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1. Introduction. The purpose of this paper is to study measure preserving
transformations T on probability measure spaces (X, 2, p.) by means of algebraic
models (r, U, <p) (see Definitions 1 and 2).

The results obtained here contain those obtained in [3] concerning algebraic
models (r, <p) of measure spaces {X, 2, p).

Each transformation possesses algebraic models and conversely every algebraic
system is a model for a certain transformation (Theorem 2). Algebraic models
determine transformations uniquely up to a conjugacy (Theorem 1).

Transformations with discrete models (see Definition 3) are uniquely determined
by (T, U) (Theorem 3). Such transformations are characterized by the existence of
an orthonormal basis Y'czL2(p.) of functions |/| = 1, which is also a multiplicative
group, such that UTY' <=C-Y' (direct product), where C is the circle group (Theorem
5). In certain cases, conjugacy does no more involve U either (Theorem 4). Con-
tinuous automorphisms and rotations on an abelian compact group—equipped
with Haar measure—are examples of transformations with discrete model (Corol-
lary of Theorem 5), and in fact, every invertible transformation with discrete model
is a superposition of an automorphism and a rotation (Theorem 6).

The class of transformations with discrete models contains the transformations
with quasi-discrete spectrum (see Abramov [1]) and the transformations with
discrete spectrum (see Halmos [5]). Necessary and sufficient conditions are given
for algebraic systems in order to be models for transformations with quasi-discrete
spectrum (Theorem 10) or with discrete spectrum (Theorem 11). We mention also
Theorem 12 which gives necessary and sufficient conditions in order that ri = roo.

In Theorems 7 and 9, ergodicity of transformations is characterized by means of
algebraic models.

2. Preliminaries. Let (X, 2, p.) be a probability measure space and T: X-* X
a measure preserving transformation.

(1) We denote by Y(p.) the multiplicative group of the (equivalence classes of)
functions/E¿co(jn) with |/|«1, by <pu the function of positive type on Y(ji) defined
by

?u(f) = jfdß,   for fe Y{j,)
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and by UT the linear isometry defined on L2(jx) by UTf=f ° T. Then [3, Proposition
1],

<pJJ) = 1    if and only iff = 1

and UT (or, more precisely, the restriction of UT to Y(p.)) is an injective homomor-
phism of Y(¡j) into itself, such that

Uj-c = c,   for c e C (the circle group)
and

<P»(UTf) = <pu(f),   for/e ro*).

If T is invertible, then UT is an automorphism of Y(p.).
(2) For every function fe Y(p.) put

"rCO = UTf-f
Then wT is a homomorphism of Tiju.) into itself and we have

UTf= wT(f)-f
wT(f) is called the generalized proper value corresponding to the generalized

proper function f of UT.
A subgroup YczYQj.) is invariant under UT (that is UTYcY) if and only if Y is

invariant under wT (that is wrrc:r).
(3) For every integer n ̂  0 put

rn = rn(¿) . wr(C) = {fe ro»); wj(/) e C}.
In particular, r0 = C and Yx is the set of the proper functions of UT belonging to
Y(j¿). Each rn is a group invariant under UT and Tn<= rn+1 for every n. The set

r„ = r.co = 0 rn
n = 0

is also a subgroup of Y(p.) invariant under UT. Moreover, if Y^Y(p.) is a group
such that

CcT   and   wf xr = r

then rœc:r. (In fact, for every « we have wfn(C)<=wfnY<=Y).
In particular, if Yn + X = Yn for some «, then rw = Yn.
(4) For every integer A:^0, £/£ is an injective homomorphism of Y(p.) into

itself and
VÁUSf) = %(/),   for/e ro*).

If Y<=Y(p) is invariant under UT, then T is invariant under Uk.
For every « we have

r,(D c rn(¿")
therefore

r„(¿) c r<D(¿fc).
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(5) Let T be an abelian group containing a subgroup C of the circle group C,
and suppose that Y = C'-Y' (direct product), where Y' is a subgroup of Y. Let
further U: Y -> Y be an injective homomorphism such that

Uc = c,   for c e C.

For every y e Y' we have Uy e Y, therefore, there exists a number p{y) £ C and
an element Ky £ Y' such that

t/y = p{y)Vy.

Then p: F -» C is a homomorphism and V: Y' -> F is an injective homomor-
phism. Moreover, for every n there exists a homomorphism pn:Y' ->■ C such that

Uny = pn(y)Vny,   for y eF.

In particular, if Y<=Y(p.) and U=UT, then Fy=y and p(y) = wr(y), for yeY'
n rx(r).

Conversely, if p: F ->■ C is a homomorphism and F: F ->• Y' is an injective
homomorphism, then the equality

U(cy) = cp{y)V{y),   for c £ C   and   yef

defines an injective homomorphism U: Y -> Y which satisfies

£/c = c,   for c £ C"
and

Uy = p{y)Vy,   for y ef.

(6) Let (A", 2', p/) be a probability measure space and 7" : Z' -»- X' a measure
preserving transformation.

The transformations T and 7" are conjugate (see [5, pp. 44-45]) if there exists a
linear isometry

such that
<pL2{p.) = ¿V),

<p(fg) = ¥-<Pg,   f0Tf,geL"{¡£)
and

^f/j, = Ut'<I>.
It follows then that ¿¿°°0) = ¿"GO and

||«A/||co = Il/Il«,   for/e¿»(p.).
Remark. To say that T and T' are conjugate means that the measures p. and ß

are conjugate (see [3, Definition 1]) by means of a linear isometry <f>: L2(p.) -> L2{¡i')
which satisfies in addition the equality

<pUT = uT4.
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The following proposition gives some conjugacy invariants connected to Y(p,),
UT and <l>u.

Proposition 1. If T and T are conjugate, then there exists an injective homo-
morphism </>: Y(ji) ->- Y(p,') having the following properties:

(i) </>Y(p.) = Y(p.');
(ii) <f>c=c,for ceC;

(iii) IfY<=Y(ji) generates L2(jx), then </>Y generates ¿20O;
(iv) If r<=rOt) is an orthonormal system in L2(p) then </>Y is orthonormal in

(v) <f>Yn(T) = Yn(T')and<PY00(T)=Yx(T');
(vi) 9u(f) = 9Á<t>f),forfe Y(jx);

(vii) </>UT= UT-<f> and </>wT=wT,<f>.

In fact, if <f> is a linear isometry of L2(jx) onto ¿20O realizing the conjugacy between
T and ¿', then the restriction of <f> to YQj), still denoted by <f>, is the required iso-
morphism (see also [3, Proposition 2]).

Remark. We shall see (corollary of Theorem 1) that, conversely, if </> is an iso-
morphism of Y(p.) onto TO*') satisfying conditions (vi) and (vii), then T and ¿'
are conjugate.

3. Algebraic models. The considerations of the preceding section lead to the
following

Definition 1. A system (Y, U, <p) consisting of an abelian group Y with unit 1,
an injective homomorphism U:Y^>Y and a complex function of positive type <ponY
such that <p(y) = 1 if and only if y = 1 and <p( Uy) = <p(y), for yeY,is called an algebraic
ergodic system (a.e. system).

Two a.e. systems (Y, U, <p) and (Y', U', <p') are said to be isomorphic if there exists
an isomorphism <f>ofY onto Y' such that

<Áy) = <P'(<M,   foryeY
and

<f>U= U'<f>.
If we define the homomorphisms w: Y ->■ Y by

w(y) = Uyy'1,    for y 6 Y

and the homomorphism w': T'-* Y' in a similar way, then condition j>U=U'j>
above is equivalent to condition </>w=w'<f>.

Example. If ¿ is a measure preserving transformation on a probability measure
space (X, S, p.), then (C, UT, <pu) and (Y(jx), UT, <pu) are a.e. systems. More generally,
for every group re TO*) invariant under UT, (Y, UT, <pB) is an a.e. system.

We shall see (Theorem 2) that every a.e. system can be obtained in this way.
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Remarks. Io. To say that (r, U, <p) is an a.e. system, means that (F <p) is a
measure system (see [3, Definition 2]) and that U: Y -»■ Y is an injective homo-
morphism satisfying <p{Uy) = <p(y) for y e Y. Then (Y,<p° U) is also a measure
system. Moreover, if UY = Y, then (I\ <p) and (r, <p ° U) are isomorphic measure
systems.

Conversely if (F <p) and (F <p') are isomorphic measure systems by means of an
isomorphism U: T-* Y, then (r, U, <p) is an a.e. system and UT = T.

2°. To say that two a.e. systems (r, U, <p) and (r', U', <p') are isomorphic,
means that (F 9p) and (F, <p') are isomorphic measure systems, by means of an
isomorphism <f>: Y -*- F which satisfies <f>U= U'<f>.

Conversely, if (F <p) and (r', 9/) are isomorphic measure systems, then taking
U: Y -> Y and U': F -* Y' the identity mappings, the a.e. systems (F U, q>) and
(F, U', <p') are isomorphic.

3°. If (F U, <p) is an a.e. system, then the set C'={y e Y; \<p(y)\ -1} is a group,
and y is an injective homomorphism of C into the circle group C. If we identify
an element yeC with the number <p{y) = c, we have (see [3, corollary of Prop-
osition 3])

tp{cy) = c<p{y),   for c e C   and   y 6 F
Moreover,

Uc = c,   for c e C.

In fact, if c e C, then <p{Uc)=<p{c) = c, therefore Uc e C and Uc=c.
If C is divisible, then there exists a group F<= r such that

Y = C'Y' (direct product).

The a.e. system (F U, <p) can be embedded in an a.e. system (Yx, Ux, <px) such
that

{yeri;|9l(y)| = l} = C
and then

Yx = CY'X (direct product).

In case Uy=y (or, equivalently, w(y) = l) implies y s C, the group Y' can be
precised:

Proposition 2. Let (Y, U, <p) be an a.e. system, let C'={y e Y; <p(y) e C} and
w(y)=Uyy~1,for y e F

If C is divisible {in particular ifC' = C) and if w{y) = 1 implies yeC, then every
injective homomorphism a-*-ya of a group G<=wY into Y such that w{ya)=afor
as G {in particular the homomorphism I ->yj = l of G={1}) can be extended to
an injective homomorphism a->ya ofwY into Y, such that w{ya)=a,for a £ wY.

If we put F={y0;aewr}, then Y = C'Y' {direct product).
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The proof is similar to that given in [5, p. 46], for ergodic transformations with
discrete spectrum.

For every aewY choose p.ae Y with Upa = ap.a, that is w(jj.a)=a. If aeG we
take p.a=Ya- We have

Up.ab = a¿Va6   and   Up.ap.b = abp.ap.b

whence

w(p-ab) = w(p.ap.b) = a.b.

By hypothesis, there exists a number y(a, b)eC such that

MoMi. = y(°> b)p.ab.

If a,beG, then y(a, b) = \. Consider the group {cya;ceC, aeG} and the
homomorphism/) of this group into C defined by p(cya) = c. We have, in particular,
p(c)=c for c e C and p(ya)= 1 for aeG. Since C is divisible, /? can be extended
to a homomorphism, still denoted by p, of wY into C".

If we now define

Ya = P(P-a)H-a,     for 06^

then the requirements of the proposition are fulfilled.
Remark. Condition: w(y)=\ implies yeC, is satisfied, for example, if

U= UT, where T is an ergodic transformation.
Definition 2. Let (X, S, /x) ¿>e a probability measure space and T: X -+ X a

measure preserving transformation. We say that an a.e. system (Y, U, <p) is an algebraic
model of the transformation T if there exists an injective homomorphism J: Y -*■ Y(pi)
such that:

(a) JY generates L2(p);
(b) <p(y) = <pu(Jy),foryeY;
(c) JU=UTJ.
It follows that if Y^YQi) is a group generating L2(jj.), and invariant under UT,

then (r, UT, ¡pu) is an algebraic model for ¿.
If (r, U, (p) is an algebraic model of T by means of an isomorphism J, then,

identifying Y and/r we can consider that T<= Y(ji), U= UT and ç>=çjw.
If (r, U, <p) is an algebraic model of ¿, then ¿is invertible (that is UTL2(p.)=L2(p))

if and only if ¡7 is an automorphism of Y (that is UY = Y). In particular, a transfor-
mation T having (r^), UT, <pu) as algebraic model, is always invertible (since
UTYX = YX).

Remark. To say that (r, U, <p) is an algebraic model for T means that (r, <p)
is an algebraic model for the measure p. (see [3, Definition 3]), by means of an
isomorphism /: Y ->- Y(p.) which satisfies, in addition, JU= UTJ.

Conversely, if (r, 95) is an algebraic model of the measure p. and if U: Y -► Y is
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the identity mapping, then (F U, <p) is an algebraic model for the identity trans-
formation T: X->X.

Algebraic models determine the transformations uniquely up to a conjugacy:

Theorem 1. Two measure preserving transformations are conjugate if and only if
they possess isomorphic algebraic models.

Let T and T' be two measure preserving transformations on the probability
measure spaces {X, 2, p) respectively {X', 2', pf).

If Tand T' are conjugate, then from Proposition 1 we deduce that their algebraic
models (Y(jx), UT, <pa) and (Y{p,'), UT, çv) are isomorphic.

Conversely, suppose that T and 7" possess isomorphic models (F U, <p) re-
spectively (F, U',<p'). We may consider Y<=:Y(ji), U=UT,<p=<pll and Y'^YQj.'),
U' = Ut and <p =<pu-.

If <j> is an isomorphism of Y onto F such that

fu = 9V ° $   and   <f>UT— UT-<f>

then (see [3, Theorem 2]), </> can be extended to a linear isometry <f> : L2{p) -> L2(jx')
such that

9L2{p) = ¿V)   and   <j>L'c{Ji)=L"'{ß'),
and

9(fg) = ¥-9g,   for/,ge¿».
The equality

9UTf= UT4f,   for feY

remains true first for linear combinations of functions of Y and then for every
fe L2{p), so that T and 7" are conjugate.

Corollary. 77ie transformations T and 7" are conjugate if and only if the a.e.
systems {Y(jx), UT, <pu) and(Y(ji'), UT, <pu) are isomorphic.

The following theorem states that every a.e. system is an algebraic model for
some transformation.

Theorem 2. Every a.e. system (Y, U, <p) is an algebraic model for a continuous
measure preserving homomorphism r on an abelian compact group G equipped with a
suitable regular Borel measure p..

Moreover, if UY = Y, then t is an automorphism of G.

Consider on Y the discrete topology and take G=Y~. Let p be the unique
regular Borel measure on G such that (Bochner's theorem),

9>(y) = J <*. y> dp.{x),   for y £ F
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Then the mapping /: Y -> Y(p.) defined by

Jy = <-,Y>,   foryeY

is an injective homomorphism, JY generates ¿200 and

9>(y) = <Pu(Jy),   for y e r.

We define now the mapping r: G -* G by

(rx, y> = <*, Uy},   for xeG   and   y e Y.

Then t is a continuous homomorphism of G into itself, and

JU = cy.

If rt/=r, then t is injective and tG=G, therefore t is an automorphism of G.
It remains to prove that t is measure preserving.
Consider the regular Borel measure v defined on G by

v(A) = p(t~1A),   for every Borel set A <= (?.

Then for every y e T we have

9>(y) = ç>(f/y) = J <x, Uy} dp{x) = J <tx, y> ¿M*) = J <jc, y> íA<x).

By the uniqueness of p. we deduce that p.—v, therefore p(r~1A)=p.(A), for every
Borel set A <= G consequently r is measure preserving.

Remark. The proof of Theorem 2 was used in [4] to prove the following

Corollary. Every measure preserving transformation T on a probability measure
space (X, 2, p.) is conjugate to a continuous homomorphism r on an abelian compact
group G equipped with a suitable regular Borel measure. IfTis invertible then r is an
automorphism ofG.

4. Discrete algebraic models.
Definition 3. An a.e. system (Y, U, <p) is said to be discrete if C<= Y and

<ÁY) = Y,  for yeC,
= 0,   for y i C.

Remarks. Io.   An a.e. system (r, U, 93) is discrete if and only if (r, Un, <p) is
discrete.

2°.   We have
Uc = c,   and   w(c) =1,   for c e C

where w(y)= Uyy'1 for y e Y (see Remark 3 after Definition 1).
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3°.   Let (F U, <p) be an a.e. system with C<= Y. Then r = C- F (direct product)
where F is a subgroup of Y. To say that (F U, <p) is discrete, means that

9>(y) =1    for y = 1,
= 0   for ye F, y ^ 1.

4°.   Let (F U, <p) be an a.e. system such that

\<p{y)\ < 1   implies <p(y) = 0.

Then (F U, <p) is "essentially" a discrete system. In fact we can consider (r, U, tp)
as a model of a measure preserving transformation T on a probability measure
space, and consider Y^YQi), U=UT and <p=<pu. Consider then the group Yx
={cy; c e C, y e Y}; then (F, £/r, Ç3tf) is a discrete model of T and contains the
initial model (F U, 93).

For a discrete system (F £/, q>), the function 93 is completely determined by Y,
so that the system itself is completely determined by (F U).

Proposition 3. Let Y be an abelian group containing C and let U: Y -> Y be an
injective homomorphism such that

Uc = c,  for ceC.
If we define

<p(y) = y  '/yec,
= 0    ifyiC,

then (F U, <p) is a discrete system.

In fact, <p is of positive type:

n

2 wMyivT1) = 2 "iuMytvr1) = 2   2   °wp(yiyf1)

= 22 h^y*-1)!2 = o

where yi~y¡ means y{y7l e C and Cyk the equivalence classes.
If y e C then Uy=y, therefore

9>({7y) = <p{y);

ify$C, then Uy$C (since ¡7 is injective), therefore ?>(y)=0 and <p{Uy)=0, con-
sequently

<p{Uy) = 9<y).

Moreover, 9?(y)= 1, if and only if y = 1, so that (F U, tp) is a discrete system.
For discrete systems, isomorphism does no more involve functions of positive

type.
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Theorem 3. Two discrete systems (Y, U, <p) and (Y', U', 93') are isomorphic if and
only if there exists an isomorphism </>ofY onto Y' such that

<f>c = c,   for ce C
and

<f>u= u'4>.
In fact, if the systems are isomorphic by an isomorphism <j>, then for every ceC
we have

<p'(</>c) = 93(c) = c 96 0
therefore <f>c e C, and then

9'(<f>c) = fa
consequently ¡f>c=c.

Conversely, let </>: Y-*- Y' be an isomorphism such that <f>c=c for ceC and
<f>U= U'<f>. We have to prove that 93=93' ° <f>. For c e C we have </>c=c, therefore

9'(<f>c) = <f>c= c = 93(c).

If y £ C, then <f>y$C (since <£ is injective), therefore <p'(</yy)=0 and 93(y)=0, con-
sequently

<p'(<M - <Ky)-
Remark. If (r, C/, 93) is a discrete system, we shall say also that (r, U) is a

discrete system. If (r, UT) is a discrete system and r<= Y(jx), for some transformation
T on a measure space (X, S, /*), we understand that 93=93«.

From Proposition 3 it follows that (r, U) is a discrete system provided that Y is
an abelian group containing C and U: Y -> r is an injective homomorphism such
that Uc—c for c e C.

For certain discrete models (r, U) isomorphism does no more involve homo-
morphisms U either:

Theorem 4. Let (Yx, Ux) and (Y2, U2) be two discrete systems and put

Wi(y) = U&-y-\   for y e Yt,       i = 1, 2.
Suppose that

y e r4   and   wt(y) = 1    imply yeC,       i = 1, 2.

Then (Yx, Ux) and (Y2, U2) are isomorphic, if and only if the groups wxYx and w2Y2
are isomorphic by an isomorphism </> such that <f>wx = w2<f> and</>c=cfor c e C n wxYx.

If (Yx, Ux) and (r2, U2) are isomorphic by means of an isomorphism </> : Yx -> Y2
such that

<f>Ux = U2<f>   and   <pc = c   for c e C,
then we have also

<j>wx = w2<f>.
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From <f>Tx = Y2 we deduce then <f>wxYx = w2Y2. The restriction of <p to wxYx is the
required isomorphism.

Conversely, suppose that wxYx and w2Y2 are isomorphic by means of an iso-
morphism <f> : wxYx -> w2Y2 such that <f>wx = w2<f> and <f>c=c for c e C r\ wxYx.

By Proposition 2 there exists an injective homomorphism a -*• ya of wxYx into
F such that w1(ya)=a for oeu^F; then YX = C-Y'X (direct product) where
F^iy^ûEWiF}.

Consider the groups Gx = wxYx and G2 = w2r2. Since <f>wxYx = w2r2 and <f>wx — w2<f>
we have G2=<f>Gx.

If aeGx then Wj(ya)=a and a=wx{b) for some è £ wxYx, therefore ya=cb for
some ce C; if we have also ya = cxbx with cxe C and ¿>x £ wxYx, then ccx—bxb~1
ewxYx, therefore, by hypothesis,

ccx = <p{ccx) = <f>(bx)<l>{b),
whence C(/>b = cx<f>bx. We define then unambiguously

y na = &pb,   if y0 = cb with c £ C and 6 £ WjIY

It is easy to see that <f>a -*• y^ is an injective homomorphism of G2 into T2 such
that w2{<f>a)=<pa. By Proposition 2, this homomorphism can be extended to an
injective homomorphism a -*■ ya of w2r2 into T2 such that w2{ya)=a for a e w2Y2.

We extend now <f> from wxYx to Yx by

^cy0 = cy«a   for c e C and a e wxYx.

tjj is an extension of </>, since if b e wxYx, then b = cya for some c e C and a e w1ri,
whence a—wx{ya) = wx{b)ewlYx and ya=cb, therefore ytt)a. = c<\>b; it follows then
that <f>b=cy¿0 ■ í¿(cy0)=</ib.

Moreover, <p is an isomorphism of Yx onto T2 and tbc=c for ceC. Finally, if
ceCand y0£F, we have

tpUxCya = ^caya = >/ia-<ficya = </>a-cyia = C/aCy^o = if2^cya

therefore ^Ü7j = C/^a. By Theorem 3, (Yx, Ux) and (r2, U2) are isomorphic.
For transformations with discrete models we have the following characterization:
Theorem 5. A measure preserving transformation T on a probability measure

space {X, 2, p.) has a discrete model if and only if there exists a set F c YQj.) such that
(a) F is a group;
(b) F is an orthonormal basis ofL2(p) ;
(c) f/rFcCF.
We remark first that if F is a group and an orthonormal basis in L2{p), then F

contains no constant function except 1, so that C- F is a direct product.
If conditions a, b and c are satisfied, then (C- F, f/r, tpu) is a discrete algebraic

model for T. In fact, C^CY' and C- F generates L2{p); if c £ C, then

9>a(c) = jcdß = c
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while if y £ C, then y=cy' for some ceC and y e Y' with yV 1, therefore

9>,(y) = cJV¿M = c(y'[l)=0.

Conversely, let (r, Í7,93) be a discrete algebraic model for T; we may suppose
TcrroO, U=UT and 93=93«. Write T as a direct product r = cr', where Y' is a
subgroup ofT, containing no constant function except 1. Finally, Y' is an ortho-
normal system, since for y' e Y' we have

\y' dp. = 9)(y') =1    if y  = 1,

= 0    if y' # 1.

Corollary. // G is an abelian compact group, equipped with Haar measure p.,
then continuous automorphisms r' and rotations RonG,as well as their superpositions
t=Rt', have discrete model.

We remark first that continuous automorphisms r' and rotations R, therefore,
their superpositions t = Rr', are measure preserving.

The group of characters Y' = G~ is an orthogonal system in L2(jj.) and Ur.Y' <= T' ;
if R is defined on G by Rx=ex, for some ceG, then

UMx) = y(rx) = y(c)y(T'x) = y\c)Ux.y(x)

for every yeY', therefore UTY'<^CY'. By Theorem 5, t has discrete model.
Conversely:

Theorem 6. Every invertible measure preserving transformation T, with discrete
model (Y, UT), on a probability measure space (X, 2, p.), is conjugate to the super-
position of a continuous automorphism and a rotation on an abelian compact group,
equipped with Haar measure.

Consider Y=CY' (direct product) and

Uty = p(y)Vy,    for yeY'

where p is a character of Y' and V is an injective homomorphism of Y'. Since T
is invertible, we have UtL2(jj)=L2(¡í), therefore JT' = r'. Consider Y' endowed
with the discrete topology and consider the Haar measure v on the abelian compact
group G=r,/\ Then p e G. We define the continuous homomorphism r' on G by

<t'x, y> = <jc, Vy),   forxeG and y e Y'.

Since VY' — Y', r' is an automorphism. Consider finally the mapping 1-: G->G
defined by

t(x) = pr'(x),   for xeG.
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Then (CG~, Ut) is a discrete model for r, and the mapping <f>: C-V-*■ CG~
defined by

</>cy = c< •, y>,   for c e C and yeY'

is an isomorphism such that </>c=c for c e C. Moreover, for yeY' we have

<f>UTy = </>p(y)Vy = p(y)<-, Vy)
= p(y){r'-,yy = (pT-,y) = <r-,y>

= Ut<-,y)= Ux<h

and this equality remains valid for yeY, therefore </>UT=Ux<f>. By Theorem 3,
T and t are conjugate.

Corollary 1. A measure preserving transformation T on a probability measure
space (X, S, p.) is conjugate to a continuous automorphism on a compact abelian
group, equipped with Haar measure, if and only if there exists a set Y' <= Y(p.) such
that

(a) Y' is a group;
(b) Y' is an orthonormal basis ofL2(jx);
(c) UTY' = Y'.

Corollary 2. A measure preserving transformation T on a probability measure
space (X, S, p.) is conjugate to a rotation on an abelian compact group, equipped
with Haar measure, if and only if T has a discrete model (Y, UT) with Y<^YX.

We mention also the following property of discrete models.

Proposition 4. Let T be a measure preserving transformation on a probability
measure space (X, S, p) and let (Y, UT, q>u), (Y'y UT, <pu) be two discrete systems.

If(Y, UT, 93J is a discrete model for T and if Yc r, then Y = Y'.

In fact, letfe Y'. If for every g e Y we had fg^ C, then

jfgdp = 0

therefore/=0, which would contradict |/| = 1.
It follows that there exists g e Y with fg e C.
Then fe gC<= Y, therefore Y' = Y.

5. Ergodic transformations. In this section we give some characterizations of
ergodic transformations by means of their algebraic models.

Let (X, 2, p) be a probability measure space and ¿: X-> Xa measure preserving
transformation. The transformation T is ergodic if feL2(p.) and UTf=f imply
/= constant.

Proposition S.IfT is ergodic, then (YX(T), UT) is a discrete system.
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In fact if y s YX{T) — C, then UTy=cy for some cj=\ (because T is ergodic),
therefore

I y dp. = \Uydß = c\ydp
consequently

[y dp = 0.

Remarks. Io. If J" is ergodic for some n, then T is ergodic, therefore (YX{T), UT)
is a discrete system. Theorem 7 below states a somewhat converse property.

2°. We shall see (Corollary 1 of Proposition 6) that if Tn is ergodic for every n,
then {YX{T), UT) is a discrete system.

Lemma. IfT has a discrete model {Y, UT) and if YX{T)<=- Y, then for every natural n
we have

Yx{Tn) n T = YX{T).

Consider r=CF, where F is a group and an orthonormal basis of L2{p).
Consider the homomorphisms pn:Y'->C and V:Y'-+Y' such that U$y=
PÁY)V\y), for y eY'.

Let yeYx{Tn)C\Y'. Then U$y=cy, for some ceC, therefore pn{y) = c and
Vny—y. Let k ^ n be the least natural number such that Vky=y and consider the k-
dimensional space K generated byy,Vy,...,Vk~ V Then K is invariant under UT,
therefore there exists a basis fx,... ,fk of K consisting of proper functions of UT:

UTfi = c¡fi,   with ct £ C.

Then /, £ YX{T)<=Y. Moreover, we may take f £ F (multiplying each f by a
suitable number of C). The basis (Ji,.. .,fk) must then coincide with the basis
(y, Vy,..., Vk~1y); for example fx=y, therefore UTy=cxy.

It follows that yeYx{T), therefore Yx{Tn) nY'<=Yx{T), consequently Yx{Tn)
nYcrx{T).

The converse inclusion follows from Yx{T)^Yx{Tn).

Theorem 7. Suppose that T has a discrete model {Y, UT) and let n be a natural
number. If:

(a) either Y<=YX{T), or FtT^r;
(b) y £ T and U}y=y imply ye C;

then Tn is ergodic.

LetfeL2{p) be a function such that {/?/=/and prove that/is constant.
Consider Y = C- F, where F is a group and an orthonormal basis ofL2Qx). Then

/ = 2 "(vfr
yer"

where
a(y) =   fy dß,   for every y £ T'.
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For every natural number keNvte have

and
UfPf' 2 <Y)pkn(Y)Vkny

therefore
a(Vky) = a(y)Pkn(y),   forkeN   and   yeY',

whence
\a(Vkny)\ = \a(y)\,   forkeN   and   yeY'.

We shall prove that for every element y# 1 of Y' we have <x(y)=0. Let therefore
yeY' be such that y=£ 1.

If vkny=y for some k, then ye r1(¿"). In fact, if r<=ri(¿), then y e ri(¿n)
without any other assumption, while if YX(T)<^Y, then by the preceding lemma

y e r1(¿fcn) n T = YX(T) = r1(¿") n Y.

Writing now the equality a(Vkny) = a(y)pkn(y) for k = 1 we obtain

<x(y) = a(y)p„(y)

therefore either a(y)=0 or pn(y) = l. But pn(y)=l means U$y=y, which by hy-
pothesis implies y= 1 and we get a contradiction. It follows that a(y)=0.

If Vkny^y for every k, then the functions y, Fny, F2ny, are different from each
other, therefore

2 Hvk«y)\2 z 2 Kr')l2 < °°
fc = 0 y'er"

consequently |a(F'cny)| -> 0 as k -s- oo, whence a(y)=0.
It follows that/=a(l)l, that is/is constant, consequently Tn is ergodic.
Remarks. Io. Is it possible to drop condition (a) in the preceding theorem?

The answer is positive if condition (b) is satisfied for every n (see Theorem 9 below).
2°. Is it true that if T is ergodic, then YX(T) <= Y for every discrete model (r, UT)

of¿?
The answer is positive if, in addition, ¿n is ergodic for every «. Moreover, in this

case we have Ym(T)<=Y for every discrete model (r, UT) of T (see Corollary 2 of
Proposition 6).

For ergodic transformations, we have the following conjugacy criterion :

Theorem 8. Two ergodic transformations T and ¿' with discrete model, are
conjugate if and only if there exist discrete models (Y, UT) and (Y', UT) of T and T'
respectively, such that the groups wTY and wT.Y' are isomorphic by an isomorphism
<f¡ such that </>wT=wT-<f> and<f>c=cfor ceCn wTY.

We use Theorem 4.
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6. Transformations with ergodic iterates. Let {X, 2, p.) be a probability
measure space and T:X^-X a measure preserving transformation.

Proposition 6. Suppose that Tn is ergodic for every n. If {Y, UT) is a discrete
system, then (JJ"= 0 wf "(F), UT) is again a discrete system.

We prove first that (wf 1(r), UT) is a discrete system.
It is clear that wf 1{Y) is a subgroup of YQj.) invariant under UT and containing C.

We have to prove that

9VC0 = jfdp. = 0,   for/e wf \Y)-C.

Letfe wt \Y)-C. There are two possibilities:
(a) J" U$ffdp,=0, for every »fc 1.

Then/, C/r/, {/!/,... is an orthonormal system in L2{p). If g is the projection of 1
on the space generated by this sequence, we have

g =   2  °nUïf    With 2 kl2  < O).
n = 0

Then

jfdp = JV?/tí> = (£/?/| 1) = (C/?/|g) = an

and a„ -> 0, therefore jfdp,=0.
(b) There exists n such that

jWffdp. ¥= 0.
Since

f/»/./ = w,r(/. uTf. ... . uf-if) e r
and since (r, UT) is a discrete system, we have

Uíf-Je C
that is

Urf = c/   for some ce C.

Since/is not constant and Tn is ergodic, we have c# 1.
Suppose that n is the least natural number satisfying i/f/= cf. The n-dimensional

space Kgenerated by/, UTf,..., C/x_1/is invariant under UT, therefore there exists
a basis fx,... ,/„ of K consisting of proper functions of UT:

UTf = ¿if,   with Ci e C.
Each/ is of the form

A - 2 "^
fc=0

therefore
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On the other hand
Uifi = c«

therefore
c" = c,   for every /'.

Then c¡ # 1 for each i and

J / í/m = J UTfi dp. = cj jfi dp.
therefore if dp,=0. From

i = l

we deduce that jfdp.=0.
By induction we deduce then that for every «, (wf n(r), f/T) is a discrete system,

therefore (U"=0 wfn(r), UT) is also a discrete system.

Corollary 1. IfTn is ergodic for every «, then (Y„(T), UT) is a discrete system.

In fact (C, UT) is a discrete system, and ra>(r)=Un=i wfn(C).

Corollary 2. Suppose that T has a discrete model (Y, UT). IfTnis ergodic for
every n, then

M?»r-r «u/ r«.(r)<= r.
In fact, in this case (wf ir, UT) is again a discrete system and r<= w-1r, therefore,

by Proposition 3, M>-1r=r. Then Ya(T)<=Y.

Theorem 9. Suppose that T has a discrete model (Y, UT).
If for every natural number «, conditions yeY and Uny=y imply yeC, then Tn is

ergodic for every n.

Consider T as a direct product Y = CY', where Y' is a group and an orthonormal
basis of ¿200-

Consider the homomorphisms p„:r'->C and V:Y'->Y' such that U$y
= pn(y) Vny, for yeY' and neN.

We shall prove first that ¿is ergodic. Let/e ¿20¿) be such that E/r/=/and prove
that/is constant. We have

/= 2 a(y)y
rer"

where a(y) = (/|y). For every n we have Ujf=f and

yer'
therefore

a(Fny) = a(y)/in(y),   for yeY'   and   neN
whence

\a(Vny)\ = |a(y)|,   for y e Y'   and   ne TV.
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We shall prove that a(y)=0 if y¥= 1. We remark that the hypothesis implies that if
y^ 1, then pn(y)^ 1 for every n.

If y^ 1 and Vny=y for some n, then the equality a(Kny) = a(y)p„(y) becomes

a(y) = a(y)p„(y)

therefore a(y)=0.
If y 7^1 and Vny^y for every n, then the functions y, Fy, V2y,... are different

from each other, therefore

2 Hyy)\* = 2 \<y')\2 = il/m < °°
n=l j-'er"

consequently |a(Fny)|2 -> 0 as n -> co, whence a(y)=0.
We deduce that/=a(l)l, that is/is constant, therefore Tis ergodic.
We remark now that for every n, (F £/?) is a discrete model for Tn, satisfying

the conditions of the theorem with respect to {/?, therefore Tn is ergodic.

7. Transformations with quasi-discrete spectrum. Let {X, 2, p.) be a probability
measure space and T: X-^- X a measure preserving transformation.

Definition 4. We say that Thas quasi-discrete spectrum if T has a discrete model
{Y,UT)withY^Yw{T).

To say that T has quasi-discrete spectrum means that there exists a group
Y'<=Yœ{T) which is an orthonormal basis of L2(jx), such that UTY'<=CY'.

Here are some properties of transformations with quasi-discrete spectrum :
(1) If T has quasi-discrete spectrum, then (YX{T), UT, <pu) is an {not necessarily

discrete) algebraic model ofT.
(2) If Thas quasi-discrete spectrum, then Tn has quasi-discrete spectrum, for every

n (since rw(T)<=Tm(T*)).
(3) IfT is conjugate with a transformation with quasi-discrete spectrum, then T has

itself quasi-discrete spectrum (see Proposition 1).
(4) Two transformations T and 7" with quasi-discrete spectrum are conjugate if and

only if the a.e. systems (YX{T), UT, tpu) and (1^(7"), UT, <?v) are isomorphic.
We use Proposition 1 and Theorem 1.
For transformations Tfor which (Yœ{T), UT) is itself a discrete model we have,

in addition, the following properties :
(5) Let T and 7" be two measure preserving transformations having (Y^ÇT), UT)

respectively (Yœ{T'), UT) as discrete models.
Then T and 7" are conjugate if and only if there exists an isomorphism J ofY^T)

onto YW{T') such that

Jc = c,  for ceC
and

JUT = UrJ.
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(6) If T has quasi-discrete spectrum and if there exists a discrete system (Y*, UT)
with roo(¿)c:r*, then (Ya(T), UT) is a discrete model of T and there is no other
discrete model of T containing or contained in (YX(T), UT).

We use Proposition 3.
For transformations with all iterates ergodic we have some more properties :
(7) IfTn is ergodic for every n and if Ya(T) generates L2(p), then (Ym(T), UT)

is a discrete model of T and there is no other discrete model ofT.
In fact, by Corollary 1 of Proposition 6, (Ya(T), UT) is a discrete system,

therefore (Y„(T), UT) is a discrete model of ¿. By Corollary 2 of Proposition 6, for
any other discrete model (r, UT) of ¿we have Ya(T)^Y, therefore Ya(T) = Y.

(8) Let T and ¿' be two transformations with quasi-discrete spectrum and all
iterates Tn and T'n ergodic.

Then TandT' are conjugate ifandonly ifwTYœ(T) and wT.Yx(T') are isomorphic
by an isomorphism </> such that <j>wT=wT'</> and<f>c=c for ceC n wTYa(T).

We use Theorem 8 and property (5) above.
The following theorem gives a characterization of discrete systems which are

models for transformations with quasi-discrete spectrum.

Theorem 10. If(Y, U) is a discrete system such that

Y = 0 w'n(C),   where w(y) = Uyy~\   for   yeY,
n = 0

then the corresponding transformation T has quasi-discrete spectrum.
If, in addition, for every natural number ne N,yeY and Uny=y imply yeC, then

¿n is ergodic for every n.

In fact w is the restriction of wT to Y, therefore YcYœ(T), consequently T has
quasi-discrete spectrum.

For the second part of the theorem we use Theorem 9 to deduce that all the iter-
ates Tn are ergodic. In this case we have Y = YX(T).

Remark. Theorem 10 and property (8) were proved by Abramov [1].
Example of transformation with discrete model but without quasi-discrete spectrum.

Let Xn={-1, 1} and /*»({-1 })=.**„({ 1})=i for n=0, ±1, ±2,.... Consider the
product X= Yin= - a, Xn, equipped with the product measure p and the bilateral
shift T(xn) = (yn), where yn=xn+x for every «. Then ¿"is ergodic for every « and the
only proper value of ¿is 1, so that wf \C) = C. It follows that YX(T) = C so that T
has not quasi-discrete spectrum.

On the other hand, consider the function/0: X-+ R defined by

M(xn)) = -1   ifx0 = -1,
= 1       if x0 = 1,

and the group Y generated by U$f0, «=0, ±1, ±2,... and by the constants. Then
(r, UT) is a discrete model of ¿.
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8. Transformations with discrete spectrum. Let {X,~L,p) be a probability
measure space and T: X -*■ X a measure preserving transformation.

Definition 5. We say that T has discrete spectrum if T has a discrete model
(Y,UT)withYcrx{T).

To say that T has a discrete spectrum means that there exists a group F c YX{T)
of proper functions of UT which is an orthonormal basis of L2{p).

Here are some properties of transformations with discrete spectrum:
(1) Every transformation with discrete spectrum is invertible {since UTYX = YX).
(2) A transformation has discrete spectrum if and only if it is conjugate to a rota-

tion on a compact abelian group equipped with Haar measure {see Corollary 2 of
Theorem 6).

(3) Every transformation with discrete spectrum has quasi-discrete spectrum.
(4) If T has discrete spectrum, then {YX{T), UT, <pu) is an {not necessarily discrete)

algebraic model ofT.
(5) If T has discrete spectrum, then Tn has discrete spectrum for every n.
(6) IfTis conjugate with a transformation with discrete spectrum, then Thas itself

discrete spectrum.
(7) Two transformations T and 7" with discrete spectrum are conjugate if and only

if the a.e. systems (YX{T), UT, q>u) and {YX{T'), UT., ?v) ore isomorphic.
Transformations T for which {YX{T), UT) is itself a discrete model, have ad-

ditional properties:
(8) Let T and T' be two measure preserving transformations having {YX{T), UT)

respectively {YX{T'), UT) as discrete models. Then TandT' are conjugate if and only
if there exists an isomorphism J of Y X{T) onto YX{T') such that:

Jc = c,   for ce C
and

JUx = UfJ.

(9) If T has discrete spectrum and if there exists a discrete system (Y*, UT) with
FCDC Y* then {YX{T), UT) is a discrete model ofT, and there is no other discrete
model of T containing or contained in {YX{T), UT).

For ergodic transformations we have some more properties :
(10) IfTis ergodic and if YX{T) generates L2{jx), then {YX{T), UT) is a discrete

model ofT, and there is no other discrete model containing or contained in (YX{T), UT).
(11) Let T and T' be two ergodic transformations with discrete spectrum.
Then T and 7" are conjugate if and only if UT and UT have the same spectrum

[4, p. 46].
We use Theorem 8 remarking that wTYx{T) is the spectrum of UT and wT-Yx{T')

is the spectrum of 7".
The characterization of discrete systems which are models for transformations

with discrete spectrum, is given by the following:
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Theorem 11. If(Y, U) is a discrete system such that
w~1(C) = Y,    where w(y) = Uyy'1,   for   yeY

then the corresponding transformation T has discrete spectrum.
If, in addition, there exists neN such that yeY and Uny—y imply yeC, then

Tn is ergodic.

In fact, iv is the restriction of wT to Y, therefore Y<=YX(T), consequently ¿has
discrete spectrum. The second part follows from Theorem 9. In this case we have
Y = YX(T).

When does Yx coincide with T^,?
Theorem 12. Let T be an ergodic transformation with discrete spectrum, on a

probability measure space (X, 2, p.). We have YX(T) = Ym(T) if and only if the point
spectrum of UT contains no root of 1 (except 1 itself).

Suppose first that Yx = Ym. Let i be a proper value of a function/e Yx :

UTf= if.
We shall prove that if £" = 1 for some «, then f = 1. In fact, suppose that N is the
least natural number with iN = 1. We have then

uTfN=r
therefore, (since ¿is ergodic) fN is constant, and we may suppose that/w=l,
multiplying/by a suitable number, if necessary. Then/takes on the values 1, f,...,
fN_1 on the corresponding sets A0, Ax,..., AN.X

N-l/= 2*w
k-o

Since f(Tx)=£f(x), we have
N-l N-l
2 ¿V-1* = 2 tk+1Ak
k=o k=o

therefore TAk=Ak+1 for k=0, 1,...,N-l, where AN=A0. It follows that p.(Ak)
=p.(A0)>0 for every k.

If A^ is odd we take v such that vN = 1 ; if N is even, we take v such that v" = — 1.
Define now the function

g=2v^m'lw<PAk-
Jc = 0

Then we have
Ug = vfg.

If fact, if x e Ak and k=0,1,..., N-2, we have Tx e Ak+X, therefore
Ug(x) = g(Tx) = vfc+1f<fc+1>'2 = „¿v.**-»« = vf(x)g(x)

and for x e AN.X we have Tx e AN = A0, therefore

Ug(x) = g(Tx) = 1 = iSCm-m = „¿*-yr-i£W-uw-»» = vf(x)g(x)

since ^w-d'2 is equal to 1 if A7 is odd and to -1 if N is even.
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It follows that g eY2 = Yx, therefore vf=a e C, consequently fe C. Wè deduce
then that Uf-f, therefore f-1.

Conversely, suppose that Yx ̂  Y2 and prove that UT has at least a proper value
a^ 1 such that aN= 1 for some N.

Let g0eY2 — Yx. Since Yx is an orthonormal basis of L2(jx) and g0 5^0, there
exists h £ Yx such that

(go, R) "• J go« 4" ̂  0.

If we put g—goh, we have g £ r2 — F and J g dp.^0. There exists a function fe Yx
such that

UTg=fg-

There exists also a number Xe C such that

C/r/= A/.

By induction, we deduce that for every n we have

U}g = A"«"-1"2/^.

We have/" e C for some n. In fact, if we had/" £ C for every n, then (since/" £ F),

fl/?£f o> = A*"-™2 [fndp = 0

therefore, the sequence g, Ug, U2g,... would be orthonormal, consequently

jg dp. = fu$g dp. = {U?g, 1) -► 0
and we would get a contradiction.

Let A^ be the least integer ^ 0 such that

f~p.eC.
Then

We have

f J*fl> = fu$gdß = jgdp.^0
therefore 1=1, consequently

UNg = *.

Since g is not constant and since Yx generates ¿2(p-), there exists a proper function
fc,¿ 1 of F such that (g, fc)#0. If a is the corresponding proper value:

UTk = ak
we have a ̂  1 and

{g, k) = {UNg, k) = {g, U-»k) = (g, a-"k) = a"{g, k)
therefore aN=l.
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