Algebraic model structures

Emily Riehl

University of Chicago http://www.math.uchicago.edu/~eriehl

22 June, 2010 International Category Theory Conference Università di Genova

Outline

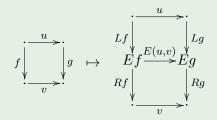
Outline

Functorial weak factorization systems

Definition

A functorial weak factorization system (wfs) $(\mathcal{L}, \mathcal{R})$ on a category \mathcal{M} :

• There exists a functorial factorization $\vec{E}: \mathcal{M}^2 \to \mathcal{M}^3$:



with
$$Lf \in \mathcal{L}$$
 and $Rf \in \mathcal{R}$.

Algebraic perspective

 $L, R: \mathcal{M}^2 \to \mathcal{M}^2$ are pointed endofunctors with $\vec{\epsilon}: L \Rightarrow 1, \ \vec{\eta}: 1 \Rightarrow R:$

$$\vec{\epsilon}_f = Lf \bigvee_{Rf} \downarrow f$$
 and $\vec{\eta}_g = g \bigvee_{Lg} \downarrow_{Rg} \downarrow_{Rg}$

Algebraic left maps

$$f \in \mathcal{L} \quad \text{iff} \quad f \not [\overbrace{ \swarrow \ s}^{Lf}] Rf \quad \text{iff} \quad (f,s) \text{ is a } (L,\vec{\epsilon}) \text{-coalgebra}.$$

Algebraic right maps

$$g\in \mathcal{R}$$
 iff

$$g \left| \begin{array}{c} t \\ t \\ y \\ y \\ Rg \end{array} \right|^{T} g$$

iff
$$(g,t)$$
 is a $(R,\vec{\eta})$ -algebra.

Emily Riehl (University of Chicago)

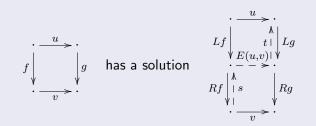
Algebraic lifts

Recall

$$f \in \mathcal{L} \quad \text{iff} \quad f \not [\overbrace{ \swarrow }] Rf \qquad g \in \mathcal{R} \quad \text{iff} \quad Lg \not [\overbrace{ \swarrow }] Rg \qquad g \in \mathcal{R}$$

Constructing lifts

Given a coalgebra (f, s) and an algebra (g, t), any lifting problem



Emily Riehl (University of Chicago)

Definition (Grandis, Tholen)

A natural weak factorization system (nwfs) (\mathbb{L},\mathbb{R}) on a category \mathcal{M} :

 \bullet a comonad $\mathbb{L}=(L,\vec{\epsilon},\vec{\delta})$ and a monad $\mathbb{R}=(R,\vec{\eta},\vec{\mu})$

such that

- $(L,\vec{\epsilon})$ and $(R,\vec{\eta})$ come from a functorial factorization \vec{E}
- the canonical map $LR \Rightarrow RL$ is a distributive law.

Its underlying wfs is $(\overline{\mathcal{L}}, \overline{\mathcal{R}})$, the retract closures of the L-coalgebras and R-algebras.

Let $\mathcal J$ be a small category over $\mathcal M^2$.

Theorem (Garner)

If $\mathcal M$ permits the small object argument, then $\mathcal J$ generates a nwfs $(\mathbb L,\mathbb R)$ such that

- (free) There exists a canonical functor λ : J → L-coalg over M², universal among morphisms of nwfs.
- (algebraically-free) There is a canonical isomorphism \mathbb{R} -alg $\cong \mathcal{J}^{\boxtimes}$.

Outline

Algebraic model structures

Recall a model structure on a bicomplete category $\mathcal M$ is $(\mathcal C,\mathcal F,\mathcal W)$ s.t.:

- ${\mathcal W}$ satisfies the 2-of-3 property
- $(\mathcal{C}\cap\mathcal{W},\mathcal{F})$ and $(\mathcal{C},\mathcal{F}\cap\mathcal{W})$ are wfs

Definition (R.)

An algebraic model structure on $(\mathcal{M}, \mathcal{W})$ consists of a pair of nwfs $(\mathbb{C}_t, \mathbb{F})$ and $(\mathbb{C}, \mathbb{F}_t)$ on \mathcal{M} together with a morphism of nwfs

$$\xi\colon (\mathbb{C}_t,\mathbb{F})\to (\mathbb{C},\mathbb{F}_t)$$

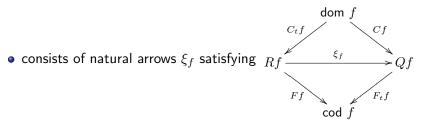
called the comparison map such that the underlying wfs of $(\mathbb{C}_t, \mathbb{F})$ and $(\mathbb{C}, \mathbb{F}_t)$ give the trivial cofibrations, fibrations, cofibrations, and trivial fibrations, respectively, of a model structure on \mathcal{M} , with weak equivalences \mathcal{W} .

NB: By the universal property of Garner's small object argument, any cofibrantly generated model structure can be algebraicized.

Emily Riehl (University of Chicago)

Algebraic model structures

The comparison map $\xi \colon (\mathbb{C}_t, \mathbb{F}) \to (\mathbb{C}, \mathbb{F}_t)$



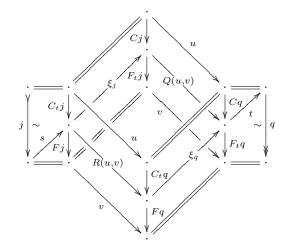
induces functors

 $\xi_* \colon \mathbb{C}_t\text{-coalg} \to \mathbb{C}\text{-coalg} \text{ and } \xi^* \colon \mathbb{F}_t\text{-alg} \to \mathbb{F}\text{-alg},$

which provide an algebraic way to regard a trivial cofibration (trivial fibration) as a cofibration (fibration).

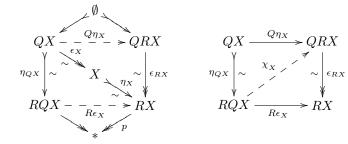
Naturality of the comparison map

Both ways of lifting an algebraic trivial cofibration $(j, s) \in \mathbb{C}_t$ -coalg against an algebraic trivial fibration $(q, t) \in \mathbb{F}_t$ -alg are the same!



Algebraically fibrant-cofibrant objects

Any algebraic model structure induces a fibrant replacement monad \mathbb{R} and a cofibrant replacement comonad \mathbb{Q} on \mathcal{M} together with $\chi: RQ \Rightarrow QR$.



Theorem (R.)

The comonad Q lifts to \mathbb{R} -alg the category of algebraically fibrant objects and the monad R lifts to \mathbb{Q} -coalg. Their algebras are isomorphic and give a category of algebraically bifibrant objects.

Emily Riehl (University of Chicago)

Algebraic model structures

Theorem (R.)

Lack's trivial model structure on the 2-category $Cat^{\mathcal{A}}$ is a cofibrantly generated algebraic model structure, even though it is not cofibrantly generated in the classical sense.

Theorem (Garner, R., Shulman)

Given any algebraic model structure generated by $\mathcal{J} \hookrightarrow \mathcal{I}$ such that the cofibrations are monomorphisms, the components of the comparison map ξ are \mathbb{C} -coalgebras.

Outline

Many ordinary model structures are constructed using a theorem due to Kan, which we extend to algebraic model structures:

Theorem (R.)

Let \mathcal{M} have an algebraic model structure, generated by \mathcal{J} and \mathcal{I} and with weak equivalences $\mathcal{W}_{\mathcal{M}}$. Let $T: \mathcal{M} \xrightarrow{} \mathcal{K}: S$ be an adjunction.

Suppose ${\mathcal K}$ permits the small object argument and also that

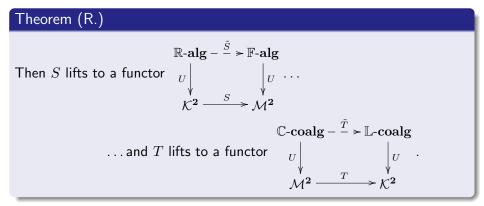
(*) S maps arrows underlying the left class of the nwfs generated by $T\mathcal{J}$ into $\mathcal{W}_{\mathcal{M}}.$

Then $T\mathcal{J}$ and $T\mathcal{I}$ generate an algebraic model structure on \mathcal{K} with $\mathcal{W}_{\mathcal{K}} = S^{-1}(\mathcal{W}_{\mathcal{M}}).$

NB: When a nwfs (\mathbb{C}, \mathbb{F}) is cofibrantly generated, all fibrations are algebraic: i.e., the class \mathcal{F} underlying \mathbb{F} -alg $\cong \mathcal{J}^{\boxtimes}$ is retract closed.

About the adjunction

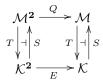
Consider an adjunction $T: \mathcal{M} \xrightarrow{\perp} \mathcal{K}: S$ where \mathcal{J} generates a nwfs (\mathbb{C}, \mathbb{F}) on \mathcal{M} and $T\mathcal{J}$ generates a nwfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} .



Adjunctions of nwfs

Definition

An adjunction of nwfs $(T, S, \gamma, \rho) : (\mathbb{C}, \mathbb{F}) \to (\mathbb{L}, \mathbb{R})$ consists of a nwfs (\mathbb{C}, \mathbb{F}) on \mathcal{M} and a nwfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} , an adjunction $T: \mathcal{M} \xrightarrow{} \mathcal{K}: S$, and lifts $\tilde{T}: \mathbb{C}\text{-coalg} \to \mathbb{L}\text{-coalg}$ and $\tilde{S}: \mathbb{R}\text{-alg} \to \mathbb{F}\text{-alg}$ such that the natural transformations γ and ρ characterizing these lifts are mates.



NB: An adjunction of nwfs over over $1 \dashv 1$ is exactly a morphism of nwfs.

Theorem (R.)

When \mathcal{J} generates (\mathbb{C}, \mathbb{F}) and $T\mathcal{J}$ generates (\mathbb{L}, \mathbb{R}) with $T \dashv S$, there is a canonical adjunction of nwfs $(T, S, \gamma, \rho) \colon (\mathbb{C}, \mathbb{F}) \to (\mathbb{L}, \mathbb{R})$.

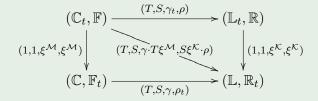
Emily Riehl (University of Chicago)

Algebraic Quillen adjunctions

Let \mathcal{M} have an algebraic model structure $\xi^{\mathcal{M}} \colon (\mathbb{C}_t, \mathbb{F}) \to (\mathbb{C}, \mathbb{F}_t)$ and let \mathcal{K} have an algebraic model structure $\xi^{\mathcal{K}} \colon (\mathbb{L}_t, \mathbb{R}) \to (\mathbb{L}, \mathbb{R}_t)$.

Definition (R.)

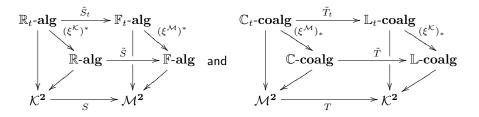
An adjunction $T: \mathcal{M} \xrightarrow{\perp} \mathcal{K}: S$ is an algebraic Quillen adjunction if there exist natural transformations γ_t , γ , ρ_t , and ρ determining five adjunctions of nwfs



such that both triangles commute.

Naturality in an algebraic Quillen adjunction

The naturality condition says that the lifts commute:



Theorem (R.)

For any algebraic model structure on \mathcal{K} constructed by passing a cofibrantly generated algebraic model structure on \mathcal{M} across an adjunction, the adjunction is canonically an algebraic Quillen adjunction.

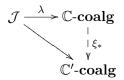
To prove the preceding theorem, we need this result.

Goal: Understand change of base along left adjoints of specified adjunctions in Garner's small object argument.

Given a category ${\cal M}$ that permits the small object argument, Garner's construction produces a reflection of any small category ${\cal J}$ over ${\cal M}^2$ along the so-called "semantics" functor

$$\mathsf{NWFS}(\mathcal{M}) \xrightarrow{\mathcal{G}} \mathsf{CAT}/\mathcal{M}^2$$
$$(\mathbb{C}, \mathbb{F}) \longmapsto \mathbb{C}\text{-coalg}$$

The unit $\lambda \colon \mathcal{J} \to \mathbb{C}\text{-coalg}$ is universal among morphisms of nwfs



i.e., it is initial in the slice category \mathcal{J}/\mathcal{G} .

Change of base

Garner's small object argument satisfies a stronger universal property.

Two categories cofibered over CAT_{ladj}

- Let **NWFS**_{ladj} be the category of nwfs over any base whose morphisms are adjunctions of nwfs.
- Let $CAT/(-)^2_{ladj}$ be the category of categories sliced over arrow categories, with morphisms the left adjoints of specified adjunctions between the base categories with specified lifts.

Theorem (R.)

Garner's construction produces a reflection along

$$\mathsf{NWFS}_{\mathsf{ladj}} \xrightarrow{\mathcal{G}^{\mathsf{ladj}}} \mathsf{CAT}/(-)^2_{\mathsf{ladj}}$$

i.e., the units $\lambda \colon \mathcal{J} \to \mathbb{C}\text{-coalg}$ are universal among adjunctions of nwfs.

Thanks

Thanks to the organizers, Richard Garner, Martin Hyland, Peter May, Mike Shulman, and the members of the category theory seminars at Chicago and Macquarie.

Further details

Further details can be found in the preprint "Algebraic model structures" arXiv:0910.2733v2 available at www.math.uchicago.edu/~eriehl.