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Abstract. Algebraic cryptanalysis is a general tool which permits one to assess
the security of a wide range of cryptographic schemes. Algebraic techniques have
been successfully applied against a number of multivariate schemes and stream
ciphers. Yet, their feasibility against block ciphers remains the source of much
speculation. In this context, algebraic techniques have mainly been deployed in
order to solve a system of equations arising from the cipher, so far with limited
success. In this work we propose a different approach: to use Grobner basis tech-
niques to compute structural features of block ciphers, which may then be used to
improve “classical” differential and integral attacks. We illustrate our techniques
against the block ciphers PRESENT and KTANTAN32.

1 Introduction

Algebraic cryptanalysis is a general tool which permits one to assess the security of a
wide range of cryptographic schemes [21,20,19,17,18,23,24,22]. As pointed out in the
report [13], “the recent proposal and development of algebraic cryptanalysis is now widely
considered an important breakthrough in the analysis of cryptographic primitives’. The
basic principle of algebraic cryptanalysis is to model a cryptographic primitive by a set
of algebraic equations. The system of equations is constructed in such a way as to have
a correspondence between its solutions and some secret information of the cryptographic
primitive (for instance, the secret key of a block cipher). The secret can thus be derived
by solving the equation system.

Such algebraic techniques have been successfully applied against a number of multivariate
schemes and in stream cipher cryptanalysis. On the other hand, their feasibility against
block ciphers remains the source of much speculation [15,14,19]. One of the reasons is



that the sizes of the resulting equation systems are usually beyond the capabilities of
current solving algorithms. Furthermore, the complexity estimates are complicated as the
algebraic systems are highly structured; a situation where known complexity bounds are
no longer valid [4, 2, 3].

While it is currently infeasible to cryptanalyse a block cipher by algebraic means alone,
these techniques nonetheless have practical applications for block cipher cryptanalysis.
For instance, Albrecht and Cid proposed in [1] to combine differential cryptanalysis with
algebraic attacks and demonstrated the feasibility of their techniques against reduced-
round versions of the block cipher PRESENT [7]. In this approach, the key recovery was
approached by solving (or showing lack of solutions in) equation systems that were much
simpler than the one arising from the full cipher.

In this paper, we further shift the focus away from attempting to solve the full system
of equations. Instead, we use Grobner basis techniques to compute structural features of
block ciphers. It turns out that significant information can be gained without solving the
equation system in the classical sense. This information, computed via algebraic means,
can in turn be potentially used to improve other, “non-algebraic” cryptanalytic methods.
We illustrate our techniques by considering the differential cryptanalysis of reduced-round
variants of PRESENT and KTANTAN32 [11], as well bit-pattern based integral attacks
against PRESENT [31].

The paper is organised as follows. In Section 2 we briefly recall some of the cryptanalytic
concepts of relevance to this paper. In Section 3 we provide a high-level description of the
main idea behind this work, and briefly describe the ciphers that we use to demonstrate
our ideas. These ideas are then applied to improve differential cryptanalysis (Section 4)
and integral cryptanalysis (Section 5); experimental results are also presented in both
sections.

2 Block Cipher Cryptanalysis

Differential cryptanalysis was formally introduced by Biham and Shamir in [6], and
has since been successfully used to attack a wide range of block ciphers. By consid-
ering the distribution of output differences for the non-linear components of the ci-
pher (e.g. the S-Box), the attacker may be able to construct differential characteristics
P oP' =AP - AC=C" @ C" for a number of rounds N that are valid with non-
negligible probability p. A plaintext pair (PI,P”) for which the characteristic holds is
called a right pair, and this behaviour may be used to distinguish the cipher from a ran-
dom permutation. By modifying the attack, one may use it to potentially recover key
information: instead of characteristics for the full N-round cipher, the attacker considers
characteristics valid for r rounds only (r = N — R, with R > 0). The attacker can partially
decrypt the known ciphertexts and verify if the result matches the one predicted by the
characteristic. Candidate (last round) keys are counted, and as random noise is expected
for wrong key guesses, eventually a peak may be observed in the candidate key counters,
pointing to the correct round key.



The chances of success and data requirements of differential attacks are typically estimated
based on the idea of signal to noise ratio. Assume such a differential attack, making use
of m plaintext pairs. If the attacker is attempting to recover k subkey bits, it can count
the number of occurrences of the possible key values in 2* counters. If § is the ratio of
discarded pairs, based on some criteria to filter wrong pairs (e.g. ciphertext difference),
and « is the average number of k-bit subkeys suggested by each pair, we expect the
counters to contain on average (m -« - 3)/2* counts. The right subkey value is counted
m - p times due to right pairs, plus the random counts for all the possible subkeys. The
signal to noise ratio is therefore:

- m-p _2”“-]9
S/N_m-a-ﬁ/Qk_ a-fB°

Albrecht and Cid considered in [1] several ideas on how to use algebraic techniques
to improve “classical” differential cryptanalysis. In the most promising method, named
in [1] Attack-C, Grobner basis computations (applied to the algebraic system arising from
the outer rounds in differential cryptanalysis) are used to distinguish right pairs. These
Grobner basis computations could however only be performed during the online phase of
the attack. This limitation prevented them from applying their techniques to PRESENT-80
with more than 16 rounds, since computation time would exceed exhaustive key search.
In this work, we extend the idea but take a different approach: we only perform Grébner
basis computations in a precomputation (or offline) phase. We show that these computa-
tions can also be used to improve the success of differential attacks (for instance, one can
increase the signal to noise ratio S/N by using algebraic techniques).

Integral attacks were originally proposed for byte-oriented ciphers such as the AES, and
can be viewed as a special form of higher-order differential attacks [27]. In such an attack,
one uses sets of plaintexts that satisfy a particular structure (e.g. take on all possible
values in one byte and a fixed arbitrary value in all other plaintext bytes). For some
ciphers this leads to a predictable feature relating the ciphertexts after a few rounds,
which in turn may be used to attack the cipher. In [31] Reza Z’Aba et al. extend the
notion of integral attacks to bit-oriented ciphers, considering the block ciphers PRESENT,
NOEKEON and SERPENT.

The first work combining algebraic and higher-order differential attacks is [25] by Faugere
and Perret. The authors used higher-order differentials to explain the improved runtime
of their Grobner basis algorithms against the Curry and Flurry families of block ciphers
[10]. In this work, we also use algebraic techniques to improve integral cryptanalysis: we
focus on recovering symbolic representations for relations that must hold on the output
after a few rounds, illustrated on an attack against reduced-round variants of PRESENT.

3 Symbolic Precomputation in Block Ciphers

The main idea explored in this paper involves shifting the emphasis of previous algebraic
attacks away from attempting to solve an equation system towards using ideal membership



as tmplication. In others words, instead of trying to solve an equation system arising from
the cipher to recover secret key information, we use Grobner basis methods to compute
what a particular input pattern implies.

We use a small example to illustrate the main idea. Consider the block cipher PRESENT [7].
Its 4-bit S-Box can be completely described by a set of polynomials that express each
output bit in terms of the input bits. Let X; ; and Y; ; denote the 4t input and output
bits of the i*" S-Box, respectively. In differential cryptanalysis, one considers a pair of
inputs X/ ,..., X3 and X/, ..., X}; and the corresponding output bits Y/q,..., Y/
and Y/, ..., Y/5. Since the output bits are described as polynomials in the input bits, it
is easy to build a set of polynomials describing the parallel application of the S-Box to the
pair of input bits. For example, assume the fixed input difference of (0,0,0,1) holds for
this S-Box. This can be described algebraically by adding the equations X 5 + X/'3 =1,
X ;+ X', =0for 0 <j <3 to the set. As usual, we add to this system (as well as in all

calculations performed in this work) the field equations Xﬁj +X;,; =0and ij +Y;; =0.

The set of equations now forms a description of the parallel application of the S-Box
to two inputs with a fixed input difference. The ideal I spanned by these polynomials
contains all polynomials that are implied by the set. If all polynomials in the generating
set of the ideal evaluate to zero, it is clear that any element of I will also evaluate to zero.
In particular any polynomial in the ideal will vanish if it is assigned values corresponding
to the application of the S-Box with a pair of inputs with the above-mentioned input
difference.

From a cryptographic point of view, it may be desirable to understand what relations
between output bits will hold for a particular input difference. This can be done by
considering the polynomials in the output bits only that are contained in I. Algebraically,
we are trying to find elements in the ideal Iy = I " Fa[Y/q, ..., Y3, Y/G, ..., Y/5], where

I is the ideal spanned by our original equations.

A deglex Grobner basis Gy of this ideal can be computed using standard elimination
techniques.! For this, we can for example set up a block or product ordering where all
output variables are lexicographically smaller than any other variable in the system. In
addition, we fix the deglex ordering among the output variables. Computing the Grobner
basis with respect to such an ordering gives us the Grobner basis Gy of Iy. We note that
Gy will contain the relations of lowest degree of Iy due to the choice of term ordering.
In our example we have:

! We refer the reader unfamiliar with Grobner bases theory and techniques to [5] for the algebraic
geometry concepts relevant to the remaining of this section.



Gy =[Yi3+Yi5+1,
Yio+ Y+ Yo +Y/5+1,
YioYia + Yia + Yo+ Y + Y5,
YioYih + YioYis + YiIYia + YLV s + Y + Vi + Yih,
VoY + Y1V + YiaYis,
VLV + VAL 4 YUV 4 Y 4 Vi ¥ 4 Y
Yi/,lyz'/,/z + Yz‘/,2YiI,I1 + YiI,QYil,/:a + Yil,/l z//2 + Y'Ll,l + YiI,Q + Yil,/la
Yz'/,1Y¢/,/1 + Yi/,1Yz",/3 + Yil,/1 YZ”Q + Yil,/l Yz“3 + Yz“2 Yzﬁa + Yi/,/h
YiaYio + Yo YL + Y oY s + YoV + Y1V + YoV 5 + Vi1 + Y5,
ViVl + YLVl + Y0V + ¥ 4 Y]

There is no other linear or quadratic polynomial p € Iy which is not a simple algebraic
combination of the polynomials in Gy . In other words, all simple relations involving only
the output bits can be derived in a straightforward way from the set Gy .

In order to formalise this idea, consider a function £ (for example a block cipher), and as-
sume & can be expressed as a set of algebraic equations F over a finite field F. We can con-
sider d parallel applications of £, with inputs and outputs Py, ..., P;_1 and Cy,...,Cq_1,
respectively, and denote the corresponding polynomial systems by F;. Now assume some

property A holds on Py, ..., P;_1, and can be expressed by a set of algebraic equations
F4. A natural question to ask is: how do properties on the input set Py, ..., P;_1 affect
properties on the output set Cy,...,Cq—1 7

We can simply combine the equation systems into the set F = F, U (Uf;ol F;) and
consider the ideal I = (F). As discussed above, the unique reduced Grébner basis G¢ of
the ideal I = I NF[Cy,...,C4_1] contains all “relevant” polynomials in Cy,...,Cy_1,
where “relevant” is determined by the term ordering. As soon as we compute the Grébner
basis G¢ for the d parallel applications of the function £, we only need to collect the right
polynomials from G¢ to obtain the properties on the output set Cy,...,Cy—1 which are
implied by A.

We note however that for many functions £, computing G ¢ may be infeasible using current
Grobner basis techniques, implementations and computing power. Thus in practice, we
may need to relax some conditions hoping that we still can recover useful information
using a similar technique. We provide below a few heuristics and techniques that may
still allow recovering some relevant equations.

Early Abort. To recover some properties we might not need to compute the complete
Grobner basis; instead we may opt to stop the computation at some degree D.

Replacing Symbols by Constants. It is possible to replace the symbols Py, ..., Py_1
by some constants (values) satisfying the constraint A which further simplifies the
computation. Of course any polynomial recovered from such a computation would



have to be checked against other values to verify whether it actually holds in general
or with high probability.

Choosing a Different Term Ordering. Instead of computing with respect to an elim-
ination ordering, which is usually more expensive than a degree compatible ordering,
we may choose to perform our computations with respect to a more efficient ordering
such as degrevler. Used together with Early Abort, we have no assurances about
the completeness of the recovered system; yet we might still be able to recover some
useful information.

3.1 Block Ciphers

We briefly introduce the block ciphers used to demonstrate our techniques.

PRESENT [7] was proposed at CHES 2007 as an ultra-lightweight block cipher, enabling a
very compact implementation in hardware, and therefore particularly suitable for RFIDs
and similar devices. There are two variants of PRESENT: one for 80-bit keys and one for
128-bit keys, denoted as PRESENT-80 and PRESENT-128 respectively.

PRESENT is an SP-network with a blocksize of 64 bits and both versions have 31 rounds.
Each round of the cipher has three layers of operations: keyAddLayer, sBoxLayer and
pLayer. The operation keyAddLayer is a simple subkey addition to the current state,
while the sBoxLayer operation consists of 16 parallel applications of a 4-bit S-Box. The
operation pLayer is a permutation of wires. In this work we consider round-reduced
variants of PRESENT denoted PRESENT-Ks-Nr where Ks € {80,128} and the number of
rounds is 0 < Nr < 31.

The designers of PRESENT give a security analysis of their cipher by showing resistance
against well-known attacks such as differential and linear cryptanalysis [7]. The best pub-
lished differential attacks are for 16 rounds of PRESENT-80 [30] and 17 (and possibly up
to 19) rounds [1] for PRESENT-128. Results on linear cryptanalysis for up to 26 rounds
are available in [12, 26]. Bit-pattern based integral attacks [31] are successful up to seven
rounds of PRESENT. A new type of attack, called statistical saturation attack, was pro-
posed in [16] and expected to be applicable to up to 24 rounds of PRESENT.

KTANTAN32 was proposed at CHES 2009 and is the smallest cipher in a family of block
ciphers proposed in [11]. It allows a very compact implementation in hardware. It has a
blocksize of 32 bits and accepts an 80-bit key. The input is loaded into two registers Ly and
L1 of 19 and 13 bit length respectively. A round transformation is then applied to these
registers 254 times. This round function updates two bits using a quadratic function and
performs rotations on the registers. After 254 rounds the content of Lo and L; is output
as the ciphertext.

The designers of KTANTAN consider a wide range of attacks in their security argument
and show evidence that the cipher is secure against differential, linear, impossible differ-
ential, algebraic attacks, as well as some combined attacks. However strong cryptanalytic
results against the cipher have recently been proposed in [8].



4 Algebraic Precomputation in Differential Cryptanalysis

In this section we show how to use the techniques discussed previously to improve the
differential cryptanalysis of some block ciphers. More specifically, we attempt to increase
the chances of success of such an attack by increasing the signal to noise ratio S/N; we
illustrate the method against reduce-round versions of PRESENT and KTANTAN32.

4.1 Reducing the Noise

We briefly recall the basic principles of the main attack proposed in [1]. The proposed
technique (referred to as Attack-C') was used to discard wrong pairs during a differential
attack. The attacker would consider the equation systems modelling only the rounds > r
(the R outer rounds in the differential attack based on a characteristic valid for r rounds)
for each plaintext—ciphertext pair. We denote these equation systems arising from the
encryption of P’ to C’ and P” to C", by Fj and F'; respectively. The algebraic part of
Attack-C' of [1] consists of a Grobner basis computation on the polynomial system

F = FI/%UFI/i{U{X;"Jrl,l + 7/~/+17i+§Xr+1,72}7

where the last set refers to the (linear) polynomials arising from the output difference
0X, 41, predicted by the characteristic. Whenever the Grébner basis of the ideal (F) is
equivalent to {1}, we know that the system has no solution, and the pair (P/, P”) cannot
be a right pair (it can thus be discarded). We note however that no strong assurances
are given in [1] as to how many pairs are actually discarded by this technique (we refer
the reader to [1] for a more detailed description of the proposed algebraic techniques in
differential cryptanalysis).

In the present work, we consider the same system of equations as in Attack-C but replace
the values of C’ and C” by symbols (i.e. variables). By computing a Grébner basis for
the right elimination ordering (cf. Section 3), we can recover relations in the variables C’
and C” that must evaluate to zero whenever the input difference for round r + 1 holds.
We note that this computation can be done offiline, as the actual values for the plaintexts
and ciphertexts are not required. These equations may be used to improve the quality of
the algebraic filter used to discard wrong pairs (in other words, to decrease the value of
B in the expression of S/N). An estimate about the quality of this filter can calculated
by computing the probability that the polynomials obtained evaluate to zero for random
values of C" and C”.

4.2 Case Study: PRESENT

We consider the differential from [30] and construct filters for PRESENT reduced to 14+ R
rounds. The same filter also applies to 10+ R, 6+ R and 2+ R rounds since the characteristic
is iterative with a period of four rounds. The explicit polynomials in this section do not
differ for PRESENT-80 and PRESENT-128.



PRESENT 2R. We consider the polynomial ring

P:FQ[KO’(),...7K0,79, K1,07...,K1’63,
Yll707""Y1/,637 Yll,/O"'WY'l/,IGS’ X{,Oa""X{,GB’ Xil,ow'"XﬂGBa
ey I(15707...,f(15737
Y1/5,Oa R Y1/5,637 Yllé,ov R Yllé,637 X15,07 ce 7X{57637 X{IS,Ov s 7X{l5,637
Y1/6,0a SER) Y1/6,637 Yfé,o» B Y1/(/3,637 XiG,Ov cee 7X16,637 Xi/ﬁ,m cee ’X{IG,637
Chy ..., Cls, Cll,...,C]

and use the following block ordering;:

1 ! ! 1 1
K00,y X15.630 Cos ooy Cli Gy, Clly

degrevlex degrevlex

We set up an equation system as in [1], except that the ciphertext bits are symbols (C!
and C!). Then, we compute the Grobner basis up to degree D = 3 using POLYBORI
0.6.3 [9,29] with the option deg-bound=3 and filter out any polynomial that contains
non-ciphertext variables.

This computation returns 64 polynomials, 46 of which are linear. Forty linear polynomials
are of the form C/+ C}" and encode the information that the last round output difference
of 10 S-Boxes must be zero (cf. [30]). The remaining 24 polynomials are split into two
sets Fp, F of 12 polynomials in 24 variables each; furthermore the sets F; do not share
any variables with each other or the first 40 linear polynomials. The systems Fj are listed
in Figure 2 in the Appendix. The probability that all polynomials evaluate to zero for a
random point is a2 27°0-669 We recall that Wang’s filter from [30] passes with probability
2740.(5/16)6 ~ 275097 Thus, our filter improves upon Wang’s by a factor of 20-59 ~ 1.51.

In order to estimate how close to optimal our filter is, we construct random pairs C’, C”
which pass our polynomial filter and notice that for Attack-C from [1] mounted using
a SAT-solver, roughly every second such pair for PRESENT-80 and 317 out of 512 for
PRESENT-128 will pass. Thus, the most precise filter that can be constructed only using
the ciphtertext bits and the output difference of round r will accept a pair with probability
~ 2751669 for PRESENT-80 and with probability ~ 2721361 for PRESENT-128.

PRESENT 3R. We extend the ring and the block ordering in the obvious way and
compute a Grobner basis with degree bound 3. The computation returns 28 polynomials,
16 of which are linear. The linear polynomials have the form C{ + C/ for

i€{3,7,11,15,19, 23,27, 31, 35,39, 43, 47,51, 55,59, 63}.

The remaining 12 polynomials are quadratic and cubic (cf. Figure 3 in the Appendix).
The probability that all polynomials evaluate to zero on a random point is ~z 2718296,
In order to estimate how close to optimal this filter is, we construct random pairs C’, C”
which pass this polynomial filter. Attack-C using a SAT-solver will accept roughly 6 in
1024 pairs for PRESENT-80 and 9 out of 1024 pairs for PRESENT-128. Thus, we expect



an optimal filter — based on the output difference of round r and the ciphertext bits — to
pass with probability ~ 2725711 for PRESENT-80 and 2725126 for PRESENT-128. That is,
there is a factor of 274 ~ 168 between our filter and this optimal filter.

PRESENT 4R. We again extend the ring and the block ordering in the obvious way
and compute a Grobner basis with degree bound 3, to we recover

(Ci/’,2+j + C:I),/Q-s-j + 1)(03/‘ + CJ/‘/ + 1)(016-»-]‘ + 04/184-3‘ + C{/G-&-j + 04/1,8-1-_7')

for 0 < j < 16. The probability that all polynomials evaluate to zero on a random point
is /v 273:082,

We verified experimentally that this bound is optimal by using the SAT solver CRYPTO-
MINISAT [28] on Attack-C systems in a 4R attack against PRESENT-80-14. The solver
returned an assignment which satisfies the equation system with probability &= 273. Thus,
we conclude that our filter is optimal among the filters which only consider only the output
difference of round r and the ciphertext bits.

4.3 Case Study: KTANTAN

In Table 1 we give our results against KTANTAN32. We used the best characteristic for 42
rounds as provided by the designers and extended it to 71 rounds. The characteristic is
valid with probability 273!. We present results for computation with degree bound D = 4
and 5. For each D we give the number of polynomials of degree 1 to 5 found (denoted as
d = x). In the last column of each experiment we give the approximate probability that
all the equations we found evaluate to zero for random values (denoted log, p).

4.4 Increasing the Signal

In this section, we consider the problem of increasing the amount of correct data that
has to agree with and is always suggested by a right pair. Increasing this value usually
has considerable costs attached to it. First, more data needs to be managed and thus
usually the counter tables become larger. On average, we can expect each additional bit
considered to double the size of these tables. Second, in order to generate more data,
more partial decryptions must be performed which in turn increases the computation
time. Additionally, the number of key bits that can be trial decrypted may be limited by
the number of rounds R we can consider because of the quality of the filter.

In this work we use (non-linear) relations available from the first few rounds instead
of the last R rounds. Assume that we have an SP-network, a differential characteristic
A= (AP, AYy, ..., AY,) valid for r rounds with probability p, and (P’, P"”) a right pair
for A (so that AP = P’ @ P” and AY, holds for the output of round r). For simplicity,
let us assume that only one S-Box is active in round 1, and by abuse of notation, that X7,



Table 1. Decreasing the noise for KTANTAN32.

degree bound = 4 degree bound = 5
N |d=1|d =2|d =3|d =4|d = 5|log, p||d = 1|d = 2|d = 3|d = 4|d = 5| log, p
72 32 0 0 0 0[—32.0 32 0 0 0 0| —32.0
74 32 0 0 0 0/—32.0 32 0 0 0 0| —32.0
76 32 0 0 0 0/—32.0 32 0 0 0 0] —32.0
78 31 3 0 0 0[—32.0 31 3 0 0 0| —32.0
80 28| 11 0 0 0|—31.4 28| 11 0 0 0| —31.4
82 25 23 0 0 0/—31.0 25| 23 0 0 0] —31.0
84 20| 32 4 8 0[—29.0 20| 32 4] 32 0] —29.0
86 16| 44| 19 8 0]—25.7 16| 46| 23| 75| 106|< —24
88 12| 39| 54| 96 0|—24.0 12| 51| 103| 371| T745|< —23
90 8| 41| 129| 287 0]—23.0 8| 42| 133| 612| 1762|< —22
92 4| 28| 113] 285 0[—20.0 4| 33| 133] 743| 2646| —20.4
94 1 20{ 94| 244 0|—16.3 1| 25| 124| 662| 2345| —18.5
96 0 8 38 96 0]—12.8 0 8| 52| 287| 1264| —14.3
98 0 3 8 29 0| =7.0 0 3| 10| 46| 156 —9.1
100 0 1 3| 13 0| —3.7 0 1 3| 18] 47| —4.6
102 0 0 0 2 0| —0.8 0 0 0 4 9] —-0.9
103 0 0 0 1 0| —0.4 0 0 0 2 4 —04
104 0 0 0 0 0| 0.0|| N/A| N/A| N/A| N/JA| N/A| N/A

X{ and K, denote the S-Box input vectors corresponding to the plaintext vectors Py, Py’
(also restricted to the S-Box) and initial key whitening, respectively. Thus we have the
relations

S(P & Koy) = S(X])=Y] and S(P & Ko) = S(X{) =Y/

The S-Box operation S can be described by a (vectorial) Boolean function, expressing
each bit of the output Y7 as a polynomial function (over F3) on the input bits of X| and
Ky. If (P, P"”) is a right pair, then the polynomial equations arising from the relation
A1 =Y/ @Y = S(P| ® Ko) ® S(P{' @ Ky) give us a very simple equation system to
solve, with only the key variables K ; as unknowns (and which do not vanish identically
because we are considering nonzero differences). Consequently, right pairs suggest addi-
tional information about the key from the first round difference. In particular, if AY;
holds with probability 27 then we can recover b bits of information about the key, as
soon as we have a right pair.

There is no a priori reason to restrict this argument (which was considered in [1]) to the
first round only. Let A, r, P/, P"” be as before. We set up two equation systems F’ and
F" involving P’, ¢’ and P”,C" respectively and discard any polynomials from the rounds
> s, where s is small (the discussion above refers to the case s = 1). We can then add
linear equations as suggested by the characteristic up to s rounds and use this system to
potentially recover information about the key from the first s rounds.

In order to avoid the potentially costly Grobner basis computation for every candidate
pair, we replace the vectors of constants P’ and P” by vectors of symbols. Using the
idea from Section 3 we can compute polynomials involving only key variables and the



newly introduced plaintext variables P’ and P”. Assume that we can indeed compute the
Grobner basis, with P’ and P as symbols, for the first s rounds combined with the linear
equations arising from the characteristic. Assume further that the characteristic restricted
to s rounds holds with a probability 27° and that we computed m, polynomials in the
variables Ky, P’ and P”. This means that we can recover b bits of information when
we evaluate all m, polynomials, by replacing the variables in P’ and P” by their actual
values.

ok+b.p

This means that we have b bits of extra information and thus can write S/N = =— 5
without the overhead of performing any partial decryptions. However, we have to per-
form m, polynomial evaluations (where we replace P’ and P” by their actual values) of
relatively small low degree polynomials.

Case Study: PRESENT. We consider the first two encryption rounds and the charac-
teristic from [30]. We set up a polynomial ring with two blocks such that the variables P;
and K; are lexicographically smaller than any other variable. Within the blocks we chose
a degree lexicographical term ordering. We set up an equation system covering the first
two encryption rounds and added the linear equations suggested by the characteristic.
Then, we eliminated all linear leading terms which are not in the variables P; and K;
and computed a Grobner basis up to degree five. This computation returned 22 linear
and quadratic polynomials (we give the Grobner basis for these polynomials in Figure 4).
This system gives 8 bits of information about the key. Note that the first two rounds of
the characteristic is valid with probability 278.

Case Study: KTANTANS32. We consider the first 24 rounds of KTANTAN32 and
compute the full Grébner basis. This computation recovers 39 polynomials. We list an
excerpt in Figure 1 in the Appendix. As expected we observe that the characteristic also
imposes restrictions on the plaintext. These eight equations allow us to recover up to four
bits (depending on the value of Pjgy) of information about the key.

5 Algebraic Precomputation in Integral Cryptanalysis

In [31] bit-pattern based integral attacks against up to 7 rounds of PRESENT were proposed.
These attacks are based on a 3.5 round distinguisher. The attacker prepares 16 chosen
plaintexts which agree in all bit values except the bits at the positions 51, 55, 59, 63. These
four bits take all possible values (0,0,0,0),(0,0,0,1),...,(1,1,1,1). The authors of [31]
show that the input bits to the 4th round are then balanced. That is, the sum of all bits
at the same bit position across all 16 encryptions is zero. If X, ; ;. denotes the k-th input

bit of the j-th round of the i-th encryption, we have that 0 = Z;io Xiap for 0 <k < 64.

We show below that more algebraic structure can be found. For this purpose we set up
an equation system for PRESENT-80-4 for 16 plaintexts of the form given above. We also
added all information about relations between encryptions from [31] to the system in



algebraic form. These relations are of the form ., X; ;. for I C {0...,15}. These
relations would be found by the Grébner basis algorithm eventually, but adding them
directly can speed up the computation. Then we computed a Grobner basis up to degree
2 only using POLYBORI. This computation takes about 5 minutes and returns more than
500 linear polynomials in the input variables to the fourth round. All these polynomials
relate bits from different encryptions, that is they contain X ; , and X,/ s p» with ¢ # '
In Figure 5 of the Appendix we provide a selection in order to illustrate the form of these
polynomials.

The exact number of subkey bits we can recover using these polynomials varies with the
values of the ciphertext bits. On average we can recover 50 subkey bits from the last
round key of PRESENT-80-4 using 2% chosen plaintexts by performing trial decryptions

and comparing the relations between the inputs of the 4th round with the expected

relations?.

The same strategy for finding algebraic relations can be applied to PRESENT-80-5 where
we look for polynomials which relate the input variables for the 5th round. Using PoLy-
BoRI with the same options as above, we found 26 linear polynomials. We can represent
12 of them as

Xisk + X155 + Xosk +Xosp + Xegsk+Xos ik + Xiasr + Xissk,
with i € {0,2,4} and k € {51,55,59,63}.
Another 12 polynomials are of the form

Xisk + Xis k32 + Xig1,5% + Xit1,5 k432 + Xigg sk + Xits5 k432
Xivosk + Xivosk+32 + Xesk + X6,5k+32 + X755 + X7 58432+
Xias gk + Xia5 k132 + X555 + X15,5 k+32-

for i € {0,2,4} and k € {3,7,11,15}.
The remaining two polynomials can be represented by

Xaske +Xas k32 + Xasptas + Xssp + Xs 56432 + X555 k448t
X656 + X6,5k+32 + X6,5,k+48 + X756 + X75 k+32 + X75 kpas+
X125k + X125, k+32 + X125 k448 + X135k + X135 k432 + X13,5 k+48+
Xask + Xias k432 + X145 k448 + X155k + X155 k+32 + X15,5,k+48

for k € {3,7}.

Using the 26 polynomials listed above we expect to recover the round-key for the last
round of PRESENT-80-5 using 3 - 2% chosen plaintexts. For each S-box we have to guess
the four subkey bits which separate the S-box output from the ciphertext. For each of

2 We note that considering the full equation system for all rounds instead of only the equations
of the 4th round we can recover the full encryption key using 2* chosen plaintext by performing
a classical algebraic attack. The overall Grébner basis computation for this task takes only a
few minutes but the running time varies between instances.



the S-Boxes 12,13,14 and 15, we have 3 linear equations to filter out wrong guesses on
four bits. For each pair of S-boxes (0,8), (1,9), (2,10) and (3,11) we have again three
linear equations to filter out wrong guesses, however this time we are filtering on eight
bits. Thus, we need 2 - 2% chosen plaintexts to recover 16 bits and 3 - 2% chosen plaintext
to recover 64 subkey bits. In [31], one required 5 - 2% chosen plaintexts. We mention that
we can reduce the number of required texts further to 2* if we consider the polynomials
from PRESENT-80-4 and PRESENT-80-5 together.

We were unable to obtain any polynomials for the input variables of the sixth round.
However, just as in [31] we can extend our attack on PRESENT-80-5 to an attack on
PRESENT-80-6 by guessing bits in the first round. Our improvements for PRESENT-80-5
translate directly into an improvement for PRESENT-80-6, dropping the data complexity
from 2224 to 22! chosen plaintexts (or 22Y if we consider the relations arising for the 4th
round as well). Similarly, this additional information can be exploited for the PRESENT-
128-7 attack from [31].

6 Conclusion

In this work, we have introduced a novel application for algebraic cryptanalysis of block
ciphers. We propose a method which can improve “classical” differential and integral
cryptanalysis, by applying algebraic tools in a pre-computation phase. As such, we shift
the focus from attempting to solve large systems of polynomial equations to recovering
symbolic information about the underlying cipher. We note that the use of algebraic tech-
niques in general, and Grobner basis methods in particular, in block cipher cryptanalysis
has received some criticism within the cryptographic community, as it has been often the
case that “simpler” techniques can perform favourably in many situations. However in
this paper we showed that the rich algebraic structure of Grobner basis can offer many
advantages and may give one a more subtle insight of the cipher structure. This can in
turn be used in the cryptanalysis of the cipher. We note that in principle our techniques
can recover an optimal amount of information and that in most cases considered in this
work we were (almost) able to accomplish this. We expect that this approach is applicable
to other cryptanalytical techniques and consider applying it as an area of future work.
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A Explicit Polynomials

(Plg + 1)(PsPs + PloPly + K3 + Kss + Py + Pig + Pa3),
PiP{oPly + KsP{g + P;Ps + PsPjg + P/oPi5+

PlsPjg + K3 + Ks3 + P; + Pls + Plg + P,

PloP3s + K1 + K1 + Pg + Piy + Piz + Pjy + P,

P33 Pss + Kes + Pa1 + Pas + P,
Pi+1,P,Ps+1,Py+1

Fig. 1. Polynomials for the first two rounds of KTANTAN32.

(Cs745 + C5745)(Csz4j + Coapy + 1)(Clrpy + Ciryj),
(Ci74j + Cs74)(Czyy + Coarj +1)(Cazyy + Cazi ),
(Cirij + Cirsj +1)(Cassj + Casyj),
(Chrij + Chrpj + 1)(Ciryy + Cligy),
(Ciars + Coapy + 1)(Corgy + Coiyy),
( )

(Cs315 4 Cs345 + 1)(Cloyj + Cirij + Cloyj + Cirpj + 1),
(C:L9+j + Czlxlg-«-j +1 Ci7+j + Cil7+j)7

(C:L9+j + CZQ-&-]’ + 1)(C§3+j + CéI3+j)7

C{+j + C§3+]‘ + 04,19+j + Cilﬂ' + C§l3+j + CZQ-F]W

Cé+j + C§7+j + CéBH + Cél+j + C§l7+j + Cg3+ja

C§+j + CélLlJrj + Czls7+j + Csl;l+j =+ CAILI1+j + Cg7+ja

)(
)(
Cha1j + Csarj +1)(Caryj + Ciryj),
)(
)(

Fig. 2. 2R polynomials for PRESENT with j € {0, 2}.



(C36 + C36) ((C4 + CY)(C30 + Ca + Cop + Csy + 1) + (Coo + Cop + 1)(Cs2 + O + 1)),
(C37 + C37)((C5 + C5')(Ca1 + O3 + C31 + Css + 1) + (Coy + C3y 4+ 1)(Cs3 + Cs + 1)),
(Cio + Cio)((Cs + C)(C34 + C6 + C3y + Ci + 1) + (Cog + C34 4 1)(Cs6 + C6 + 1)),
(Ci1 + Cih)((Cy + C3) (O35 + Cs7 4 Co5 + Ci7 + 1) + (C3s + O35 + 1)(Cs7 + Ci7 + 1)),
(Cis + Ci5)((C13 + C13)(Ca9 + Cé1 + Co + Cgt 4 1) 4 (C9 + C3o + 1)(Céy + G5y + 1)),
(Cis + Cis) ((C1a + C14)(Cho 4 Cgz + C3p + Cgz + 1) 4 (Co + C3p + 1)(Coz + Cgz + 1)),
(Coe + Cois) ((Ca2 + C25)(Cag + Cga + Css + C5y + 1) + (Cs + C3s + 1)(Csa + Cgy + 1)),
(C1o + C10)((C36 + C26)(Ciz + Cys + Clp + Cgs + 1) + (Caa + C42 +1)(Css + s + 1)),
(C12 4 C12)((C3s + C35)(Cla + Céo + Clly + Coo + 1) + (Ciy + Chy + 1)(Cgo + Coo + 1)),
(Cs2 + Csz +1)(Coo + Cp + 1)(Ch + Cs6 + C + Cz)

(Céo + Ceo + 1)(Css + C35 + 1)(C12 + Ciy + Ciz + Cly),
(Clo + Cla + Cis + C1y + Cla + C55) (C3 + C3y + Co + C3 + C3y + Cfp).

Fig. 3. 3R polynomials for PRESENT.

(K1 + P{ + 1)(Ko + K3 + K29 + Py + P3),

(K + P3)(Ko + K3 + Kag + Py + P3),

K1 K>+ K Py + KoP{ + PPy + Ko + K1 + K3 + Kag + Py + P, + Pj,

(K9 + Py + 1)(Ks + Ki1 + K31 + Py + Pi1),

(K10 + Pio)(Ks + K11 + Ka1 + Py + Ply),

KoK + KoPlo + K10Py + PgPio + Ks + Ko + K11 + K31 + Pg + Py + Py,

(Ka9 + Pig + 1) (K1 + Kug + K51 + Pig + Piy),

(K50 + Pig)(Ka1 + Kas + Ks1 + Pig + Piy),

K49K50 + Kag Py + Ks0Pig + PigPso + K1 + Kas + Kag + Ks1 + Pag + Pig + Py,
(Ks7 + Pig + 1)(Kas + Kse + Ko + Pig + Prg),

(Kss + Pgs)(Kas + Kse + Kso + Psg + Pig),

Ks57Kss + Ks7Pss + Kss Py + Py Pig + Kas + Kse + Ks7 + Kso + Psg + Pip + Pig,
K5+ K7+ Py + P,

Ko + K7 + Ps + Py,

K53+K55+P5/3+P5/57

Ksa + Kss + Py + Pis

Fig. 4. Polynomials for the first two rounds of PRESENT.



Xia,4,0 + X1a,a,32 + X14,456 + X14,4,62 + Xi5,4,0 + X15,4,32 + Xi5,4,56 + X15,4,62 + 1,
Xiaa1 + Xiaa,33 + Xia,4,40 + Xis,a1 + Xis,4,33 + Xi5,4,49,
Xiaa2 + Xiaa34 + Xia,a58 + Xia,a62 + Xis,a,2 + Xi5,4,34 + Xi5,4,58 + Xi5,4,62,
Xi14,43 + X14,4,35 + X14a,451 + Xi5,4.3 + X15,4,35 + X15,4,51,
Xi4,4,4 + Xi14,4,36 + X14,4,52 + Xi5,4,4 + X15,4,36 + X15,4,52,
Xiaa5 + Xia,a37 + X1a,a,53 + Xis,4,5 + Xi5,4,37 + X15,4,53,
Xia,a,6 + X14,4,38 + X1a,4,54 + X15,4,6 + Xi5,4,38 + X15,4,54,
Xia,a7+ X14,430 + X14,455 + Xis,4,7 + X15,4,30 + X15,4,55,
X448 + X1a,a,00 + X1a,4,56 + Xis,48 + X15,4,40 + Xi15,4,56,
Xiaa9 + Xiaa,a1 + Xaa57 + Xisa0 + Xisa,41 + Xis,4,57,
Xia,a,10 + Xia,4,42 + Xi1a,a58 + Xis,4,10 + Xis,4,42 + Xi5,4,58,
Xi1a,4,11 + X14,4,43 + X1a,4,50 + Xi5,4,11 + X15,4,43 + X15,4,59,
Xia,a,12 + Xia,a,44 + Xiaa62 + Xis,4,12 + Xis5,4,44 + Xus5,462 + 1,
Xi4,4.13 + Xia,4,45 + X1a,4,61 + Xi5,4,13 + X15,4,45 + X15,4,61,
Xiaa14 + X1a,a,46 + Xna,a,62 + X15,4,14 + X15,4,46 + X15,4,62,
Xiaa15 + Xua,a,a7 + Xvaa63 + X15,4,15 + X15,4,47 + X15,4,63,
X14,4,48 + X14,456 + X14,4,62 + Xi5,4,48 + X15,4,56 + X15,4,62 + 1,
Xia,4,49 + Xia,a57 + X1a,a61 + Xis,4,49 + Xi5,4,57 + X15,4.61,
Xia,4,50 + X14,4,58 + X14,4,62 + Xi5,4,50 + X15,4,58 + X15,4,62,
Xiaa51 + Xia,450 + Xi5,451 + Xis,4,50 + 1,

Xi14,4,60 + X14,4,62 + Xi5,4,60 + X15,4,62 + 1,

Xi4,4,63 + Xi5,4,63 + 1.

Fig. 5. Polynomials for four round integral attack against PRESENT



