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Algebraic Necessary and Sufficient Conditions
for the Controllability of Conewise Linear Systems

M. Kanat Camlibel, Member, IEEE, W. P. M. H. (Maurice) Heemels,
and J. M. (Hans) Schumacher, Senior Member, IEEE

Abstract—The problem of checking certain controllability prop-
erties of even very simple piecewise linear systems is known to be
undecidable. This paper focuses on conewise linear systems, i.e.,
systems for which the state space is partitioned into conical regions
and a linear dynamics is active on each of these regions. For this
class of systems, we present algebraic necessary and sufficient con-
ditions for controllability. We also show that the classical results
of controllability of linear systems and input-constrained linear
systems can be recovered from our main result. Our treatment em-
ploys tools both from geometric control theory and mathematical
programming.

Index Terms—Conewise linear systems, controllability, hybrid
systems, piecewise linear systems, push-pull systems, reachability.

I. INTRODUCTION

THE NOTION of controllability has played a central role
throughout the history of modern control theory. Con-

ceived by Kalman, the controllability concept has been studied
extensively in the context of finite-dimensional linear systems,
nonlinear systems, infinite-dimensional systems, n-dimensional
systems, hybrid systems, and behavioral systems. One may re-
fer, for instance, to Sontag’s book [1] for historical comments
and references.

Outside the linear context, characterizations of global con-
trollability have been hard to obtain. In the setting of smooth
nonlinear systems, results have been obtained for local control-
lability, but there is no hope to obtain general algebraic char-
acterizations of controllability in the large. The complexity of
characterizing controllability has been studied by Blondel and
Tsitsiklis [2] for some classes of hybrid systems, and these au-
thors show that even within quite limited classes, there is no
algorithm to decide the controllability status of a given system.
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In this paper, we present algebraically verifiable necessary
and sufficient conditions for global controllability of a large
class of piecewise linear systems. We assume that the product of
the state space and the input space is covered by a finite number
of conical regions, and that on each of these regions separately
we have linear dynamics, with continuous transitions between
different regimes. Systems of this type do appear naturally;
some examples are provided in Section 2. The systems that
we consider are finite-dimensional, but beyond that there is no
restriction on the number of state variables or the number of
input variables.

The construction of verifiable necessary and sufficient condi-
tions relies on the fact that, in a situation where different linear
systems are obtained by applying different feedbacks to the
same output, the zero dynamics of these systems are the same.
On the basis of classical results in geometric control theory, the
systems may, therefore, be decomposed in a part that is com-
mon and a part that is specific to each separate system, but that,
due to the invertibility assumption, has a simple structure in
the sense that there exists a polynomial inverse. The latter fact
may be exploited to “lift” the controllability problem from each
separate mode to the common part. The reduced controllability
problem in this way is still nonclassical due to the presence
of a sign-dependent input nonlinearity. The controllability of
such “push–pull” systems may be studied with the aid of results
obtained by Brammer in 1972 [3]. By a suitable adaptation of
Brammer’s results, we arrive at the desired characterization of
controllability.

Controllability problems for piecewise linear systems and
various related model classes have drawn considerable atten-
tion recently. However, none applies to the class of conewise
linear systems (CLSs) in the generality as treated in the current
paper. Indeed, Lee and Arapostathis [4] provide a characteri-
zation of controllability for a class of “hypersurface systems,”
but they assume, among other things, that the number of inputs
in each subsystem is equal to the number of states minus one.
Moreover, their conditions are not stated in an easily verifiable
form. Brogliato obtains necessary and sufficient conditions for
global controllability of a class of piecewise linear systems in a
recent paper [5]. Besides the facts that [5] applies to the planar
case (state space dimension equal to 2) and is based on a case-
by-case analysis, also the class of systems is different to the
one studied here. In [5], typically one or more of the dynamical
regimes is active on a lower dimensional region, while the re-
gions for CLSs are full dimensional. Bemporad et al. [6] suggest
an algorithmic approach based on optimization tools. Although
this approach makes it possible to check controllability of a
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given (discrete-time) system, it does not allow drawing conclu-
sions about any class of systems, as in the current paper. The
characterization that we obtain is much more akin to classical
controllability conditions. Characterizations of controllability
that apply to some classes of piecewise linear discrete-time sys-
tems have been obtained by Nesic [7]. In continuous time, there
is work by Smirnov [8, Ch. 6] that applies to a different class
of systems than we consider here, but that is partly similar in
spirit. Habets and van Schuppen [9] discuss “controllability to
a facet,” which is a different problem from the one considered
here: we study the classical controllability problem of steering
the state of system from any initial point to any arbitrary final
point.

The controllability result that we obtain in this paper can be
specialized to obtain a number of particular cases that may be of
independent interest. For instance, earlier work in [10] and [11]
on planar bimodal systems and on general bimodal systems,
which, in fact, provided the stimulus for continued investigation,
can now be recovered as special cases, as is demonstrated in
Section IV later.

The paper is organized as follows. The class of systems that
we consider is defined in Section II, and some examples are
given to show how systems in this class may arise. Some prepara-
tory material about systems with linear dynamics but possibly
a constrained input set is collected in Section III. Section IV
presents the main results, and Section V concludes. The bulk
of the proofs is in Appendix C, which is preceded by two ap-
pendixes that, respectively, summarize notation and recall some
facts from geometric control theory.

II. CONEWISE LINEAR SYSTEMS

A particular class of piecewise linear systems is of interest in
this paper. This section aims at setting up the terminology for
these systems.

A continuous function g : R
k → R

� is said to be conewise
linear if there exists a finite family of solid polyhedral
cones {Y1 ,Y2 , . . . ,Yr} with ∪iYi = R

k and � × k matrices
{Mi,M 2 , . . . ,Mr}, such that g(y) = Miy for y ∈ Yi .

Consider the systems of the form

ẋ(t) = Ax(t) + Bu(t) + f(y(t)) (1a)

y(t) = Cx(t) + Du(t) (1b)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
p , A ∈

R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m , and f : R
p → R

n

is a continuous conewise linear function. These systems will be
called CLSs.

A. Examples of Conewise Linear Systems

Some examples, with an increasing level of generality, are in
order.

Example II.1: A bimodal piecewise linear system with a con-
tinuous vector field can be described in the form

ẋ =
{

A1x + B1u if cT x + dT u ≤ 0

A2x + B2u if cT x + dT u ≥ 0
(2)

where A1 , A2 ∈ R
n×n , B1 , B2 ∈ R

n×m , c ∈ R
n , and d ∈ R

m

with the property that

cT x + dT u = 0 ⇒ A1x + B1u = A2x + B2u. (3)

Equivalently, A2 − A1 = ecT and B2 − B1 = edT for some
n-vector e. To fit the system (2) into the framework of CLS
(1), one can take A = A1 , B = B1 , C = cT , D = dT , r = 2,
Y1 = (−∞, 0], M 1 = 0, Y2 = [0,∞), and M 2 = e.

Remark II.2: The so-called sign systems are closely related
to bimodal systems. In the discrete-time setting, they are of the
form

xt+1 =




A−xt + B−ut if cT xt < 0

A0xt + B0ut if cT xt = 0

A+xt + B+ut if cT xt > 0.

It is known from [2] that certain controllability problems of these
systems are undecidable, i.e., (roughly speaking) there is no
algorithm that can decide whether such a system is controllable
or not. This result already gives, even in this seemingly very
simple case, an indication of the complexity of controllability
problems.

Example II.3: An interesting example of CLSs arises in the
context of linear complementarity systems. Consider the linear
system

ẋ = Ax + Bu + Ez (4a)

w = Cx + Du + Fz (4b)

where x ∈ R
n , u ∈ R

m , and (z, w) ∈ R
p+p . When the external

variables (z, w) satisfy the so-called complementarity relations

C � z ⊥ w ∈ C∗ (4c)

where C is a cone and C∗ is its dual, the overall system (4) is
called a linear cone complementarity system (LCCS). A wealth
of examples, from various areas of engineering as well as oper-
ations research, of these piecewise linear (hybrid) systems can
be found in [12]–[15]. For the work on the analysis of general
LCCSs, we refer to [16]–[22]. A special case of interest emerges
when C = R

p
+ and all the principal minors of the matrix F are

positive. Such matrices are called P -matrices in the literature
of the mathematical programming. It is well known (see, for
instance, [23, Ths. 3.1.6 and 3.3.7]) that every positive defi-
nite matrix is in this class. P -matrices enjoy several interesting
properties. One of the most well-known facts is in the context
of linear complementarity problem, i.e., the problem of finding
a p-vector z satisfying

0 ≤ z ⊥ q + Fz ≥ 0 (5)

for a given p-vector q and a p × p matrix F . It is denoted by
LCP(q, F ). When the matrix F is a P -matrix, LCP(q, F ) admits
a unique solution for any q ∈ R

p . This is due to a well-known
theorem (see [23, Th. 3.3.7]) of mathematical programming.
Moreover, for each q, there exists an index set α ⊆ {1, 2, . . . , p}
such that:

1) −(Fαα )−1qα ≥ 0 and qαc − Fαc α (Fαα )−1qα ≥ 0
2) the unique solution z of the LCP(q, F ) is given by zα =

−(Fαα )−1qα and zαc = 0
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where αc denotes the set {1, 2, . . . , p} \ α. This shows that the
mapping q �→ z is a conewise linear function.

B. Solutions of Conewise Linear Systems

We say that an absolutely continuous function x is a solution
of (1) for the initial state x0 and the locally integrable input u if
(x, u) satisfies (1) almost everywhere and x(0) = x0 . Existence
and uniqueness of solutions follow from the theory of ordinary
differential equations as the function f is Lipschitz continuous
by its definition.

Let us denote the unique solution of (1) for the initial state
x0 and the input u by xx0 ,u . We call the system (1) completely
controllable if for any pair of states (x0 , xf ) ∈ R

n×n , there
exists a locally integrable input u such that the solution xx0 ,u of
(1) satisfies xx0 ,u (T ) = xf for some T > 0.

We sometimes use the term “controllable” instead of “com-
pletely controllable.” Before proceeding further, we will briefly
review the controllability problem for the case of linear
dynamics.

III. CONTROLLABILITY OF LINEAR SYSTEMS

Consider the linear system

ẋ = Ax + Bu (6)

where A ∈ R
n×n and B ∈ R

n×m .
Ever since Kalman’s seminal work [24] introduced the notion

of controllability in the state space framework, it has been one
of the central notions in systems and control theory. Tests for
controllability were given by Kalman and many others (see,
e.g., [25] and [1] for historical details). The following theorem
summarizes some classical results on the controllability of linear
systems.

Theorem III.1: The following statements are equivalent.
1) The system (6) is completely controllable.
2) The implication

λ ∈ C, z ∈ C
n , z∗A = λz∗, BT z = 0 ⇒ z = 0

holds.
Sometimes, we say that the pair (A,B) is controllable, meaning
that the associated linear system (6) is completely controllable.

In some situations, one may encounter controllability prob-
lems for which the input may only take values from a set
U ⊂ R

m . A typical example of such constrained controllability
problems would be a (linear) system that admits only nonnega-
tive controls. Study of constrained controllability goes back to
the 1960s. Early results consider only restraint sets U that con-
tain the origin in their interior (see, for instance, [26]). When
only nonnegative controls are allowed, the set U does not con-
tain the origin in its interior. Saperstone and Yorke [27] were
the first to consider such constraint sets. In particular, they con-
sidered the case U = [0, 1]m . More general restraint sets were
studied by Brammer [3]. The following theorem states necessary
and sufficient conditions in case the restraint set is a cone.

Theorem III.2: Consider the system (6) together with a solid
cone U as the restraint set. Then, (6) is completely controllable
with respect to U if and only if the following conditions hold.

1) The pair (A,B) is controllable.
2) The implication

λ ∈ R, z ∈ R
n , zT A = λzT ,BT z ∈ U∗ ⇒ z = 0

holds.
The proof of this theorem can be obtained by applying [3, Cor.
3.3] to (6) and its time-reversed version.

Sometimes, we say that a pair (A,B) is controllable with
respect to U whenever the linear system (6) is completely con-
trollable with respect to U .

IV. MAIN RESULTS

A. Controllability of Push–Pull Systems

An interesting class of systems that appears in the context of
controllability of CLSs are of the form

ẋ = Ax + f(u) (7)

where x ∈ R
n , u ∈ R

m , A ∈ R
n×n , and f : R

m → R
n is a

continuous conewise linear function.
Notice that these systems are of the form of Hammerstein

systems (see, e.g., [28]). We prefer to call systems of the type
(7) push–pull systems. The terminology is motivated by the
following special case. Consider the system

ẋ = Ax +
{

B1u if u ≤ 0

B2u if u ≥ 0
(8)

where the input u is a scalar. In a sense, “pushing” and “pulling”
have different effects for this system.

The notation xx0 ,u denotes the unique absolutely continuous
solution of (7) for the initial state x0 and the input u. We say
that the system (7) is:

1) completely controllable if for any pair of states (x0 , xf ) ∈
R

n×n , there exists a locally integrable input u such that
the solution xx0 ,u of (7) satisfies xx0 ,u (T ) = xf for some
T > 0;

2) reachable from zero if for any state xf ∈ R
n , there exists

a locally integrable input u such that the solution x0,u of
(7) satisfies x0,u (T ) = xf for some T > 0.

The following theorem presents necessary and sufficient con-
ditions for the controllability of push–pull systems. Later, we
will show that controllability problem of a CLS can always be
reduced to that of a corresponding push–pull system.

Theorem IV.1: The following statements are equivalent.
1) The system (7) is completely controllable.
2) The system (7) is completely controllable with C∞-inputs.
3) The system (7) is reachable from zero.
4) The system (7) is reachable from zero with C∞-inputs.
5) The implication

zT exp(At)f(u) ≥ 0 for all t ≥ 0 and u ∈ R
m ⇒ z = 0

(9)
holds.

6) The pair (A, [M 1M 2 · · ·Mr ]) is completely controllable
with respect to Y1 × Y2 × · · · × Yr .
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B. Controllability of Conewise Linear Systems

Consider the CLS (1) with m = p. Our first aim is to put it into
a certain canonical form. Let V∗ and T ∗, respectively, denote
the largest output-nulling controlled invariant and the smallest
input-containing conditioned invariant subspaces of the system
Σ(A,B,C,D) (see Appendix II). Also let K ∈ K(V∗). Apply
the feedback law, u = −Kx + v, where v is the new input.
Then, (1) becomes

ẋ = (A − BK)x + Bv + f(y) (10a)

y = (C − DK)x + Dv. (10b)

Obviously, controllability is invariant under this feedback.
Moreover, the systems Σ(A,B,C,D) and Σ(A − BK,B,C −
DK,D) share the same V∗ and T ∗ due to Proposition II.1 (see
Appendix II). Suppose that the transfer matrix D + C(sI −
A)−1B is invertible as a rational matrix. Proposition II.2 im-
plies that the state space R

n admits the following decomposition
R

n = V∗ ⊕ T ∗. Let the dimensions of the subspaces V∗ and T ∗

be n1 and n2 , respectively. Also let the vectors {x1 , x2 , . . . , xn}
be a basis for R

n , such that the first n1 vectors form a basis for
V∗ and the last n2 for T ∗. Also let L ∈ L(T ∗). One immediately
gets

B − LD =
[

0

B′
2

]
(11)

C − DK =
[

0

C2

]
(12)

in the coordinates that are adapted to the earlier ba-
sis as V∗ ⊆ ker(C − DK) and im(B − LD) ⊆ T ∗. Here,
B′

2 and C2 are n2 × m and p × n2 matrices, respectively.
Note that (A − BK − LC + LDK)V∗ ⊆ V∗ and (A − BK −
LC + LDK)T ∗ ⊆ T ∗ according to Proposition II.1. There-
fore, the matrix (A − BK − LC + LDK) should be of the

form [ ∗ 0
0 ∗ ] in the new coordinates where the row (column)

blocks have n1 and n2 rows (columns), respectively. Let the
matrices K and L be partitioned as

K = [K1 K2 ] L =
[

L1

L2

]

where Kk and Lk are m × nk and nk × m matrices, respec-
tively. With these partitions, one gets

A − BK =
[

A11 L1C2

0 A22

]
(13a)

B =
[

L1D

B2

]
(13b)

where Akk and B2 are matrices of the sizes nk × nk and
n2 × m, respectively. Also, let the matrices Mi , in the new
coordinates, be partitioned as

Mi =
[

Mi
1

Mi
2

]
(14)

where Mi
k is a matrix of the size nk × m, and let fk be defined

accordingly as

fk (y) = Mi
ky if y ∈ Yi . (15)

Now, one can write (10) in the new coordinates as

ẋ1 = A11x1 + g(y) (16a)

ẋ2 = A22x2 + B2v + f2(y) (16b)

y = C2x2 + Dv (16c)

where g(y) = L1y + f1(y) is a conewise linear function.
By construction, one has

V∗(A22 , B2 , C2 ,D) = {0} (17a)

T ∗(A22 , B2 , C2 ,D) = R
n2 . (17b)

We already know from the invertibility hypothesis and
Proposition II.2 that the matrix [ C2 D ] is of full row rank
and the matrix col(B2 ,D) is of full column rank. Therefore,
Proposition II.2 guarantees that the transfer matrix of the sys-
tem Σ(A22 , B2 , C2 ,D) has a polynomial inverse. This allows
us, as stated in the following lemma, to reduce the controlla-
bility problem of the CLS (16) to that of the push–pull system
(16a) where the variable y is considered as the input.

Lemma IV.2: Consider the CLS (1) such that p = m and the
transfer matrix D + C(sI − A)−1B is invertible as a rational
matrix. Then, the following statements are equivalent.

1) The CLS (1) is completely controllable.
2) The push–pull system

ẋ1 = A11x1 + g(y) (18)

is completely controllable.
By combining the previous lemma with Theorem IV.1, we are
in a position to present the main result of the paper.

Theorem IV.3: Consider the CLS (1) such that p = m and the
transfer matrix D + C(sI − A)−1B is invertible as a rational
matrix. The CLS (1) is completely controllable if and only if:

1) the relation
r∑

i=1

〈A + MiC | im (B + MiD)〉 = R
n (19)

is satisfied and
2) the implication

λ ∈ R, z ∈ R
n , wi ∈ R

m ,

[
zT wT

i

] [
A + MiC − λI B + MiD

C D

]
= 0

wi ∈ Y∗
i for all i = 1, 2, . . . , r ⇒ z = 0 holds.

Remark IV.4: Note that the second condition is a state-
ment about the real invariant zeros and the invariant left zero
directions of the systems Σ(A + MiC,B + MiD,C,D). A
quick observation shows that the invariant zeros of the systems
Σ(A + MiC,B + MiD,C,D) coincide. They also coincide
with the invariant zeros of the system Σ(A,B,C,D). Therefore,
this condition comes to play only if the system Σ(A,B,C,D)
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has some real invariant zeros. In this case, one can easily check
the second condition by first computing the real invariant zeros
of the system Σ(A,B,C,D) and then computing the left kernel
of the corresponding matrices for each real invariant zero λ and
i = 1, 2, . . . , r.

Remark IV.5: The necessity of the first condition is rather
intuitive. What might be curious is that this condition is not
sufficient, as shown by the following example. Consider the
bimodal system

ẋ1 =
{

x2 if x2 ≤ 0

−x2 if x2 ≥ 0

ẋ2 = u.

In order to cast this system as a CLS, one can take

A =
[

0 0
0 0

]
B =

[
0
1

]
C = [ 0 1 ] D = 0 (20)

Y1 = R− M 1 =
[

1
0

]
Y2 = R+ M 2 =

[
−1
0

]
. (21)

Straightforward calculations yield that 〈A + M 1C | im
(B + M 1D)〉 = 〈A + M 2C | im(B + M 2D)〉 = R

2 . Hence,
the first condition is fulfilled. However, the overall system can-
not be controllable as the derivative of x1 is always nonpositive.
This is in accordance with the theorem since the second con-
dition is violated in this case for the values λ = 0, z = [1 0],
w1 = −1, and w2 = 1.

Remark IV.6: The earlier remark shows that even though all
the constituent linear systems are controllable, the overall sys-
tem may not be controllable. On the other extreme, one can find
examples in which the constituent systems are not controllable
but the overall system is. To construct such an example, note
that the second condition becomes void if the system has no
real invariant zeros. Therefore, it is enough to choose constitute
linear systems such that: 1) they are uncontrollable; 2) they do
not have any real invariant zeros; and 3) they satisfy the first
condition of Theorem IV.3. For such an example, consider the
bimodal system

ẋ1 = x2

ẋ2 =
{−x1 if x5 ≥ 0

−x1 + x5 if x5 ≤ 0

ẋ3 = x4

ẋ4 =
{
−x3 + x5 if x5 ≥ 0
−x3 if x5 ≤ 0

ẋ5 = u.

To cast this system as a CLS, one can take

A =




0 1 0 0 0
−1 0 0 0 1
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0


 , B =




0
0
0
0
1


 , CT =




0
0
0
0
1


 (22)

D = 0,Y1 = R−,M 1 = 0,Y2 = R+ ,M 2 =




0
−1
0
1
0


 . (23)

It can be verified that the system (A,B,C,D) has no
real invariant zeros. So, the second condition of Theo-
rem IV.3 is void. It can also be verified that 〈A + M 1C |
im (B + M 1D)〉 = span{e1 , e2 , e5} and 〈A + M 2C | im(B +
M 2D)〉 = span{e3 , e4 , e5}, where ei is the ith standard basis
vector, i.e., all components of ei are zero except the ith com-
ponent that is equal to 1. Note that both the constituent linear
systems are not controllable, but the overall system is, since the
first condition is satisfied.

In what follows, we shall establish various already known
controllability results as special cases of Theorem IV.3.

Remark IV.7 (Linear Systems): Take C = 0, D = I , and r =
1. Let Y1 = R

m and M 1 = 0. With these choices, the CLS (1)
boils down to a linear system of the form

ẋ = Ax + Bu.

In this case, condition (1) is equivalent to saying that
〈A | imB〉 = R

n , i.e., the pair (A,B) is controllable, whereas
the left-hand side of the implication 2 can be satisfied only
with w1 = 0 as Y∗

1 = {0}. This means, however, that the sec-
ond condition is readily satisfied provided that the first one is
satisfied. Therefore, the system is controllable if and only if
〈A | imB〉 = R

n .
Remark IV.8: (Linear Systems With Positive Controls): Take

C = 0 and D = I . For an index set α ⊆ {1, 2, . . . ,m}, define
the cone Yα := {y ∈ R

m | yi ≥ 0 if i ∈ α, yi ≤ 0 if i �∈ α}.
Note that the cones Yα are polyhedral and solid. Also, note
that ∪αYα = R

m . Let Nα be a diagonal matrix such that
the (i, i)th element is 1, if i ∈ α, or −1, otherwise. Note
that Yα = {y | Nαy ≥ 0}. Also, note that Nαy = |y| when-
ever y ∈ Yα . Here, |y| denotes the componentwise absolute
value of the vector y. Define Mα = B(Nα − I). Note that
Bu + f(Cx + Du) = B|u| with the earlier choices of C,D,
Nα , and Yα . Hence, the CLS (1) boils down to a linear system
of the form

ẋ = Ax + Bu

where the input is restricted to be nonnegative. Note
that A + MαC = A and B + MαD = BNα . Thus,
〈A + MαC | im(B + MαD)〉 = 〈A | imBNα 〉 = 〈A | imB〉
as Nα is nonsingular. This shows that condition 1 is equivalent
to condition 1 of Theorem III.2, with U = R

m
+ . Let λ ∈ R,

z ∈ R
n , and wα ∈ R

m be as in condition 2, i.e., be such
that

[
−zT wT

α

] [
A − λI BNα

0 I

]
= 0 (24a)

wα ∈ Y∗
α (24b)
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for all α ⊆ {1, 2, . . . ,m}. It immediately follows from (24a)
that

zT A = λzT (25a)

wα = NαBT z. (25b)

Note that Yα is self-dual, i.e., Y∗
α = Yα . So, (25b) implies that

BT z ≥ 0, as NαNα = I . Together with (25a), this proves the
equivalence of condition 2 of Theorem IV.3 to condition 2 of
Theorem III.2, with U = R

m
+ .

As a consequence of the earlier analysis, Theorem III.2 with
U = R

m
+ can be seen as a special case of Theorem IV.3.

Remark IV.9: (Bimodal Systems): In [11], necessary and suf-
ficient conditions for the controllability of single-input bimodal
piecewise linear systems of the form

ẋ =

{
A′x + bu if cT x ≤ 0

A′ + ecT )x + bu if cT x ≥ 0
(26)

are presented. It was shown, under the assumption that the trans-
fer matrix cT (sI − A′)−1b is nonzero, that necessary and suf-
ficient conditions for controllability of the systems of the form
(26) are

1) the pair (A′, [b e]) is controllable, and
2) the implication λ ∈ R, z �= 0

[ zT wi ]

[
Ai − λI b

cT 0

]
= 0, i = 1, 2 ⇒ w1w2 > 0

where A1 := A′ and A2 := A′ + ecT holds. One can recover
this result from Theorem IV.3 as follows. To fit the system (26)
into the framework of CLS (1), take m = 1, r = 2, A = A′,
B = b, C = cT , D = 0, Y1 = R−, M 1 = 0, Y2 = R+ , and
M 2 = e. Note that A + M 1C = A′, A + M 2C = A′ + ecT ,
and B + M 1D = B + M 2D = b in this case. With these
choices, it can be verified that implication 2 of Theorem IV.3
is equivalent to the one given by 2. Therefore, it is enough to
show that condition 1 of Theorem IV.3 is equivalent to the
one given by 1. Note that 〈A + M 1C | im (B + M 1D)〉 +
〈A + M 2C | im (B + M 2D)〉 = 〈A′ | im b〉 + 〈A′ + ecT |
im b〉. We claim that the latter equivalence holds if the trans-
fer function cT (sI − A′)b is nonzero (hence invertible), i.e.,
it holds that 〈A′ | im b〉 + 〈A′ + ecT | im b〉 = R

n if and only
if the pair (A′, [be]) is controllable. Note that 〈A′ | im b〉 ⊆
〈A′ | im [be]〉 and 〈A′ + ecT | im b〉 ⊆ 〈A′ | im [be]〉. This im-
mediately shows that the pair (A′, [be]) is controllable if
〈A′ | im b〉 + 〈A′ + ecT |im b〉 = R

n . For the rest, we use the
following well-known identity

(sI−X)−1 − (sI−Y )−1 = (sI−X)−1(X−Y )(sI − Y )−1 .
(27)

Now, suppose that the pair (A′, [be]) is controllable. To show
that 〈A′ | im b〉 + 〈A′ + ecT |im b〉 is equal to the entire R

n , as-
sume z ∈ R

n , such that zT (A′)k b = zT (A′ + ecT )k b = 0 for
all integers k, i.e., z is orthogonal to the subspace 〈A′ | im b〉 +
〈A′ + ecT |im b〉. Stated differently, we have zT (sI −
A′)−1b ≡ zT (sI − A′ − ecT )−1b ≡ 0. By using (27), we

get

0 ≡ zT [(sI − A′ − ecT )−1 − (sI − A′)−1 ]b

= zT (sI − A′ − ecT )−1ecT (sI − A′)−1b.

As the transfer function cT (sI − A′)−1b is nonzero, we get
zT (sI − A′ − ecT )−1e ≡ 0. Now, we can use (27) once more
to obtain

zT (sI − A′ − ecT )−1e

= zT (sI−A′−ecT )−1ecT (sI − A′)−1e+zT (sI − A′)−1e.

Hence, zT (sI − A′)−1e ≡ 0. This means, however, that
zT (sI − A′)−1 [b e] ≡ 0. As the pair (A′, [b e]) is controllable,
this can happen only if z = 0.

C. Input Construction

The conditions of Theorem IV.3 guarantee only the existence
of an input that steers a given initial state x0 to a final state xf . A
natural question is how to construct such an input. Although the
proof (see Appendix III) is not constructing an input, it reveals
how one can do it. To elaborate, note that we can assume,
without the loss of generality, the CLS is given in the form of
(16). In view of Lemma IV.2, one can first construct a function
y that achieves the control on the x1 component, and then,
construct the corresponding input v by applying Proposition
II.4. By applying Proposition III.5 and Lemma III.4, one can
find two inputs: one steers the x2 component of the initial state
to zero and the other steers it from zero to its final value. This
means that we can assume, without the loss of generality, that
the x2 components of both the initial and final states are zero. In
view of Lemma III.1, one can solve, for some sufficiently large
�, (47) for ηi,j by taking the left-hand side as the x1 component
of the final state, T =

√
� and ∆� = T/(�r). By using these ηi,j ,

one constructs from (43) a function, say y2 . This function, when
applied to (16a), steers the x1 component from zero to its final
value. Now, reverse the time in (16a) and apply the same idea
by taking the left-hand side of (47) as the x1 component of the
initial state. Let the time reversal of the corresponding function
that is obtained from (43) be y1 . This function, when applied
to (16a), steers the x1 component from its initial value to zero.
Therefore, the concatenation of y1 and y2 , say y, steers the x1
component of the initial state to that of the final state for the
dynamics (16a).

V. CONCLUSION

In this paper, we studied the controllability problem for the
class of CLSs. This class is closely related to many other well-
known hybrid model classes like piecewise linear systems, lin-
ear complementarity systems, and others. Previous studies on
controllability for these systems indicated the hard nature of
the problem. Due to additional structure that is implied by the
continuity of the vector field of the CLSs, necessary and suffi-
cient conditions for controllability could be given. To the best of
the authors’ knowledge, it is the first time that a full algebraic
characterization of controllability of a class of piecewise linear
systems appears in the literature. The proofs of the main results
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combine ideas from geometric control theory and controllabil-
ity results for constrained linear systems. As such, the original
results of controllability of linear systems and input-constrained
linear systems were recovered as special cases. Also, the pre-
liminary work by the authors on bimodal continuous piecewise
linear systems [10], [11] form special cases of the main re-
sult of the current paper. Moreover, the controllability of the
so-called “push–pull systems” was completely characterized.
Interestingly, the algebraic characterization of controllability
also showed that the overall CLS can be controllable although
the subsystems are not. Vice versa, it can happen that all linear
subsystems are controllable but the overall system is not.

This work showed the benefits of using geometric control
theory and constrained control of linear systems in the field
of piecewise linear systems. Some structure on the piecewise
linear system enabled the application of this well-known theory.
We believe that this opens the path to solving problems like
controller design, stabilization, observability, detectability, and
other system and control theoretic problems of interest for this
class of systems. This investigation forms one of the major issues
of our future research.

APPENDIX I

NOTATION

In this paper, the following conventions are in force.
1) Numbers and Sets: The Cartesian product of two sets S

and T is denoted by S × T . For a set S, Sn denotes the n-
tuples of elements of S, i.e., the set S × S × · · · × S, where
there are n − 1 Cartesian products. The symbol R denotes the
real numbers, R+ the nonnegative real numbers (i.e., the set
[0,∞)), and C the complex numbers. For two real numbers
a and b, the notation max(a, b) denotes the maximum of a
and b.

2) Vectors and Matrices: The notations vT and v∗ denote
the transpose and conjugate transpose of a vector v. When two
vectors v and w are orthogonal, i.e., vT w = 0, we write v ⊥ w.
Inequalities for real vectors must be understood componentwise.
The notation R

n×m denotes the set of n × m matrices with real
elements. The transpose of M is denoted by MT . The identity
and zero matrices are denoted by I and 0, respectively. If their
dimensions are not specified, they follow from the context. Let
Mn×m be a matrix. We write Mij for the (i, j)th element of M .
For α ⊆ {1, 2, . . . , n} and β ⊆ {1, 2, . . . ,m}, Mαβ denotes the
submatrix {Mij}i∈α,j∈β . If n = m and α = β, the submatrix
Mαα is called a principal submatrix of M , and the determi-
nant of Mαα is called a principal minor of M . For two matri-
ces M and N with the same number of columns, col(M,N)
will denote the matrix obtained by stacking M over N . For a
square matrix M , the notation exp(M) denotes the exponential
of M , i.e.,

∑∞
k=0 Mk/k!. All linear combinations of the vectors

{v1 , v2 , . . . , vk} ⊂ R
n are denoted by span{v1 , v2 , . . . , vk}.

3) Cones and Dual Cones: A set C is said to be a cone if x ∈ C
implies that αx ∈ C for all α ≥ 0. A cone is said to be solid if
its interior is not empty. A cone C ⊆ R

n is said to be polyhedral
if it is of the form {v ∈ R

n | Mv ≥ 0} for some m × n matrix
M . For a nonempty set Q (not necessarily a cone), the dual

cone of Q is the set {v | uT v ≥ 0 for all u ∈ Q}. It is denoted
by Qs.

4) Functions: For a function f : R → R, f (k) stands for the
kth derivative of f . By convention, we take f (0) = f . If f is
a function of time, we use the notation ḟ for the derivative of
f . The set of all arbitrarily many times differentiable functions
is denoted by C∞. The support of a function f is defined by
supp(f) := {t ∈ R | f(t) �= 0}.

APPENDIX II

SOME FACTS FROM GEOMETRIC CONTROL THEORY

Consider the linear system Σ(A,B,C,D)

ẋ = Ax + Bu (28a)

y = Cx + Du (28b)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
p is the

output, and the matrices A, B, C, D are of appropriate sizes.
We define the controllable subspace and unobservable sub-

space as 〈A | im B〉 := im B + Aim B + · · · + An−1 im B
and 〈ker C | A〉 := ker C ∩ A−1 ker C ∩ · · · ∩ A1−n ker C, re-
spectively. It follows from these definitions that

〈A | im B〉 = 〈ker BT | AT 〉⊥ (29)

where W⊥ denotes the orthogonal space of W .
We say that a subspace V is output-nulling controlled in-

variant if for some matrix K, the inclusions (A − BK)V ⊆ V
and V ⊆ ker(C − DK) hold. As the set of such subspaces is
nonempty and closed under subspace addition, it has a maximal
element V∗(Σ). Whenever the system Σ is clear from the con-
text, we simply write V∗. The notation K(V) stands for the set
{K | (A − BK)V ⊆ V and V ⊆ ker(C − DK)}.

One can compute V∗ as a limit of the subspaces V0 = R
n

V i = {x | Ax + Bu ∈ V i−1 and Cx + Du = 0 for some u}.
(30)

In fact, there exists an index i ≤ n − 1 such that V j = V∗ for
all j ≥ i.

Dually, we say that a subspace T is input-containing con-
ditioned invariant if for some matrix L, the inclusions (A −
LC)T ⊆ T and im(B − LD) ⊆ T hold. As the set of such sub-
spaces is nonempty and closed under the subspace intersection,
it has a minimal element T ∗(Σ). Whenever the system Σ is clear
from the context, we simply write T ∗. The notation L(T ) stands
for the set {L | (A − LC)T ⊆ T and im(B − LD) ⊆ T } .

We sometimes write V∗(A,B,C,D) or T ∗(A,B,C,D) to
make the dependence on (A,B,C,D) explicit.

We quote some standard facts from geometric control theory
in what follows. The first one presents certain invariants under
state feedbacks and output injections. Besides the system Σ (28),
consider the linear system ΣK,L given by

ẋ = (A − BK − LC + LDK)x + (B − LD)v (31a)

y = (C − DK)x + Dv. (31b)

This system can be obtained from Σ (28) by applying both state
feedback u = −Kx + v and output injection −Ly.
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Proposition II.1: Let K ∈ R
m×n and L ∈ R

n×p be given.
The following statements hold.

1) 〈A | im B〉 = 〈A − BK | im B〉.
2) 〈ker C | A〉 = 〈ker C | A − LC〉.
3) V∗(ΣK,L ) = V∗(Σ).
4) T ∗(ΣK,L ) = T ∗(Σ).
The next proposition relates the invertibility of the transfer

matrix to controlled and conditioned invariant subspaces.
Proposition II.2 (cf. [29]): The transfer matrix D + C(sI −

A)−1B is invertible as a rational matrix if and only if
V∗ ⊕ T ∗ = R

n , [C D] is of full row rank, and col(B,D) is
of full column rank. Moreover, the inverse is polynomial if
and only if V∗ ∩ 〈A | im B〉 ⊆ 〈ker C | A〉 and 〈A | im B〉 ⊆
T ∗ + 〈ker C | A〉.

We define the invariant zeros of the system (28) to be the
zeros of the nonzero polynomials on the diagonal of the Smith
form of

PΣ(s) =
[

A − sI B

C D

]
. (32)

The matrix PΣ(s) is sometimes called system matrix.
We know from [29, Th. 2] that the invariant zeros coincide

with the eigenvalues of the mapping that is obtained by restrict-
ing A − BK − LC + LDK to the subspace V∗/(V∗ ∩ T ∗),
where K ∈ K(V∗) and L ∈ L(T ∗), such that 〈ker C | A〉 ⊆
ker K and im L ⊆ 〈A | im B〉.

It is known, for instance, from [30, Cor. 8.14], that the transfer
matrix D + C(sI − A)−1B is invertible as a rational matrix if
and only if the system matrix PΣ(λ) is of rank n + m for all but
finitely many λ ∈ C. In this case, the values of λ ∈ C such that

rank PΣ(λ) < n + m (33)

coincide with the invariant zeros.
If λ ∈ C is an invariant zero, then the elements of the kernel of

the matrix PΣ(λ) are called invariant (right) zero directions (see,
e.g., [31]). They enjoy the following dynamical interpretation.
Let λ ∈ C be an invariant zero and col(x̄, ū) be an invariant zero
direction, i.e., [

A − λI B

C D

] [
x̄

ū

]
= 0. (34)

Then, the output y of (28) corresponding to the initial state x̄
and the input t �→ ū exp(λt) is identically zero.

The following proposition presents sufficient conditions for
the absence of invariant zeros. It can be proved by using (30).

Proposition II.3: Consider the linear system (28) with p =
m. Suppose that V∗ = {0} and the matrix col(B,D) is of full
column rank. Then, the system matrix[

A − λI B

C D

]

is nonsingular for all λ ∈ C.
Systems that have transfer functions with a polynomial in-

verse are of particular interest for our treatment. The following
proposition can be proven by straightforward calculations.

Proposition II.4: Consider the linear system (28). Suppose
that the transfer matrix D + C(sI − A)−1B has a polynomial

inverse. Let H(s) = H0 + sH1 + · · · + shHh be this inverse.
For a given p-tuple of C∞-functions ȳ, take

x(0) =
h∑

�=0

�−1∑
j=0

AjBH�ȳ(�−1−j )(0) (35a)

u(t) = H

(
d

dt

)
ȳ(t). (35b)

Then, the output y, corresponding to the initial state x(0) and
the input u, of the system (28) is identical to ȳ.

The last proposition presents sufficient conditions under
which the values of the output and its higher order derivatives at
a certain time instant uniquely determine the state at the same
time instant.

Proposition II.5: Consider the linear system (28) with p = m.
Suppose that V∗ = {0}. Let the triple (u, x, y) satisfy (28)
with the pair (u, y) being (n − 1) times differentiable. If
y(k)(t) = CAk x̄ for k = 0, 1, . . . , n − 1 for some t and x̄ ∈ R

n

then x(t) = x̄.
Proof: Note that y(t) = Cx̄ results in

Cx(t) + Du(t) = Cx̄

and hence, x(t) − x̄ ∈ V1 in view of (30). Similarly, y(1)(t) =
CAx̄ results in

CAx(t) + CBu(t) + Du(1)(t) = CAx̄.

This would mean that A(x(t) − x̄) + Bu(t) ∈ V1 , and hence,
x(t) − x̄ ∈ V2 . By continuing in this way, one can show
that x(t) − x̄ ∈ Vk for all k = 0, 1, . . . , n − 1. This, how-
ever, means that x(t) − x̄ ∈ V∗. Therefore, x(t) = x̄ by the
hypothesis. �

APPENDIX III

APPENDIX: PROOFS

A. Proof of Theorem IV.1

We will show that the following implications hold:

2 ⇒ 1 ⇒ 3 ⇐ 4
⇑ ⇑ ⇓
4 6 ⇔ 5 ⇒ 4

Note that the three implications in the first line are evident.
1) 3 ⇒ 5 : Suppose that 3 holds. Let z ∈ R

n be such that

zT exp(At)f(u) ≥ 0 (36)

for all t ≥ 0 and for all u ∈ R
m . Then, for any solution x of (7)

with x(0) = 0, one has

zT x(T ) = zT

∫ T

0
exp(A(T − s))f(u(s)) ds ≥ 0. (37)

As the statement 3 holds, x(T ) may take any arbitrary value by
choosing a suitable input function. Therefore, z must be zero.

2) 5 ⇒ 6 : Suppose that 5 holds. Due to Theorem III.2, it is
enough to show that

a) the pair (A, [ M 1 M 2 · · · Mr ]) is controllable and
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b) the implication λ ∈ R, z ∈ R
n ,

zTA= λzT, (Mi)T z ∈ Y∗
i for all i= 1, 2, . . . , r ⇒ z = 0

holds.
a) Let s′ ∈ C and v ∈ C

n be such that v∗[s′I − A M 1

M 2 · · ·Mr ] = 0. This means that

s′v∗ = v∗A (38a)

v∗Mi = 0 (38b)

for all i = 1, 2, . . . , r. Let σ and ω be, respectively, the
real and imaginary parts of s′. Also let v1 and v2 be,
respectively, the real and imaginary parts of v. One can
write (38) in terms of σ, ω, v1 , and v2 as[

vT
1

vT
2

]
A =

[
σ ω

−ω σ

] [
vT

1

vT
2

]
(39a)

vT
1 Mi = vT

2 Mi = 0 (39b)

for all i = 1, 2, . . . , r. Note that (39a) results in[
vT

1

vT
2

]
exp(At) = exp

([
σ ω

−ω σ

]
t

)[
vT

1

vT
2

]
. (40)

Together with (39b), this implies that vT
j exp(At)Mi =

0 for all t, for all i, and for all j ∈ {1, 2}. In view
of statement 5, both v1 and v2 must be zero. Hence,
so is v. Consequently, the pair (A, [M 1M 2 · · ·Mr ]) is
controllable.

b) Let z ∈ R
n and λ ∈ R be such that

zT A = λzT (41a)

(Mi)T z ∈ Y∗
i (41b)

for all i = 1, 2, . . . , r. Then, zT Miv is nonnegative
for any v ∈ Yi . Thus, we get zT f(v) ≥ 0 for all v.
Note that zT exp(At) = exp(λt)zT due to (41a). Then,
zT exp(At)f(v) ≥ 0 for all v ∈ R

m . In view of statement
5, this implies that z = 0.

Now, statement 6 follows from (a), (b), and Theorem III.2. 3)
5 ⇒ 4 : This implication follows from the following lemma.

Lemma III.1: Consider the system (7). Suppose that the im-
plication

zT exp(At)f(u) ≥ 0 for all t ≥ 0 and u ∈ R
m ⇒ z = 0

(42)
holds. Then, there exist a positive real number T and an integer
� such that for a given state xf , one can always find vectors
ηi,j ∈ Yi for i = 1, 2, . . . , r and j = 0, 1, . . . , � − 1 such that
the state xf can be reached from the zero state in time T by the
application of the input

ū(t) = ηi,j θ∆ � (t − (jr + i − 1)∆�) (43)

for (jr + i − 1)∆� ≤ t ≤ (jr + i)∆� where ∆� = T/(�r) and
θ∆ : R → R is a nonnegative valued C∞ function with
supp(θ∆) ⊆ (∆/4, 3∆/4) and

∫ ∆
0 θ∆(t) = 1.

Proof: First, we show that if (42) holds, then there exists a
positive real number T such that the implication

zT exp(At)f(u) ≥ 0∀ t ∈ [0, T ] and u ∈ R
m ⇒ z = 0 (44)

holds. To see this, suppose that the previous implication does not
hold for any T . Therefore, for all T , there exists 0 �= zT ∈ R

n

such that

zT
T exp(At)f(u) ≥ 0 for all t ∈ [0, T ] and u ∈ R

m . (45)

Without the loss of generality, we can assume that ‖zT ‖ = 1.
Then, the sequence {zT }T ∈N admits a convergent subsequence
due to the well-known Bolzano–Weierstrass theorem. Let z∞
denote its limit. Note that ‖z∞‖ = 1. We claim that

zT
∞ exp(At)f(u) ≥ 0 (46)

for all t ≥ 0 and u ∈ R
m . To show this, suppose that

zT
∞ exp(At′)f(u′) < 0 for some t′ and u′ ∈ R

m . Then, for
some sufficiently large T ′, one has zT

T ′ exp(At′)f(u′) < 0 and
t′ < T ′. However, this cannot happen due to (45). In view of
(42), (46) yields z∞ = 0. Hence, by contradiction, there exists
a positive real number T such that the implication (44) holds.

Now, consider the input function in (43). Note that

f(ū(t)) = Miū(t) if (jr + i − 1)∆� ≤ t ≤ (jr + i)∆� .

The solution of (7) corresponding to x(0) = 0 and u = ū is
given by

x(T ) =
∫ T

0
exp[A(T − s)]f(ū(s)) ds

Straightforward calculations yield that

x(T ) = Λ(∆�)
�−1∑
j=0

r∑
i=1

exp[A(T − (jr + i − 1)∆�)]Miηi,j

(47)
where Λ(∆) =

∫ ∆
0 exp(−As)θ∆(s) ds. Then, it is enough to

show that there exists an integer � such that the previous equation
is solvable in ηi,j ∈ Yi for i = 1, 2, . . . , r and j = 0, 1, . . . , � −
1 for any x(T ) ∈ R

n . To do so, we invoke a generalized Farkas’
lemma (see, e.g., [32, Th. 2.2.6]).

Lemma III.2: Let H ∈ R
P ×N , q ∈ R

P , and a closed convex
cone C ⊆ R

N be given. Suppose that HC is closed. Then, either
the primal system

Hv = q, v ∈ C
has a solution v ∈ R

N or the dual system

wT q < 0, HT w ∈ C∗

has a solution w ∈ R
P , but never both.

An immediate consequence of this lemma is that if the
implication

wT Hv ≥ 0 for all v ∈ C ⇒ w = 0 (48)

holds, then the primal system has a solution for all q. Consider,
now, (47) as the primal system. Note that Λ(∆�) is nonsin-
gular for all sufficiently large �, as it converges to the iden-
tity matrix as � tends to infinity. As Yi is polyhedral cone,
Λ(∆�) exp(Aτ)MiYi must be polyhedral, and hence, closed
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for all sufficiently large � and for all τ . Therefore, in view of
(48), in order to show that for an integer �, (47) has a solution
for arbitrary x(T ), it is enough to show that the relation

zT Λ(∆�)
�−1∑
j=0

r∑
i=1

exp[A(T − (jr + i − 1)∆�)]Miηi,j ≥ 0

(49)
for all ηi,j ∈ Yi , i = 1, 2, . . . , r, and j = 0, 1, . . . , � − 1 can
only be satisfied by z = 0. To see this, suppose, on the contrary,
that for each integer �, there exists z� �= 0 such that

zT
� Λ(∆�)

�−1∑
j=0

r∑
i=1

exp[A(T − (jr + i − 1)∆�)]Miηi,j ≥ 0

(50)
for all ηi,j ∈ Yi , i = 1, 2, . . . , r, and j = 0, 1, . . . , � − 1.
Clearly, we can take ‖z�‖ = 1. In view of the Bolzano–
Weierstrass theorem, we can assume, without the loss of gen-
erality, that the sequence {z�} converges, say to z∞, as �
tends to infinity. Now, fix i and t ∈ [0, T ]. It can be verified
that there exists a subsequence {�k} ⊂ N such that the in-
equality (j�k

r + i − 1)∆�k
≤ T − t ≤ (j�k

r + i)∆�k
holds for

some j�k
∈ {1, 2, . . . , �k}. It is a standard fact from distribution

theory that θ∆ converges to a Dirac impulse as ∆ tends to zero.
Hence, Λ(∆�) converges to the identity matrix as � tends to
infinity. Let � = �k and j = j�k

in (50). By taking the limit, one
gets

zT
∞ exp(At)Miη ≥ 0

for all t ∈ [0, T ], η ∈ Yi , and i = 1, 2, . . . , r. Consequently, one
has

zT
∞ exp(At)f(u) ≥ 0 (51)

for all t ∈ [0, T ] and u ∈ U . Hence, z∞ must be zero due to (44).
Contradiction! �

4) 6 ⇒ 5 : Suppose that 6 holds. It follows from Theorem
III.2 that

a) the pair (A, [M 1M 2 · · ·Mr ]) is controllable and
b) the implication λ ∈ R, z ∈ R

n ,

zT A = λzT , (Mi)T z ∈ Y∗
i for i = 1, 2, . . . , r ⇒ z = 0

holds.
At this point, we invoke the following lemma.
Lemma III.3: Let G ∈ R

N ×N and H ∈ R
N ×M be given. Also

let W ⊆ R
M be such that its convex hull has nonempty interior

in R
M . Suppose that the pair (G,H) is controllable and the

implication

λ ∈ R, z ∈ R
N , zT G = λzT ,HT z ∈ W∗ ⇒ z = 0

holds. Then, also the implication

zT exp(Gt)Hv ≥ 0 for all t ≥ 0 and v ∈ W ⇒ z = 0

holds.
The proof can be found in the sufficiency proof of [3, Th.

1.4]. Take G = A, H = [M 1M 2 · · ·Mr ], andW = Y1 × Y2 ×
· · · × Yr . It follows from (a) and (b) that the hypothesis of the

aforementioned lemma is satisfied. Therefore, the implication

zT exp(At) [ M 1 M 2 · · · Mr ] v ≥ 0 for all t ≥ 0

and v ∈ Y1 × Y2 × · · · × Yr ⇒ z = 0

holds. In particular, the implication

zT exp(At)f(u) ≥ 0 for all t ≥ 0 and u ∈ U ⇒ z = 0

holds.
5) 6 ⇒ 1 : Note that if the statement 6 holds for the system

(7), so does it for the time-reversed version of the system (7).
Therefore, the statement 4 holds (via 6 ⇒ 5 ⇒ 4) for both (7)
and its time reversal. This means that one can steer any initial
state first to zero, and then, to any final state. Thus, complete
controllability is achieved.

6) 4 ⇒ 2 : As the statement 4 holds (via 4 ⇒ 3 ⇒ 5 ⇒ 6) for
both (7) and its time reversal, one can steer any initial state first
to zero, and then, to any final state with C∞ inputs in view of
Lemma III.1.

B. Proof of Lemma IV.2

We need the following auxiliary results. The first one guar-
antees the existence of smooth functions lying in a given poly-
hedral cone.

Lemma III.4: LetY ⊆ R
p be a polyhedral cone and y be a C∞

function, such that y(t) ∈ Y for all t ∈ [0, ε], where 0 < ε < 1.
Then, there exists a C∞ function ȳ such that:

a) ȳ(t) = y(t), for all t ∈ [0, ε];
b) ȳ(k)(1) = 0, for all k = 0, 1, . . .; and
c) ȳ(t) ∈ Y , for all t ∈ [0, 1].
Proof: We only prove the case p = 1 and Y = R+ . The rest

is merely a generalization to the higher dimensional case. Let ¯̄y
be a C∞ function, such that ¯̄y(t) = 1 for t ≤ ε/4, ¯̄y(t) > 0 for
ε/4 < t < 3ε/4, and ¯̄y(t) = 0 for 3ε/4 ≤ t. Such a function can
be derived from the so-called bump function (e.g., the function
ϕ in [33, Lemma 1.2.3]) by integration and scaling. It can be
checked that the product of y and ¯̄y proves the claim. �

The second auxiliary result concerns the existence of so-
lutions of CLS with certain properties. It follows from [34,
Lemmas 2.4 and 3.3, and Th. 3.5].

Proposition III.5: Consider the CLS (1) with u = 0. Then,
for each initial state x0 , there exists an index set i and a positive
number ε such that y(t) ∈ Yi for all t ∈ [0, ε].

We turn to the proof of Lemma IV.2. Obviously, 1 implies
2. For the rest, it is enough to show that the system (16) is
controllable if 2 holds.

Note that V∗(A22 + Mi
2C2 , B2 + Mi

2D,C2 ,D) = {0} and
T ∗(A22 + Mi

2C2 , B2 + Mi
2D,C2 ,D) = R

n2 for all i =
1, 2, . . . , r due to (17) and Proposition II.1. Further, the ma-
trices [C2 D] and col(B2 ,D) are of full, respectively, row and
column rank. According to Proposition II.2, the transfer matrix
D + C2(sI − A22 + Mi

2C2)−1(B2 + Mi
2D) has a polynomial

inverse for all i = 1, 2, . . . , r.
Take any x10 , x1f ∈ R

n1 and x20 , x2f ∈ R
n2 . Consider the

system (16). Apply v = 0. By applying Proposition III.5, we
can find an index i0 and an arbitrarily small positive number ε



772 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 3, APRIL 2008

such that y(t) ∈ Yi0 for all t ∈ [0, ε]. By applying Lemma III.4,
we can get a C∞ function yin such that:

a) yin(t) = y(t), for all t ∈ [0, ε];
b) y

(k)
in (1) = 0, for all k = 0, 1, . . .; and

c) yin ∈ Yi0 , for all t ∈ [0, 1].
Then, by applying Propositions II.4 and II.5 to the system

Σ(A22 + Mi0
2 C2 , B2 + Mi0

2 D,C2 ,D), we can find an input
vin such that the output y of (16b) and (16c) is identically yin ,
and the state x2 satisfies x2(0) = x20 . Note that the input vin
should be zero on the interval [0, ε] by the construction of yin
and invertibility. Moreover, x2(1) = 0 due to (b) and Proposi-
tion II.5. Therefore, the input vin steers the state col(x10 , x20)
to col(x′

10 , 0) where x′
10 := x1(1). By employing the very same

ideas in the reverse time, we can come up with an input vout ,
such that it steers a state col(x′

1f , 0) to col(x1f , x2f ). Now, we
will show that the state col(x′

10 , 0) can be steered to col(x′
1f , 0).

To see this, apply Theorem IV.1. This gives a positive number
T > 0 and a C∞ function y = ymid , such that the solution x1
of (18) satisfies x1(0) = x′

10 and x1(T ) = x′
1f . According to

Lemma III.1, ymid function can be chosen such that y
(j )
mid(0) =

y
(j )
mid(T ) = 0 for all j = 0, 1, . . .. Moreover, one can find a finite

number of points, say 0 = t0 < t1 < · · · < tQ = T , such that
ymid(t) ∈ Yiq

whenever t ∈ [tq , tq+1]. Since the transfer matrix
D + C2(sI − A22 + Mi

2C2)−1(B2 + Mi
2D) has a polynomial

inverse for all i = 1, 2, . . . , r, repeated application of Proposi-
tion II.4 to the systems Σ(A22 + M

iq

2 C2 , B2 + M
iq

2 D,C2 ,D)
yields an input vmid and a state trajectory x2 such that (16b) and
(16c) are satisfied for y = ymid . Moreover, x2(0) = x2(T ) = 0
due to Proposition II.5. Consequently, the concatenation of
vin , vmid , and vout steers the state col(x10 , x20) to the state
col(x1f , x2f ).

C. Proof of Theorem IV.3

In view of Lemma 1 and Theorem IV.1, it is enough to show
that the controllability of the pair

(A11 , [ L1 + M 1
1 L1 + M 2

1 · · · L1 + Mr
1 ])

with respect to Y1 × Y2 × · · · × Yr is equivalent to the condi-
tions presented in Theorem IV.3. Note that the former is equiv-
alent to the following conditions:

a) the pair (A11 , [ L1 + M 1
1 L1 + M 2

1 · · · L1 + Mr
1 ])

is controllable and
b) the implication

zT A11 = λzT , λ ∈ R, (L1 + Mi
1)

T z ∈ Y∗
i

for all i ⇒ z = 0

holds.
Our aim is to prove the equivalence of (a) to 1 and of (b) to 2.
7) a ⇔ 1:
Note that 〈A + MiC | im (B + MiD)〉 = 〈(A − BK) +

Mi(C − DK) | im (B + MiD)〉 for any K due to Proposition
II.1. Take K ∈ K(V∗). Note that the condition in 1 of Theorem
IV.3 is invariant under state space transformations. Therefore,

one can, without the loss of generality, take

(A − BK) + Mi(C − DK) =
[
A11 (L1 + Mi

1)C2

0 A22 + Mi
2C2

]
(52a)

B + MiD =
[

(L1 + Mi
1)D

B2 + Mi
2D

]
. (52b)

LetRi denote 〈(A − BK) + Mi(C − DK) | im (B + MiD)〉.
Note that Ri is an input-containing conditioned invariant sub-
space of the system Σ(A,B,C,D). Hence, T ∗, the smallest
of the input-containing conditioned invariant subspaces, must
be contained in Ri . In the coordinates that we chose, this is
equivalent to the inclusions

im
[

0
In2

]
⊆ Ri . (53)

At this point, we need the following auxiliary lemma.
Lemma III.6: Let O, P , and Q be vector spaces such that

O = P ⊕Q. Also let πP(πQ) : O → O be the projection on P
(Q) along Q (P). Suppose that the linear maps F : O → O,
G : S → O, and F̃ : O → O satisfy the following properties:

a) P is F -invariant;
b) πPFπP = F̃ ; and
c) Q ⊆ 〈F | im G〉.
Then, 〈F̃ | im (πPFπQ)〉 + im (πPG) ⊆ 〈F | im G〉.
Proof: Note that

F̃ 〈F | im G〉 = πPFπP〈F | im G〉 (54a)

= πPF (P ∩ 〈F | im G〉) (54b)

⊆ πP(P ∩ 〈F | im G〉) (54c)

⊆ (P ∩ 〈F | im G〉) ⊆ 〈F | im G〉. (54d)

This shows that the subspace 〈F | im G〉 is F̃ -invariant. Note
also that

im πPFπQ = πPFQ ⊆ πPF 〈F | im G〉
⊆ πP〈F | im G〉 ⊆ 〈F | im G〉

and

imπPG ⊆ im G ⊆ 〈F | im G〉. (55)

These two inclusions show that the subspace
〈F | im G〉 contains im (πPFπQ) + im (πPG). Since
〈F̃ | im (πPFπQ)〉 + im (πPG) is the smallest F̃ -invariant
subspace that contains im (πPFπQ) + im (πPG), the inclusion

〈F̃ | im (πPFπQ)〉 + im (πPG) ⊆ 〈F | im G〉

holds. �
Now, take

O = R
n P = im

[
In1

0

]
Q = im

[
0

In2

]
S = R

m

(56a)

F i = (A − BK) + Mi(C − DK) Gi = B + MiD

(56b)
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F̃ =
[

A11 0
0 0

]
. (56c)

Note that

πP =
[

In1 0
0 0

]
and πQ =

[
0 0
0 In2

]
.

Then, one has

πPF iπP =
[

A11 0
0 0

]
(57a)

πPF iπQ =
[

0 (L1 + Mi
1)C2

0 0

]
(57b)

πPGi =
[

(L1 + Mi
1)D

0

]
. (57c)

Note that the first hypothesis of Lemma III.6 is satisfied due
to (52). It follows from (56) and (57a) that the second one
is also satisfied. Finally, the third follows from (53). Then,
Lemma III.6 results in〈[

A11 0
0 0

]
| im

[
(L1 + Mi

1)C2 0
(L1 + Mi

1)D 0

]〉
⊆ Ri . (58)

By the invertibility hypothesis, the matrix [ C2 D ] must be of
full row rank. Then, the previous inclusion can be written as〈[

A11 0
0 0

]
| im

[
L1 + Mi

1
0

]〉
⊆ Ri . (59)

Summing both sides over i, one gets

r∑
i=1

〈[
A11 0
0 0

]
| im

[
L1 + Mi

1
0

]〉
⊆

r∑
i=1

Ri . (60)

This implies that〈[
A11 0
0 0

]
| im

[
L1 + M 1

1 L1 + M 2
1 · · · L1 + Mr

1
0 0 · · · 0

]〉

⊆
r∑

i=1

Ri .

Together with (53), the previous inclusion implies that
the implication (a) ⇒ 1 holds. For the reverse di-
rection, suppose that 1 holds but (a) does not. Then,
there exists a nonzero vector z and λ ∈ C such that
z∗ [ λI − A11 L1 + M 1

1 L1 + M 2
1 · · · L1 + Mr

1 ] = 0.
It can be verified that the real part of z, say w, belongs to R⊥

i

for all i. Thus, w belongs to ∩r
i=1R⊥

i = (
∑r

i=1 Ri)⊥. This,
however, contradicts 1.

8) b ⇔ 2: Note that statement 2 is invariant under state space
transformations. This means that it is enough to prove the state-
ment for the system (16). Let λ ∈ R, v ∈ R

n1 , z ∈ R
n2 , and

wi ∈ R
m be such that the following product is equal to zero:

 v
z
wi




T



A11 − λI (L1+Mi
1)C2 (L1+Mi

1)D

0 A22+Mi
2C2 − λI B2+(L1+Mi

2)D

0 C2 D


 .

This would result in

vT A11 = λvT

[
z

wi−(L1+Mi
1)v

]T

[
A22+Mi

2C2−λI B2+(L1+Mi
2)D

C2 D

]
=0.

Note that V∗(A22 + Mi
2C2 , B2 + Mi

2D,C2 ,D) = {0} for all
i. Then, it follows from Proposition II.3 that z = 0 and wT

i =
vT (L1 +Mi

1). This implies that (b) is equivalent to 2. �
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