrix to ,
where is the reverse-identity matrix which flips the rows
of ; this will not increase the rank but double the
number of observations [25]. Using this structure, it is also
possible to transform to a real-valued matrix by simple
linear operations on its rows and columns [25], [34]. As
mentioned in Section IV-D, there are many other direction
finding algorithms that are applicable, in particular MODE
[22]. Although ESPRIT is statistically suboptimal, its per-
formance is usually quite adequate. Its interest to us here
is its straightforward generalization to more complicated
estimation problems in which shift-invariance structure is
present.

B. Coherent Multipath

In the above, we assumed that there was no multi-
path; each source had only one path to the antenna array.
However, the model is also valid if sources
have multiple rays toward the array, as long as the delay
differences are small compared to the signal bandwidth so
that they can be represented by phase shifts. This is known
as coherent multipath. Let be the number of sources,
the number of rays belonging to source, and
the total number of rays (assumed to be distinct). In that
case, a more detailed model is

(17)

where : is the Vandermonde matrix associated
with the DOA’s of the rays, as in (16), and: is
a selection matrix which adds groups of rays to source
signals, for example

in case of two sources, each with two rays.is a diag-
onal scaling matrix representing the different amplitudes
(fadings) of each ray, including phase offsets. Because the
rank of is still , the SVD of can retrieve only a
-dimensional subspace, so that

It is clear that blind beamforming is more challenging now;
we try to find such that each column of is represented
by a sum of Vandermonde vectors, rather than only
vectors, and is not known.

To solve this problem algebraically using ESPRIT-type
techniques,3 we first try to restore the rank to. This is
possible if the number of antennas is sufficiently large,
in fact . In that case, we can form a
block-Hankel matrix out of by taking vertical shifts of it

(18)
Here, is a submatrix of consisting of its th till

th row, and is known as the spatial smoothing
factor [27], [28]. With the above model, we have that
satisfies the factorization

(19)

where consists of the top rows of . If
and , the factors in the above

factorization can be shown to have full rank, so that
has rank .

At this point, the structure of in (19) shows that we
have reduced the problem to an -type problem
without multipath, which can be solved using the ESPRIT
algorithm in Section VI-A. Thus we compute an SVD of

where contains the dominant singular vectors of .
From (19) it follows that there is an invertible matrix

such that

We continue in the same way as before to compute: with

the data model satisfies the eigenvalue equation

(20)

which gives both and , up to scaling of its rows.
At this point, we have recovered , up to
multiplication at the left by an arbitrary diagonal matrix.
The next objective is to estimate from the structure of
in (19). This is now a much simpler task: we have available

matrices of size , after correction by suitable powers
of all equal to . The structure of ensures that
this matrix has only distinct rows, which are the rows
of . Hence, it suffices to estimate theseunique rows,
which is a simple clustering problem if the rows ofare
sufficiently different. This determines bothand , i.e., the
assignment of rays to sources. Within hand, we have our
blind beamformer as before: .

3Other techniques, such as MODE, are directly applicable to the
coherent case without modifications.
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C. Incoherent Multipath with Small Delay Spread

An extension of the previous would be to consider a true
multipath scenario, where each source is received via a
superposition of rays, each with its own angle, delay

, and fading . The question then becomes how to
estimate these parameters, and how to construct a space-
time beamformer to recover the sources. The problem is
known as joint angle-delay estimation [36]–[40]. In general,
this is a challenging task to perform blindly in column
space, without making further assumptions on the sources.

Let us here consider a scenario which allows a simple
extension of the previous and which has applications in
blind CDMA beamformers. Consider sources as before.
Assume that these are digital sources, i.e., discrete-time
sources with a common pulse shape function and a
common pulse period , normalized to . We make
the following important restrictions leading to a simplified
version of the model:

1) is zero outside an interval , with ;
2) the delay spread is so small that .

The implication is that every sample of the received signal
is a combination of source symbols, and not more than
. These assumptions are approximately valid in a CDMA

receiver, after synchronization and matched filtering with
the desired user code [46]. (In this case, since
in principle only one signal matches the code, but the
interference is strong.)

The received signal at the antennas can be written as
, where .

We sample at a rate during symbol periods and collect
all data samples in a matrix of size

...
...

...
(21)

Define matrices and
, where is the parametric “time

manifold” vector function

...

With the diagonal matrix containing the fading parame-
ters, and the selection matrix which assigns each
ray to one of the sources, we find thatsatisfies the model

where denotes the column-wise Kronecker product.
now plays the same role as in the previous section.

Each of its columns is on the space-time manifold
. Because of the Kronecker product, this is a vector in

a high-dimensional space, which improves resolution and
allows to identify more rays than sensors.

To identify the rays and derive a beamformer using
similar techniques as before, we need to satisfy
shift-invariance properties. With a uniform linear array,
already has such a property, and if the number of antennas
is larger than the number of rays we can proceed as before.
Otherwise, we can do a transformation such thattakes
a Vandermonde structure. To this end, we use a well-
known property of the Fourier transformation: delays are
transformed into certain phase progressions. In particular,
collect the samples of the known waveform into a
vector , and let where denotes the
DFT matrix of size

...
...

...

If is an integer multiple of , then it is apparent that
the Fourier transform of is given by

...
diag ...

( is a Schur–Hadamard product: an entry-wise multiplica-
tion of two vectors or matrices). The same is to a very good
approximation true if is bandlimited and sampled at or
above the Nyquist rate. Thus, diag , where

...
...

(22)
It follows that if we take the Fourier transform of each
oversampled antenna output over a single symbol period,
we can write the resulting data model as

diag (23)

Since is known beforehand, we can divide it out of (23),
which amounts to a deconvolution. Obviously, this can be
done only on intervals where is nonzero. The details of
this are in [40] and omitted here. The result is that we can
obtain a matrix which satisfies the model

(24)

where, because of the selection of nonzero frequency in-
tervals, the number of rows of is typically somewhat
smaller than in (22).

At this point, we have obtained a model with much the
same structure as in (17), but with replaced by
where both and have a Vandermonde structure. The
construction of the beamformer can now follow the same
strategy as well. First note that the rank of is only ,
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since this is the number of rows of. Thus we compute
the SVD of , i.e., where has columns.
As before, we have

and our objective is to compute the matrix . Next,
construct a matrix by composing shifted copies of

where now each shift is over blocks of rows rather than
one. This matrix has model

(25)

where

...

If is large enough and all rays belonging to the same
source have distinct delays, then the rank of is .
[Otherwise, we must also take shifts in the spatial domain
to restore the rank, i.e., “spatial smoothing,” as in (18).]

Let be the SVD of , and suppose that
has rows. It has the model ,

. To estimate , and hence , we can
now form two types of selection matrices: a pair to select
submatrices of , and a pair to select from

To estimate , we take submatrices consisting of the first
and respectively last rows of

whereas to estimate we stack, for all blocks, its first
and respectively last rows

These data matrices have the structure

(26)

If dimensions are such that these are low-rank factoriza-
tions, then

(27)

Compare this equation to (20). Instead of a single eigen-
value equation, we now have two; the same matrix
can diagonalize both data matrices. As before, once we
have obtained , we can immediately reconstruct as

, which provides a beamformer to extract
each individual ray. After that, we need to assign the rays
to source signals (i.e., identify and from as in

Section VI-B) and combine them in any viable way to end
up with a beamformer that receives the individual source
signals, at the symbol rate. If we like, we can retrieve the
delays and angles of each ray from the eigenvalue matrices

and , respectively. The correct pairing of angles to
delays follows simply from the fact that they share the
same eigenvectors.

Joint diagonalization problems such as the above are
overdetermined; one matrix already gives, provided that
the eigenvalues are distinct. For example, we could work
only with the first matrix (since we already assumed once
that the delays are distinct), and in this case we do not have
to make any assumptions on the structure of the antenna
array, i.e., we do not use its shift-invariance. We can also
form any linear combination of the two matrices and try
to ensure that the combination has distinct eigenvalues
(such an approach was taken in [34]). Several Jacobi-type
algorithms have been proposed as well, although some of
these assume that is a unitary matrix [31], [32], [35],
[77], [81], [83], [87], [93], [115]–[120].

Although these algorithms usually yield good perfor-
mance, the problem of joint diagonalization with nonhermi-
tian matrices has not yet been optimally solved. It is very
relevant to study such overdetermined eigenvalue problems.
Indeed, a third matrix arises if we use a two-dimensional
uniform antenna array, by which we can measure both
azimuth and elevation, or any other array with multiple
independent baselines. We will see several other examples
of joint eigenvalue problems later in this paper.

D. Space-Frequency Beamforming; Residual Carriers

A somewhat different scenario than what we considered
before, which, however, leads to the same type of data
models (and thus the same beamforming algorithms), is the
following. Suppose that we observe a frequency band of
interest and want to separate all sources that are present.
Assume that the sources are narrowband, typically with
different carrier frequencies, but that the spectra might
be partly overlapping. The objective is to construct a
beamformer to separate the sources based on differences
in angles or carrier frequencies. This is a problem of joint
angle-frequency estimation [48], [49]. We will assume that
the sample rates in this application are much higher than
the data rates of each source and that there is only coherent
multipath, although generalizations are possible.

Suppose that the narrow-band signals have a bandwidth
of less than , so that they can be sampled with a period

to satisfy the Nyquist rate. We normalize to . Also
assume that the bandwidth of the band to be scanned is
times larger; after demodulation to IF we have to sample at
rate . Without multipath, the data model of the modulated
sources at the receiver is

where is the residual modulation frequency of theth
source ( ). In matrix form this is
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written as

(28)

where

...

Since can be quite large (order 100, say), it would
be very expensive to construct a full data matrix of all
samples. In fact, it is sufficient to subsample: collect
subsequent samples at rate, then wait till the next period
before sampling again, resulting in a data matrixof size

...
...

...

(28a)

With the model of in (28), we find that has a
factorization

...
...

(28b)

Let us assume at this point that . In that case,
is relatively bandlimited with respect to the observed band,
which allows to make the crucial assumption that

so that the model of simplifies to

...

is as in (22), only it has a different interpretation:
is now related to the carrier frequency. is similar

to except for a transpose and different powers, and
the pointwise multiplication represents the modulation on
the signals. Obviously, beamforming will not remove this
modulation, but after estimating we can easily correct
for it.

If we do consider coherent multipath, the data model
becomes

(29)

The column span of this model has precisely the same
structure as in (24) before, and hence we can use the
same algorithm to find the beamformer.

If sources are assumed not to have equal carrier fre-
quencies and , we can separate them based on the
structure of only. In this case we do not need the array
structure and an arbitrary array can be used, but we do not
recover the DOA’s. If frequencies can be close, however,
we will have to separate the signals based on differences in
angles as well. It is then also necessary to restore the rank
of to by spatial smoothing.

VII. EXAMPLES OF ROW SPAN METHODS

Column span methods require rather sophisticated as-
sumptions on the channel, and their accuracy largely de-
pends on the validity of these assumptions. In contrast,
row span methods only pose or and
put all conditions on . For communication signals with
significant structures, this leads to powerful and robust blind
beamforming algorithms. We will be mainly concerned with
I-MIMO scenarios here, although extensions to general
FIR-MIMO models have been derived; e.g., in [56] and [57]
the Toeplitz structure of is exploited to reduce
to . In fact, both problems are the same if we do
not use the Toeplitz structure of.

As always, the first step of row span methods is to reduce
dimensions to that of row . Via an SVD, an orthogonal
basis for this is obtained as.

A. Constant Modulus

For a signal (row vector) , the CM
property can be written as

(30)

The property holds for phase or frequency modulated sig-
nals, or any single-level digital constellation. Our objective
is, for a given , to find a factorization where
all rows of have this CM property. Let us assume that
we have computed an SVD and have done the
subspace filtering by , so that at this point we have
a matrix . It remains to identify the

matrix such that is a CM matrix.
Let and . We are

looking for all beamforming vectors such that
is a CM signal. One can prove that, generically and for

, solutions are unique so that any CM signal that is
recovered this way is bound to be one of the original source
signals, up to a phase factor [93]. Substituting
in (30), i.e., , shows that satisfies the property

(31)

The CM problem is to find all independent vectors
that satisfy this equation. An alternative way to write this
equation is by using the Kronecker product. By expanding
(31) into a sum of terms and rearranging, it follows that

, so that

(32)
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where is the complex conjugate of, is a vector of
1’s, and is an matrix whose rows are given
by . Hence, we have turned the overdetermined
system of quadratic equations (31) into a linear system of
equations, subject to a quadratic constraint. Any solution of
the linear system in (32) can be written as

(33)

where is a particular solution of the system ( ),
the other are a basis of the null space of, and is
the dimension of this space. An important result is that,
generically, once [93]. The remaining
problem is to find out which linear combinations of the

lead to a vector that can be written as .
A convenient way to rephrase the latter problem is to

work with a matrix . For any matrix, we can form
a vector by simply stacking its columns. Similarly, we can
“unvec” vectors into matrices. A notable property is that

. Thus, applying the unvec operation to every
in (33) leads to the equivalent

where each has size . Hence, the problem is to
form linear combinations of known matrices such that
the result is rank-1 hermitian, so that it has a factorization
as . In the present case, there are matrices, and
we are looking for all solutions to the
problem; we are in fact trying to rewrite the given arbitrary
basis as a rank-one basis . The are the rows
of the beamforming matrix .

Conversely, this means we can write each matrixas
some linear combination of the rank-one basis

After collecting the coefficients into diagonal matrices,
diag , it follows that the satisfy

the equations

...

(34)

where all ’s are diagonal. This is a very fundamental set
of equations. The collection are similar by congruence
to diagonal matrices, and can be jointly diagonalized.
In fact, this is again a generalized eigenvalue problem.
This is perhaps more clearly seen by looking at ratios,
e.g., (assuming invertibility) has a factorization as

, and can in principle be found as the
eigenvectors of . Of course, given the full set of
equations and the presence of noise, we would rather try to
find a single that optimally satisfies all equations rather
than only one, which leads to the problem of simultaneous
diagonalization. Similar algorithms as mentioned for the
joint angle-delay estimation problem are available, e.g.,
based on Jacobi iterations [77], [81], [93], [115]–[118].

Since we have a good starting point from the eigenvalue
problem of a pair of matrices, such iterations generally
converge extremely fast, i.e., in two or three iterations.

The CM problem is well studied as an adaptive blind
equalization technique. The difference with source sepa-
ration is that, in equalization, we are interested in only
one signal since the others are shifted copies (echos) of it.
Applied to the problem of source separation, the adaptive
techniques have major problems in making sure thatall
independent sources are recovered, and special attention
has to be paid to this [92]. The algorithm described above
was called algebraic constant modulus algorithm (ACMA)
[93] and is very robust in this respect. Its complexity, on the
other hand, is reasonable only for a small number of sources
(say ), which limits applications for equalization.

Experiment: We can illustrate the performance of ACMA
by an experiment with measured data.4 The sources are six
FM-modulated analog speech/music signals, occupying the
same bandwidth of 25 kHz in the 900 MHz band. Since
the signals are narrowband, this is an I-MIMO scenario
where no equalization is necessary, even though multipath
may be present. The uncalibrated antenna array consists of

omnidirectional antennas, arranged nonuniformly
roughly on a line, with a maximal baseline of 2.5 m. The
signal-to-noise (SNR) ratio is around 17 dB per antenna
per source, and the sources have roughly equal powers.
Their DOA’s are, respectively, 1.5, 7, 0, 42, 100, and 42
(nearfield). With all sources present, the condition number
of is around 20, which is medium conditioned.5

Fig. 6 shows the worst signal-to-interference ratio (SIR)
among the signals after beamforming, as a function of the
number of samples that have been used, and for a varying
number of sources. The reference “true”-matrix has been
estimated from 500 samples. It is seen that only a small
number of samples are required (order or so) to give a
good separation of all sources, even though some of the
sources are only spaced by 1.5.

B. Binary Symbol Constellation

Another property based on which digital sources can
be separated is their finite alphabet. Frequently, a BPSK
constellation is used, i.e., the transmitted signals are vectors

with all entries . The signals are of
course modulated by some pulse shape function, but this
can be absorbed in the-matrix, or perhaps the -matrix,
which will result in the same problem since we do not use
its structure. Hence we arrive at the following problem:
given , determine the factorization , where

. This can be viewed as a specialization
of the CM problem if we restrict the signals to be real as
well.

4The experimental data was kindly provided by F. McCarthy, AR-
GOSystems, Sunnyvale, CA, June 1994, and is described in [93].

5The condition number of a matrix is the ratio of the largest to the
smallest singular value and can be interpreted as the maximal noise
amplification of a zero-forcing beamformerW = Ay, here a factor 20, or
26 dB. With only two sources present, the amplification is cond(A) = 1:2,
or only 1.5 dB.
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Fig. 6. Residual SIR after blind beamforming of a mixture ofd

signals using the constant-modulus property.

Since is real-valued, it is advantageous to write

real

imag

real

imag
(35)

with obvious definitions of and
. If we work with and take care to stay in the

real domain, then this forces our estimate ofto be real.
At the same time, is usually much better conditioned
than .

Our first step is again an SVD of , which will reduce
to and the dimension from to . Thus, the

problem is equivalent to finding all independent vectors
such that

(36)

The alphabet condition is written as

(37)

Denoting the th column of by , substitution of (36)
into (37) leads to

(38)

Hence, we get the same type of problem as in the CM case,
and we arrive at the same joint diagonalization problem
(34) as before [100]. Other discrete symbol alphabets can
in principle be treated by extensions of (37), but for higher
order constellations the complexity of the algorithm quickly
gets out of hand.

C. Binary Symbols with Residual Carrier Frequencies

In the case of digital signals from independent sources, it
is very reasonable to assume that the carrier frequencies are
slightly different. For example, if the sources are modulated
to 900 MHz then even if the carrier frequencies are the same
up to five to six orders of magnitude, after demodulation to
baseband using the nominal carrier frequency each of the
sources will have a residual carrier of up to roughly 5 kHz.
If the sources have a bandwidth of 20 kHz, then we can
expect phase shifts in the order of 90per symbol. Hence,

the BPSK model with is too naive in
this case. We can either revert to the CM model to separate
the sources, or we can try to separate them based on these
small differences in residual carrier frequencies.

Modern-day communication systems use a common ref-
erence signal, so that the residual carrier is typically much
smaller, reportedly around 500 Hz or less. The residual
carrier method discussed below already works once the
phase shift between the first and last symbol in the data
batch is more than 180 . For sources with a bandwidth
of 20 kHz and a difference in carriers of 500 Hz, this
amounts to a data batch of 20 samples. We can envision
systems where cochannel users are deliberately shifted
by such small amounts in order to facilitate separation.
This can be regarded as a special instance of separation
by “coding-induced cyclo-stationarity,” and such schemes
have been proposed, e.g., in [68], [71], and [73]. The main
difference is that here the frequency offsets are regarded
as unknown parameters. One of the few algorithms that
considers this case can be found in [103]; it is a two-step
iterative approach.

A more accurate source model for BPSK sources is

where is the unknown residual carrier frequency of the
source. If we now look at , we have

Similarly as before, substitute (note
that we have to work with the complex data model). In
terms of Kronecker products, we can rewrite the equation
as . If we collect the row vectors

in a matrix as before, we obtain

...
(39)

The difference with the CM problem we had before is that
is unknown. However, it can readily be estimated using

the same shift-invariance ideas as before; with
and denoting the shifted matrices, we obtain

...
...

(40)

Hence, is a generalized eigenvalue of the matrix pair
, and is its corresponding eigenvector. If the

residual frequencies are not the same, then this problem can
be solved using standard linear algebra techniques [104].
The resulting are then distinct and the corresponding
eigenvectors are unique up to scaling and can directly
be factored as . This gives the collection of
beamforming vectors.
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Of course, we could also separate the sources based on
their CM properties. As can be guessed from the equations,
the difference in accuracy turns out to be only marginal.
The main benefit in solving (40) is a somewhat reduced
computational complexity.

D. Source Independence

Algorithms similar to ACMA and residual carrier recov-
ery have been derived in a more stochastic context and are
applicable to signals that are statistically independent. The
property that is used is that, for independent signals, the
rows of the -matrix are asymptotically orthogonal to each
other.

For example, as in [87], suppose we have source sig-
nals which are uncorrelated, but have a certain temporal
autocorrelation

where is a diagonal matrix which should be nonzero
for the chosen value of the lag. If the noise is temporally
uncorrelated and spatially white, the correlation matrix for
the received data has the form

Thus, the blind beamformer follows by solving
for the eigenvectors of , or equivalently,
by jointly diagonalizing both and . The
condition for this to work is that the eigenvalues are distinct,
which implies that the signals should have different spectral
signatures. Even for identically distributed sources this can
be assumed if the source signals have been received through
different channels, or, e.g., if they have different residual
carrier frequencies.

If we take multiple values for , then we obtain a
joint diagonalization problem, much as in (34). In essence,

is computed such that the beamforming outputs look
“independent,” in this case with respect to their second-
order statistics at selected time lags.

Depending on the signals, there might not be much
distinctive information in the temporal correlations. More
general techniques lift this requirement by working on
higher order statistics, such as fourth-order cumulants.
For the problem, this has led to an algorithm
called JADE that is very similar in structure to ACMA,
except that it arrives at a collection of fourth-order
cumulant matrices , all of which can be simultaneously
diagonalized by [77]. An extra processing step reduces
this to a more compact set ofmatrices to be diagonalized.

The main limitation of stochastic techniques for source
separation is that they require data matrices to be fairly large
so that the experimental source covariance matrices are
sufficiently diagonal. This means that typically in an order
of magnitude more samples are required than in the ACMA
algorithms, which can make use of stronger assumptions on
the data to arrive at properties that are pointwise satisfied
in the absence of noise.

Fig. 7. Experimental comparison between ESPRIT, ACMA, and
JADE [94]. Shown are the empirical cumulative distributions of the
residual SIR, after blind beamforming based onN = 8 samples.

E. Experimental Comparison

Having seen many different approaches for computing
basically the same factorization, the question of choice
arises. This is still a dark area, and any preference is
clearly dependent on the availability and reliability of
the properties, among other considerations. Nonetheless, a
preliminary experimental performance comparison between
ESPRIT, ACMA, JADE, and a few other methods has been
reported in [94]. In one of these experiments, data was
collected from a ULA with elements, spaced at
slightly less than half wavelength in the 900 MHz band.
Two sources moving in residential traffic in a suburban
setting were present at a distance of 2–3 km from the
array, transmitting analog FM-modulated 1 kHz tones at
slightly different carrier frequencies (15 kHz separation).
The average SNR was around 276 dB, and the sources
were at least 10spaced in azimuth. Since the sources are
narrowband, the I-MIMO model is appropriate.6

The results of this experiment are shown in Fig. 7, taken
from [94]. In this case, separation based on the CM property
offers some 10 dB additional SIR improvement over the
direction-finding method (coherent ESPRIT). The JADE
algorithm is based on restoring statistical independence
properties, which requires many more samples to become
effective. Eventually, it surpasses both ESPRIT and ACMA
once or so. Although one should be careful in
drawing general conclusions from a single experiment, it
seems fair to say that row span methods are quite promising
for blind source separation.

VIII. C ONCLUSION

This paper has described algebraic methods for de-
terministic blind beamforming. Even within this limited
framework, many properties are available and can be used
to blindly separate sources and equalize channels. Column
span methods are mostly parametric and try to fit a multiray
channel model to the observed data. These methods are
applicable if this model is valid to a reasonable accuracy,
with a small number of specular rays. The requirement of

6The results reported here were provided courtesy of A. L. Swindlehurst
and are based on measurement data shared by ArrayComm, Inc.
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a model order estimation and the sensitivity to model order
mismatch can be considered their Achilles heel. On the
other hand, potentially useful side information is obtained,
such as delays and angles of multipath rays, which enables
source localization. Uncalibrated antenna arrays can be
employed if there is sufficient resolution in the delays or
residual carrier frequencies.

Row span methods use properties of the signals such as a
CM. If these properties are present, they are very powerful
and robust and not dependent on the validity of the channel
model or array calibration. The strength, and at the same
time the limitation, of deterministic row span methods is
that they almost always require the signals to be man made.
More generally applicable signal separation methods are
based on stochastic properties, and, e.g., force the inde-
pendence of the outputs of the beamformer, or reconstruct
their distributions. Depending on the signal distributions
and thea priori knowledge, stochastic techniques can be
far superior but may require many more samples.

A major challenge in this area is to combine several
signal and channel properties at the same time, since this
would result in a superior and more robust beamformer. A
cue to this is the observation that all algebraic methods
considered in this paper lead to generalized eigenvalue
problems, where the beamforming coefficients are given
by the eigenvectors—the same for each method! Hence,
joint diagonalization algorithms are envisioned to play an
increasingly important role.
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and Craḿer–Rao bound: Further results and comparisons,”
IEEE Trans. Acoustics, Speech, Signal Processing,vol. 38, pp.
2140–2150, Dec. 1990.

[24] R. Roy and T. Kailath, “ESPRIT—Estimation of signal pa-
rameters via rotational invariance techniques,”IEEE Trans.
Acoustics, Speech, Signal Processing,vol. 37, pp. 984–995, July
1989.

[25] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to ob-
tain increased estimation accuracy with a reduced computa-
tional burden,” IEEE Trans. Signal Processing,vol. 43, pp.
1232–1242, May 1995.

[26] B. Ottersten, M. Viberg, and T. Kailath, “Performance analysis
of the total least squares ESPRIT algorithm,”IEEE Trans.
Signal Processing,vol. 39, pp. 1122–1135, May 1991.

[27] T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for
direction-of-arrival estimation of coherent signals,”IEEE Trans.
Acoustics, Speech, Signal Processing,vol. 33, pp. 806–811, Apr.
1985.

[28] U. K. Pillai and B. H. Kwon, “Forward/backward spatial
smoothing techniques for coherent signal identification,”IEEE
Trans. Acoustics, Speech, Signal Processing,vol. 37, pp. 8–15,
Jan. 1989.

[29] T. Trump and B. Ottersten, “Estimation of nominal direction
of arrival and angular spread using an array of sensors,”Signal
Processing,vol. 50, nos. 1–2, pp. 57–69, Apr. 1996.

[30] D. Aszt́ely, B. Ottersten, and A. L. Swindlehurst, “A generalized
array manifold model for local scattering in wireless communi-
cations,” inProc. IEEE ICASSP,Munich, Germany, 1997, pp.
4021–4024.

[31] A. J. van der Veen, P. B. Ober, and E. F. Deprettere, “Azimuth
and elevation computation in high resolution DOA estimation,”
IEEE Trans. Signal Processing,vol. 40, pp. 1828–1832, July
1992.

[32] Y. Hua, “Estimating two-dimensional frequencies by matrix en-
hancement and matrix pencil,”IEEE Trans. Signal Processing,
vol. 40, pp. 2267–2280, Sept. 1992.

[33] C. P. Mathews and M. D. Zoltowski, “Eigenstructure techniques
for 2-D estimation with uniform circular arrays,”IEEE Trans.
Signal Processing,vol. 42, pp. 2395–2407, Sept. 1994.

[34] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-
form 2-D angle estimation with rectangular arrays in element
space or beamspace via unitary ESPRIT,”IEEE Trans. Signal
Processing,vol. 44, pp. 316–328, Feb. 1996.

[35] M. Haardt, “Efficient one-, two-, and multidimensional high-
resolution array signal processing,” Ph.D. dissertation, TU
München, Munich, Germany, 1997.

[36] Y. Ogawa, N. Hamaguchi, K. Ohshima, and K. Itoh, “High-
resolution analysis of indoor multipath propagation structure,”

2006 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



IEICE Trans. Commun.,vol. E78-B, pp. 1450–1457, Nov.
1995.

[37] J. Gunther and A. L. Swindlehurst, “Algorithms for blind
equalization with multiple antennas based on frequency domain
subspaces,” inProc. IEEE ICASSP,Atlanta, GA, 1996, pp.
2421–2424.

[38] M. Wax and A. Leshem, “Joint estimation of directions-of-
arrival and time-delays of multiple reflections of known signal,”
IEEE Trans. Signal Processing,vol. 45, pp. 2477–2484, Oct.
1997.

[39] M. C. Vanderveen, C. B. Papadias, and A. Paulraj, “Joint angle
and delay estimation (JADE) for multipath signals arriving at
an antenna array,”IEEE Commun. Lett.,vol. 1, pp. 12–14, Jan.
1997.

[40] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint
angle and delay estimation using shift-invariance techniques,”
IEEE Trans. Signal Processing,vol. 46, no. 2, pp. 405–418,
Feb. 1998.

[41] B. H. Khalaj, A. Paulraj, and T. Kailath, “2D RAKE receivers
for CDMA cellular systems,” inProc. Globecom,San Fran-
cisco, CA, Nov. 1994, vol. 1, pp. 400–404.

[42] M. Honig, U. Madhow, and S. Verdu, “Blind adaptive multiuser
detection,”IEEE Trans. Inform. Theory,vol. 41, pp. 944–960,
July 1995.

[43] H. Liu and G. Xu, “A subspace method for signature wave-
form estimation in synchronous CDMA systems,”IEEE Trans.
Commun.,vol. 44, pp. 1346–1354, Oct. 1996.

[44] H. Liu and M. D. Zoltowski, “Blind equalization in antenna
array CDMA systems,”IEEE Trans. Signal Processing,vol. 45,
pp. 161–172, Jan. 1997.

[45] M. Torlak and G. Xu, “Blind multiuser channel estimation in
asynchronous CDMA systems,”IEEE Trans. Signal Processing,
vol. 45, pp. 137–147, Jan. 1997.

[46] J. Ramos and M. D. Zoltowski, “Reduced complexity blind
2D RAKE receiver for CDMA,” in Proc. IEEE SP Workshop
on Statistics Signal Array Processing,Corfu, Greece, 1996, pp.
502–505.

[47] J. Ramos, M. D. Zoltowski, and H. Liu, “A low-complexity
space-time RAKE receiver for DS-CDMA communications,”
IEEE Signal Processing Lett.,vol. 4, pp. 262–265, Sept. 1997.

[48] M. D. Zoltowski and C. P. Mathews, “Real-time frequency and
2-D angle estimation with sub-Nyquist spatio-temporal sam-
pling,” IEEE Trans. Signal Processing,vol. 42, pp. 2781–2794,
Oct. 1994.

[49] K.-B. Yu, “Recursive super-resolution algorithm for low-
elevation target angle tracking in multipath,”Proc. Inst. Elect.
Eng.—Radar, Sonar and Navigation,vol. 141, no. 4, pp.
223–229, Aug. 1994.

[50] K. Abed-Meraim, W. Qui, and Y. Hua, “Blind system iden-
tification,” Proc. IEEE, vol. 85, no. 8, pp. 1310–1322, Aug.
1997.

[51] L. Tong, G. Xu, and T. Kailath, “Blind identification and
equalization based on second-order statistics: A time domain
approach,”IEEE Trans. Inform. Theory,vol. 40, pp. 340–349,
Mar. 1994.

[52] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue,
“Subspace methods for the blind identification of multichan-
nel FIR filters,” IEEE Trans. Signal Processing,vol. 43, pp.
516–525, Feb. 1995.

[53] D. Slock, “Blind fractionally-spaced equalization, perfect-
reconstruction filter banks and multichannel linear prediction,”
in Proc. IEEE ICASSP,1994, pp. IV:585–588.

[54] K. Abed-Meraim, E. Moulines, and P. Loubaton, “Prediction
error method for second-order blind identification,”IEEE Trans.
Signal Processing,vol. 45, pp. 694–705, Mar. 1997.

[55] Y. Hua, K. Abed-Meraim, and M. Wax, “Blind system iden-
tification using minimum noise subspace,”IEEE Trans. Signal
Processing,vol. 45, pp. 770–773, Mar. 1997.

[56] H. Liu and G. Xu, “Closed-form blind symbol estimation in
digital communications,”IEEE Trans. Signal Processing,vol.
43, pp. 2714–2723, Nov. 1995.

[57] A. J. van der Veen, S. Talwar, and A. Paulraj, “A subspace
approach to blind space-time signal processing for wireless
communication systems,”IEEE Trans. Signal Processing,vol.
45, pp. 173–190, Jan. 1997.

[58] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares
approach to blind channel identification,”IEEE Trans. Signal
Processing,vol. 43, pp. 2982–2993, Dec. 1995.

[59] D. Gesbert, P. Duhamel, and S. Mayrargue, “On-line blind
multichannel equalization based on mutually referenced filters,”
IEEE Trans. Signal Processing,vol. 45, pp. 2307–2317, Sept.
1997.

[60] S. V. Schell and D. L. Smith, “Improved performance of blind
equalization using prior knowledge of transmitter filter,” in
Proc. IEEE MILCOM,1994, pp. 128–132 vol. 1.

[61] Z. Ding and Z. Mao, “Knowledge-based identification of frac-
tionally sampled channels,” inProc. IEEE ICASSP,Detroit, MI,
May 1995, pp. 1996–1999.

[62] M. Cedervall, B. C. Ng, and A. Paulraj, “Structured methods
for blind multi-channel identification,” inProc. 13th Int. Conf.
Digital Signal Processing,Santorini, Greece, July 1997, pp.
387–390.

[63] D. Gesbert and P. Duhamel, “Robust blind channel identifica-
tion and equalization based on multi-step predictors,” inProc.
IEEE ICASSP,Munich, Germany, 1997, pp. 3621–3624.

[64] E. De Carvalho and D. T. M. Slock, “Craḿer–Rao bounds
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