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ABSTRACT. Let M be a connected regular linear algebraic monoid with zero

and group of units G. Suppose G is nearly simple, i.e. the center of G is one

dimensional and the derived group G' is a simple algebraic group. Then it

is shown that S = M\G is an idempotent generated semigroup. If M has a

unique nonzero minimal ideal, the converse is also proved. It follows that if

Go is any simple algebraic group defined over an algebraically closed field K

and if $: Go —» GL(n,K) is any representation of Go, then the nonunits of

the monoid M($) = K<b(Go) form an idempotent generated semigroup.

It has been shown by J. Erdos [3] (see also [2]) that any nonsingular matrix

over a field is a product of idempotent matrices. Let K be an algebraically closed

field. Our interest is in connected linear algebraic monoids with zero. This means

by definition that the underlying set is an irreducible affine variety and that the

product map is a morphism (i.e. a polynomial map). Let G denote the group

of units of M, S = M\G. We are interested in knowing when S is idempotent

generated. We will only consider the situation when G is a reductive group. This

means [1] that the unipotent radical of G is trivial. Then by [8, 10], M is unit

regular, i.e. M = E(M)G where E = E(M) = {e G M|e2 = e}. If X C M, let

E(X) = X n E(M) and (X) the semigroup generated by X. Let f^,^,^

denote the usual Green's relations on M (see [5]). If a, b G M, then a ¿f b means

MaM = MbM, a .9? b means aM = bM, a 5? b means Ma = Mb, ¿F = âl n i?.

The following result was proved by the author [9, Theorem 2.7].

THEOREM l [9]. Suppose S = M\G has a maximum ^-class (i.e. S is an

irreducible variety).  Then S is an idempotent generated semigroup.

Let R, G' denote the radical, derived group of G, respectively. Then [1, §1.8], R

is contained in the center of G, G' is semisimple and G = RG'. Suppose dim R > 1.

Then there exists e G E(R), e ^ 0,1. There exists g G G such that eg ^ e. If

eg G (E(M)), then eg = ei • • ■ ek for some e¿ G E(M), i = 1,... ,k. Then since e is

a central idempotent, eg — e\ ■ ■ ■ e'k, where e\ = ee¿ G E(M) and e\ < e. This is a

contradiction since M is a matrix semigroup. Thus S = M\G is not idempotent

generated. We will say that G is nearly simple if dim R = 1 and G' is a simple

algebraic group, i.e. G' has no nontrivial closed connected normal subgroups.

THEOREM 2. Suppose G is nearly simple. Then S = M\G is an idempotent

generated semigroup.
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PROOF. Let R denote the radical of G, G' the derived group of G. Since

dimi? = 1, we see that E(R) = {0,1}. Also, in any faithful linear representation

of M, every element of G' has determinant 1. It follows that G' is closed in M.

Let e e E = E(M), e ^ 0,1. Let Ge denote the connected component of the group

{g G G|<7e = eg = e}. Then by [5], e G Ge. Let Gi denote the subgroup of G

generated byi_1Gei (isG). Then Gi is a closed connected normal subgroup of

G, e G Gi. So Gi $£ i?. Gi ^ G'. Since G is nearly simple, we see that Gi = G.

Let £0 = (£(•/)),

H = {geG\ege(E0)}.

Let / G £o, g e H. By [6, Lemma 1.12], there exist ex, fi G £o such that e .S"

ei 31 fi 5? f. Then ei0 = ei(eff) G (E0). So ^e! = ¡7(ei<7)<7-1 G (E0). Hence

ff/i = (9ei)fi e (Eo). So /l£? = r'iff/ijff € <£0). Thus fg = f(fig) e (E0). It
follows that EqH Ç (Er¡). In particular x lHx = H for all x eG. Now let a,b e H.

Then ea,e6 G (£0)- So 6e = b(eb)b'1 G (£b). Thus 6ea = (be)(ea) G (£b). Hence

eab = b~1(bea)b G (£0). Thus ab G i/. Since Ge Ç H, we see that G = G, Ç H.

Hence H — G. Since M is unit regular, we see that S Ç (E).

COROLLARY 1. Let Go be a simple algebraic group, $: Go —> GL(n,K) any

representation. Let M($) denote the Zariski closure of K$(Go) in^£n(K). Then

the nonunits of M($>) form an idempotent generated semigroup.

We now consider the situation dual to that in Theorem 1, namely when M\{0}

has a minimum ^-class. Equivalently, the intersection of all nonzero ideals of M

is again nonzero. Renner [11, Corollary 8.3.3] has characterized these monoids

as being exactly those having an idempotent separating (equivalently finite in the

algebraic geometry sense) irreducible, linear representation. Moreover, in such a

case the radical R of G js one dimensional [11, Lemma 8.3.2].

THEOREM 3. Suppose M has a unique nonzero minimal ideal. Then S = M\G

is an idempotent generated semigroup if and only if G is nearly simple.

PROOF. Let R denote the one dimensional radical of G and Jo the nonzero

minimum ^-class of M. So Jo U {0} is the minimum nonzero ideal of M. If G is

nearly simple, then by Theorem 2, S is idempotent generated. Conversely suppose

that S Ç (E) where E = E(M). Suppose G is not nearly simple. Then G = GiG2

where Gi,G2 are proper closed connected normal subgroups of G containing R,

and such that gig2 = g2gi for all <?, G G¿, i' = 1,2. Let M¿ denote the closure of G,

in M, i = 1,2. Since R ^ G,, there exists e G E(Mi), e ¿ 0,1. By [5], J = GeG

is the ^-class of e in M. By [5], any element of E( J) is conjugate to e. Since G2

centralizes Mi and G = GiG2, we see that E(J) Ç Mi. Let g e G, a = eg. Then

a — ei... em for some e\,..., em G E. Let

e'i = e¿-- •emí/~1eei • • -e, G £(J),        » = l,...,m.

Then with eo = e, we have for i = 1,..., m,

e0- ••eî_>e- = e0 • ■ •emí/""1ee1 •••e< = e^g^eei • • -ex = eei • • -e¿.

So eej-'-e^ = eei • • • em = a. Thus a G (E(J)) Ç Mi. Henee (?e = gag-1 G

(£(J)) Ç Mi. It follows that J = GeG Ç Mi. Hence MeM = J Ç Mj. Thus
Jo Q Mi. So J0 is centralized by G2. Similarly J0 Ç M2 and J0 is centralized by
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Gi. Thus J0 is centralized by G. So if / G E(J0), then by [7, Theorem 2.3], / G R.
This contradicts the fact that dimi? = 1, proving the theorem.

The difference between Theorems 1 and 3 is illustrated by the following elemen-

tary examples.

EXAMPLE 1. Let M = {A® B\A.B e JT2(K),àetA = detß}, G the group

of units of M. Then 5 = M\G has a maximum ^-class and by Theorem 1, S is

idempotent generated. Note that G is not nearly simple.

EXAMPLE 2. Let M = {A® B\A,B e ,£2(K)}, G the group of units of M,

5 = M\G. Then M has a unique nonzero minimal ideal. Clearly G is not nearly

simple and hence by Theorem 3, S is not idempotent generated.
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