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1.1 Introduction

Fork-join networks, as introduced in Baccelli and Makowski (1989), Baccelli et
al. (1989), present a class of queueing systems which allow customers (jobs,
tasks) to be split into several parts, and to be merged into one when they
circulate through the system. The fork-join formalism proves to be useful in
the description of dynamical processes in a variety of actual complex systems,
including production processes in manufacturing, transmission of messages in
communication networks, and parallel data processing in multi-processor com-
puter systems. As a natural illustration of the fork and join operations, one
can consider respectively splitting a message into packets in a communication
network, each intended for transmitting via separate ways, and merging packets
at a destination node of the network to restore the message. Further examples
can be found in Baccelli and Makowski (1989).

The usual way to represent the dynamics of fork-join queueing networks
relies on the implementation of recursive state equations of the Lindley type
[Baccelli and Makowski (1989)]. Since the recursive equations associated with
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the fork-join networks can be expressed only in terms of the operations of
maximum and addition, there is a possibility to represent the dynamics of the
networks in terms of the (max,+)-algebra which is actually an algebraic system
just supplied with the same two operations [Cuninghame-Green (1979), Baccelli
et al. (1992), Maslov and Kolokoltsov (1994)]. In fact, (max,+)-algebra models
offer a more compact and unified way of describing network dynamics, and,
moreover, lead to equations closely analogous to those in the conventional linear
system theory [Baccelli et al. (1992), Krivulin (1994, 1995, 1996a, 1996b)].
In that case, the (max,+)-algebra approach gives one the chance to exploit
results and numerical procedures available in the algebraic system theory and
computational linear algebra.

One of the problems of interest in the analysis of stochastic queueing net-
works is to evaluate the service cycle time of a network. Both the cycle time
and its inverse which can be regarded as a throughput present performance
measures commonly used to describe efficiency of the network operation.

It is often rather difficult to evaluate the cycle time exactly, even though the
network under study is quite simple. To get information about the performance
measure in this case, one can apply computer simulation to produce reasonable
estimates. Another approach is to derive bounds on the cycle time. Specifically,
a technique which allows one to establish bounds based on results of the theory
of large deviations as well as the Perron-Frobenius spectral theory has been
introduced in Baccelli and Konstantopoulos (1991).

In this paper we propose an approach to get bounds on the service cycle
time, which exploits the (max,+)-algebra representation of acyclic fork-join net-
work dynamics derived in Krivulin (1996a, 1996b). This approach is essentially
based on pure algebraic manipulations combined with application of bounds on
extreme values, obtained in Gumbel (1954), Hartly and David (1954).

The rest of the paper is organized as follows. Section 1.2 presents basic
(max,+)-algebra definitions and related results which underlie the development
of network models and their analysis in the subsequent sections. In Section 1.3,
further algebraic results are included which provide a basis for derivation of
bounds on the service cycle time.

A (max,+)-algebra representation of the fork-join network dynamics and
related examples are given in Section 1.4. Furthermore, Section 1.5 offers some
monotonicity property for the networks, which is exploited in Section 1.6 to get
algebraic bounds on the service cycle completion time. Stochastic extension of
the network model is introduced in Section 1.7. This section concludes with
a result which provides simple bounds on the network cycle time. Finally,
Section 1.8 presents examples of calculating bounds and related discussion.
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1.2 Preliminary Algebraic Definitions and Results

The (max,+)-algebra presents an idempotent commutative semiring (idempo-
tent semifield) which is defined as Rmax = 〈R,⊕,⊗〉 with R = R∪{ε}, ε = −∞,
and binary operations ⊕ and ⊗ defined as

x⊕ y = max(x, y), x⊗ y = x + y, for all x, y ∈ R.

There are the null and identity elements in the algebra, namely ε and 0, to
satisfy the conditions x⊕ ε = ε⊕x = x, and x⊗ 0 = 0⊗x = x, for any x ∈ R.
The null element ε and the operation ⊗ are related by the usual absorption
rule involving x⊗ ε = ε⊗ x = ε.

As it is easy to see, the operations ⊕ and ⊗ retain most of the properties of
the ordinary addition and multiplication, including associativity, commutativ-
ity, and distributivity of multiplication over addition. However, the operation
⊕ is idempotent; that is, for any x ∈ R, one has x⊕ x = x.

Non-negative integer power of any x ∈ R can be defined as x0 = 0, and
xq = x ⊗ xq−1 = xq−1 ⊗ x for q ≥ 1. Clearly, the (max,+)-algebra power xq

corresponds to qx in ordinary notations. We will use the power notations only
in the (max,+)-algebra sense.

The (max,+)-algebra of matrices is readily introduced in the regular way.
Specifically, for any (n × n)-matrices X = (xij) and Y = (yij), the entries of
U = X ⊕ Y and V = X ⊗ Y are calculated as

uij = xij ⊕ yij , and vij =
n⊕

k=1

xik ⊗ ykj .

As the null and identity elements, the matrices

E =

 ε . . . ε
...

. . .
...

ε . . . ε

 , I =

 0 ε
. . .

ε 0


are respectively taken in the algebra.

The matrix operations ⊕ and ⊗ possess monotonicity properties; that is,
the matrix inequalities X ≤ U and Y ≤ V result in

X ⊕ Y ≤ U ⊕ V, X ⊗ Y ≤ U ⊗ V

for any matrices of appropriate size.
Let X 6= E be a square matrix. In the same way as in the conventional

algebra, one can define X0 = I, and Xq = X ⊗ Xq−1 = Xq−1 ⊗ X for any
integer q ≥ 1. However, idempotency leads, in particular, to the matrix identity

(X ⊕ Y )q = Xq ⊕Xq−1 ⊗ Y ⊕ · · · ⊕ Y q.
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As direct consequences of the above identity, one has

(X ⊕ Y )q ≥ Xp ⊗ Y q−p, (I ⊕X)q ≥ (I ⊕X)p ≥ Xp,

for all p = 0, 1, . . . , q.
For any matrix X, one can define the matrix function

‖X‖ =
⊕
i,j

xij = max
i,j

xij .

Note that the function ‖·‖ possesses properties similar to those of the ordinary
matrix norm. Specifically, for any matrix X, it holds ‖X‖ ≥ ε, and ‖X‖ = ε
if and only if X = E . Furthermore, we have ‖c⊗X‖ = c⊗‖X‖ for any c ∈ R,
as well as additive and multiplicative properties involving

‖X ⊕ Y ‖ = ‖X‖ ⊕ ‖Y ‖, ‖X ⊗ Y ‖ ≤ ‖X‖ ⊗ ‖Y ‖

for any two conforming matrices X and Y . For any c > 0, we also have
‖cX‖ = c‖X‖. The matrix function ‖·‖ will be referred to as (max,+)-algebra
norm, or simply as norm.

Consider an (n×n)-matrix X with its entries xij ∈ R. It can be treated as
an adjacency matrix of an oriented graph with n nodes, provided each entry
xij 6= ε implies the existence of the arc (i, j) in the graph, while xij = ε does
the lack of the arc.

It is easy to verify that for any integer q ≥ 1, the matrix Xq has its entry
x

(q)
ij 6= ε if and only if there exists a path from node i to node j in the graph,

which consists of q arcs. Furthermore, if the graph associated with the matrix
X is acyclic, we have Xq = E for all q > p, where p is the length of the
longest path in the graph. Otherwise, provided that the graph is not acyclic,
one can construct a path of any length, lying along circuits, and then it holds
that Xq 6= E for all q ≥ 0.

Consider the implicit equation in an unknown vector x = (x1, . . . , xn)T ,

x = U ⊗ x⊕ v, (1.1)

where U = (uij) and v = (v1, . . . , vn)T are respectively given (n × n)-matrix
and n-vector. Suppose that the entries of the matrix U and the vector v
are either positive or equal to ε. It is easy to verify (see, e.g. Cuninghame-
Green (1979), Cohen et al. (1985)) that equation (1.1) has the unique bounded
solution if and only if the graph associated with U is acyclic. Provided that
the solution exists, it is given by

x = (I ⊕ U)p ⊗ v, (1.2)

where p is the length of the longest path in the graph.
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1.3 Further Algebraic Results

Consider a square matrix X, and denote the adjacency (ε–0)-matrix of the
graph associated with X by G. The matrix G is normally referred to as
support of X.

Proposition 1.3.1 For any matrix X, it holds

X ≤ ‖X‖ ⊗G,

where G is the support of X.

Proposition 1.3.2 Suppose that matrices X1, . . . , Xk have a common associ-
ated acyclic graph, p is the length of the longest path in the graph, and

X = Xm1
1 ⊗ · · · ⊗Xmk

k ,

where m1, . . . ,mk are nonnegative integers.
If it holds that m1 + · · ·+ mk > p, then X = E.

Proof: It follows from Proposition 1.3.1 that

X = Xm1
1 ⊗ · · · ⊗Xmk

k ≤ ‖X1‖m1 ⊗ · · · ⊗ ‖Xk‖mk ⊗Gm1+···+mk ,

where G is the common support of the matrices X1, . . . , Xk.
Since the graph is acyclic, it holds that Gq = E for all q > p. Therefore,

with q = m1 + · · ·+ mk > p, we arrive at the inequality X ≤ E which leads us
to the desired result.

Lemma 1.3.1 Suppose that matrices X1, . . . , Xk have a common associated
acyclic graph, and p is the length of the longest path in the graph.

If ‖Xi‖ ≥ 0 for all i = 1, . . . , k, then it holds∥∥∥∥∥
k⊗

i=1

(I ⊕Xi)mi

∥∥∥∥∥ ≤
(

k⊕
i=1

‖Xi‖
)p

for any nonnegative integers m1, . . . ,mk.

Proof: Consider the matrix

X =
k⊗

i=1

(I ⊕Xi)mi =

 m1⊕
i1=0

Xi1
1

⊗ · · · ⊗

 mk⊕
ik=0

Xik
k


=

m1⊕
i1=0

· · ·
mk⊕

ik=0

Xi1
1 ⊗ · · · ⊗Xik

k ≤
⊕

0≤i1+···+ik≤m

Xi1
1 ⊗ · · · ⊗Xik

k ,
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where m = m1 + · · ·+ mk. From Proposition 1.3.2 we may replace m with p
in the last term to get

X ≤
⊕

0≤i1+···+ik≤p

Xi1
1 ⊗ · · · ⊗Xik

k .

Proceeding to the norm, with its additive and multiplicative properties, we
arrive at the inequality

‖X‖ ≤
⊕

0≤i1+···+ik≤p

‖X1‖i1 ⊗ · · · ⊗ ‖Xk‖ik .

Since for all i = 1, . . . , k, it holds 0 ≤ ‖Xi‖ ≤ ‖X1‖ ⊕ · · · ⊕ ‖Xk‖, we finally
have

‖X‖ ≤
p⊕

i=0

(‖X1‖ ⊕ · · · ⊕ ‖Xk‖)p =

(
k⊕

i=0

‖Xi‖
)p

.

1.4 An Algebraic Model of Queueing Networks

We consider a network with n single-server nodes and customers of a single
class. The topology of the network is described by an oriented acyclic graph G =
(N,A), where the set N = {1, . . . , n} represents the nodes, and A = {(i, j)} ⊂
N×N represents the arcs determining the transition routes of customers.

For every node i ∈ N, we denote the sets of its immediate predecessors and
successors respectively as P(i) = {j| (j, i) ∈ A} and S(i) = {j| (i, j) ∈ A}.
In specific cases, there may be one of the conditions P(i) = ∅ and S(i) = ∅
encountered. Each node i with P(i) = ∅ is assumed to represent an infinite
external arrival stream of customers; provided that S(i) = ∅, it is considered
as an output node intended to release customers from the network.

Each node i ∈ N includes a server and its buffer with infinite capacity,
which together present a single-server queue operating under the first-come,
first-served (FCFS) discipline. At the initial time, the server at each node i
is assumed to be free of customers, whereas in its buffer, there may be ri,
0 ≤ ri ≤ ∞, customers waiting for service. The value ri = ∞ is set for every
node i with P(i) = ∅, which represents an external arrival stream of customers.

For the queue at node i, we denote the kth arrival and departure epochs
respectively as ui(k) and xi(k). Furthermore, the service time of the kth
customer at server i is indicated by τik. We assume that τik ≥ 0 are given
for all i = 1, . . . , n, and k = 1, 2, . . ., while ui(k) and xi(k) are considered as
unknown state variables. With the condition that the network starts operating
at time zero, it is convenient to set xi(0) ≡ 0, and xi(k) ≡ ε for all k < 0,
i = 1, . . . , n.
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It is easy to set up an equation which relates the system state variables. In
fact, the dynamics of any single-server node i with an infinite buffer, operating
on the FCFS basis, is described as

xi(k) = τik ⊗ ui(k)⊕ τik ⊗ xi(k − 1). (1.3)

With the vector-matrix notations

u(k) =

 u1(k)
...

un(k)

 , x(k) =

 x1(k)
...

xn(k)

 , Tk =

 τ1k ε
. . .

ε τnk

 ,

we may rewrite equation (1.3) in a vector form, as

x(k) = Tk ⊗ u(k)⊕ Tk ⊗ x(k − 1). (1.4)

1.4.1 Fork-Join Queueing Networks

In fork-join networks, in addition to the usual service procedure, special join
and fork operations are performed in its nodes, respectively before and after
service. The join operation is actually thought to cause each customer which
comes into node i, not to enter the buffer at the server but to wait until at least
one customer from every node j ∈ P(i) arrives. As soon as these customers
arrive, they, taken one from each preceding node, are united into one customer
which then enters the buffer to become a new member of the queue.

The fork operation at node i is initiated every time the service of a cus-
tomer is completed; it consists in giving rise to several new customers instead
of the original one. As many new customers appear in node i as there are suc-
ceeding nodes included in the set S(i). These customers simultaneously depart
the node, each being passed to separate node j ∈ S(i). We assume that the
execution of fork-join operations when appropriate customers are available, as
well as the transition of customers within and between nodes require no time.

As it immediately follows from the above description of the fork-join oper-
ations, the kth arrival epoch into the queue at node i is represented as

ui(k) =


⊕

j∈P(i)

xj(k − ri), if P(i) 6= ∅,

ε, if P(i) = ∅.
(1.5)

In order to get this equation in a vector form, we first define the number
M = max{ri| ri < ∞, i = 1, . . . , n}. Now we may rewrite (1.5) as

ui(k) =
M⊕

m=0

n⊕
j=1

gm
ji ⊗ xj(k −m),
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where the numbers gm
ij are determined by the condition

gm
ij =

{
0, if i ∈ P(j) and m = rj ,
ε, otherwise.

(1.6)

Let us introduce the matrices Gm =
(
gm
ij

)
for each m = 0, 1, . . . ,M . In

fact, Gm presents an adjacency matrix of the partial graph Gm = (N,Am)
with Am = {(i, j)| (i, j) ∈ A; rj = m}. Since the graph of the entire network is
acyclic, all its partial graphs Gm, m = 0, 1, . . . ,M , possess the same property.

With these matrices, equation (1.5) may be written in the vector form

u(k) =
M⊕

m=0

GT
m ⊗ x(k −m), (1.7)

where GT
m denotes the transpose of the matrix Gm.

By combining equations (1.4) and (1.7), we arrive at the equation

x(k) = Tk ⊗GT
0 ⊗ x(k)⊕ Tk ⊗ x(k − 1)

⊕Tk ⊗
M⊕

m=1

GT
m ⊗ x(k −m). (1.8)

Clearly, it is actually an implicit equation in x(k), which has the form of (1.1),
with U = Tk ⊗ GT

0 . Taking into account that the matrix Tk is diagonal, one
can prove the following statement (see also Krivulin (1996a, 1996b)).

Theorem 1.4.1 Suppose that in the fork-join network model, the graph G0

associated with the matrix G0 is acyclic. Then equation (1.8) can be solved to
produce the explicit dynamic state equation

x(k) =
M⊕

m=1

Am(k)⊗ x(k −m), (1.9)

with the state transition matrices

A1(k) = (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗ (I ⊕GT

1 ), (1.10)
Am(k) = (I ⊕ Tk ⊗GT

0 )p ⊗ Tk ⊗GT
m, m = 2, . . . ,M, (1.11)

where p is the length of the longest path in G0.

As one can see, with M = 1 and A1(k) = A(k), we have the dynamic equation

x(k) = A(k)⊗ x(k − 1). (1.12)

Note that this equation differs in appearance from those used in the linear
system theory, which normally have the form of x(k) = A(k − 1)⊗ x(k − 1).
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Figure 1.1: An acyclic fork-join network.

1.4.2 Examples of Network Models

An example of an acyclic fork-join network with n = 5 is shown in Fig. 1.1.
Since for the network M = 1, we have from (1.6)

G0 =


ε ε 0 ε ε
ε ε ε ε ε
ε ε ε ε 0
ε ε ε ε 0
ε ε ε ε ε

 , G1 =


ε ε ε 0 ε
ε ε ε 0 ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

 .

Taking into account that for the graph G0, the length of its longest path
p = 2, we arrive at equation (1.12) with the state transition matrix calculated
from (1.10) as

A(k) = (I ⊕ Tk ⊗GT
0 )2 ⊗ Tk ⊗ (I ⊕GT

1 )

=


τ1k ε ε ε ε
ε τ2k ε ε ε

τ1k⊗τ3k ε τ3k ε ε
τ4k τ4k ε τ4k ε

(τ1k⊗τ3k⊕τ4k)⊗τ5k τ4k⊗τ5k τ3k⊗τ5k τ4k⊗τ5k τ5k

 .

Note that open tandem queueing systems (see Fig. 1.2) can be considered
as trivial networks in which no fork and join operations are actually performed.

h1
r1 = ∞

- h2
r2 = 0

- r r r - hn
rn = 0

-

Figure 1.2: Open tandem queues.

For the system in Fig. 1.2, we have M = 0, and p = n− 1. Its related state
transition matrix A(k) has the entries [Krivulin (1994, 1995)]

aij(k) =

{
τjk ⊗ τj+1k ⊗ · · · ⊗ τik, if i ≥ j,
ε, otherwise.
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1.5 A Monotonicity Property

In this section, a property of monotonicity is established which shows how the
system state vector x(k) may vary with the initial numbers of customers ri. It
is actually proven that the entries of x(k) for all k = 1, 2, . . ., do not decrease
when the numbers ri with 0 < ri < ∞, i = 1, . . . , n, are reduced to zero.

As it is easy to see, the change in the initial numbers of customers results
only in modifications to partial graphs Gm and so to their adjacency matrices
Gm. Specifically, reducing these numbers to zero leads us to new matrices
G̃0 = G0 ⊕G1 · · · ⊕GM , and G̃m = E for all m = 1, . . . ,M .

We start with a lemma which shows that replacing the numbers ri = 1 with
ri = 0 does not decrease the entries of the matrix A1(k) defined by (1.10).

Lemma 1.5.1 For all k = 1, 2, . . ., it holds

A1(k) ≤ Ã(k)

with Ã(k) = (I ⊕Tk ⊗ G̃T
0 )q ⊗Tk, where G̃0 = G0 ⊕G1, and q is the length of

the longest path in the graph associated with the matrix G̃0.

Proof: Consider the matrix A1(k) and represent it in the form

A1(k) = ((I ⊕ Tk ⊗GT
0 )p ⊗ Tk)⊕ ((I ⊕ Tk ⊗GT

0 )p ⊗ Tk ⊗GT
1 ),

where p is the length of the longest path in the graph associated with G0.
As one can see, to prove the lemma, it will suffice to verify both inequalities

Ã(k) ≥ (I ⊕ Tk ⊗GT
0 )p ⊗ Tk, (1.13)

Ã(k) ≥ (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗GT

1 . (1.14)

Let us write the obvious representation

(I ⊕ Tk ⊗ G̃T
0 )q =

q⊕
i=0

(I ⊕ Tk ⊗GT
0 )i ⊗ (Tk ⊗GT

1 )q−i.

Since q ≥ p, we get from the representation

(I⊕Tk⊗ G̃T
0 )q ≥ (I⊕Tk⊗ G̃T

0 )p = ((I⊕Tk⊗GT
0 )⊕Tk⊗GT

1 )p ≥ (I⊕Tk⊗GT
0 )p.

It remains to multiply both sides of the above inequality by Tk on the right so
as to arrive at (1.13).

To verify (1.14), let us first assume that q > p. In this case, we obtain

(I ⊕ Tk ⊗ G̃T
0 )q ≥ (I ⊕ Tk ⊗ G̃T

0 )p+1

= ((I ⊕ Tk ⊗GT
0 )⊕ Tk ⊗GT

1 )p+1 ≥ (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗GT

1 .
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Suppose now that q = p. Then it is necessary that G1⊗Gp
0 = E . If this were

not the case, there would be a path in the graph associated with the matrix
G̃0 = G0 ⊕G1, which has its length greater than p, and we would have q > p.

Clearly, the condition G1 ⊗Gp
0 = E results in (Tk ⊗GT

0 )p ⊗ Tk ⊗GT
1 = E ,

and thus we get

(I ⊕ Tk ⊗ G̃T
0 )q = ((I ⊕ Tk ⊗GT

0 )⊕ Tk ⊗GT
1 )p

≥ (I ⊕ Tk ⊗GT
0 )p−1 ⊗ Tk ⊗GT

1 = (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗GT

1 .

Since it holds (I ⊕ Tk ⊗ G̃T
0 )p ⊗ Tk ≥ (I ⊕ Tk ⊗ G̃T

0 )p, one can conclude that
inequality (1.14) is also valid.

Theorem 1.5.1 In the acyclic fork-join queueing network model (1.9–1.11),
reducing the initial numbers of customers from any finite values to zero does
not decrease the entries of the system state vector x(k) for all k = 1, 2, . . ..

Proof: Let x(k) be determined by (1.9–1.11). Suppose that the vector x̃(k)
satisfies the dynamic equation

x̃(k) = Ã(k)⊗ x̃(k − 1)

with

Ã(k) =

(
I ⊕ Tk ⊗

M⊕
m=0

GT
m

)q

⊗ Tk = (I ⊕ Tk ⊗GT )q ⊗ Tk,

where q is the length of the longest path in the graph associated with the
matrix G = G0 ⊕G1 ⊕ · · · ⊕Gm.

Now we have to show that for all k = 1, 2, . . ., it holds

x(k) ≤ x̃(k).

Since x(k1) ≤ x(k2) for any k1 < k2, we have from (1.9)

x(k) =
M⊕

m=1

Am(k)⊗ x(k −m) ≤
(

M⊕
m=1

Am(k)

)
⊗ x(k − 1).

Consider the matrix

Ã1(k) =
M⊕

m=1

Am(k) = (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗

(
I ⊕

M⊕
m=1

GT
m

)
.

By applying Lemma 1.5.1, we have

Ã1(k) ≤
(

I ⊕ Tk ⊗GT
0 ⊕

M⊕
m=1

GT
m

)q

⊗ Tk = Ã(k).

11
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Starting with the condition x(0) = x̃(0), we successively verify that the
relations

x(k) ≤ Ã1(k)⊗ x(k − 1) ≤ Ã(k)⊗ x(k − 1) ≤ Ã(k)⊗ x̃(k − 1) = x̃(k)

are valid for each k = 1, 2, . . ..

1.6 Bounds on the Service Cycle Completion Time

We consider the evolution of the system as a sequence of service cycles: the 1st
cycle starts at the initial time, and it is terminated as soon as all the servers in
the network complete their 1st service, the 2nd cycle is terminated as soon as
the servers complete their 2nd service, and so on. Clearly, the completion time
of the kth cycle can be represented as

max
i

xi(k) = ‖x(k)‖

with x(0) = 0.
The next lemma provides simple algebraic lower and upper bounds for the

kth cycle completion time.

Lemma 1.6.1 With the condition that x(0) = 0, for all k = 1, 2, . . ., it holds∥∥∥∥∥
k∑

i=1

Ti

∥∥∥∥∥ ≤ ‖x(k)‖ ≤
k∑

i=1

‖Ti‖+ p

(
k⊕

i=1

‖Ti‖
)

.

Proof: To prove the left inequality first note that

A1(k) = (I ⊕ Tk ⊗GT
0 )p ⊗ Tk ⊗ (I ⊕GT

1 )

=
(
I ⊕ Tk ⊗GT

0 ⊕ · · · ⊕ (Tk ⊗GT
0 )p
)
⊗ Tk ⊗ (I ⊕GT

1 ) ≥ Tk.

With this condition, we have from (1.9)

x(k) =
M⊕

m=1

Am(k)⊗ x(k −m) ≥ A1(k)⊗ x(k − 1) ≥ Tk ⊗ x(k − 1).

Now we can write

x(k) ≥ Tk ⊗ x(k − 1) ≥ Tk ⊗ Tk−1 ⊗ x(k − 2) ≥ · · · ≥ Tk ⊗ · · · ⊗ T1 ⊗ x(0),

where x(0) = 0. Taking the norm, and considering that Ti, i = 1, . . . , k,
present diagonal matrices, we get

‖x(k)‖ ≥ ‖Tk ⊗ · · · ⊗ T1‖ = ‖T1 + · · ·+ Tk‖.

12
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To obtain an upper bound, let us replace the general system (1.9–1.11) with
that governed by the equation

x̃(k) = Ã(k)⊗ x̃(k − 1) (1.15)

with Ã(k) = (I ⊕Tk⊗ G̃T )q ⊗Tk, where G̃ = G0⊕G1⊕· · ·⊕Gm, and q is the
length of the longest path in the graph associated with G̃. As it follows from
Theorem 1.5.1, one has x(k) ≤ x̃(k) for all k = 1, 2, . . ..

Let us denote Ãk = Ã(k)⊗· · ·⊗Ã(1). With the condition x̃(0) = x(0) = 0,
we get from (1.15)

‖x̃(k)‖ = ‖Ã(k)⊗ · · · ⊗ Ã(1)‖ = ‖Ãk‖.

With Proposition 1.3.2 we have

Ãk =
k⊗

i=1

(I ⊕ Tk−i+1 ⊗ G̃T )q ⊗ Tk−i+1 ≤
k⊗

i=1

‖Ti‖ ⊗
k⊗

i=1

(I ⊕ Tk−i+1 ⊗ G̃T )q.

Proceeding to the norm and using Lemma 1.3.1, we arrive at the inequality

‖Ãk‖ ≤
k⊗

i=1

‖Ti‖ ⊗
(

k⊕
i=1

‖Ti‖
)q

=
k∑

i=1

‖Ti‖+ q

(
k⊕

i=1

‖Ti‖
)

.

which provides us with the desired result.

1.7 Stochastic Extension of the Network Model

Suppose that for each node i = 1, . . . , n, the service times τi1, τi2, . . ., form a se-
quence of independent and identically distributed (i.i.d.) non-negative random
variables with E[τik] < ∞ and D[τik] < ∞ for all k = 1, 2, . . ..

As a performance measure of the stochastic network model, we consider the
service cycle time which can be defined as [Baccelli et al. (1992)]

γ = lim
k→∞

1
k
‖x(k)‖ (1.16)

provided that the above limit exists. Another performance measure of interest
is the throughput defined as π = 1/γ.

Since it is frequently rather difficult to evaluate the cycle time exactly, even
though the network under study is quite simple, one can try to derive bounds
on γ. In this section, we show how these bounds may be obtained based on
(max,+)-algebra representation of the network dynamics.

We start with some preliminary results which include properties of the ex-
pectation operator, formulated in terms of (max,+)-algebra operations.

13
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1.7.1 Some Properties of Expectation

Let ξ1, . . . , ξk be random variables taking their values in R, and such that their
expected values E[ξi], i = 1, . . . , k, exist.

First note that ordinary properties of expectation leads us to the obvious
relations

E
[

k⊕
i=1

ξi

]
≤

k⊗
i=1

E[ξi], and E
[

k⊗
i=1

ξi

]
=

k⊗
i=1

E[ξi].

Furthermore, the next statement is valid.

Lemma 1.7.1 It holds

E
[

k⊕
i=1

ξi

]
≥

k⊕
i=1

E[ξi].

Proof: The statement of the lemma for k = 2 follows immediately from the
identity

x⊕ y =
1
2
(x + y + |x− y|), for all x, y ∈ R

and ordinary properties of expectation. It remains to extend the statement to
the case of arbitrary k by induction.

The next result [Gumbel (1954), Hartly and David (1954)] provides an upper
bound for the expected value of the maximum of i.i.d. random variables.

Lemma 1.7.2 Let ξ1, . . . , ξk be i.i.d. random variables with E[ξ1] < ∞ and
D[ξ1] < ∞. Then it holds

E
[

k⊕
i=1

ξi

]
≤ E[ξ1] +

k − 1√
2k − 1

√
D[ξ1].

Consider a random matrix X with its entries xij taking values in R. We
denote by E[X] the matrix obtained from X by replacing each entry xij by
its expected value E[xij ].

Lemma 1.7.3 It holds
E‖X‖ ≥ ‖E[X]‖.

Proof: It follows from Lemma 1.7.1 that

E‖X‖ = E

⊕
i,j

xij

 ≥⊕
i,j

E[xij ] = ‖E[X]‖.

14
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1.7.2 Existence of the Cycle Time

In the analysis of the cycle time, one first has to convince himself that the limit
at (1.16) exists. As a standard tool to verify the existence of the above limit,
the next theorem proposed in Kingman (1973) is normally applied. One can
find examples of the implementation of the theorem in the (max,+)-algebra
framework in Baccelli and Konstantopoulos (1991), Baccelli et al. (1992).

Theorem 1.7.1 Let {ξlk| l, k = 0, 1, . . . ; l < k} be a family of random vari-
ables which satisfy the following properties:

Subadditivity: ξlk ≤ ξlm + ξmk for all l < m < k;
Stationarity: both families {ξl+1k+1| l < k} and {ξlk| l < k} have the same

joint distributions;
Boundedness: for all k = 1, 2, . . ., there exists E[ξ0k] ≥ −ck for some finite

number c.
Then there exists a constant γ, such that it holds

1. lim
k→∞

ξ0k/k = γ with probability 1,

2. lim
k→∞

E[ξ0k]/k = γ.

For simplicity, we examine the existence of the cycle time for a network
with the maximum of the initial numbers of customers in nodes M ≤ 1. As
it follows from representation (1.9–1.11), the dynamics of the system may be
described by the equation

x(k) = A(k)⊗ x(k − 1)

with the matrix A(k) = A1(k) determined by (1.10). Clearly, in the case of
M > 1, a similar representation can be easily obtained by going to an extended
model with a new state vector which combines several consecutive state vectors
of the original system.

To prove the existence of the cycle time, first note that τik with k = 1, 2, . . .,
are i.i.d. random variables for each i = 1, . . . , n, and consequently, Tk are
i.i.d. random matrices, whereas ‖Tk‖ present i.i.d. random variables with
E‖Tk‖ < ∞ and D‖Tk‖ < ∞ for all k.

Furthermore, since the matrix A(k) depends only on Tk, the matrices
A(1), A(2), . . ., also present i.i.d. random matrices. It is easy to verify that
0 ≤ E‖A(k)‖ < ∞ for all k = 1, 2, . . ..

In order to apply Theorem 1.7.1 to stochastic system (1.9) with transition
matrix (1.10), one can define the family of random variables {ξlk| l < k} with

ξlk = ‖A(k)⊗ · · · ⊗A(l + 1)‖.

Since A(i), i = 1, 2, . . ., present i.i.d. random matrices, the family {ξlk| l <
k} satisfies the stationarity condition of Theorem 1.7.1. Furthermore, the mul-
tiplicative property of the norm endows the family with subadditivity. The
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boundedness condition can be readily verified based on the condition that
0 ≤ E[τik] < ∞ for all i = 1, . . . , n, and k = 1, 2, . . ..

1.7.3 Calculating Bounds on the Cycle Time

Now we are in a position to present our main result which offers bounds on the
cycle time.

Theorem 1.7.2 In the stochastic dynamical system (1.9) the cycle time γ
satisfies the double inequality

‖E[T1]‖ ≤ γ ≤ E‖T1‖. (1.17)

Proof: Since Theorem 1.7.1 holds true, we may write

γ = lim
k→∞

1
k

E‖x(k)‖.

Let us first prove the left inequality in (1.17). From Lemmas 1.6.1 and 1.7.3,
we have

1
k

E‖x(k)‖ ≥ 1
k

E
∥∥∥∥∥

k∑
i=1

Ti

∥∥∥∥∥ ≥
∥∥∥∥∥1
k

k∑
i=1

E[Ti]

∥∥∥∥∥ = ‖E[T1]‖,

independently of k.
With the upper bound offered by Lemma 1.6.1, we get

1
k

E‖x(k)‖ ≤ E‖T1‖+
p

k
E
[

k⊕
i=1

‖Ti‖
]

.

From Lemma 1.7.2, the second term on the right-hand side may be replaced by
that of the form

p

k

(
E‖T1‖+

k − 1√
2k − 1

√
D‖T1‖

)
,

which tends to 0 as k →∞.

1.8 Discussion and Examples

Now we discuss the behaviour of the bounds (1.17) under various assumptions
concerning the service times in the network. First note that the derivation of
the bounds does not require the kth service times τik to be independent for all
i = 1, . . . , n. As it is easy to see, if τik = τk for all i, we have ‖E[T1]‖ = E‖T1‖,
and so the lower and upper bound coincide.

To show how the bounds vary with strengthening the dependency, we con-
sider the network with n = 5 nodes, depicted in Fig. 1.1. Let τi1 =

∑5
j=1 aijξj1,
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where ξj1, j = 1, . . . , 5, are i.i.d. random variables with the exponential distri-
bution of mean 1, and

aij =

{
a, if i = j,
1
4(1− a), if i 6= j,

where a is a number such that 1 ≤ a ≤ 1/5.
It is evident that for a = 1, one has τi1 = ξi1, and then τi1, i = 1, . . . , 5,

present independent random variables. As a decreases, the service times τi1

become dependent, and with a = 1/5, we will have τi1 = (ξ11 + · · · + ξ51)/5
for all i = 1, . . . , 5.

Table 1.1 presents estimates of the cycle time γ̂ obtained via simulation
after performing 100000 service cycles, together with the corresponding lower
and upper bounds calculated from (1.17).

a ‖E[T1]‖ γ̂ E‖T1‖

1 1.0 1.005718 2.283333
1/2 1.0 1.002080 1.481250
1/3 1.0 1.000871 1.213889
1/4 1.0 1.000279 1.080208
1/5 1.0 1.000000 1.000000

Table 1.1: Numerical results for a network with dependent service times.

Let us now consider the network in Fig. 1.1 under the assumption that the
service times τi1 are independent exponentially distributed random variables.
We suppose that E[τi1] = 1 for all i except for one, say i = 4, with E[τ41]
essentially greater than 1. One can see that the difference between the upper
and lower bounds will decrease as the value of E[τ41] increases. Table 1.2 shows
how the bounds vary with different values of E[τ41].

Let us discuss the effect of decreasing the variance D[τi1] on the bounds
on γ. Note that if τi1 were degenerate random variables with zero variance,
the lower and upper bounds in (1.17) would coincide. One can therefore expect
that with decreasing the variance of τi1, the accuracy of the bounds increases.

As an illustration, consider a tandem queueing system (see Fig. 1.2) with
n = 5 nodes. Suppose that τi1 = ξi1/r, where ξi1, i = 1, . . . , 5, are i.i.d. ran-
dom variables which have the Erlang distribution with the probability density
function

fr(t) =

{
tr−1e−t/(r − 1)!, if t > 0,
0, if t ≤ 0.

Clearly, E[τi1] = 1 and D[τi1] = 1/r. Related numerical results including
estimates γ̂ evaluated by simulating 100000 cycles are shown in Table 1.3.
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E[τ41] ‖E[T1]‖ γ̂ E‖T1‖

1.0 1.0 1.005718 2.283333
2.0 2.0 2.004857 2.896032
3.0 3.0 3.004242 3.685531
4.0 4.0 4.003627 4.554525
5.0 5.0 5.003013 5.465368
6.0 6.0 6.002398 6.400835
7.0 7.0 7.001783 7.351985
8.0 8.0 8.001168 8.313731
9.0 9.0 9.000553 9.282968
10.0 10.0 10.000008 10.257692

Table 1.2: Results for a network with a dominating service time.
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