ALGEBRAIC MODELS FOR MEASURE PRESERVING TRANSFORMATIONS

BY
N. DINCULEANU AND C. FOIAŞ

1. Introduction. The purpose of this paper is to study measure preserving transformations T on probability measure spaces (X, Σ, μ) by means of algebraic models (Γ, U, φ) (see Definitions 1 and 2).

The results obtained here contain those obtained in [3] concerning algebraic models (Γ, φ) of measure spaces (X, Σ, μ).

Each transformation possesses algebraic models and conversely every algebraic system is a model for a certain transformation (Theorem 2). Algebraic models determine transformations uniquely up to a conjugacy (Theorem 1).

Transformations with discrete models (see Definition 3) are uniquely determined by (Γ, U) (Theorem 3). Such transformations are characterized by the existence of an orthonormal basis $\Gamma^{\prime} \subset L^{2}(\mu)$ of functions $|f| \equiv 1$, which is also a multiplicative group, such that $U_{T} \Gamma^{\prime} \subset C \cdot \Gamma^{\prime}$ (direct product), where C is the circle group (Theorem 5). In certain cases, conjugacy does no more involve U either (Theorem 4). Continuous automorphisms and rotations on an abelian compact group-equipped with Haar measure-are examples of transformations with discrete model (Corollary of Theorem 5), and in fact, every invertible transformation with discrete model is a superposition of an automorphism and a rotation (Theorem 6).

The class of transformations with discrete models contains the transformations with quasi-discrete spectrum (see Abramov [1]) and the transformations with discrete spectrum (see Halmos [5]). Necessary and sufficient conditions are given for algebraic systems in order to be models for transformations with quasi-discrete spectrum (Theorem 10) or with discrete spectrum (Theorem 11). We mention also Theorem 12 which gives necessary and sufficient conditions in order that $\Gamma_{1}=\Gamma_{\infty}$.

In Theorems 7 and 9 , ergodicity of transformations is characterized by means of algebraic models.
2. Preliminaries. Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation.
(1) We denote by $\Gamma(\mu)$ the multiplicative group of the (equivalence classes of) functions $f \in L^{\infty}(\mu)$ with $|f| \equiv 1$, by φ_{μ} the function of positive type on $\Gamma(\mu)$ defined by

$$
\varphi_{\mu}(f)=\int f d \mu, \quad \text { for } f \in \Gamma(\mu)
$$

Received by the editors February 26, 1967 and, in revised form, April 12, 1967.
and by U_{T} the linear isometry defined on $L^{2}(\mu)$ by $U_{x} f=f \circ T$. Then [3, Proposition 1],

$$
\varphi_{u}(f)=1 \quad \text { if and only if } f=1
$$

and U_{T} (or, more precisely, the restriction of U_{T} to $\Gamma(\mu)$) is an injective homomorphism of $\Gamma(\mu)$ into itself, such that
and

$$
U_{T} c=c, \text { for } c \in C \text { (the circle group) }
$$

$$
\varphi_{\mu}\left(U_{T} f\right)=\varphi_{\mu}(f), \quad \text { for } f \in \Gamma(\mu)
$$

If T is invertible, then U_{T} is an automorphism of $\Gamma(\mu)$.
(2) For every function $f \in \Gamma(\mu)$ put

$$
w_{T}(f)=U_{T} f \cdot \bar{f}
$$

Then w_{T} is a homomorphism of $\Gamma(\mu)$ into itself and we have

$$
U_{T} f=w_{T}(f) \cdot f
$$

$w_{T}(f)$ is called the generalized proper value corresponding to the generalized proper function f of U_{T}.

A subgroup $\Gamma \subset \Gamma(\mu)$ is invariant under U_{T} (that is $U_{T} \Gamma \subset \Gamma$) if and only if Γ is invariant under w_{T} (that is $w_{T} \Gamma \subset \Gamma$).
(3) For every integer $n \geqq 0$ put

$$
\Gamma_{n}=\Gamma_{n}(T)=w_{T}^{-n}(C)=\left\{f \in \Gamma(\mu) ; w_{T}^{n}(f) \in C\right\}
$$

In particular, $\Gamma_{0}=C$ and Γ_{1} is the set of the proper functions of U_{T} belonging to $\Gamma(\mu)$. Each Γ_{n} is a group invariant under U_{T} and $\Gamma_{n} \subset \Gamma_{n+1}$ for every n. The set

$$
\Gamma_{\infty}=\Gamma_{\infty}(T)=\bigcup_{n=0}^{\infty} \Gamma_{n}
$$

is also a subgroup of $\Gamma(\mu)$ invariant under U_{T}. Moreover, if $\Gamma \subset \Gamma(\mu)$ is a group such that

$$
C \subset \Gamma \quad \text { and } \quad w_{\bar{T}}^{-1} \Gamma=\Gamma
$$

then $\Gamma_{\infty} \subset \Gamma$. (In fact, for every n we have $w_{\bar{T}}{ }^{n}(C) \subset w_{\bar{T}}{ }^{n} \Gamma \subset \Gamma$).
In particular, if $\Gamma_{n+1}=\Gamma_{n}$ for some n, then $\Gamma_{\infty}=\Gamma_{n}$.
(4) For every integer $k \geqq 0, U_{T}^{k}$ is an injective homomorphism of $\Gamma(\mu)$ into itself and

$$
\varphi_{\mu}\left(U_{x}^{k} f\right)=\varphi_{\mu}(f), \quad \text { for } f \in \Gamma(\mu)
$$

If $\Gamma \subset \Gamma(\mu)$ is invariant under U_{T}, then Γ is invariant under U_{T}^{k}.
For every n we have
therefore

$$
\begin{aligned}
\Gamma_{n}(T) & \subset \Gamma_{n}\left(T^{k}\right) \\
\Gamma_{\infty}(T) & \subset \Gamma_{\infty}\left(T^{k}\right)
\end{aligned}
$$

(5) Let Γ be an abelian group containing a subgroup C^{\prime} of the circle group C, and suppose that $\Gamma=C^{\prime} \cdot \Gamma^{\prime}$ (direct product), where Γ^{\prime} is a subgroup of Γ. Let further $U: \Gamma \rightarrow \Gamma$ be an injective homomorphism such that

$$
U c=c, \quad \text { for } c \in C^{\prime}
$$

For every $\gamma \in \Gamma^{\prime}$ we have $U_{\gamma} \in \Gamma$, therefore, there exists a number $\rho(\gamma) \in C^{\prime}$ and an element $V_{\gamma} \in \Gamma^{\prime}$ such that

$$
U_{\gamma}=\rho(\gamma) V_{\gamma}
$$

Then $\rho: \Gamma^{\prime} \rightarrow C^{\prime}$ is a homomorphism and $V: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ is an injective homomorphism. Moreover, for every n there exists a homomorphism $\rho_{n}: \Gamma^{\prime} \rightarrow C^{\prime}$ such that

$$
U^{n} \gamma=\rho_{n}(\gamma) V^{n} \gamma, \quad \text { for } \gamma \in \Gamma^{\prime}
$$

In particular, if $\Gamma \subset \Gamma(\mu)$ and $U=U_{r}$, then $V_{\gamma}=\gamma$ and $\rho(\gamma)=w_{T}(\gamma)$, for $\gamma \in \Gamma^{\prime}$ $\cap \Gamma_{1}(T)$.

Conversely, if $\rho: \Gamma^{\prime} \rightarrow C^{\prime}$ is a homomorphism and $V: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ is an injective homomorphism, then the equality

$$
U(c \gamma)=c \rho(\gamma) V(\gamma), \quad \text { for } c \in C^{\prime} \quad \text { and } \quad \gamma \in \Gamma^{\prime}
$$

defines an injective homomorphism $U: \Gamma \rightarrow \Gamma$ which satisfies

$$
U c=c, \quad \text { for } c \in C^{\prime}
$$

and

$$
U_{\gamma}=\rho(\gamma) V \gamma, \quad \text { for } \gamma \in \Gamma^{\prime}
$$

(6) Let $\left(X^{\prime}, \Sigma^{\prime}, \mu^{\prime}\right)$ be a probability measure space and $T^{\prime}: X^{\prime} \rightarrow X^{\prime}$ a measure preserving transformation.
The transformations T and T^{\prime} are conjugate (see [5, pp. 44-45]) if there exists a linear isometry

$$
\phi: L^{2}(\mu) \rightarrow L^{2}\left(\mu^{\prime}\right)
$$

such that

$$
\begin{aligned}
\phi L^{2}(\mu) & =L^{2}\left(\mu^{\prime}\right), \\
\phi(f g) & =\phi f \cdot \phi g, \quad \text { for } f, g \in L^{\infty}(\mu)
\end{aligned}
$$

and

$$
\phi U_{T}=U_{T}, \phi
$$

It follows then that $\phi L^{\infty}(\mu)=L^{\infty}\left(\mu^{\prime}\right)$ and

$$
\|\phi f\|_{\infty}=\|f\|_{\infty}, \quad \text { for } f \in L^{\infty}(\mu)
$$

Remark. To say that T and T^{\prime} are conjugate means that the measures μ and μ^{\prime} are conjugate (see [3, Definition 1]) by means of a linear isometry $\phi: L^{2}(\mu) \rightarrow L^{2}\left(\mu^{\prime}\right)$ which satisfies in addition the equality

$$
\phi U_{T}=U_{T^{\prime}} \phi
$$

The following proposition gives some conjugacy invariants connected to $\Gamma(\mu)$, U_{T} and ϕ_{μ}.

Proposition 1. If T and T^{\prime} are conjugate, then there exists an injective homomorphism $\phi: \Gamma(\mu) \rightarrow \Gamma\left(\mu^{\prime}\right)$ having the following properties:
(i) $\phi \Gamma(\mu)=\Gamma\left(\mu^{\prime}\right)$;
(ii) $\phi c=c$, for $c \in C$;
(iii) If $\Gamma \subset \Gamma(\mu)$ generates $L^{2}(\mu)$, then $\phi \Gamma$ generates $L^{2}\left(\mu^{\prime}\right)$;
(iv) If $\Gamma \subset \Gamma(\mu)$ is an orthonormal system in $L^{2}(\mu)$ then $\phi \Gamma$ is orthonormal in $L^{2}\left(\mu^{\prime}\right)$;
(v) $\phi \Gamma_{n}(T)=\Gamma_{n}\left(T^{\prime}\right)$ and $\phi \Gamma_{\infty}(T)=\Gamma_{\infty}\left(T^{\prime}\right)$;
(vi) $\varphi_{\mu}(f)=\varphi_{\mu^{\prime}}(\phi f)$, for $f \in \Gamma(\mu)$;
(vii) $\phi U_{T}=U_{T^{\prime}} \phi$ and $\phi w_{T}=w_{T^{\prime}} \phi$.

In fact, if ϕ is a linear isometry of $L^{2}(\mu)$ onto $L^{2}\left(\mu^{\prime}\right)$ realizing the conjugacy between T and T^{\prime}, then the restriction of ϕ to $\Gamma(\mu)$, still denoted by ϕ, is the required isomorphism (see also [3, Proposition 2]).

Remark. We shall see (corollary of Theorem 1) that, conversely, if ϕ is an isomorphism of $\Gamma(\mu)$ onto $\Gamma\left(\mu^{\prime}\right)$ satisfying conditions (vi) and (vii), then T and T^{\prime} are conjugate.
3. Algebraic models. The considerations of the preceding section lead to the following

Definition 1. A system (Γ, U, φ) consisting of an abelian group Γ with unit 1 , an injective homomorphism $U: \Gamma \rightarrow \Gamma$ and a complex function of positive type φ on Γ such that $\varphi(\gamma)=1$ if and only if $\gamma=1$ and $\varphi\left(U_{\gamma}\right)=\varphi(\gamma)$, for $\gamma \in \Gamma$, is called an algebraic ergodic system (a.e. system).

Two a.e. systems (Γ, U, φ) and $\left(\Gamma^{\prime}, U^{\prime}, \varphi^{\prime}\right)$ are said to be isomorphic if there exists an isomorphism ϕ of Γ onto Γ^{\prime} such that

$$
\varphi(\gamma)=\varphi^{\prime}(\phi \gamma), \quad \text { for } \gamma \in \Gamma
$$

and

$$
\phi U=U^{\prime} \phi
$$

If we define the homomorphisms $w: \Gamma \rightarrow \Gamma$ by

$$
w(\gamma)=U \gamma \cdot \gamma^{-1}, \quad \text { for } \gamma \in \Gamma
$$

and the homomorphism $w^{\prime}: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ in a similar way, then condition $\phi U=U^{\prime} \phi$ above is equivalent to condition $\phi w=w^{\prime} \phi$.

Example. If T is a measure preserving transformation on a probability measure space (X, Σ, μ), then $\left(C, U_{T}, \varphi_{\mu}\right)$ and $\left(\Gamma(\mu), U_{T}, \varphi_{\mu}\right)$ are a.e. systems. More generally, for every group $\Gamma \subset \Gamma(\mu)$ invariant under $U_{T},\left(\Gamma, U_{T}, \varphi_{\mu}\right)$ is an a.e. system.

We shall see (Theorem 2) that every a.e. system can be obtained in this way.

Remarks. 1°. To say that (Γ, U, φ) is an a.e. system, means that (Γ, φ) is a measure system (see [3, Definition 2]) and that $U: \Gamma \rightarrow \Gamma$ is an injective homomorphism satisfying $\varphi\left(U_{\gamma}\right)=\varphi(\gamma)$ for $\gamma \in \Gamma$. Then $(\Gamma, \varphi \circ U)$ is also a measure system. Moreover, if $U \Gamma=\Gamma$, then (Γ, φ) and $(\Gamma, \varphi \circ U)$ are isomorphic measure systems.

Conversely if (Γ, φ) and (Γ, φ^{\prime}) are isomorphic measure systems by means of an isomorphism $U: \Gamma \rightarrow \Gamma$, then (Γ, U, φ) is an a.e. system and $U \Gamma=\Gamma$.
2°. To say that two a.e. systems (Γ, U, φ) and ($\Gamma^{\prime}, U^{\prime}, \varphi^{\prime}$) are isomorphic, means that (Γ, φ) and ($\Gamma^{\prime}, \varphi^{\prime}$) are isomorphic measure systems, by means of an isomorphism $\phi: \Gamma \rightarrow \Gamma^{\prime}$ which satisfies $\phi U=U^{\prime} \phi$.

Conversely, if (Γ, φ) and ($\Gamma^{\prime}, \varphi^{\prime}$) are isomorphic measure systems, then taking $U: \Gamma \rightarrow \Gamma$ and $U^{\prime}: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ the identity mappings, the a.e. systems (Γ, U, φ) and ($\Gamma^{\prime}, U^{\prime}, \varphi^{\prime}$) are isomorphic.
3°. If (Γ, U, φ) is an a.e. system, then the set $C^{\prime}=\{\gamma \in \Gamma ;|\varphi(\gamma)|=1\}$ is a group, and φ is an injective homomorphism of C^{\prime} into the circle group C. If we identify an element $\gamma \in C^{\prime}$ with the number $\varphi(\gamma)=c$, we have (see [3, corollary of Proposition 3])

$$
\varphi(c \gamma)=c \varphi(\gamma), \quad \text { for } c \in C^{\prime} \quad \text { and } \quad \gamma \in \Gamma .
$$

Moreover,

$$
U c=c, \quad \text { for } c \in C^{\prime}
$$

In fact, if $c \in C^{\prime}$, then $\varphi(U c)=\varphi(c)=c$, therefore $U c \in C^{\prime}$ and $U c=c$.
If C^{\prime} is divisible, then there exists a group $\Gamma^{\prime} \subset \Gamma$ such that

$$
\Gamma=C^{\prime} \cdot \Gamma^{\prime}(\text { direct product })
$$

The a.e. system (Γ, U, φ) can be embedded in an a.e. system ($\Gamma_{1}, U_{1}, \varphi_{1}$) such that

$$
\left\{\gamma \in \Gamma_{1} ;\left|\varphi_{1}(\gamma)\right|=1\right\}=C
$$

and then

$$
\Gamma_{1}=C \cdot \Gamma_{1}^{\prime} \text { (direct product). }
$$

In case $U_{\gamma}=\gamma$ (or, equivalently, $w(\gamma)=1$) implies $\gamma \in C$, the group Γ^{\prime} can be precised:

Proposition 2. Let (Γ, U, φ) be an a.e. system, let $C^{\prime}=\{\gamma \in \Gamma ; \varphi(\gamma) \in C\}$ and $w(\gamma)=U_{\gamma} \cdot \gamma^{-1}$, for $\gamma \in \Gamma$.
If C^{\prime} is divisible (in particular if $C^{\prime}=C$) and if $w(\gamma)=1$ implies $\gamma \in C^{\prime}$, then every injective homomorphism $a \rightarrow \gamma_{a}$ of a group $G \subset w \Gamma$ into Γ such that $w\left(\gamma_{a}\right)=a$ for $a \in G$ (in particular the homomorphism $1 \rightarrow \gamma_{1}=1$ of $G=\{1\}$) can be extended to an injective homomorphism $a \rightarrow \gamma_{a}$ of $w \Gamma$ into Γ, such that $w\left(\gamma_{a}\right)=a$, for $a \in w \Gamma$.

If we put $\Gamma^{\prime}=\left\{\gamma_{a} ; a \in w \Gamma\right\}$, then $\Gamma=C^{\prime} \cdot \Gamma^{\prime}($ direct product $)$.

The proof is similar to that given in [5, p. 46], for ergodic transformations with discrete spectrum.

For every $a \in w \Gamma$ choose $\mu_{a} \in \Gamma$ with $U \mu_{a}=a \mu_{a}$, that is $w\left(\mu_{a}\right)=a$. If $a \in G$ we take $\mu_{a}=\gamma_{a}$. We have

$$
U \mu_{a b}=a b \mu_{a b} \quad \text { and } \quad U \mu_{a} \mu_{b}=a b \mu_{a} \mu_{b}
$$

whence

$$
w\left(\mu_{a b}\right)=w\left(\mu_{a} \mu_{b}\right)=a b
$$

By hypothesis, there exists a number $\gamma(a, b) \in C^{\prime}$ such that

$$
\mu_{a} \mu_{b}=\gamma(a, b) \mu_{a b} .
$$

If $a, b \in G$, then $\gamma(a, b)=1$. Consider the group $\left\{c \gamma_{a} ; c \in C^{\prime}, a \in G\right\}$ and the homomorphism p of this group into C^{\prime} defined by $p\left(c \gamma_{a}\right)=c$. We have, in particular, $p(c)=c$ for $c \in C^{\prime}$ and $p\left(\gamma_{a}\right)=1$ for $a \in G$. Since C^{\prime} is divisible, p can be extended to a homomorphism, still denoted by p, of $w \Gamma$ into C^{\prime}.

If we now define

$$
\gamma_{a}=\overline{p\left(\mu_{a}\right)} \mu_{a}, \quad \text { for } a \in w \Gamma
$$

then the requirements of the proposition are fulfilled.
Remark. Condition: $w(\gamma)=1$ implies $\gamma \in C^{\prime}$, is satisfied, for example, if $U=U_{r}$, where T is an ergodic transformation.

Definition 2. Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation. We say that an a.e. system (Γ, U, φ) is an algebraic model of the transformation T if there exists an injective homomorphism $J: \Gamma \rightarrow \Gamma(\mu)$ such that:
(a) $J \Gamma$ generates $L^{2}(\mu)$;
(b) $\varphi(\gamma)=\varphi_{\mu}\left(J_{\gamma}\right)$, for $\gamma \in \Gamma$;
(c) $J U=U_{T} J$.

It follows that if $\Gamma \subset \Gamma(\mu)$ is a group generating $L^{2}(\mu)$, and invariant under U_{T}, then ($\Gamma, U_{T}, \varphi_{\mu}$) is an algebraic model for T.

If (Γ, U, φ) is an algebraic model of T by means of an isomorphism J, then, identifying Γ and $J \Gamma$ we can consider that $\Gamma \subset \Gamma(\mu), U=U_{T}$ and $\varphi=\varphi_{\mu}$.

If (Γ, U, φ) is an algebraic model of T, then T is invertible (that is $U_{T} L^{2}(\mu)=L^{2}(\mu)$) if and only if U is an automorphism of Γ (that is $U \Gamma=\Gamma$). In particular, a transformation T having ($\Gamma_{1}(T), U_{T}, \varphi_{\mu}$) as algebraic model, is always invertible (since $U_{T} \Gamma_{1}=\Gamma_{1}$).

Remark. To say that (Γ, U, φ) is an algebraic model for T means that (Γ, φ) is an algebraic model for the measure μ (see [3, Definition 3]), by means of an isomorphism $J: \Gamma \rightarrow \Gamma(\mu)$ which satisfies, in addition, $J U=U_{T} J$.

Conversely, if (Γ, φ) is an algebraic model of the measure μ and if $U: \Gamma \rightarrow \Gamma$ is
the identity mapping, then (Γ, U, φ) is an algebraic model for the identity transformation $T: X \rightarrow X$.

Algebraic models determine the transformations uniquely up to a conjugacy:
Theorem 1. Two measure preserving transformations are conjugate if and only if they possess isomorphic algebraic models.

Let T and T^{\prime} be two measure preserving transformations on the probability measure spaces (X, Σ, μ) respectively ($X^{\prime}, \Sigma^{\prime}, \mu^{\prime}$).

If T and T^{\prime} are conjugate, then from Proposition 1 we deduce that their algebraic models ($\left.\Gamma(\mu), U_{T}, \varphi_{\mu}\right)$ and ($\left.\Gamma\left(\mu^{\prime}\right), U_{T^{\prime}}, \varphi_{\mu^{\prime}}\right)$ are isomorphic.

Conversely, suppose that T and T^{\prime} possess isomorphic models (Γ, U, φ) respectively ($\Gamma^{\prime}, U^{\prime}, \varphi^{\prime}$). We may consider $\Gamma \subset \Gamma(\mu), U=U_{T}, \varphi=\varphi_{\mu}$ and $\Gamma^{\prime} \subset \Gamma\left(\mu^{\prime}\right)$, $U^{\prime}=U_{T}^{\prime}$ and $\varphi^{\prime}=\varphi_{\mu^{\prime}}$.

If ϕ is an isomorphism of Γ onto Γ^{\prime} such that

$$
\varphi_{\mu}=\varphi_{\mu^{\prime}} \circ \phi \quad \text { and } \quad \phi U_{T}=U_{T} \phi
$$

then (see [3, Theorem 2]), ϕ can be extended to a linear isometry $\phi: L^{2}(\mu) \rightarrow L^{2}\left(\mu^{\prime}\right)$ such that

$$
\phi L^{2}(\mu)=L^{2}\left(\mu^{\prime}\right) \text { and } \phi L^{\infty}(\mu)=L^{\infty}\left(\mu^{\prime}\right),
$$

and

$$
\phi(f g)=\phi f \cdot \phi g, \quad \text { for } f, g \in L^{\infty}(\mu)
$$

The equality

$$
\phi U_{T} f=U_{T}, \phi f, \quad \text { for } f \in \Gamma
$$

remains true first for linear combinations of functions of Γ and then for every $f \in L^{2}(\mu)$, so that T and T^{\prime} are conjugate.

Corollary. The transformations T and T^{\prime} are conjugate if and only if the a.e. systems $\left(\Gamma(\mu), U_{T}, \varphi_{\mu}\right)$ and $\left(\Gamma\left(\mu^{\prime}\right), U_{T^{\prime}}, \varphi_{\mu^{\prime}}\right)$ are isomorphic.

The following theorem states that every a.e. system is an algebraic model for some transformation.

Theorem 2. Every a.e. system (Γ, U, φ) is an algebraic model for a continuous measure preserving homomorphism τ on an abelian compact group G equipped with a suitable regular Borel measure μ.

Moreover, if $U \Gamma=\Gamma$, then τ is an automorphism of G.
Consider on Γ the discrete topology and take $G=\Gamma^{\wedge}$. Let μ be the unique regular Borel measure on G such that (Bochner's theorem),

$$
\varphi(\gamma)=\int\langle x, \gamma\rangle d \mu(x), \quad \text { for } \gamma \in \Gamma .
$$

Then the mapping $J: \Gamma \rightarrow \Gamma(\mu)$ defined by

$$
J_{\gamma}=\langle\cdot, \gamma\rangle, \quad \text { for } \gamma \in \Gamma
$$

is an injective homomorphism, $J \Gamma$ generates $L^{2}(\mu)$ and

$$
\varphi(\gamma)=\varphi_{u}(J \gamma), \quad \text { for } \gamma \in \Gamma
$$

We define now the mapping $\tau: G \rightarrow G$ by

$$
\langle\tau x, \gamma\rangle=\left\langle x, U_{\gamma}\right\rangle, \quad \text { for } x \in G \quad \text { and } \quad \gamma \in \Gamma .
$$

Then τ is a continuous homomorphism of G into itself, and

$$
J U=U_{\tau} J
$$

If $\Gamma U=\Gamma$, then τ is injective and $\tau G=G$, therefore τ is an automorphism of G.
It remains to prove that τ is measure preserving.
Consider the regular Borel measure ν defined on G by

$$
\nu(A)=\mu\left(\tau^{-1} A\right), \quad \text { for every Borel set } A \subset G
$$

Then for every $\gamma \in \Gamma$ we have

$$
\varphi(\gamma)=\varphi\left(U_{\gamma}\right)=\int\left\langle x, U_{\gamma}\right\rangle d \mu(x)=\int\langle\tau x, \gamma\rangle d \mu(x)=\int\langle x, \gamma\rangle d \nu(x) .
$$

By the uniqueness of μ we deduce that $\mu=\nu$, therefore $\mu\left(\tau^{-1} A\right)=\mu(A)$, for every Borel set $A \subset G$ consequently τ is measure preserving.

Remark. The proof of Theorem 2 was used in [4] to prove the following
Corollary. Every measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a continuous homomorphism τ on an abelian compact group G equipped with a suitable regular Borel measure. If T is invertible then τ is an automorphism of G.

4. Discrete algebraic models.

Definition 3. An a.e. system ($\Gamma, U, \varphi)$ is said to be discrete if $C \subset \Gamma$ and

$$
\begin{aligned}
\varphi(\gamma) & =\gamma, \quad \text { for } \gamma \in C, \\
& =0, \quad \text { for } \gamma \notin C .
\end{aligned}
$$

Remarks. 1°. An a.e. system (Γ, U, φ) is discrete if and only if (Γ, U^{n}, φ) is discrete.
2°. We have

$$
U c=c, \quad \text { and } \quad w(c)=1, \quad \text { for } c \in C
$$

where $w(\gamma)=U \gamma \cdot \gamma^{-1}$ for $\gamma \in \Gamma$ (see Remark 3 after Definition 1).
3°. Let (Γ, U, φ) be an a.e. system with $C \subset \Gamma$. Then $\Gamma=C \cdot \Gamma^{\prime}$ (direct product) where Γ^{\prime} is a subgroup of Γ. To say that (Γ, U, φ) is discrete, means that

$$
\begin{aligned}
\varphi(\gamma) & =1 \quad \text { for } \gamma=1, \\
& =0 \quad \text { for } \gamma \in \Gamma^{\prime}, \gamma \neq 1 .
\end{aligned}
$$

4°. Let (Γ, U, φ) be an a.e. system such that

$$
|\varphi(\gamma)|<1 \quad \text { implies } \varphi(\gamma)=0 .
$$

Then (Γ, U, φ) is "essentially" a discrete system. In fact we can consider (Γ, U, φ) as a model of a measure preserving transformation T on a probability measure space, and consider $\Gamma \subset \Gamma(\mu), U=U_{T}$ and $\varphi=\varphi_{\mu}$. Consider then the group Γ_{1} $=\{c \gamma ; c \in C, \gamma \in \Gamma\}$; then $\left(\Gamma_{1}, U_{T}, \varphi_{\mu}\right)$ is a discrete model of T and contains the initial model (Γ, U, φ).

For a discrete system (Γ, U, φ), the function φ is completely determined by Γ, so that the system itself is completely determined by (Γ, U).

Proposinion 3. Let Γ be an abelian group containing C and let $U: \Gamma \rightarrow \Gamma$ be an injective homomorphism such that

$$
U c=c, \quad \text { for } c \in C .
$$

If we define

$$
\begin{aligned}
\varphi(\gamma) & =\gamma \quad \text { if } \gamma \in C, \\
& =0 \quad \text { if } \gamma \notin C,
\end{aligned}
$$

then (Γ, U, φ) is a discrete system.
In fact, φ is of positive type:

$$
\begin{aligned}
\sum_{i, j=1}^{n} \alpha_{i} \bar{\alpha}_{j} \varphi\left(\gamma_{i} \gamma_{j}^{-1}\right) & =\sum_{\gamma_{i} \sim \gamma_{j}} \alpha_{i} \bar{\alpha}_{j} \varphi\left(\gamma_{i} \gamma_{j}^{-1}\right)=\sum_{k} \sum_{\gamma_{i}, \gamma_{j} \in C_{\gamma_{k}}} \alpha_{i} \bar{\alpha}_{j} \varphi\left(\gamma_{i} \gamma_{j}^{-1}\right) \\
& =\sum_{k} \sum_{\gamma_{i} \in C_{\gamma_{k}}}\left|\alpha_{i} \varphi\left(\gamma_{i} \gamma_{k}^{-1}\right)\right|^{2} \geqq 0
\end{aligned}
$$

where $\gamma_{i} \sim \gamma_{j}$ means $\gamma_{i} \gamma_{j}^{-1} \in C$ and $C \gamma_{k}$ the equivalence classes.
If $\gamma \in C$ then $U_{\gamma}=\gamma$, therefore

$$
\varphi\left(U_{\gamma}\right)=\varphi(\gamma) ;
$$

if $\gamma \notin C$, then $U_{\gamma} \notin C$ (since U is injective), therefore $\varphi(\gamma)=0$ and $\varphi\left(U_{\gamma}\right)=0$, consequently

$$
\varphi\left(U_{\gamma}\right)=\varphi(\gamma) .
$$

Moreover, $\varphi(\gamma)=1$, if and only if $\gamma=1$, so that (Γ, U, φ) is a discrete system.
For discrete systems, isomorphism does no more involve functions of positive type.

Theorem 3. Two discrete systems (Γ, U, φ) and $\left(\Gamma^{\prime}, U^{\prime}, \varphi^{\prime}\right)$ are isomorphic if and only if there exists an isomorphism ϕ of Γ onto Γ^{\prime} such that

$$
\phi c=c, \quad \text { for } c \in C
$$

and

$$
\phi U=U^{\prime} \phi
$$

In fact, if the systems are isomorphic by an isomorphism ϕ, then for every $c \in C$ we have

$$
\varphi^{\prime}(\phi c)=\varphi(c)=c \neq 0
$$

therefore $\phi c \in C$, and then

$$
\varphi^{\prime}(\phi c)=\phi c
$$

consequently $\phi c=c$.
Conversely, let $\phi: \Gamma \rightarrow \Gamma^{\prime}$ be an isomorphism such that $\phi c=c$ for $c \in C$ and $\phi U=U^{\prime} \phi$. We have to prove that $\varphi=\phi^{\prime} \circ \phi$. For $c \in C$ we have $\phi c=c$, therefore

$$
\varphi^{\prime}(\phi c)=\phi c=c=\varphi(c)
$$

If $\gamma \notin C$, then $\phi \gamma \notin C$ (since ϕ is injective), therefore $\varphi^{\prime}(\phi \gamma)=0$ and $\varphi(\gamma)=0$, consequently

$$
\varphi^{\prime}(\phi \gamma)=\varphi(\gamma)
$$

Remark. If (Γ, U, φ) is a discrete system, we shall say also that (Γ, U) is a discrete system. If $\left(\Gamma, U_{T}\right)$ is a discrete system and $\Gamma \subset \Gamma(\mu)$, for some transformation T on a measure space (X, Σ, μ), we understand that $\varphi=\varphi_{\mu}$.

From Proposition 3 it follows that $(\Gamma, U$) is a discrete system provided that Γ is an abelian group containing C and $U: \Gamma \rightarrow \Gamma$ is an injective homomorphism such that $U c=c$ for $c \in C$.

For certain discrete models (Γ, U) isomorphism does no more involve homomorphisms U either:

Theorem 4. Let $\left(\Gamma_{1}, U_{1}\right)$ and $\left(\Gamma_{2}, U_{2}\right)$ be two discrete systems and put

$$
w_{i}(\gamma)=U_{i} \gamma \cdot \gamma^{-1}, \quad \text { for } \gamma \in \Gamma_{i}, \quad i=1,2
$$

Suppose that

$$
\gamma \in \Gamma_{i} \quad \text { and } \quad w_{i}(\gamma)=1 \quad \text { imply } \gamma \in C, \quad i=1,2 .
$$

Then $\left(\Gamma_{1}, U_{1}\right)$ and $\left(\Gamma_{2}, U_{2}\right)$ are isomorphic, if and only if the groups $w_{1} \Gamma_{1}$ and $w_{2} \Gamma_{2}$ are isomorphic by an isomorphism ϕ such that $\phi w_{1}=w_{2} \phi$ and $\phi c=c$ for $c \in C \cap w_{1} \Gamma_{1}$.

If $\left(\Gamma_{1}, U_{1}\right)$ and $\left(\Gamma_{2}, U_{2}\right)$ are isomorphic by means of an isomorphism $\phi: \Gamma_{1} \rightarrow \Gamma_{2}$ such that

$$
\phi U_{1}=U_{2} \phi \text { and } \phi c=c \text { for } c \in C
$$

then we have also

$$
\phi w_{1}=w_{2} \phi
$$

From $\phi \Gamma_{1}=\Gamma_{2}$ we deduce then $\phi w_{1} \Gamma_{1}=w_{2} \Gamma_{2}$. The restriction of ϕ to $w_{1} \Gamma_{1}$ is the required isomorphism.

Conversely, suppose that $w_{1} \Gamma_{1}$ and $w_{2} \Gamma_{2}$ are isomorphic by means of an isomorphism $\phi: w_{1} \Gamma_{1} \rightarrow w_{2} \Gamma_{2}$ such that $\phi w_{1}=w_{2} \phi$ and $\phi c=c$ for $c \in C \cap w_{1} \Gamma_{1}$.

By Proposition 2 there exists an injective homomorphism $a \rightarrow \gamma_{a}$ of $w_{1} \Gamma_{1}$ into Γ_{1} such that $w_{1}\left(\gamma_{a}\right)=a$ for $a \in w_{1} \Gamma_{1}$; then $\Gamma_{1}=C \cdot \Gamma_{1}^{\prime}$ (direct product) where $\Gamma_{1}^{\prime}=\left\{\gamma_{a} ; a \in w_{1} \Gamma_{1}\right\}$.

Consider the groups $G_{1}=w_{1}^{2} \Gamma_{1}$ and $G_{2}=w_{2}^{2} \Gamma_{2}$. Since $\phi w_{1} \Gamma_{1}=w_{2} \Gamma_{2}$ and $\phi w_{1}=w_{2} \phi$ we have $G_{2}=\phi G_{1}$.

If $a \in G_{1}$ then $w_{1}\left(\gamma_{a}\right)=a$ and $a=w_{1}(b)$ for some $b \in w_{1} \Gamma_{1}$, therefore $\gamma_{a}=c b$ for some $c \in C$; if we have also $\gamma_{a}=c_{1} b_{1}$ with $c_{1} \in C$ and $b_{1} \in w_{1} \Gamma_{1}$, then $c \bar{c}_{1}=b_{1} b^{-1}$ $\in w_{1} \Gamma_{1}$, therefore, by hypothesis,

$$
c \bar{c}_{1}=\phi\left(c \bar{c}_{1}\right)=\phi\left(b_{1}\right) \overline{\phi(b)}
$$

whence $c \phi b=c_{1} \phi b_{1}$. We define then unambiguously

$$
\gamma_{ø a}=c \phi b, \text { if } \gamma_{a}=c b \text { with } c \in C \text { and } b \in w_{1} \Gamma_{1} .
$$

It is easy to see that $\phi a \rightarrow \gamma_{\phi a}$ is an injective homomorphism of G_{2} into Γ_{2} such that $w_{2}(\phi a)=\phi a$. By Proposition 2, this homomorphism can be extended to an injective homomorphism $a \rightarrow \gamma_{a}$ of $w_{2} \Gamma_{2}$ into Γ_{2} such that $w_{2}\left(\gamma_{a}\right)=a$ for $a \in w_{2} \Gamma_{2}$.

We extend now ϕ from $w_{1} \Gamma_{1}$ to Γ_{1} by

$$
\psi c \gamma_{a}=c \gamma_{\phi a} \quad \text { for } c \in C \text { and } a \in w_{1} \Gamma_{1} .
$$

ψ is an extension of ϕ, since if $b \in w_{1} \Gamma_{1}$, then $b=c \gamma_{a}$ for some $c \in C$ and $a \in w_{1} \Gamma_{1}$, whence $a=w_{1}\left(\gamma_{a}\right)=w_{1}(b) \in w_{1}^{2} \Gamma_{1}$ and $\gamma_{a}=\bar{c} b$, therefore $\gamma_{\phi a}=\bar{c} \phi b$; it follows then that $\phi b=c \gamma_{\phi a}=\psi\left(c \gamma_{a}\right)=\psi b$.

Moreover, ψ is an isomorphism of Γ_{1} onto Γ_{2} and $\psi c=c$ for $c \in C$. Finally, if $c \in C$ and $\gamma_{a} \in \Gamma_{1}^{\prime}$, we have

$$
\psi U_{1} c \gamma_{a}=\psi c a \gamma_{a}=\psi a \cdot \psi c \gamma_{a}=\phi a \cdot c \gamma_{\phi a}=U_{2} c \gamma_{\phi a}=U_{2} \psi c \gamma_{a}
$$

therefore $\psi U_{1}=U \psi_{2}$. By Theorem 3, $\left(\Gamma_{1}, U_{1}\right)$ and $\left(\Gamma_{2}, U_{2}\right)$ are isomorphic.
For transformations with discrete models we have the following characterization:
Theorem 5. A measure preserving transformation T on a probability measure space (X, Σ, μ) has a discrete model if and only if there exists a set $\Gamma^{\prime} \subset \Gamma(\mu)$ such that
(a) Γ^{\prime} is a group;
(b) Γ^{\prime} is an orthonormal basis of $L^{2}(\mu)$;
(c) $U_{T} \Gamma^{\prime} \subset C \Gamma^{\prime}$.

We remark first that if Γ^{\prime} is a group and an orthonormal basis in $L^{2}(\mu)$, then Γ^{\prime} contains no constant function except 1 , so that $C \cdot \Gamma^{\prime}$ is a direct product.
If conditions a, b and c are satisfied, then $\left(C \cdot \Gamma^{\prime}, U_{T}, \varphi_{\mu}\right)$ is a discrete algebraic model for T. In fact, $C \subset C \cdot \Gamma^{\prime}$ and $C \cdot \Gamma^{\prime}$ generates $L^{2}(\mu)$; if $c \in C$, then

$$
\varphi_{\mu}(c)=\int c d \mu=c
$$

while if $\gamma \notin C$, then $\gamma=c \cdot \gamma^{\prime}$ for some $c \in C$ and $\gamma^{\prime} \in \Gamma^{\prime}$ with $\gamma^{\prime} \neq 1$, therefore

$$
\varphi_{\mu}(\gamma)=c \int \gamma^{\prime} d \mu=c\left(\gamma^{\prime} \mid 1\right)=0
$$

Conversely, let (Γ, U, φ) be a discrete algebraic model for T; we may suppose $\Gamma \subset \Gamma(\mu), U=U_{T}$ and $\varphi=\varphi_{\mu}$. Write Γ as a direct product $\Gamma=C \cdot \Gamma^{\prime}$, where Γ^{\prime} is a subgroup of Γ, containing no constant function except 1 . Finally, Γ^{\prime} is an orthonormal system, since for $\gamma^{\prime} \in \Gamma^{\prime}$ we have

$$
\begin{aligned}
\int \gamma^{\prime} d \mu=\varphi\left(\gamma^{\prime}\right) & =1 \\
& \text { if } \gamma^{\prime}=1 \\
& =0
\end{aligned} \quad \text { if } \gamma^{\prime} \neq 1 .
$$

Corollary. If G is an abelian compact group, equipped with Haar measure μ, then continuous automorphisms τ^{\prime} and rotations R on G, as well as their superpositions $\tau=R \tau^{\prime}$, have discrete model.

We remark first that continuous automorphisms τ^{\prime} and rotations R, therefore, their superpositions $\tau=R \tau^{\prime}$, are measure preserving.

The group of characters $\Gamma^{\prime}=G^{\wedge}$ is an orthogonal system in $L^{2}(\mu)$ and $U_{\tau} \cdot \Gamma^{\prime} \subset \Gamma^{\prime}$; if R is defined on G by $R x=c x$, for some $c \in G$, then

$$
U_{\tau} \gamma(x)=\gamma(\tau x)=\gamma(c) \gamma\left(\tau^{\prime} x\right)=\gamma(c) U_{\tau^{\prime}} \gamma(x)
$$

for every $\gamma \in \Gamma^{\prime}$, therefore $U_{\imath} \Gamma^{\prime} \subset C \cdot \Gamma^{\prime}$. By Theorem 5, τ has discrete model. Conversely:

Theorem 6. Every invertible measure preserving transformation T, with discrete model $\left(\Gamma, U_{T}\right)$, on a probability measure space (X, Σ, μ), is conjugate to the superposition of a continuous automorphism and a rotation on an abelian compact group, equipped with Haar measure.

Consider $\Gamma=C \cdot \Gamma^{\prime}$ (direct product) and

$$
U_{T \gamma}=\rho(\gamma) V_{\gamma}, \quad \text { for } \gamma \in \Gamma^{\prime}
$$

where ρ is a character of Γ^{\prime} and V is an injective homomorphism of Γ^{\prime}. Since T is invertible, we have $U_{T} L^{2}(\mu)=L^{2}(\mu)$, therefore $V \Gamma^{\prime}=\Gamma^{\prime}$. Consider Γ^{\prime} endowed with the discrete topology and consider the Haar measure ν on the abelian compact group $G=\Gamma^{\prime \wedge}$. Then $\rho \in G$. We define the continuous homomorphism τ^{\prime} on G by

$$
\left\langle\tau^{\prime} x, \gamma\right\rangle=\left\langle x, V_{\gamma}\right\rangle, \text { for } x \in G \text { and } \gamma \in \Gamma^{\prime} .
$$

Since $V \Gamma^{\prime}=\Gamma^{\prime}, \tau^{\prime}$ is an automorphism. Consider finally the mapping $\tau: G \rightarrow G$ defined by

$$
\tau(x)=\rho \tau^{\prime}(x), \quad \text { for } x \in G
$$

Then $\left(C \cdot G^{\wedge}, U_{\tau}\right)$ is a discrete model for τ, and the mapping $\phi: C \cdot \Gamma^{\prime} \rightarrow C \cdot G^{\wedge}$ defined by

$$
\phi c \gamma=c\langle\cdot, \gamma\rangle, \quad \text { for } c \in C \text { and } \gamma \in \Gamma^{\prime}
$$

is an isomorphism such that $\phi c=c$ for $c \in C$. Moreover, for $\gamma \in \Gamma^{\prime}$ we have

$$
\begin{aligned}
\phi U_{T} \gamma & =\phi \rho(\gamma) V \gamma=\rho(\gamma)\langle\cdot, V \gamma\rangle \\
& =\rho(\gamma)\left\langle\tau^{\prime} \cdot, \gamma\right\rangle=\left\langle\rho \tau^{\prime} \cdot, \gamma\right\rangle=\langle\tau \cdot, \gamma\rangle \\
& =U_{\tau}\langle\cdot, \gamma\rangle=U_{\tau} \phi \gamma
\end{aligned}
$$

and this equality remains valid for $\gamma \in \Gamma$, therefore $\phi U_{T}=U_{\Sigma} \phi$. By Theorem 3, T and τ are conjugate.

Corollary 1. A measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a continuous automorphism on a compact abelian group, equipped with Haar measure, if and only if there exists a set $\Gamma^{\prime} \subset \Gamma(\mu)$ such that
(a) Γ^{\prime} is a group;
(b) Γ^{\prime} is an orthonormal basis of $L^{2}(\mu)$;
(c) $U_{T} \Gamma^{\prime}=\Gamma^{\prime}$.

Corollary 2. A measure preserving transformation T on a probability measure space (X, Σ, μ) is conjugate to a rotation on an abelian compact group, equipped with Haar measure, if and only if T has a discrete model $\left(\Gamma, U_{T}\right)$ with $\Gamma \subset \Gamma_{1}$.

We mention also the following property of discrete models.
Proposition 4. Let T be a measure preserving transformation on a probability measure space (X, Σ, μ) and let $\left(\Gamma, U_{T}, \varphi_{\mu}\right),\left(\Gamma^{\prime}, U_{T}, \varphi_{\mu}\right)$ be two discrete systems. If $\left(\Gamma, U_{T}, \varphi_{\mu}\right)$ is a discrete model for T and if $\Gamma \subset \Gamma^{\prime}$, then $\Gamma=\Gamma^{\prime}$.

In fact, let $f \in \Gamma^{\prime}$. If for every $g \in \Gamma$ we had $f g \notin C$, then

$$
\int f g d \mu=0
$$

therefore $f \equiv 0$, which would contradict $|f| \equiv 1$.
It follows that there exists $g \in \Gamma$ with $f g \in C$.
Then $f \in \bar{g} C \subset \Gamma$, therefore $\Gamma^{\prime}=\Gamma$.
5. Ergodic transformations. In this section we give some characterizations of ergodic transformations by means of their algebraic models.

Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation. The transformation T is ergodic if $f \in L^{2}(\mu)$ and $U_{T} f=f$ imply $f=$ constant.

Proposition 5. If T is ergodic, then $\left(\Gamma_{1}(T), U_{T}\right)$ is a discrete system.

In fact if $\gamma \in \Gamma_{1}(T)-C$, then $U_{T} \gamma=c \gamma$ for some $c \neq 1$ (because T is ergodic), therefore

$$
\int \gamma d \mu=\int U \gamma d \mu=c \int \gamma d \mu
$$

consequently

$$
\int \gamma d \mu=0 .
$$

Remarks. 1°. If T^{n} is ergodic for some n, then T is ergodic, therefore ($\Gamma_{1}(T), U_{T}$) is a discrete system. Theorem 7 below states a somewhat converse property.
2°. We shall see (Corollary 1 of Proposition 6) that if T^{n} is ergodic for every n, then $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete system.

Lemma. If T has a discrete model $\left(\Gamma, U_{T}\right)$ and if $\Gamma_{1}(T) \subset \Gamma$, then for every natural n we have

$$
\Gamma_{1}\left(T^{n}\right) \cap \Gamma=\Gamma_{1}(T)
$$

Consider $\Gamma=C \cdot \Gamma^{\prime}$, where Γ^{\prime} is a group and an orthonormal basis of $L^{2}(\mu)$. Consider the homomorphisms $\rho_{n}: \Gamma^{\prime} \rightarrow C$ and $V: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ such that $U_{T}^{n} \gamma=$ $\rho_{n}(\gamma) V^{n}(\gamma)$, for $\gamma \in \Gamma^{\prime}$.

Let $\gamma \in \Gamma_{1}\left(T^{n}\right) \cap \Gamma^{\prime}$. Then $U_{T}^{n} \gamma=c \gamma$, for some $c \in C$, therefore $\rho_{n}(\gamma)=c$ and $V^{n} \gamma=\gamma$. Let $k \leqq n$ be the least natural number such that $V^{k} \gamma=\gamma$ and consider the k dimensional space K generated by $\gamma, V_{\gamma}, \ldots, V^{k-1} \gamma$. Then K is invariant under U_{T}, therefore there exists a basis f_{1}, \ldots, f_{k} of K consisting of proper functions of U_{T} :

$$
U_{T} f_{i}=c_{i} f_{i}, \quad \text { with } c_{i} \in C
$$

Then $f_{i} \in \Gamma_{1}(T) \subset \Gamma$. Moreover, we may take $f_{i} \in \Gamma^{\prime}$ (multiplying each f_{i} by a suitable number of C). The basis $\left(f_{1}, \ldots, f_{k}\right)$ must then coincide with the basis $\left(\gamma, V_{\gamma}, \ldots, V^{k-1} \gamma\right)$; for example $f_{1}=\gamma$, therefore $U_{T} \gamma=c_{1} \gamma$.

It follows that $\gamma \in \Gamma_{1}(T)$, therefore $\Gamma_{1}\left(T^{n}\right) \cap \Gamma^{\prime} \subset \Gamma_{1}(T)$, consequently $\Gamma_{1}\left(T^{n}\right)$ $\cap \Gamma \subset \Gamma_{1}(T)$.

The converse inclusion follows from $\Gamma_{1}(T) \subset \Gamma_{1}\left(T^{n}\right)$.
Theorem 7. Suppose that T has a discrete model $\left(\Gamma, U_{T}\right)$ and let n be a natural number. If:
(a) either $\Gamma \subset \Gamma_{1}(T)$, or $\Gamma_{1}(T) \subset \Gamma$;
(b) $\gamma \in \Gamma$ and $U_{T}^{n} \gamma=\gamma$ imply $\gamma \in C$;
then T^{n} is ergodic.
Let $f \in L^{2}(\mu)$ be a function such that $U_{T}^{n} f=f$ and prove that f is constant.
Consider $\Gamma=C \cdot \Gamma^{\prime}$, where Γ^{\prime} is a group and an orthonormal basis of $L^{2}(\mu)$. Then

$$
f=\sum_{\gamma \in \Gamma^{\prime}} \alpha(\gamma) \gamma
$$

where

$$
\alpha(\gamma)=\int f \bar{\gamma} d \mu, \quad \text { for every } \gamma \in \Gamma^{\prime}
$$

For every natural number $k \in N$ we have

$$
U_{T}^{k n} f=f
$$

and

$$
U_{T}^{k n} f=\sum_{\gamma \in \Gamma^{\prime}} \alpha(\gamma) \rho_{k n}(\gamma) V^{k n} \gamma
$$

therefore

$$
\alpha\left(V^{k n} \gamma\right)=\alpha(\gamma) \rho_{k n}(\gamma), \quad \text { for } k \in N \text { and } \quad \gamma \in \Gamma^{\prime}
$$

whence

$$
\left|\alpha\left(V^{k n} \gamma\right)\right|=|\alpha(\gamma)|, \quad \text { for } k \in N \text { and } \gamma \in \Gamma^{\prime}
$$

We shall prove that for every element $\gamma \neq 1$ of Γ^{\prime} we have $\alpha(\gamma)=0$. Let therefore $\gamma \in \Gamma^{\prime}$ be such that $\gamma \neq 1$.
If $V^{k n} \gamma=\gamma$ for some k, then $\gamma \in \Gamma_{1}\left(T^{n}\right)$. In fact, if $\Gamma \subset \Gamma_{1}(T)$, then $\gamma \in \Gamma_{1}\left(T^{n}\right)$ without any other assumption, while if $\Gamma_{1}(T) \subset \Gamma$, then by the preceding lemma

$$
\gamma \in \Gamma_{1}\left(T^{k n}\right) \cap \Gamma=\Gamma_{1}(T)=\Gamma_{1}\left(T^{n}\right) \cap \Gamma
$$

Writing now the equality $\alpha\left(V^{k n} \gamma\right)=\alpha(\gamma) \rho_{k n}(\gamma)$ for $k=1$ we obtain

$$
\alpha(\gamma)=\alpha(\gamma) \rho_{n}(\gamma)
$$

therefore either $\alpha(\gamma)=0$ or $\rho_{n}(\gamma)=1$. But $\rho_{n}(\gamma)=1$ means $U_{T}^{n} \gamma=\gamma$, which by hypothesis implies $\gamma=1$ and we get a contradiction. It follows that $\alpha(\gamma)=0$.

If $V^{k n} \gamma \neq \gamma$ for every k, then the functions $\gamma, V^{n} \gamma, V^{2 n} \gamma$, are different from each other, therefore

$$
\sum_{k=0}^{\infty}\left|\alpha\left(V^{k n} \gamma\right)\right|^{2} \leqq \sum_{\gamma^{\prime} \in \Gamma^{\prime}}\left|\alpha\left(\gamma^{\prime}\right)\right|^{2}<\infty
$$

consequently $\left|\alpha\left(V^{k n} \gamma\right)\right| \rightarrow 0$ as $k \rightarrow \infty$, whence $\alpha(\gamma)=0$.
It follows that $f=\alpha(1) 1$, that is f is constant, consequently T^{n} is ergodic.
Remarks. 1°. Is it possible to drop condition (a) in the preceding theorem? The answer is positive if condition (b) is satisfied for every n (see Theorem 9 below).
2°. Is it true that if T is ergodic, then $\Gamma_{1}(T) \subset \Gamma$ for every discrete model $\left(\Gamma, U_{T}\right)$ of T ?

The answer is positive if, in addition, T^{n} is ergodic for every n. Moreover, in this case we have $\Gamma_{\infty}(T) \subset \Gamma$ for every discrete model (Γ, U_{T}) of T (see Corollary 2 of Proposition 6).

For ergodic transformations, we have the following conjugacy criterion:
Theorem 8. Two ergodic transformations T and T^{\prime} with discrete model, are conjugate if and only if there exist discrete models $\left(\Gamma, U_{T}\right)$ and $\left(\Gamma^{\prime}, U_{T^{\prime}}\right)$ of T and T^{\prime} respectively, such that the groups $w_{T} \Gamma$ and $w_{T} \Gamma^{\prime}$ are isomorphic by an isomorphism ϕ such that $\phi w_{T}=w_{T}, \phi$ and $\phi c=c$ for $c \in C \cap w_{T} \Gamma$.

We use Theorem 4.
6. Transformations with ergodic iterates. Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation.

Proposition 6. Suppose that T^{n} is ergodic for every n. If $\left(\Gamma, U_{T}\right)$ is a discrete system, then $\left(\bigcup_{n=0}^{\infty} w_{\bar{T}}{ }^{n}(\Gamma), U_{T}\right)$ is again a discrete system.

We prove first that ($w_{T}^{-1}(\Gamma), U_{T}$) is a discrete system.
It is clear that $w_{T}^{-1}(\Gamma)$ is a subgroup of $\Gamma(\mu)$ invariant under U_{T} and containing C. We have to prove that

$$
\varphi_{\mu}(f)=\int f d \mu=0, \quad \text { for } f \in w_{\bar{T}}^{-1}(\Gamma)-C
$$

Let $f \in w_{\bar{T}}{ }^{1}(\Gamma)-C$. There are two possibilities:
(a) $\int U_{\mathrm{T}}^{n} f \cdot \bar{f} d \mu=0$, for every $n \geqq 1$.

Then $f, U_{T} f, U_{T}^{2} f, \ldots$ is an orthonormal system in $L^{2}(\mu)$. If g is the projection of 1 on the space generated by this sequence, we have

$$
g=\sum_{n=0}^{\infty} a_{n} U_{T}^{n} f \text { with } \sum\left|a_{n}\right|^{2}<\infty
$$

Then

$$
\int f d \mu=\int U_{T}^{n} f d \mu=\left(U_{T}^{n} f \mid 1\right)=\left(U_{T}^{n} f \mid g\right)=a_{n}
$$

and $a_{n} \rightarrow 0$, therefore $\int f d \mu=0$.
(b) There exists n such that

$$
\int U_{T}^{n} f \cdot \bar{f} d \mu \neq 0
$$

Since

$$
U_{T}^{n} f \cdot \bar{f}=w_{T}\left(f \cdot U_{T} f \cdot \cdots \cdot U_{T}^{n-1} f\right) \in \Gamma
$$

and since $\left(\Gamma, U_{T}\right)$ is a discrete system, we have

$$
U_{\pi}^{n} f \cdot \vec{f} \in C
$$

that is

$$
U_{\pi}^{n} f=c f \text { for some } c \in C
$$

Since f is not constant and T^{n} is ergodic, we have $c \neq 1$.
Suppose that n is the least natural number satisfying $U_{\pi}^{n} f=c f$. The n-dimensional space K generated by $f, U_{T} f, \ldots, U_{T}^{n-1} f$ is invariant under U_{T}, therefore there exists a basis f_{1}, \ldots, f_{n} of K consisting of proper functions of U_{T} :

$$
U_{T} f_{i}=c_{i} f_{i}, \quad \text { with } c_{i} \in C
$$

Each f_{i} is of the form

$$
f_{i}=\sum_{k=0}^{n-1} \alpha_{i k} U_{I}^{k} f
$$

therefore

$$
U_{T}^{n} f_{i}=c f_{i} .
$$

On the other hand

$$
U_{x}^{n} f_{i}=c_{t}^{n} f_{i}
$$

therefore

$$
c_{i}^{n}=c, \quad \text { for every } i
$$

Then $c_{i} \neq 1$ for each i and

$$
\int f_{i} d \mu=\int U_{T} f_{i} d \mu=c_{i} \int f_{i} d \mu
$$

therefore $\int f_{1} d \mu=0$. From

$$
f=\sum_{i=1}^{n} \alpha_{i} f_{i}
$$

we deduce that $\int f d \mu=0$.
By induction we deduce then that for every $n,\left(w_{\bar{T}}{ }^{n}(\Gamma), U_{T}\right)$ is a discrete system, therefore $\left(\cup_{n=0}^{\infty} w_{\bar{T}}{ }^{n}(\Gamma), U_{T}\right)$ is also a discrete system.

Corollary 1. If T^{n} is ergodic for every n, then $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete system.
In fact $\left(C, U_{T}\right)$ is a discrete system, and $\Gamma_{\infty}(T)=\bigcup_{n=1}^{\infty} w_{T}^{-n}(C)$.
Corollary 2. Suppose that T has a discrete model (Γ, U_{T}). If T^{n} is ergodic for every n, then

$$
w_{T}^{-1} \Gamma=\Gamma \quad \text { and } \quad \Gamma_{\infty}(T) \subset \Gamma .
$$

In fact, in this case ($w_{\bar{T}}{ }^{-1} \Gamma, U_{r}$) is again a discrete system and $\Gamma \subset w^{-1} \Gamma$, therefore, by Proposition $3, w^{-1} \Gamma=\Gamma$. Then $\Gamma_{\infty}(T) \subset \Gamma$.

Theorem 9. Suppose that T has a discrete model (Γ, U_{T}).
If for every natural number n, conditions $\gamma \in \Gamma$ and $U^{n} \gamma=\gamma$ imply $\gamma \in C$, then T^{n} is ergodic for every n.

Consider Γ as a direct product $\Gamma=C \cdot \Gamma^{\prime}$, where Γ^{\prime} is a group and an orthonormal basis of $L^{2}(\mu)$.

Consider the homomorphisms $\rho_{n}: \Gamma^{\prime} \rightarrow C$ and $V: \Gamma^{\prime} \rightarrow \Gamma^{\prime}$ such that $U_{T}^{n} \gamma$ $=\rho_{n}(\gamma) V^{n} \gamma$, for $\gamma \in \Gamma^{\prime}$ and $n \in N$.
We shall prove first that T is ergodic. Let $f \in L^{2}(\mu)$ be such that $U_{T} f=f$ and prove that f is constant. We have

$$
f=\sum_{\gamma \in \Gamma^{\prime}} \alpha(\gamma) \gamma
$$

where $\alpha(\gamma)=(f \mid \gamma)$. For every n we have $U_{2}^{n} f=f$ and

$$
U_{T}^{n} f=\sum_{\gamma \in \Gamma^{\Gamma}} \alpha(\gamma) \rho_{n}(\gamma) V^{n} \gamma
$$

therefore

$$
\alpha\left(V^{n} \gamma\right)=\alpha(\gamma) \rho_{n}(\gamma), \quad \text { for } \gamma \in \Gamma^{\prime} \quad \text { and } \quad n \in N
$$

whence

$$
\left|\alpha\left(V^{n} \gamma\right)\right|=|\alpha(\gamma)|, \quad \text { for } \gamma \in \Gamma^{\prime} . \text { and } n \in N .
$$

We shall prove that $\alpha(\gamma)=0$ if $\gamma \neq 1$. We remark that the hypothesis implies that if $\gamma \neq 1$, then $\rho_{n}(\gamma) \neq 1$ for every n.

If $\gamma \neq 1$ and $V^{n} \gamma=\gamma$ for some n, then the equality $\alpha\left(V^{n} \gamma\right)=\alpha(\gamma) \rho_{n}(\gamma)$ becomes

$$
\alpha(\gamma)=\alpha(\gamma) \rho_{n}(\gamma)
$$

therefore $\alpha(\gamma)=0$.
If $\gamma \neq 1$ and $V^{n} \gamma \neq \gamma$ for every n, then the functions $\gamma, V \gamma, V^{2} \gamma, \ldots$ are different from each other, therefore

$$
\sum_{n=1}^{\infty}\left|\alpha\left(V^{n} \gamma\right)\right|^{2} \leqq \sum_{\gamma^{\prime} \in \Gamma^{\prime}}\left|\alpha\left(\gamma^{\prime}\right)\right|^{2}=\|f\|_{2}^{2}<\infty
$$

consequently $\left|\alpha\left(V^{n} \gamma\right)\right|^{2} \rightarrow 0$ as $n \rightarrow \infty$, whence $\alpha(\gamma)=0$.
We deduce that $f=\alpha(1) 1$, that is f is constant, therefore T is ergodic.
We remark now that for every $n,\left(\Gamma, U_{T}^{n}\right)$ is a discrete model for T^{n}, satisfying the conditions of the theorem with respect to U_{T}^{n}, therefore T^{n} is ergodic.
7. Transformations with quasi-discrete spectrum. Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation.

Definition 4. We say that T has quasi-discrete spectrum if T has a discrete model (Γ, U_{T}) with $\Gamma \subset \Gamma_{\infty}(T)$.

To say that T has quasi-discrete spectrum means that there exists a group $\Gamma^{\prime} \subset \Gamma_{\infty}(T)$ which is an orthonormal basis of $L^{2}(\mu)$, such that $U_{T} \Gamma^{\prime} \subset C \cdot \Gamma^{\prime}$.

Here are some properties of transformations with quasi-discrete spectrum:
(1) If T has quasi-discrete spectrum, then $\left(\Gamma_{\infty}(T), U_{T}, \varphi_{\mu}\right)$ is an (not necessarily discrete) algebraic model of T.
(2) If T has quasi-discrete spectrum, then T^{n} has quasi-discrete spectrum, for every $n\left(\right.$ since $\Gamma_{\infty}(T) \subset \Gamma_{\infty}\left(T^{n}\right)$).
(3) If T is conjugate with a transformation with quasi-discrete spectrum, then T has itself quasi-discrete spectrum (see Proposition 1).
(4) Two transformations T and T^{\prime} with quasi-discrete spectrum are conjugate if. and only if the a.e. systems $\left(\Gamma_{\infty}(T), U_{T}, \varphi_{u}\right)$ and $\left(\Gamma_{\infty}\left(T^{\prime}\right), U_{T^{\prime}}, \varphi_{\mu^{\prime}}\right)$ are isomorphic.

We use Proposition 1 and Theorem 1.
For transformations T for which $\left(\Gamma_{\infty}(T), U_{T}\right)$ is itself a discrete model we have, in addition, the following properties:
(5) Let T and T^{\prime} be two measure preserving transformations having ($\left.\Gamma_{\infty}(T), U_{x}\right)$ respectively $\left(\Gamma_{\infty}\left(T^{\prime}\right), U_{T^{\prime}}\right)$ as discrete models.

Then T and T^{\prime} are conjugate if and only if there exists an isomorphism J of $\Gamma_{\infty}(T)$ onto $\Gamma_{\infty}\left(T^{\prime}\right)$ such that

$$
J c=c, \quad \text { for } c \in C
$$

and

$$
J U_{T}=U_{T} J
$$

(6) If T has quasi-discrete spectrum and if there exists a discrete system $\left(\Gamma^{*}, U_{T}\right)$ with $\Gamma_{\infty}(T) \subset \Gamma^{*}$, then $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete model of T and there is no other discrete model of T containing or contained in $\left(\Gamma_{\infty}(T), U_{T}\right)$.

We use Proposition 3.
For transformations with all iterates ergodic we have some more properties:
(7) If T^{n} is ergodic for every n and if $\Gamma_{\infty}(T)$ generates $L^{2}(\mu)$, then $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete model of T and there is no other discrete model of T.

In fact, by Corollary 1 of Proposition 6, $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete system, therefore $\left(\Gamma_{\infty}(T), U_{T}\right)$ is a discrete model of T. By Corollary 2 of Proposition 6, for any other discrete model $\left(\Gamma, U_{T}\right)$ of T we have $\Gamma_{\infty}(T) \subset \Gamma$, therefore $\Gamma_{\infty}(T)=\Gamma$.
(8) Let T and T^{\prime} be two transformations with quasi-discrete spectrum and all iterates T^{n} and $T^{\prime n}$ ergodic.
Then T and T^{\prime} are conjugate if and only if $w_{T} \Gamma_{\infty}(T)$ and $w_{T}, \Gamma_{\infty}\left(T^{\prime}\right)$ are isomorphic by an isomorphism ϕ such that $\phi w_{T}=w_{T}, \phi$ and $\phi c=c$ for $c \in C \cap w_{T} \Gamma_{\infty}(T)$.

We use Theorem 8 and property (5) above.
The following theorem gives a characterization of discrete systems which are models for transformations with quasi-discrete spectrum.

Theorem 10. If (Γ, U) is a discrete system such that

$$
\Gamma=\bigcup_{n=0}^{\infty} w^{-n}(C), \quad \text { where } w(\gamma)=U \gamma \cdot \gamma^{-1}, \text { for } \gamma \in \Gamma
$$

then the corresponding transformation T has quasi-discrete spectrum.
If, in addition, for every natural number $n \in N, \gamma \in \Gamma$ and $U^{n} \gamma=\gamma$ imply $\gamma \in C$, then T^{n} is ergodic for every n.

In fact w is the restriction of w_{T} to Γ, therefore $\Gamma \subset \Gamma_{\infty}(T)$, consequently T has quasi-discrete spectrum.

For the second part of the theorem we use Theorem 9 to deduce that all the iterates T^{n} are ergodic. In this case we have $\Gamma=\Gamma_{\infty}(T)$.

Remark. Theorem 10 and property (8) were proved by Abramov [1].
Example of transformation with discrete model but without quasi-discrete spectrum. Let $X_{n}=\{-1,1\}$ and $\mu_{n}(\{-1\})=\mu_{n}(\{1\})=\frac{1}{2}$ for $n=0, \pm 1, \pm 2, \ldots$ Consider the product $X=\prod_{n=-\infty}^{\infty} X_{n}$, equipped with the product measure μ and the bilateral shift $T\left(x_{n}\right)=\left(y_{n}\right)$, where $y_{n}=x_{n+1}$ for every n. Then T^{n} is ergodic for every n and the only proper value of T is 1 , so that $w_{T}^{1}(C)=C$. It follows that $\Gamma_{\infty}(T)=C$ so that T has not quasi-discrete spectrum.

On the other hand, consider the function $f_{0}: X \rightarrow R$ defined by

$$
\begin{aligned}
f_{0}\left(\left(x_{n}\right)\right) & =-1 & & \text { if } x_{0}=-1 \\
& =1 & & \text { if } x_{0}=1
\end{aligned}
$$

and the group Γ generated by $U_{\pi}^{n} f_{0}, n=0, \pm 1, \pm 2, \ldots$ and by the constants. Then (Γ, U_{T}) is a discrete model of T.
8. Transformations with discrete spectrum. Let (X, Σ, μ) be a probability measure space and $T: X \rightarrow X$ a measure preserving transformation.

Definition 5. We say that T has discrete spectrum if T has a discrete model (Γ, U_{T}) with $\Gamma \subset \Gamma_{1}(T)$.

To say that T has a discrete spectrum means that there exists a group $\Gamma^{\prime} \subset \Gamma_{1}(T)$ of proper functions of U_{T} which is an orthonormal basis of $L^{2}(\mu)$.

Here are some properties of transformations with discrete spectrum:
(1) Every transformation with discrete spectrum is invertible (since $U_{T} \Gamma_{1}=\Gamma_{1}$).
(2) A transformation has discrete spectrum if and only if it is conjugate to a rotation on a compact abelian group equipped with Haar measure (see Corollary 2 of Theorem 6).
(3) Every transformation with discrete spectrum has quasi-discrete spectrum.
(4) If T has discrete spectrum, then $\left(\Gamma_{1}(T), U_{T}, \varphi_{\mu}\right)$ is an (not necessarily discrete) algebraic model of T.
(5) If T has discrete spectrum, then T^{n} has discrete spectrum for every n.
(6) If T is conjugate with a transformation with discrete spectrum, then T has itself discrete spectrum.
(7) Two transformations T and T^{\prime} with discrete spectrum are conjugate if and only if the a.e. systems $\left(\Gamma_{1}(T), U_{T}, \varphi_{u}\right)$ and $\left(\Gamma_{1}\left(T^{\prime}\right), U_{T^{\prime}}, \varphi_{u^{\prime}}\right)$ are isomorphic.

Transformations T for which $\left(\Gamma_{1}(T), U_{T}\right)$ is itself a discrete model, have additional properties:
(8) Let T and T^{\prime} be two measure preserving transformations having ($\left.\Gamma_{1}(T), U_{T}\right)$ respectively $\left(\Gamma_{1}\left(T^{\prime}\right), U_{T^{\prime}}\right)$ as discrete models. Then T and T^{\prime} are conjugate if and only if there exists an isomorphism J of $\Gamma_{1}(T)$ onto $\Gamma_{1}\left(T^{\prime}\right)$ such that:

$$
J c=c, \quad \text { for } c \in C
$$

and

$$
J U_{T}=U_{T} J
$$

(9) If T has discrete spectrum and if there exists a discrete system (Γ^{*}, U_{T}) with $\Gamma_{1}(T) \subset \Gamma^{*}$ then $\left(\Gamma_{1}(T), U_{T}\right)$ is a discrete model of T, and there is no other discrete model of T containing or contained in $\left(\Gamma_{1}(T), U_{T}\right)$.

For ergodic transformations we have some more properties:
(10) If T is ergodic and if $\Gamma_{1}(T)$ generates $L^{2}(\mu)$, then $\left(\Gamma_{1}(T), U_{T}\right)$ is a discrete model of T, and there is no other discrete model containing or contained in $\left(\Gamma_{1}(T), U_{T}\right)$.
(11) Let T and T^{\prime} be two ergodic transformations with discrete spectrum.

Then T and T^{\prime} are conjugate if and only if U_{T} and $U_{T^{\prime}}$ have the same spectrum [4, p. 46].

We use Theorem 8 remarking that $w_{T} \Gamma_{1}(T)$ is the spectrum of U_{T} and $w_{T} \Gamma_{1}\left(T^{\prime}\right)$ is the spectrum of T^{\prime}.

The characterization of discrete systems which are models for transformations with discrete spectrum, is given by the following:

Theorem 11. If (Γ, U) is a discrete system such that

$$
w^{-1}(C)=\Gamma, \quad \text { where } w(\gamma)=U \gamma \cdot \gamma^{-1}, \text { for } \gamma \in \Gamma
$$

then the corresponding transformation T has discrete spectrum.
If, in addition, there exists $n \in N$ such that $\gamma \in \Gamma$ and $U^{n} \gamma=\gamma$ imply $\gamma \in C$, then T^{n} is ergodic.

In fact, w is the restriction of w_{T} to Γ, therefore $\Gamma \subset \Gamma_{1}(T)$, consequently T has discrete spectrum. The second part follows from Theorem 9. In this case we have $\Gamma=\Gamma_{1}(T)$.

When does Γ_{1} coincide with Γ_{∞} ?
Theorem 12. Let T be an ergodic transformation with discrete spectrum, on a probability measure space (X, Σ, μ). We have $\Gamma_{1}(T)=\Gamma_{\infty}(T)$ if and only if the point spectrum of U_{T} contains no root of 1 (except 1 itself).

Suppose first that $\Gamma_{1}=\Gamma_{\infty}$. Let ξ be a proper value of a function $f \in \Gamma_{1}$:

$$
U_{x} f=\xi f
$$

We shall prove that if $\xi^{n}=1$ for some n, then $\xi=1$. In fact, suppose that N is the least natural number with $\xi^{N}=1$. We have then

$$
U_{T} f^{N}=f^{N}
$$

therefore, (since T is ergodic) f^{N} is constant, and we may suppose that $f^{N} \equiv 1$, multiplying f by a suitable number, if necessary. Then f takes on the values $1, \xi, \ldots$, ξ^{N-1} on the corresponding sets $A_{0}, A_{1}, \ldots, A_{N-1}$

$$
f=\sum_{k=0}^{N-1} \xi^{k} \varphi_{A_{k}}
$$

Since $f(T x)=\xi f(x)$, we have

$$
\sum_{k=0}^{N-1} \xi^{k} \varphi_{T}{ }^{-1} A_{k}=\sum_{k=0}^{N-1} \xi^{k+1} A_{k}
$$

therefore $T A_{k}=A_{k+1}$ for $k=0,1, \ldots, N-1$, where $A_{N}=A_{0}$. It follows that $\mu\left(A_{k}\right)$ $=\mu\left(A_{0}\right)>0$ for every k.
If N is odd we take v such that $\nu^{N}=1$; if N is even, we take ν such that $\nu^{N}=-1$.
Define now the function

$$
g=\sum_{k=0}^{N-1} \nu^{k} \xi^{k(k-1) / 2} \varphi_{A_{k}} .
$$

Then we have

$$
U g=v f g .
$$

If fact, if $x \in A_{k}$ and $k=0,1, \ldots, N-2$, we have $T x \in A_{k+1}$, therefore

$$
U g(x)=g(T x)=\nu^{k+1} \xi^{k(k+1) / 2}=\nu \xi^{k} \nu^{k} \xi^{k(k-1) / 2}=\nu f(x) g(x)
$$

and for $x \in A_{N-1}$ we have $T x \in A_{N}=A_{0}$, therefore

$$
U g(x)=g(T x)=1=\nu^{N} \xi^{N(N-1) / 2}=\nu \xi^{N-1} \nu^{N-1} \xi^{(N-1)(N-2) / 2}=\nu f(x) g(x)
$$

since $\xi^{N(N-1) / 2}$ is equal to 1 if N is odd and to -1 if N is even.

It follows that $g \in \Gamma_{2}=\Gamma_{1}$, therefore $\nu f=\alpha \in C$, consequently $f \in C$. Wē deduce then that $U f=f$, therefore $\xi=1$.

Conversely, suppose that $\Gamma_{1} \neq \Gamma_{2}$ and prove that U_{T} has at least a proper value $\alpha \neq 1$ such that $\alpha^{N}=1$ for some N.

Let $g_{0} \in \Gamma_{2}-\Gamma_{1}$. Since Γ_{1} is an orthonormal basis of $L^{2}(\mu)$ and $g_{0} \neq 0$, there exists $h \in \Gamma_{1}$ such that

$$
\left(g_{0}, \bar{h}\right)=\int g_{0} h d \mu \neq 0
$$

If we put $g=g_{0} h$, we have $g \in \Gamma_{2}-\Gamma_{1}$ and $\int g d \mu \neq 0$. There exists a function $f \in \Gamma_{1}$ such that

$$
U_{T} g=f g
$$

There exists also a number $\lambda \in C$ such that

$$
U_{T} f=\lambda f
$$

By induction, we deduce that for every n we have

$$
U_{T}^{n} g=\lambda^{n(n-1) / 2} f^{n} g .
$$

We have $f^{n} \in C$ for some n. In fact, if we had $f^{n} \notin C$ for every n, then (since $f^{n} \in \Gamma_{1}$),

$$
\int U_{T}^{n} g \bar{g} d \mu=\lambda^{n(n-1) / 2} \int f^{n} d \mu=0
$$

therefore, the sequence $g, U g, U^{2} g, \ldots$ would be orthonormal, consequently

$$
\int g d \mu=\int U_{T}^{n} g d \mu=\left(U_{T}^{n} g, 1\right) \rightarrow 0
$$

and we would get a contradiction.
Let N be the least integer $\geqq 0$ such that

$$
f^{N}=\mu \in C
$$

Then

$$
U^{N} g=\lambda^{N(N-1) / 2} \mu g=\xi g
$$

We have

$$
\xi \int g d \mu=\int U_{T}^{n} g d \mu=\int g d \mu \neq 0
$$

therefore $\xi=1$, consequently

$$
U^{N} g=g
$$

Since g is not constant and since Γ_{1} generates $L^{2}(\mu)$, there exists a proper function $k \neq 1$ of Γ_{1} such that $(g, k) \neq 0$. If α is the corresponding proper value:

$$
U_{\mathrm{T}} k=\alpha k
$$

we have $\alpha \neq 1$ and

$$
(g, k)=\left(U^{N} g, k\right)=\left(g, U^{-N} k\right)=\left(g, \alpha^{-N} k\right)=\alpha^{N}(g, k)
$$

therefore $\alpha^{N}=1$.

Bibliography

1. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513-530. (Russian)
2. N. Dinculeanu and C. Foias, A universal model for ergodic transformations on separable measure spaces, Michigan Math. J. 13 (1966), 109-117.
3. -_, Algebraic models for measures, Illinois J. Math. 12 (1968), 340-351.
4. C. Foias, Automorphisms of compact abelian groups, as models for measure-preserving transformations, Michigan Math. J. 13 (1966), 349-352.
5. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, No. 3, Tokyo, 1956.
6. A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537-546.
7. K. Jacobs, Lecture notes on ergodic theory, Aarhus Universitet, Aarhus, 1962/1963.

University of Bucarest,
Bucarest, Romania

