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Abstract

The bidomain equations are considered to be one of the most complete descriptions of the 

electrical activity in cardiac tissue, but large scale simulations, as resulting from discretization of 

an entire heart, remain a computational challenge due to the elliptic portion of the problem, the 

part associated with solving the extracellular potential. In such cases, the use of iterative solvers 

and parallel computing environments are mandatory to make parameter studies feasible. The 

preconditioned conjugate gradient (PCG) method is a standard choice for this problem. Although 

robust, its efficiency greatly depends on the choice of preconditioner. On structured grids, it has 

been demonstrated that a geometric multigrid preconditioner performs significantly better than an 

incomplete LU (ILU) preconditioner. However, unstructured grids are often preferred to better 

represent organ boundaries and allow for coarser discretization in the bath far from cardiac 

surfaces. Under these circumstances, algebraic multigrid (AMG) methods are advantageous since 

they compute coarser levels directly from the system matrix itself, thus avoiding the complexity of 

explicitly generating coarser, geometric grids. In this paper, the performance of an AMG 

preconditioner (BoomerAMG) is compared with that of the standard ILU preconditioner and a 

direct solver. BoomerAMG is used in two different ways, as a preconditioner and as a standalone 

solver. Two 3-D simulation examples modeling the induction of arrhythmias in rabbit ventricles 

were used to measure performance in both sequential and parallel simulations. It is shown that the 
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AMG preconditioner is very well suited for the solution of the bidomain equation, being clearly 

superior to ILU preconditioning in all regards, with speedups by factors in the range 5.9–7.7.

Index Terms

Bidomain equations; computational efficiency; numerical simulation; operator splitting; parallel 
computing; unstructured grids; whole heart models

I Introduction

The bidomain equations [1] are considered as one of the most complete descriptions to 

model the spread of excitation in cardiac tissue. Particularly when bath loading effects, 

extracellular stimulation or the magnetic field are to be modeled accurately, using a 

bidomain approach is the only choice [2], [3]. Although the bidomain equations are solved 

straight-forwardly on current desktop computers up to some hundreds of thousands of 

unknowns, models of entire hearts at reasonably fine discretizations (< 250μm) lead to 

systems with millions of unknowns. The solution of these equations still poses a tremendous 

computational challenge. Efficient numerical methods and the application of parallel 

computing techniques are mandatory.

Typically, the numerical efficiency is improved by applying operator splitting techniques 

which avoid the solution of a large nonlinear system at every time step [4]–[7]. The solution 

process is broken down into a three step scheme involving the solutions of a parabolic partial 

differential equation (PDE), an elliptic PDE, and a nonlinear system of ordinary differential 

equations (ODEs). The parabolic PDE is solved efficiently in parallel environments using a 

forward Euler method (matrix-vector product only and no linear system) or the implicit 

Crank-Nicholson method (strongly diagonally dominant linear system solved efficiently 

with cheap, iterative methods). Further, the ODEs, although time consuming with sequential 

codes, parallelize with linear scaling since the state variables do not diffuse and, thus, no 

communication is needed (an embarrassingly parallel problem). With bidomain simulations, 

computation is clearly dominated by the algebraic system associated with the elliptic part 

[4].

An efficient way of solving the large linear algebraic system that arises from the 

discretization of the bidomain equations has been a topic of research since 1994 [8]. For 

large scale problems, the preconditioned conjugate gradient (PCG) method has become the 

standard choice for an iterative solver. Although the PCG method is very robust (with 

respect to convergence), it is not necessarily efficient with respect to speed, depending 

strongly on the choice of a proper preconditioner. The most efficient preconditioner reported 

so far is a geometric multigrid (GMG) preconditioner which typically performed 2–3 times 

better than ILU when simulating electrical activity on regular structured grids [9].

Quite often, the use of unstructured grids is preferred. The reasons are twofold. First, 

unstructured grids allow a better geometric representation of organ boundaries and avoid 

problems with artifactual currents, as evoked by jagged boundaries on structured grids when 

defibrillation strength shocks are studied [10], [11]. Second, the spatial discretization of a 
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mesh can be reduced with distance from the cardiac surfaces which leads to significantly 

fewer unknowns without any negative impact on numerical accuracy. Unfortunately, with 

unstructured grids, the construction of a proper GMG preconditioner is nontrivial. The 

explicit generation of coarser grids, along with the creation of prolongation and restriction 

operators that transfer the information between different grid levels, become complex tasks. 

In this case, another class of multilevel methods, referred to as algebraic multigrid (AMG), 

are an appealing alternative. For AMG methods the coarser grids and associated transfer 

operators are generated directly from the system matrix itself [12].

In this work, we focus on the solution of the linear system associated with the elliptic 

portion of the bidomain equations using the BoomerAMG code [13] as a preconditioner for 

the iterative conjugate gradient (CG) solver and as a standalone solver. Two realistic 

simulation scenarios were considered as benchmarks for both sequential and parallel runs. In 

the sequential case, induction of an anatomical reentry in a 3-D slice (111 589 unknowns) of 

rabbit ventricles was simulated. A larger setup, the induction of an arrhythmia in a full 3-D 

rabbit ventricular model (862 515 unknowns) with two plate electrodes, was chosen to 

benchmark the parallel performance of the methods. Performance obtained with the AMG 

preconditioner was compared against a standard preconditioner based on incomplete LU 

factorization (ILU). Additionally, sequential performance was compared against a sparse 

direct solver [14] which is known to perform well for small scale problems.

II Methods

A Bidomain and Operator Splitting

The bidomain equations were decoupled by operator splitting [15], [16]

(1)

(2)

(3)

where ϕe and Vm are the extracellular potential and transmembrane voltage, respectively; 

represents the ionic current variables;  and  are conductivity tensors of intracellular and 

extracellular spaces, respectively; σb is the isotropic conductivity of the fluid in which the 

heart is immersed (bath and cavities); Cm is the capacitance per unit area and β is surface to 

volume ratio; iion and g model ionic currents and specify the cell membrane model.
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At the tissue-bath interface, continuity of the normal component of the extracellular current 

and continuity of ϕe were enforced. The normal component of the intracellular current 

vanished at all tissue boundaries whereas the normal component of the extracellular current 

vanished at the boundaries of the bath. A grounding electrode was modelled by enforcing 

Dirichlet boundary conditions at one lateral face of the bath.

Numerically, a three step scheme was applied involving the solution of a parabolic PDE, an 

elliptic PDE and a nonlinear system of ODEs at each time step. Both the parabolic PDE and 

the nonlinear ODE systems were solved via the explicit forward-Euler scheme [4]

(4)

(5)

(6)

(7)

where Aξ is the discretized  operator; Δt is the time step; Vk,  and 

are the temporal discretizations of Vm, ϕe, and , respectively, for time equal to kΔt. The 

system of equations was solved using the finite element method, employing linear elements 

and lumped mass matrices.

B Benchmark Setups

Based on published geometric data [17], a rabbit ventricular geometry model with smooth 

epicardial and endocardial surfaces and anatomically realistic fiber orientation (RCV) was 

discretized using an unstructured grid with an average discretization of 250 μm. The 

bidomain equations were discretized on this nonuniform grid using linear tetrahedral 

elements with time steps between 8 μs and 20 μs. Simulations were carried out with Cm = 1 

μF/cm2 and β = 1400 cm−1. Initially, conductivity along the fibers was set to σil = 1.74 

mS/cm and σel = 6.25 mS/cm, and transverse to the fibers to σit = 0.19 mS/cm and σet = 

2.36 mS/cm, in the intracellular and interstitial domain, respectively [18]. The conductivity 

of the surrounding fluid was set to σb = 1.0 mS/cm.

1) Sequential Benchmark—A FEM mesh of a slice through the rabbit ventricle (RVS) 

of 0.5 mm thickness was generated, resulting in 111 589 and 59 292 degrees of freedom for 

the elliptic and the parabolic problems, respectively. The computational workload posed by 

the elliptic problem, Lseq = Nυ × Nt, was 2.78 × 109 with Nυ= 111 589 and Nt = 25 × 103 
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(500 ms integrated at a time step of 20 μs). An extracellular current stimulus was applied to 

induce action potential propagation. The entire face of bath next to the left ventricular free 

wall was grounded (Fig. 1). At 85 ms, another stimulus was applied at a slightly shifted 

location at the critical recovery isoline, leading to unidirectional block. An anatomical 

reentry ensued and was sustained over the entire observation period of 500 ms (Fig. 1). The 

active membrane behavior was described by the Beeler-Reuter Drouhard-Roberge ionic 

model as modified by Skouibine et al. [19].

2) Parallel Benchmark—Parallel performance was benchmarked using the RCV model. 

The elliptic and parabolic problems were associated with 862 515 and 547 680 degrees of 

freedom, respectively. The computational workload associated with the elliptic problem, was 

Lpar = 2.2 × 1010 with Nυ = 862515 and Nt = 25 × 103 (200 ms integrated at a time step of 8 

μs).

The active membrane behavior was described by the rabbit ventricular Puglisi model [20] 

incorporating an electroporation current [21] and a hypothetical Ia current [22]. Two plate 

electrodes, a stimulation electrode and a grounding electrode, were used to stimulate the 

ventricles by delivering a train of ten pulses. Subsequently, electric activity was simulated 

for another 2 s.

To determine suitable parameters which lead to a reentry under the given protocol, the basic 

cycle length (BCL) of the pulses and the wave length of the tissue, λ, given by

(8)

were varied. The wavelength was varied by multiplying all conductivities with the square of 

the desired reduction in wave-length. To speed up this time-consuming procedure, 

depending on the availability at the NGS and HPCx supercomputing facilities provided by 

the Integrative Biology Project [23], between 32 and 128 processors were employed. From 

the series of simulations, a standard was chosen with a BCL of 200 ms and λ reduced to 

0.66 of the nominal λ, as computed with the default conductivity settings, leading to a 

sustained figure of eight reentry circulating around the apex [Fig. 2 (bottom panels)].

After analyzing the number of iterations per time step, Ns, of the selected simulation run as a 

function of the right-hand side (RHS), b, where b corresponds to the terms on the RHS of 

(1), two representative 200-ms sequences were chosen for benchmarking: 1) a 200-ms 

sequence starting at the onset of the first pacing pulse and ending before the onset of the 

subsequent pulse (Fig. 2, RCV-Pacing); 2) a 200-ms figure-of-eight reentry sequence 

following immediately after the last pacing pulse (Fig. 2, RCV-Reentry).

C Elliptic Solvers

The iterative CG [24] method was used to solve the linear system
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(9)

associated with the elliptic equation (1). Preconditioning techniques speed up the 

convergence of the CG by solving a better conditioned equivalent system B−1 AB−T(BTx) = 

B−1b, where M = BBT is the preconditioner associated with. The more similar M is to A, the 

faster the convergence is. On the other hand, preconditioning involves the solution of a linear 

system

(10)

for every iteration i, where pi relates to the Krylov space construction [24] and ri is the 

preconditioned residual. A more complex preconditioner means fewer iterations are 

necessary to achieve convergence but at a higher computational cost for each iteration.

For the sequential test case, we compared the performance of three different methods: 

BoomerAMG (BAMG) [13] as a preconditioner for CG; the traditional ILU-CG method; 

and the sparse direct SuperLU solver [14]. For the parallel benchmarks, only BAMG-CG 

and ILU-CG were considered. Finally, to examine whether further performance gains can be 

achieved by setting up the BoomerAMG method as a solver (BAMG-S), both sequential and 

parallel benchmarks were carried out with this configuration.

1) Incomplete LU Factorization—To solve the elliptic PDE, ILU factorization is 

widely used as a preconditioner for the CG method and can be considered as the standard 

method [4]. During parallel runs, the ILU preconditioner was based upon block Jacobi, i.e., 

ILU was applied to the main diagonal block of the local matrix A, thus avoiding extra 

communication.

2) BoomerAMG Preconditioner—AMG consists of two parts. First, the setup builds a 

hierarchy of coarser grids and operators from the fine grid operator. The goal is to generate 

an operator hierarchy similar to GMG. Second, a normal multigrid cycle uses this 

automatically generated hierarchy in an iteration or in a preconditioner.

The crucial point in the setup is the coarsening, i.e., the reduction of fine level information 

onto the next coarser level. To select the coarse grid points in AMG, we seek those 

unknowns xi which can be used to represent the values of nearby unknowns, xj. This is done 

via the concepts of dependence and influence. We say that the point i depends on the point j 

or j influences i, if the value of the unknown xj is important in determining the value of xi 

from the ith equation, i.e., j influences i if, for i ≠ j, we have −aij ≥ θ maxk≠i {−aik} for 0 ≤ θ 
≤ 1 where θ is a scalar between 0 and 1. A coarse grid will be made of points which strongly 

influence many other points in the fine grid.

BAMG uses the parallel Falgout-coarsening strategy which is a combination of the classical 

Ruge-Stüben coarsening [25] and CLJP coarsening [13]. First, each processor domain is 

coarsened using the classical algorithm. Then, the coarse grid points in the interior of each 
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processor domain are taken as the first independent set for the CLJP algorithm which 

proceeds until all points have been assigned. This way, the interior of a domain is coarsened 

as in the classical method, while the boundaries are coarsened CLJP-like. A Hybrid Gauss–

Seidel/Jacobi method was used for relaxation on all grids but the coarsest, where Gaussian 

elimination was used [26].

3) BoomerAMG as a Standalone Solver—Further performance gains can be 

expected from using AMG directly as a solver. If the AMG setup produces high quality 

coarse meshes and operators such that the condition number of the preconditioned system 

(10) is close to unity then the AMG preconditioner may perform well when applied as a 

solver itself. This could save some arithmetic work per iteration compared with the 

preconditioned CG and, therefore, may result in a further speedup of the solver.

4) Sparse Direct Solver SuperLU—Direct solvers are known to be the fastest solver 

for the elliptic portion of the bidomain equations [4] in the case of small-scale 

discretizations (up to some hundred of thousands unknowns), like the sequential test case in 

this paper. SuperLU [14] was chosen as a sparse direct solver since it integrates seamlessly 

with the underlying mathematical library [27] upon which our simulator is based [28].

D Parameter Tuning

Both the RVS and the RCV were used to carry out short simulations consisting of a 5-ms 

pacing pulse delivered via two plate electrodes and 5 ms of ensuing activity. Parameters of 

each preconditioner were tuned to minimize the execution time of this sequence using a 

single processor.

BAMG—First, the algorithm parameters which had major impact on the performance were 

identified. With BAMG-CG, performance depended mainly on the strong threshold 

parameter θ, which has to be chosen in a range between 0 and 1. Weak connections of a fine 

grid node i, that is, matrix entries which satisfy −ai,j < θ maxk≠i {−ai,k} are usually ignored 

when determining the next coarser level. Increasing θ leads to smaller coarse grids, but 

worsen convergence rates [29]. To determine the optimal setting, θ was varied between 0 

and 1 in steps of 0.1. Further, the effects of reducing the number of grid sweeps, i.e., the 

number of relaxations per level, on the fine grid and on both up and down cycle on the solver 

performance was examined.

ILU—The performance of ILU can be improved during sequential runs by increasing the 

allowed level of fill-in. With increasing fill-in, ILU approaches the full LU decomposition 

which is the perfect preconditioner, and known to perform best on such small-scale 

problems. However, since the goal was good parallel performance for large scale problems, 

we refrained from doing so and kept the fill-in level at zero to preserve the sparsity pattern. 

Based on experiences gathered in previous studies [9], increasing the fill-in level is not 

efficient when going parallel, since the preconditioner is applied to the main diagonal block 

which leads to a decrease in quality of the preconditioner. This can be compensated by using 

overlapping preconditioning for the entire system (instead of using the nonoverlapping 
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Block Jacobi preconditioner), but at the price of a significant increase in communication 

which again, depending on the network infrastructure, may hurt parallel performance.

E Examination of Convergence Behavior

The convergence behavior of all iterative methods under study was analyzed by comparing 

the decrease of the unpreconditioned L2 norm of the residual at iteration i, ||ri|| = ||Axi − b||. 

The second time step (the first time step where a nonzero initial guess was available) of the 

sequential RVS test case was chosen for this purpose.

F Memory Usage

The memory overhead introduced by a preconditioner or a solver was measured during 

sequential runs for both the RVS and the RCV setup. Setting up the preconditioner or 

factorization of the system matrix happened during the first solver step when all other data 

were loaded into memory already. Hence, the memory overhead of a particular method 

could be determined by measuring the difference in memory usage immediately before and 

after the first solver step.

G Performance Metrics

BAMG-CG, ILU-CG, BAMG-S, and SuperLU [14] were used to solve the sequential test 

case. The parallel test cases were solved with BAMG-CG, BAMG-S, and ILU-CG only. The 

BAMG preconditioner was set up with the optimized settings which were determined by the 

parameter tuning procedure previously described. To compare the performance of the 

respective methods, the following parameters were considered: Ns, the number of iterations 

per time step; Ts, the execution time required per time step; Nt, the total number of 

iterations; Tt, the total execution time; and Tit, the execution time per iteration.

For all iterative methods under study, the solution of the previous time step was used as the 

initial guess. For the CG algorithm, the stop criterion ||ri|| < δ was used where δ was chosen 

to be 10−6 for the sequential test case. Since the chosen criterion depends on the problem 

size, the δ for the parallel test case was scaled by  where Nυ,par, and Nυ,seq 

relate to the respective problem sizes. The BAMG-S method differed from all other methods 

since the BAMG implementation uses a relative tolerance as its stop criterion. Nevertheless, 

to allow performance comparisons with all other methods where absolute tolerances were 

specified, we have chosen a relative tolerance such that the L2-norm of the final residual of 

all solver steps was smaller than the respective absolute tolerances.

Parallel runs were carried out either at the Kepler Cluster of the Karl Franzens University 

Graz or at the Oxford Linux Clusters provided by the UK National Grid Service (NGS). 

Runs using between 4 and 16 processors were carried out on the Kepler cluster, a 16 node 

dual AMD Opteron 248, 2-GHz system with 4 GB RAM per node running a 64-bit Linux 

Kernel, and interconnected with a low latency Infiniband interconnect (Infiniband Mellanox 

MTS 2400, Mellanox Technologies Inc., Santa Clara, CA). Only one processor per node was 

used to avoid a mixed mode with different latencies depending on whether communication 

occurred over the Infiniband interconnect or via shared memory.
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Further, a subset of the benchmarks was carried out at the Linux clusters provided by the UK 

National Grid Service to examine parallel performance using a higher number of processors 

between 16 and 64. At the Oxford NGS cluster, 64 nodes equipped with dual Intel Xeon 

3.06-GHz CPUs and 2 GB RAM with a Myrinet high-speed message passing interconnect 

were available. Benchmarks were carried out in a mixed mode using shared memory for 

message passing within a single node, and the Myrinet interconnect between the nodes.

H Implementation

Benchmarks were carried out with the CARP simulator [28] linked against the MPI [30] 

based PETSc C library v2.2.1 [27], the SuperLU library [14], and the Hypre library v1.9.0b 

[29] to access the BAMG preconditioner.

III Results

A Parameter Tuning

1) Boomer AMG—Short 10-ms simulation sequences of both RVS and RCV test cases 

were carried out on a single processor. Default parameter settings were chosen for the 

BAMG algorithm; only θ was tuned to optimize performance. Setting θ = 0.0 led to the 

fastest execution times for both setups (Fig. 3) whereas with θ = 1.0 the execution time 

increased dramatically. With θ = 0.0, it was also tested whether the reduction of grid sweeps 

could further improve the performance. Reducing the number of partial sweeps to one on the 

fine grid and on both up and down cycle (default setting is two) reduced the execution time 

per iteration, but increased the number of iterations for convergence. In some cases, this led 

to even better performance, while in other cases a slight decrease in performance was 

observed. With the setup θ = 0.0 which led to the fastest execution, BAMG used seven and 

six coarsening levels for the RVS and the RCV test case, respectively, as computed by the 

Falgout-CLJP coarsening method.

B Convergence Behavior

With BAMG the residual decreased at a rate of approximately one order of magnitude per 

iteration step (the average rate of decrease, measured as the ratio between subsequent 

residuals, ri+1/ri, was 11.5) whereas with ILU-CG, the rate of decrease was much smaller 

and nonmonotonic (Fig. 4). After the initial iteration, the residual r0 with BAMG was more 

than one order of magnitude smaller than with ILU (0.033 versus 0.41).

C Memory Usage

The memory overhead caused by the preconditioning was measured for ILU-CG, BAMG-

CG, BAMG-S, and SuperLU. As expected, ILU-CG is the most efficient in this regard, 

introducing the least memory overhead. No noticeable differences were measured between 

BAMG-CG and BAMG-S. Memory usage of the direct SuperLU is excessive limiting its 

usage to small scale applications like the RVS setup. The RCV setup could not be factorized 

with SuperLU, not even when 8 GB of memory were available. Results are summarized in 

Table I.
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D Sequential Benchmark

The RVS problem was solved sequentially using ILU-CG, BAMG-CG, BAMG-S, and 

SuperLU. BAMG-CG turned out to be the fastest iterative method under study being 7.7 

times faster than ILU-CG. Although with BAMG-CG the cost per iteration was larger and 

the average time per solver step, Ts̄, was longer (Table II), the average number of iterations, 

N̄s, was lower than with ILU-CG, which led to an overall faster execution. As expected for 

this small scale problem, the direct SuperLU solver was the fastest method with an average 

solution time of 0.55 s, being about 2.9 times faster than BAMG-CG. A slight performance 

gain of about 7% over BAMG-CG could be achieved by applying BAMG as a standalone 

solver.

BAMG-CG depended only weakly on the RHS b. Both Ns and Ts were almost constant over 

the entire simulation sequence, whereas with ILU-CG, a strong dependency on b associated 

with a large variation of Ns and Ts around the average values N̄s and Ts̄ was observed [Fig. 

5(A) and (B) and Table II].

E Parallel Benchmark

Two simulation sequences, RCV-Pacing and RCV-Reentry, were solved in parallel to 

compare the performance of ILU-CG with BAMG-CG. Running on the Kepler cluster with 

Np between 4 and 16, BAMG-CG clearly outperformed ILU-CG being 5.9 to 6.9 times 

faster. To examine possible performance benefits with a larger Np, a subset of the 

benchmarks (RCV-Reentry) was carried out on the NGS clusters using between 16 and 64 

CPUs. In this case, the performance gains with BAMG were slightly smaller, between 3.3- 

and 4.7-fold, than those measured at the Kepler cluster with a smaller Np. A detailed 

overview is given in Table III.

1) Parallel Scaling With Np ≤ 16—The solution of the elliptic PDE scaled well with 

both methods, independently of which sequence, pacing or reentry, was simulated (Fig. 6). 

Scaling efficiency was slightly better with 4–8 processors (between 86% and 93%) than with 

8 to 16 (between 76% and 84%). Differences in parallel scaling between the methods were 

almost negligible.

Simulating the reentrant activation sequence took slightly longer than the pacing sequence 

[Fig. 6(B)]. With ILU-CG, when increasing the number of processors, Np, from 4 to 16, the 

total solution time reduced from 152.3 and 190.7 h down to 46.2 and 60.6 h for the pacing 

and the reentry sequence, respectively. With BAMG-CG both sequences could be computed 

significantly faster. Execution times decreased from 23.7 and 29.8 h with Np = 4 down to 7.8 

and 8.8 h Np = 16 for the pacing and the reentry sequence, respectively, being between 5.9 

and 6.9 times faster than ILU-CG. Moreover, BAMG-CG with Np = 4 easily outperformed 

ILU-CG with Np = 16 by a factor of ≈2 [Fig. 6(B)]. Since the parallel scaling behavior of 

both methods was very similar [Fig. 6(A) and (B)], the performance ratios between the 

methods were basically independent of Np.

Further, the total number of iterations, Nt, and the time per iteration, Tit, depended on both 

Np and the type of activity. That is, an increase of Nt with Np indicates that the quality of a 
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preconditioner suffers from parallelization. Ideally, Tit should decrease with Np in a linear 

fashion. A decrease of Tit less than linear is caused by communication.

With ILU-CG, an increase in the number of iterations, ΔNt, as a function of Np was 

observed. With Np = 16, the increase relative to the case with Np = 4 turned out to be 7.3% 

and 6.8% for the reentry and the pacing sequence, respectively [Fig. 6(C)]. During the 

reentry sequence when BAMG-CG was used, Nt did not depend on Np at all, but during the 

pacing sequence a linear relationship was observed leading to an increase ΔNt of 4.2%.

The time for a single iteration, Tit, decreased with Np. With ILU-CG, Tit decreased from 122 

and 136 ms to 35 and 33 ms for the pacing and the reentry sequence when Np was increased 

from 4 to 16 whereas with BAMG-CG, Tit dropped from 1048 and 1064 ms to 332 and 315 

ms. Parallel scaling of Tit was always slightly better with ILU than with BAMG. Further, 

increasing Np from 8 to 16 always scaled better compared to increasing from 4 to 8. As 

expected, Tit did not depend on the simulated activity [Fig. 6(D)].

Major differences in the relationship of Ns and b were observed. During the pacing 

sequence, all methods depended on b, but to a different degree. Ns was highest during the 

stimulation period, but decreased subsequently starting at 10 ms [Fig. 7(A)]. A minimum in 

Ns was reached when the entire ventricles were depolarized up to the plateau level around 

100 ms followed by a small increase around 140 ms [Figs. 7(A) and Fig. 2], coinciding 

approximately with the onset of repolarization. In general, the dependency of the BAMG 

method on b was very weak. In fact, during the reentry sequence there was virtually no 

dependency with Ns being constant (4 iterations) for all time steps [Fig. 7(B) and bottom of 

Table III, column Ns], except for the first time step where 7 iterations were needed since no 

initial guess was available.

2) Parallel Scaling With Np ≥ 16—With larger Np between 16 and 64, performance 

gains with BAMG-CG over ILU-CG were slightly smaller, between 3.3- and 4.7-fold, and 

depended on Np. ILU scaled better than BAMG when Np was increased from 16 to 32 

processors (2.03 versus 1.45). When going from 32 to 64 both methods scaled identically 

(1.48), but at a level of low efficiency. This is an indication that the problem size, Nυ, is too 

small for such a large Np, leading to an unfavorable ratio between workload per node and 

communication. For further details see Table III.

IV Discussion

A parallel AMG method was applied for the first time as a preconditioner for the iterative 

CG method to solve the elliptic PDE associated with the bidomain equations. Several 3-D 

test cases of varying degree of complexity were chosen to benchmark the preconditioner 

performance, covering a wide range of standard applications of a bidomain model. 

Benchmark results clearly demonstrate that the AMG preconditioner for the CG iterative 

solver is very well suited for this particular problem, giving significant performance benefits 

over the traditional ILU-CG method. The AMG method was superior to ILU-CG in almost 

all regards, independently of whether small scale sequential runs were carried out, or larger 

setups were simulated using up to 64 processors of a Linux cluster.
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A Parameter Tuning

BAMG is a sophisticated method with a multitude of parameters which can be adjusted to 

optimize performance. In this paper, we refrained from exploring the entire parameter space 

and investigated only the effect of θ and the number of sweeps on BAMG. The focus of this 

study was to examine whether AMG preconditioning has the potential to speed up the 

solution of the elliptic problem significantly compared to the standard method, and not to 

find the optimal setting for this particular setup.

It is worth noting that the optimal θ = 0 found in this paper is quite different from those 

values recommended by the developers of BoomerAMG [29]. For 2-D and 3-D cases, 0.25 

and 0.5 are recommended, respectively,. This discrepancy may be attributed to the fact that 

the recommended values refer to the solution of steady-state problems whereas in this paper 

a time-dependent problem was solved. When solving the time-dependent bidomain 

equations, the costs for the setup phase are negligible compared to the overall execution 

time. For instance, the 50-ms RCV pacing sequence with Np = 16 executed in 8.8 h where 

only ≈20 secs were contributed by the setup phase.

B Convergence Behavior and Error Tolerance δ

Clearly, the convergence history shown in Fig. 4 suggests that the chosen error tolerance δ 
has a major impact on the performance data reported in this paper. It can be expected that 

choosing a smaller δ will favor the AMG method, whereas, allowing a larger δ would favor 

ILU. In [4], it was shown that with the δ of 10−6 chosen in this study, the extracellular 

solution ϕe is basically indiscernible from the solution obtained by solving the coupled 

bidomain equations using a direct method. Solving the sequential benchmark and varying δ 
between 10−2 and 10−9 revealed that the performance gains with BAMG increase only 

moderately from 6.0 to 6.5 when δ was decreased from 10−6 down to 10−9. Increasing δ 
showed that even with a large δ 10−3 of, BAMG is still twice as fast as ILU. δ had to be 

further increased up to 10−2 to make ILU as fast as BAMG. With such a large tolerances, 

however, major deviations from the true solution will inevitably occur. This suggests that 

BAMG is always to be preferred in all situations of practical relevance.

C Performance Comparison

The AMG preconditioner was clearly superior to the ILU method in almost every regard. 

The residual decreased much faster, showing convergence at a rate of one order of 

magnitude per iteration (see Fig. 4). Independent of parallelization, although a single 

iteration takes longer with an AMG method compared to ILU, Ns is always significantly 

smaller [see Figs. 5 and 7(A) and (B)] which compensates the extra computational expenses 

and, thus, leads to a much shorter execution time. Further, measured data clearly support the 

notion that AMG is more robust than ILU. This becomes evident in Fig. 4. These differences 

in convergence behavior are manifested in the dependency of Ns on the RHS (see Fig. 5). 

With AMG, Ns was almost independent on b, showing only very modest variations in Ns and 

Ts, whereas with ILU, the strong dependency resulted in large variation of Ns and Ts. These 

data clearly confirm that AMG-CG is both more robust (independent of b) and more 

efficient (much faster execution times, faster convergence).
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For the sequential benchmark the direct SuperLU solver was the fastest method. However, 

this method is only a competitive option for a moderate number of unknowns, like for the 

RVS in this study. For the RCV problem with SuperLU, the system matrix could not be 

factorized, not even on a desktop computer equipped with 8 GB RAM, whereas, with ILU or 

AMG, this setup can be solved on a standard desktop computer with 2GB RAM. Setting up 

BAMG as a standalone solver showed robust convergence in this configuration since the 

multigrid error contraction was very good and, thus, the Krylov accelerator is not needed. 

The performance gains, however, were very moderate (<7%) which was within the 

uncertainty of the measurements. In a parallel context, BAMG has to be considered as the 

method of choice due to its fast and robust convergence and the maturity of the 

implementation which has proven to scale in other large scale application with Np much 

larger than used in this paper [13].

D Parallel Scaling

1) Scaling With Np ≤ 16—The parallel scaling behavior of both methods AMG and ILU 

was almost identical for moderate Np ≤ 16 with scaling efficiencies between 76% and 93%. 

Since scaling was so similar, the performance ratio between the methods remained almost 

constant with varying Np, with a significant performance benefit of BAMG being roughly 6 

times faster than ILU. For instance, with Np = 16 the simulation of 200-ms reentrant activity 

in the RCV setup executed in only 8.8 h with BAMG while the same simulation lasted for 

60.6 h with ILU. The fact that BAMG running with Np = 4 finished execution two times 

faster than ILU running with Np = 16 (29.8 h versus 60.6 h) has to be considered as a 

significant performance improvement, which highlights the advantages of the presented 

method.

Speedups found in this study using AMG are comparable with those found in a previous 

study [9] where a GMG method was applied. Although, in general, GMG is considered as 

being more efficient than AMG, results obtained in this study suggest that AMG can be as 

efficient as GMG. With the GMG method applied to a 3-D test case in [9], a scaling 

efficiency of 79% was achieved when increasing Np from 8 to 16. In this study, AMG scaled 

comparably during RCV-Pacing (77%), but scaled significantly better during RCV-Reentry 

(94%). However, when comparing these studies, it has to be kept in mind that the computing 

environments were different. The environment used in this study (Opteron Linux Cluster 

with Inifiniband Interconnect) is clearly superior to the environment used in the GMG study 

(Itanium and Gigabit Ethernet), with low latency interconnects making a major difference. 

This could also explain why differences in performance gains between ILU and AMG were 

more striking in this study (6 versus 3).

2) Scaling With Np ≥ 16—Data measured at the Kepler cluster with Np ≤ 16 suggest 

that with ILU-CG, Nt will increase significantly with a higher Np, since the quality of the 

preconditioner will suffer more and more from the nonoverlapping block Jacobi 

preconditioner. This will gradually lead to a loss of entries in the ILU subblock 

preconditioner associated with an increase in Nt. On the other hand, with AMG methods, Nt 

was almost unaffected by Np; however, a slight decrease in parallel efficiency was observed. 

Most likely, this can be attributed to an increase in communication, but also the sequential 
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solver step at the coarsest grid might have played a role (Fig. 6). The system to be solved at 

the coarsest grid was only 11 × 11, though. This was only partly confirmed by benchmarks 

carried out on the NGS cluster with Np ≥ 16. As expected, the overall number of iteration Nt 

for ILU increased with Np, with a particularly prominent increase seen between 32 and 64 

processors. On the other hand, unlike with Np ≤ 16, Nt started to increase with BAMG as 

well where Np = 32 turned out to be a particularly adverse constellation (increase of 15.7% 

over Np = 16). A further increase to Np = 64 led to a decrease in Nt again. However, the 

overall picture for Np ≥ 16 was the same as for Np ≤ 16. With BAMG significant 

performance benefits over ILU could be achieved, the difference between the methods was 

smaller, though. Increasing Np from 16 to 64, the ILU/BAMG performance ratio decreased 

from 4.5 to 3.2, whereas this ratio was typically around 6 on the Kepler cluster, independent 

of Np.

It should be further noted that the given RCV problem size is too small to achieve good 

parallel scaling with large Np. This notion is supported by performance data acquired during 

the parabolic and the ODE solves (data not presented). The parabolic problem scaled very 

well when going from 16 to 32 CPUs; however, when going from 32 to 64, the parabolic 

solver time increased whereas the ODE solve continued to scale linearly. That is, the 

parabolic solve, which is only a matrix-vector product with the forward Euler method, 

stopped scaling with Np > 32, unlike the ODE solve, where no communication is required. 

This behavior suggests that the benchmark problem is not large enough to scale well with Np 

> 32 since the local computational workload assigned to each node is too small, and the 

communication overhead starts to dominate. With 64 CPUs, the local problem sizes were 

only 13477 and 8558 nodes for the elliptic and the parabolic problem, respectively.

E Hardware-Related Issues

Performance differences measured in this paper can be primarily attributed to the applied 

algorithms. To a minor extent, however, implementation details and hardware-related 

optimization issues may have influenced the results as well. In a previous study [9], we 

compared a GMG method with ILU-CG. The performance gain of GMG-CG over ILU-CG 

during parallel runs was around 3 which is about the half we observed with AMG-CG. 

Theoretically, GMG-CG should perform better than AMG-CG; however, the hardware used 

in our previous work (Itanium system with standard Gigabit ethernet interconnect) was 

clearly inferior to the hardware used in this paper. Particularly the lack of a low-latency 

interconnect in our previous study may have led to this significant difference in parallel 

solver performance.

In this paper, two different platforms were used: The Kepler cluster (Opteron cluster with 

Infiniband interconnect) for runs with Np ≤ 16 and the Oxford NGS cluster (Xeon cluster 

with Myrinet interconnect) for runs with Np ≥ 16. Comparing the runs with Np = 16, which 

were carried out on both platforms, showed noticeable differences in ILU/BAMG 

performance with a ratio of 6 on the Kepler cluster and of 4.5 only at the NGS cluster. This 

difference can be attributed to several reasons: the NGS clusters are a shared resource, while 

at Kepler, exclusive memory and cache access was guaranteed during the course of this 

study; the 64-bit CARP executable performed better on the Opteron system than the 32-bit 
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executable on the Xeon system; finally, the Infiniband interconnect led to better AMG 

parallel performance compared to the Myrinet interconnect used at the NGS clusters.

Clearly, performance could be further improved by using different compilers or compiler 

options to take further advantages of the hardware, although we refrained from doing so. On 

both platforms, the standard GNU C compiler gcc was used with the optimization flag set to 

−O3. More sophisticated optimization flags resulted only in marginal improvements if ever.

F Related and Future Work

Multilevel methods are among the fastest methods for solving elliptic PDEs [31]. A brief 

overview of the application to bioelectrical field problems and the advantages of a multilevel 

approach to solve the elliptic portion of the bidomain equations has been presented in a 

previous work [9]. In contrast to [9], where a GMG preconditioner was applied, more 

generally applicable AMG methods were studied which do not suffer from any restrictions 

regarding the structure of the underlying computational grid.

Besides the AMG implementation used in this study, there are other implementations of 

various AMG flavours like Pebbles [32], [33] and Stüben’s parallel AMG code [34] 

available which may perform even better than BoomerAMG. Preliminary results suggest that 

during sequential runs, Pebbles AMG solves the RVS problem almost 2 times faster than 

BAMG (about 15 times faster than ILU-CG). The performance of Pebbles came very close 

to the direct method (62%), but did not suffer from the same memory constraints for a larger 

number of unknowns. Further, parallel test runs with Pebbles suggest that similar 

performance benefits can be expected. However, to seamlessly integrate this method with 

our CARP simulator, the development of a PETSc interface for Pebbles is essential. The 

development of such an interface is a nontrivial task, requiring significant engineering 

efforts to succeed. However, the expected performance benefits clearly justify this effort and, 

thus, we will work towards the implementation of such an interface in a future project.

The presented algorithm will be tested running on supercomputing environments provided 

by the Integrative Biology Project. It will be investigated how well AMG methods are suited 

for large scale parallel applications. Clearly, the parallel test cases presented in this paper 

were too small to get good parallel performance with a high Np. In the future, larger test 

cases associated with linear systems of between 10 and 100 million unknowns, such as a 

bidomain simulation of an entire human ventricle including a torso, will be used to measure 

the relative performance of the AMG methods presented in this paper.

G Conclusions

In this work, we have presented a very efficient method for the solution of the linear system 

associated with the elliptic portion of the bidomain equations. An AMG preconditioning 

method was compared against the traditional ILU preconditioner for bidomain simulations 

of different complexities for both sequential and parallel simulation runs. Results 

demonstrate that AMG-CG methods are extremely efficient in solving the system under both 

conditions. AMG methods do not suffer from any restrictions regarding the structure of the 

underlying computational grid allowing the use of unstructured mesh generation methods for 

a more concise and realistic representation of the cardiac geometry. The application of AMG 
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preconditioners is a major step forward making large scale bidomain simulations up to some 

tens of millions of unknowns feasible. Preliminary results carried out at the HPCx 

supercomputing facilities indicate that bidomain simulations of an entire human heart 

including a torso have become feasible.
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Fig. 1. 

Setup used to benchmark sequential simulation runs: a sustained anatomical reentry was 

induced with an S1–S2 pacing protocol. Shown are polarization patterns of Vm for selected 

instants. Red arrows indicate the conduction pathways of the activation wavefronts. Due to 

the presence of a bath, the degrees of freedom associated with the elliptic problem are higher 

than with the parabolic problem. The left upper panel shows the bath geometry and the 

location of the reference electrode.
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Fig. 2. 

Setup for the parallel benchmark: A train of 10 pacing stimuli with a basic cycle length of 

200 ms was delivered to the RCV via two plate electrodes (left panel, RCV-Setup). A figure-

of-eight reentry ensued and was sustained until the end of the simulation run at 4000 ms.
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Fig. 3. 

BoomerAMG tuning: Effect of varying the strong threshold parameter, θ, for two test cases 

of varying complexity. Runtime is normalized with respect to the computational workload, 

Nv×NT. The relative performance of the larger RCV test case was worse compared to the 

RVS test case, but the overall trend was similar, indicating that θ = 0 is the optimal choice. 

For θ = 1 (not shown) the runtime increased dramatically.
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Fig. 4. 

Convergence history of BAMG-CG versus ILU-CG: The residuals ri are plotted 

semilogarithmically as a function of the iteration number i. Residuals after the first iteration 

are marked with a circle. In contrast to the ILU-CG method, the relative rate of decrease was 

exponential and monotonic for BAMG-CG. The average rate of decrease was significantly 

larger for BAMG which led to much faster convergence.
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Fig. 5. 

(A) The number of iterations per time step, Ns and (B), the required solver time per time 

step, Ts, measured during the RVS sequential benchmarks are plotted as a functions of time. 

Both Ns and Ts dropped noticeably when the entire tissue was depolarized around 50 ms 

(Fig. 1, panels 40–60 ms), but returned to the same average level as before when reentry was 

induced by a second stimulus at 85 ms (Fig. 1, panel 85 ms).
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Fig. 6. 

Comparison of the parallel solver performance between ILU-CG and BAMG-CG for the 

both test sequences. (A) The parallel speedup relative to the case Np = 4 is shown. (B) 

Shown are the total elliptic solver times. Note that the left ordinate refers to ILU-CG and the 

right ordinate to BAMG-CG. Although the parallel scaling is similar for both methods, 

BAMG-CG is about 6 times faster than ILU-CG. (C) Increase in the number of iterations per 

time step (Ns) relative to the Np = 4 case as a function of Np. (D) Shown is the decrease of 

Tit with Np.
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Fig. 7. 

The dependency of Ns on the RHS b for the parallel solution (Np = 16) of (A) the RCV-

Pacing and (B) the RCV-Reentry setup using ILU and BAMG preconditioning.
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Table I

Memory Overhead in MByte

Method ILU BAMG BAMG-S SuperLU

RVS 24 65 63 814

RCV 212 741 734 -

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 May 12.



 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

Plank et al. Page 28

Table II

Minimum, Mean and Maximum Values of Number of Iterations per Time Step (Ns), Average Execution Time 

per Time Step (T̄s), Total Number of Iterations Nt, Total Execution Time Tt, and Time per Iteration Tit for 

Solving Sequential RVS

Method Ns T ̄s
s

Nt
1000’s

Tt
h

Tīt
ms

ILU-CG 119/213/237 12.3 5310 85.6 58

BAMG-CG 3/ 4.84/ 5 1.61 120.6 11.12 333

SuperLU 1.00 0.55 25.0 3.58 545

BAMG-S 1.00 1.51 25.0 10.6 1508
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Table III

Minimum, Mean and Maximum Values of Number of Iterations per Time Step (Ns), Average Execution Time 

per Time Step (Ts̄), Total Number of Iterations (Nt), Total Execution Time (Tt) and Time per Iteration (Tit) for 

Parallel RCV.

Sequence Method Np Ns T ̄s
s

Nt
1000’s

Tt
h

Tit
ms

Pacing ILU-CG 4 76 / 179 / 479 21.9 4478 152.1 122

8 76 / 179 / 489 11.8 4468 81.9 66

16 79 / 191 / 523 6.6 4782 46.1 35

BAMG-CG 4 2 / 3.2 / 11 3.4 80.5 23.4 1048

8 2 / 3.3 / 11 2.0 81.6 13.6 601

16 2 / 3.4 / 11 1.1 83.9 7.7 332

Reentry ILU-CG 4 137 / 201.3 / 377 27.4 5041.6 190.4 136

8 138 / 203.4 / 384 15.1 5092.6 105.2 74

16 150 / 216.1 / 412 7.2 5410.1 60.6 33

ILU-CG† 16 150 / 216 / 412 9.2 5410 63.9 42

32 154 / 220.2 / 422 4.5 5513 31.4 20

64 167 / 238.4 / 449 3.1 5970 21.2 13

BAMG-CG 4 4 / 4.0 / 7 4.3 100.0 29.5 1064

8 4 / 4.0 / 7 2.4 100.0 17.0 611

16 4 / 4.0 / 7 1.3 100.0 8.8 315

BAMG-CG† 16 4 / 4.0 / 7 2.0 100.0 13.7 492

32 4 / 4.6 / 8 1.4 115.7 9.5 294

64 4 / 4.2 / 9 0.9 105.0 6.4 221

BAMG-S 4 1.0 4.2 25.0 29.5 4244

8 1.0 2.3 25.0 15.3 2200

16 1.0 1.5 25.0 9.1 1311

†
Measured at the NGS.
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