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Abstract. In the late 1970s Magliveras invented a private-key cryptographic 
system called Permutation Group Mappings (PGM). PGM is based on the prolific 
existence of certain kinds of factorization sets, called logarithmic signatures, for 
finite permutation groups. PGM is an endomorphic system with message space 
~1 for a given finite permutation group G. In this paper we prove several algebraic 
properties of PGM. We show that the set of PGM transformations ~q'o is not closed 
under functional composition and hence not a group. This set is 2-transitive on 
Elo I if the underlying group G is not hamiltonian and not abelian. Moreover, if the 
order of G is not a power of 2, then the set of transformations contains an odd 
permutation. An important consequence of these results is that the group generated 
by the set of transformations is nearly always the symmetric group ~ .  Thus, 
allowing multiple encryption, any permutation of the message space is attainable. 
This property is one of the strongest security conditions that can be offered by a 
private-key encryption system. 

Key words. Cryptography, Cryptology, Finite permutation group, Permutation 
group mappings (PGM), Multiple encryption, Logarithmic signatures. 

1. Introduction 

Pe rmu ta t i on  G r o u p  Mappings  (PGM) is a private-key cryptosystem invented by 
Magliveras in the late 1970s. The cryptosystem is based on  a space-efficient data  
s tructure for pe rmuta t ion  groups called a logarithmic signature. In  our  earlier papers 
[9], [13], [10] we described the relationship of logari thmic signatures to the 
pioneer ing work of Sims [17] and to that of other researchers. Various statistical 
tests have been conducted which show that P G M  is statistically robus t  [ 11 ] - [13 ] .  
Pre l iminary  software implementa t ions  of P G M  variants  show that the system is 
fast (well over 6 Mbits /s  on a S U N  Sparcstat ion 2) [14]. Since composi t ion  of two 
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permutations can be done in one machine cycle on a specially designed fine-grain 
parallel machine, P G M  is intrinsically fast. The system is suitable for parallel 
implementation both in software and hardware. 

This paper investigates the algebraic structure of the transformations induced by 
PGM. We show that the set of P G M  transformations is not closed under functional 
composition and hence not a group. The above property implies that multiple 
encryption strengthens the system. We also show that the set generated by these 
transformations is almost always the full symmetric group. This implies that, 
assuming multiple encryption, a given sequence of k distinct ciphertexts can arise 
from any sequence of k distinct plaintexts, by an appropriate P G M  multiple 
encryption. Thus, the cryptanalyst gets no information about the sequence of k 
distinct plaintexts which actually produce the corresponding sequence of k distinct 
ciphertexts. The afformentioned property is a strong security condition. 

In Section 3 we give a classification of logarithmic signatures and show their 
existence. In Section 4 we describe the P G M  cryptosystem. An example illustrating 
the basic system is provided. In Section 5 we identify various transformations that 
can be performed on a logarithmic signature to yield a different logarithmic signa- 
ture. We describe some of these transformations by means of appropriate group 
actions. We define equivalence among logarithmic signatures and show that the 
number of inequivalent logarithmic signatures for a moderate-sized permutation 
group is astronomical. Since, in PGM, pairs of logarithmic signatures serve as keys, 
it follows that the key space of P G M  is large. In Section 6 we briefly discuss the 
security of P G M  under a chosen-plaintext attack. We then proceed to derive the 
main result of the paper that the set of PG M transformations generates the symmet- 
ric group on the message space. 

2. Preliminaries 

In this section we introduce some notation and terminology used in later sections. 
We assume that the reader is familiar with the elementary concepts of group theory. 
For  a proper introduction to the theory of groups and finite permutation groups 
the reader is referred to [5] and [18]. Here we introduce some of the notation and 
concepts relevant to this paper. 

Let Sex be the symmetric group on a set X, If X = { 1 . . . . .  n} we write Se, for Se x. 
A permutation group is a pair (X, G) where X is a finite set and G is a subgroup of 
Sex- Moreover, (X, G) is said to have degree IXI. A group action is a triple (X, G, n) 
where X is a set, G is a group, and n is a mapping n: X x G ~ X, where re(x, g) is 
denoted by x g and subject to the following two conditions: 

1. (xg) h = x °h for all x ~ X and for all g, h ~ G. 
2. x l = x for all x E X .  

To simplify notation we denote a group action (X, G, re) by GIX. A group action 
GIX induces an equivalence relation ~ on X as follows: for x, y s X, x ~ y if and 
only if x g = y for some g e G. The ~ equivalence classes are called the G-orbits of 
X. I fy  e Y ~ X and H ~ G, then y n  = {y*[h ~ H} and y n  = {yh{y ~ y and h e H}. 



Algebraic Properties of Cryptosystem PGM 169 

It is easily seen that  the G-orbit  of  X containing y is the set yG. If GIX is a g roup  
action, then Y _ X is called a f i xed  block of G if and only if yG = E Similarly, any 
x e X is called a f i x e d  point of G if and only if x G = x. F o r  any  x e X, the set 
G~ = {9 ~ G[ xg = x} is called the stabilizer o f x  in G. It  is easy to show tha t  G x is a 
subgroup  of  G. A permuta t ion  group  (X, G) is called transitive if there is just  one 
orbi t  in the act ion of G on X. A pe rmuta t ion  group  (X, G) is called k-transitive 
(k > 1) if, given any two ordered k-tuples (x x . . . .  , Xk), (Yl . . . . .  Yk) of distinct elements 
of  X, there is some 9 in G such that  x]  = yi for all i such that  1 < i < k. A nonabel ian  
group  G is said to be hamiltonian if every subgroup  of G is normal .  

A cryptosystem is an ordered four-tuple 1-I = (.///, ~r, rg, ~--). where ~ ' ,  .~,  and  rg 
are finite sets called the message space, the key space, and ciphertext space, respec- 
tively, and ~-- is a family of  t ransformat ions  {Ek}k~ar mapp ing  ~ '  to ff such that, 
for each k ~ off, Ek is invertible. We denote  the inverse of  Ek by Dk. Implici t  in a 
c ryp tosys tem (J¢', Off, if, g-)  is the m a p p i n g  E: k ~ Ek that  associates to each key 
k ~ Jt  ~ the t rans format ion  E k induced by k. The  c ryptosys tem is said to be faithful 
if E is injective. 

If  the message space and ciphertext space are the same, then the c ryp tosys tem is 
called endomorphic, and in this case, for every key k, Ek: J / ~  cg is a pe rmuta t ion  
on ~ ' .  An endomorph ic  c ryptosys tem H is said to be closed if and only i f~"  is closed 
under  functional  composi t ion.  In other  words, H is closed 1 if and only if, for every 
two keys i, j ~ off, there exists a key k e ~ such that  E~Ej = E k. Since 9-- forms a 
finite cancellat ion semigroup under  composi t ion,  it follows that  H is closed if and 
only if J -  forms a group  under  composi t ion.  Let c5 n = ( g - )  be the group  generated 
by g-, then fin is a subgroup  of 5~t. 

Al though the te rminology that  follows is not  s tandard,  it is na tura l  and  extends 
the te rminology used in [7]. For  a posit ive integer t, a c ryptosys tem H is said to be 
t-transitive if given any ordered t-tuple of distinct messages (ml . . . . .  m,) e ~ "  and 
any  ordered  t-tuple of  distinct ciphertexts (cl . . . . .  c,) ~ cg,, there is some k ~ J f  such 
that  Ek(mi) = cg for all i such that  1 <_ i <_ t. Here  we also write Ek(m 1 . . . . .  m,) = 
(cx . . . . .  c,). No te  that  we speak of a t- transit ive system whether  or  not  J -  is a group. 
I t  is clear tha t  a t-transitive system is (t - 1)-transitive. 

3. Logarithmic Signatures 

Let G be a finite pe rmuta t ion  group of degree n. A logarithmic signature for  G is an 
ordered collection e = {Bi: i = 1 . . . . .  s} of ordered sets Bi -- {u(i, 1) . . . . .  u(i, rl)}, 
such that: 

1. u(i, j )  e SP, for all 1 < j <  r l and  1 < _ i N s .  
2. Each element g of G can be expressed uniquely as a p roduc t  of the fo rm 

g = q ~ ' q s - l " " q 2 " q l  (1) 

for some qi ~ Bi. 

1 We wish to remark that the term closed had been used by Shannon [15] to mean something different. 
Our usage follows the terminology of Kaliski et al. [7]. 
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Intuitively, we view a logar i thmic  s ignature for a group G as a kind of  basis for  
G, in the sense tha t  each g roup  e lement  has a unique representat ion as descr ibed 
above. Each such "basis"  induces a total  order  on G, and therefore a bi ject ion f rom 
Z/IG I onto  G. 

Note  that  the elements  q~ in (1) are not  necessarily elements of  G, but  could be long  
to a much  larger  g roup  in which G is embedded.  The  Bi are called the blocks of  ct 
and the vector  of  b lock  lengths r = (r~, . . . ,  rs) is called the type of ~. W e  define the 
length of a logar i thmic  s ignature a to be the number  ~ = ~  r~. The  logar i thmic  
signature is called nontrivial if s > 2 and  r~ _> 2 for 1 < i < s; otherwise it is called 
trivial. A logar i thmic  s ignature  is called tame if the factorizat ion in (1) can be 
achieved in t ime po lynomia l  in the degree n of  G; it is called supertame if the 
factorizat ion can be achieved in t ime O(n2). A logari thmic s ignature is called wild 
if it is not  tame. We denote  by A the collection of all logar i thmic signatures of  G. 

Let ) , : G = G  o > G x > ' ' ' > G ~ = l  be a chain of  subgroups  of  G, and  let 
{B~: i = 1 . . . . .  s} be an  ordered collection of subsets of  G, where each B i = {u(i,j): 
j = 1 . . . .  , r~} is a comple te  set of  right coset representatives of  G~ in G~_I. I t  can  be 
seen that  {Bi}~ forms a logar i thmic  s ignature  for G. Such a logar i thmic  s ignature  is 
called a transversal with respect  to ?. Here  the type r = (r 1 . . . . .  r,) has r~ = [G~ : Gi-1 ]. 
In view of the fact tha t  member sh ip  in a pe rmuta t ion  group  can be tested in t ime 
polynomia l  in the degree and  the n u m b e r  of  generators  [3], a t ransversa l  loga-  
r i thmic s ignature a of  length po lynomia l  in n is tame. We denote  the set of  all 
t ransversal  logar i thmic  signatures of  G with respect to a chain 7 by  A(?). In  Sect ion 
5 we indicate how A(7) is a single regular  orbit  under  the act ion of  a cer tain 
monomia l  group.  Existence of super tame  logari thmic signatures is es tabl ished in 
the following lemma.  

Lemma 3.1. I f  G is a permutation group, then there exists a supertame logarithmic 
signature for G. 

Proof.  S u p p o s e G a c t s o n t h e l e t t e r s o f X  = {1, 2 . . . . .  n} .Le tG  = G O > G1 > "'" > 
G s = 1 be a chain of  nested stabilizers in G. Thus,  Go = G and, for any  i > 1, G~ fixes 
pointwise the letters 1, 2 . . . . .  i of  X. Suppose  now that  the orbit  of  i e X under  
Gi-1 is B = {31 = i, 62 . . . . .  3r,} and  that  u(i, j) ~ G~-I moves  61 to 3j, then  Gi-1 = 
Giu(i, 1) + Giu(i, 2) + . ' -  + Giu(i, ri). Consider  the logari thmic s ignature 

a = [u(1, 1) . . . . .  u(1, rl); u(2, 1) . . . . .  u(2, r2); . . . ;  u(s, 1) . . . . .  u(s, rs) ]. 

Now,  note that  an element  h in G~_x belongs to the coset G~u(i, j) if and  only if h 
moves  31 = i to 3~. Thus  de termining the right Gi coset in Gi-~ to which h belongs  
can be done  in O(1) operat ions.  Now,  the element h. u(i, j)-i  fixes 1, 2 . . . . .  i --  1, i 
and therefore belongs to G~. C o m p u t i n g  h. u(i, j)-~ can be done in O(n) operat ions .  
Recursively, given any element g e G, we descend in at mos t  n steps and  have  
9"u(1, j~)-~-u(2, j2) -1" ..u(s, j s ) - i  = 1. Inver t ing yields the unique fac tor iza t ion  

g = u(s, j~)""  u(2, J2)" u(1, Jl)- [ ]  

Fo r  the rest of the pape r  it is more  convenient  to write {u(i, j):  0 < j < r i - 1; 
1 < i < s} ra ther  than  {u(i, j): 1 < j < ri; 1 < i < s} for a logar i thmic s ignature  of  
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Fig. 1. Definition of mapping ~. 
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a group. Before we describe P G M  we introduce some notat ion.  By ~1-i; j ]  we mean  
the j t h  element of  the ith block of  ~t. Also, if r = ( r~ , . . . ,  rs) and ( p t , . . . ,  Ps) 
Z,,  x . . .  x Z,,,  then ~(Pl . . . . .  Ps) = ~[s;  p s ] . . . ~ [ 2 ;  p2]~[1;  Pi] .  

We now define the bijection induced by a logar i thmic ~ e A in a precise manner .  
If r = (r 1 . . . .  , rs) is the type of a logar i thmic  signature ct, define the integers mi, i = 
1,2 . . . . .  s, by 

i-1 
m 1 = 1, ml = I-I 0, i = 2 . . . . .  s. (2) 

j=l  

Let 2 be the bijection f rom Z,~ x -.. x Z,= on to  Zi~ I, defined by 

).(Pl . . . . .  ps) = ~ plrni for any Pie Z , .  (3) 
i=1 

F o r  any x e 771G I, 2 -~ (x) is efficiently computab le  by successive subtract ions  (repre- 
sentat ion of x with respect to mixed base (r~ . . . . .  r,)). Fo r  a group  G and a loga- 
r i thmic s ignature c~ = {ct[i; j ] :  j = 0 . . . . .  r~ - 1; i = 1 . . . . .  s} define the bijection 
®~:Z, ,  x . . . × Z , ~ G b y  

®~(P~ . . . . .  P~) = ~(P~, P2 . . . . .  P~). (4) 

Next,  for any  c~ e A, define a m a p  ~: Zl~ M ~ G by composing  2 -1 with ®~, thus 
= 2-~0~.  We illustrate the definition of ~ in Fig. 1. The  function ~ is a lways 

efficiently computab le ,  but  ~-1 is not  unless ~ is tame. We denote by ~, the collection 
{~: ~ e A}. 

4. Crypt®system P G M  

Having  defined the mappings  ~, for ~ e A, the basic crypt®graphic system P G M  is 
defined as follows: for a given pa i r  of  logar i thmic signatures, ~,/7 with ~ tame,  the 
encrypt ion t ransformat ion  E,,a: ZIG I --+ ZIGI is the mapp ing  

e=,p = ~. ~ - ' .  (s) 

The cor responding  decrypt ion t rans format ion  is obta ined by reversing the order  of  
the pair  of  logar i thmic signatures, that  is 

D~. a = E~.~ = Ea. ~ = ]~" a -x. (6) 

In the case of  P G M  we see that  the message space and the cipher space is ZiG i 
where G is the underlying group,  hence P G M  is endomorphic .  The  key space is 
A x A, the collection of  all ordered pairs of  logar i thmic signatures of  G. We denote  
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by ~'-G the set of transformations defined by the key space and by NG the group 
generated by ~--~ under functional composition. 

To clarify the ideas presented above, we illustrate P G M  by means of an example. 
The group used here is the alternating group on five points, ~¢5, of order 60. This 
implies that the message space ~ '  and the ciphertext space c£ are the set {0, 1, 
. . . .  59}. A supertame logarithmic signature ~, with respect to a chain of stabilizer 
subgroups is obtained by Knuth's algorithm [8] using the generators (1 2 3 4 5) and 
(I 2 3)(4)(5). Another supertame logarithmic signature 13 is obtained by applying 
the procedure shuffle to e. The blocks of e consist of right coset representatives in 
a chain of subgroups in G. Procedure shuffle consists of changing the coset represen- 
tatives and their relative order within each block. We say more about shuffle in the 
next section. The number of blocks is s = 3, and the vector of block lengths is 
r = (5, 4, 3). The integers rnl are computed to be I, 5, and 20, respectively. The two 
logarithmic signatures, along with the appropriate knapsack v needed to compute 
2 and 2 -~ efficiently, are shown in Table 1. 

Although it is simpler to illustrate P G M  by means of this example, we wish to 
warn the reader that whenever the logarithmic signatures e and 13 are transversals 
with respect to the same chain of subgroups, some unwelcome regularities arise. We 
wish to thank one of the referees for pointing out that in such a case we have, for 
x, y ~ ~/, x = y (mod ml) if and only if E,.t~(x) = E,,p(y) (mod mi). In actual practice 
we avoid this problem by selecting e and 13 to be of different types. 

Let us now demonstrate the operation ofenciphering. If, for example, the message 
is 49, then it can be decomposed uniquely with respect to v as 49 = 4 + 5 + 40. 
This process determines the vector of row-indices 2 -~ (49) = (4, 1, 2). We next com- 
pute rc = ®~(4, 1, 2 ) =  c~[3; 2]-cc[2; 1]-ceil; 4] = (1 5 4)(2)(3). We then compute 
®ix(n), the representation of re with respect to 13. Since 13 is supertame and n(1) = 5, 
we locate the element in block 1 of 13 that sends 1 to 5. This element is 1311; 4]. 
So n = h l ' f l [ 1 ; 4 ]  for some h 1 ~G  1. Solving for hi yields h 1 = n - f l [ 1 ; 4 ] - l =  

Table 1. The two logarithmic signatures 
and the knapsack. 

v 

(1)(2)(3)(4)(5) 0 (142 35) 
(1 2 3 4  5) 1 (1)(2)(354) 
(135 24) 2 (12543)  
(1 4253)  3 (13)(24)(5) 
(1 543  2) 4 (1 53 42) 

(1)(2)(3)(4)(5) 0 (1)(2 3)(45) 
(1)(23)(45) 5 (1)(2 53)(4) 
(1)(243)(5) 10 (1)(243)(5) 
(1)(2 53)(4) 15 (1)(2)(3)(4)(5) 

(1)(2)(3)(4)(5) 0 (1)(2)(3)(4)(5) 
(1)(2)(3 45) 20 (1)(2)(354) 
(1)(2)(3 54) 40 (1)(2)(345) 
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(1)(2 4)(3 5). N o w  hi fixes 1 and sends 2 to 4. Again, we locate the e lement  of  the 
second block of /3  which sends 2 to 4, namely  /3[2; 2]. Hence,h 1 = hz . f l [2 ;  2], 
which yields h z = (1)(2)(3 5 4). Cont inu ing  in this manner  we complete ly  factor  r~ 
with respect to /3 and get n = /31-3; 1]./3[-2;2]-/311;4].  This determines  the 
vector  of row pointers  for /3 to be (4, 2, 1) ~ 7/5 × 7/4 × 7/3 and 2(4, 2, 1) is 
4 + 10 + 20 = 34. Thus,  we have E,.~(49) = 34. The  reader can easily verify tha t  
D~.~(34) = E~,~(34) = 49. 

5. Transformations on Logarithmic Signatures 

In this section we define and s tudy t ransformat ions  on the family of  logar i thmic  
signatures of  a given group  G. In  part icular ,  by applying these t rans format ions  we 
are able to generate  new logar i thmic  signatures from a given one, and  establish 
lower bounds  on the total  n u m b e r  of  logar i thmic signatures for G. Moreover ,  we 
characterize equivalence a m o n g  logar i thmic  signatures in terms of certain t ransfor-  
mations.  Finally we deal with some questions abou t  propert ies of  logar i thmic  
signatures that  are preserved by these t ransformat ions .  

Suppose that  fl = {Bi: i = 1 . . . . .  s} is a transversal  logari thmic s ignature  of  a 
g roup  G with respect  to the chain of  subgroups  7 : G = G O > G~-"  > G, = 1. No te  
that  while fl = {Bi: i = 1, . . . ,  s} is a logar i thmic signature for G = G o, the set of  
blocks/3(k) = {Bk+l . . . . .  B,} is a logar i thmic  signature for G k. If  the e lement  u(i , j )  
B i of/3(k) is replaced by h 'u ( i , j ) ,  where h ~ Gi, the resulting collection/3(k)* forms 
a new logar i thmic s ignature for Gk. Moreover ,  any rearrangement  of  the e lements  
of a block B i ~/3(k) yields a new logar i thmic  signature for Gk. Procedure  shuffle 
consists of  apply ing  the opera t ions  described above  to a logari thmic signature.  

Procedure  shuffle for generat ing new logari thmic signatures f rom a given one 
can be concisely described by considering a certain group  action. If  fl = 
{B~:i = 1 . . . . .  s}, B i = {u( i , j ) : j  = 0 . . . . .  ri - 1}, is a t ransversal  logar i thmic  signa- 
ture of G with respect to the chain 7 : G = G O > GI > "'" > G~ = 1 of subgroups ,  let 
M be the g roup  of  all matr ices  of  the fo rm 

H2 "'" 0 
M ~ . . 

0 --. H~ 

where Hi is an r~ x rl monomia l  mat r ix  with entries m Gi. Thus, Hi can be though t  
of  as an ri × rl pe rmuta t ion  matr ix  whose unity entries have been replaced by 
arbi t rary  elements of  Gi. The  procedure  shuffle described above for ob ta in ing  new 
logari thmic signatures of G cor responds  to acting on 

(u(1, 0) . . . .  , u (1 ,  r I - -  1); . . .  ; u ( s ,  O) . . . . .  u ( s ,  r s - -  I))  (7) 

on the left by some M e M, that  is, 

(v(1, 0), . . . ,  v(s, r~)) r = M .  (u(1, 0) . . . . .  u(s, rs)) r. (8) 
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Thus, the totali ty A(7) of  logari thmic signatures with respect to y is an M-orbi t .  We 
observe that  since only the identity of  M fixes a logari thmic signature in A(~), M 
acts regularly on A(7). This implies that  

IA(~')I = IMI = Ia~r'ril = 5 r,! (9) 
i=1 i=1 j = i + l  

N o w  we define another  group act ion on A. Let 

T = G x Se, x re, x . . .  x re, x G (10) 

be a direct product ,  where n is the degree of  G and the symmetric  g roup  6a, occurs 
s - 1 times. Fo r  q = (go, gl . . . . .  gs) e T and 

cc = (ct[1; 0] . . . . .  a l l ;  rl -- 1 ] ; . . . ;  ~ [ s ; 0 ]  . . . . .  a [ s ; r s -  1]) e A. (11) 

Let q act on  ~ by (q, a) --* aq, where 

a q  = (g~-I  . . . .  , g1-1;  . . .  ; g71 . . . .  , g ~ - l ) "  a "  ( g o  . . . .  , g o ; - . - ;  g ~ - i  . . . .  , g ~ _ ~ ) .  ( 1 2 )  

This means that  all the elements of  the first block are multiplied by g~-t on  the left 
and by go on  the right. The elements of  the second block are multiplied by g~l on 
the left and by gl on  the right, and so on. Finally, the elements in block s are 
multiplied by g~-i on the left and by g~_~ on the right. I t  is seen that  ~ = ct and 
(~q)t = ~q,; hence T acts on the collection of  logari thmic signatures in A having s 
blocks. If  go = g~ = 1, we say tha t  aq is a s a n d w i c h  of a. I f  gl  = g2 . . . .  = g~ = 1, 
then we effectively multiply only the elements of  the first block on the right by go. 
We call this t ransformat ion a r igh t  t r a n s l a t i o n  of ~. On  the other hand, i fg  o = gl  = 
"-. = g,_~ = 1, then we call the t ransformed logari thmic signature a le f t  t r a n s l a t e  of 
a. Let S be the subgroup of  T that consists of  the elements of  the form (1, g~ . . . . .  
gs_~, 1) of  T, and let H be the subgroup of  S that  consists of  all elements (1, gl . . . . .  
gs-1 ,  1) with g~ e Gi. 

Suppose that  a is a logari thmic signature for a group G of  type r = (r~, . . . ,  r i, 
r~+~ . . . . .  5)- We can create a new logari thmic signature fl by f u s i n g  two consecutive 
blocks of  a, say Bi and Bi+~ of  lengths r~ and ri+ 1 to a single block of  length r~- r~+ x. 
Thus, if g = q~ . . .  qi+~ "q~ . . .  q 2 " q l  is the factorization of  g with respect to g, then 
the factorizat ion o fg  with respect to fl will be g = q~... q~+2" t. q~_~ ...  q2" ql ,  where 
t = qi+~" q~. In this case we say that  a is a r e f i n e m e n t  of ft. The refinement relation 
defines a partial order  on A and we write a < fl to denote that  a is a refinement of  ft. 

Finally, observe that  ifg = q~. q~-i . . .  q2" ql,  then we have g-~ = q~-~. q~-~ . . .  q[1. 
This implies that  if 

= { a [ i ; j ] : j  = 0 . . . . .  r~ - -  1;i = 1 . . . . .  s} (13) 

is a logari thmic signature, then 

c~' = { c t [ i ; j ] - a :  j = 0 . . . . .  r i - 1;i = s . . . . .  1} (14) 

is also a logari thmic signature. We call ~' the invers ion  of c~. Inversion induces a 
duality on A. Fo r  example, a system of  right coset representatives in a chain ? of  
subgroups  ( r igh t  t ransver sa l  logari thmic signature), is t ransformed into a system of 
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left coset representat ives (left t ransversal  logari thmic signature). In this p a p e r  we do 
not  s tudy proper t ies  of  inversion. 

Definition 5.1. T w o  logar i thmic signatures ct, fl of  a g roup  G are said to be 
equivalent  if and  only if ~ =/~. 

We denote  the equivalence of two logari thmic signatures ~ and fl by 0c ~ ft. I f  ~, 
r ,  and y are logar i thmic  signatures of  a group G, then it follows f rom the definit ion 
that  E,. ~ = Ep. ~ if and  only if ~ ~ ft. Also, we see that  if ~ is a refinement of  r ,  then 
ct ,~ ft. Hence  if two logari thmic signatures are equivalent,  then they need not  have 
the same type. The  concept  of  equivalence is very impor tan t  f rom a c ryptana ly t ic  
point  of  view. Fo r  a cryptanalys t  to break P G M ,  he only needs to const ruct  
logar i thmic signatures tha t  are equivalent  to the ones specified by the key. The  
following result was shown by Magl iveras  and Kreher ,  but  its p r o o f  has not  
appeared  in print.  The  theorem establishes necessary and sufficient condi t ions  for 
equivalence of  two logar i thmic signatures of  the same type in terms of  sandwich 
t ransformat ions .  Since sandwiching produces  equivalent logar i thmic s ignatures  we 
see that  P G M  is not  faithful. 

T h e o r e m  5.1. L e t  ~ and fl be two looari thmic signatures o f  a 9roup G, such  that  they  
have the same type  r = (rl . . . .  , r~). Then  o~ and fl are equivalent  i f  and on ly  i f  t hey  are 
in the same sandwich  S-orbit .  

Proof.  If  ~ and fl are in the same sandwich S-orbit,  then they are equivalent.  
Fo r  the converse,  let ct = {B 1, Bz . . . . .  Bs} and fl = {B' 1, B~ . . . . .  B~}, where  B, = 
{Ui.o, ui.t  . . . . .  ui . , , -1} and B~ = {U[.o, u~,l, . . . ,  u[.,i-i }. N o w  since ~ ~ /3 ,  we have 

a ( J , ,  . . . , J , )  = fl(Ja . . . .  ,J,),  0 < j ,  < r, -- 1. (15) 

Specifically, we have a(0, 0 . . . . .  0 , j )  = fl(0, 0 . . . .  , 0 , j )  for 0 < j  < r, --  1. T h a t  is, 
• . .  r ~ p ~ . .  ~ . U - 1  - 1  Us. j U s _ l ,  0 . Ul. 0 ~ U s , j ' U s _ I ,  0 . . .  U l ,  0 .  Let ts- i  = us- l .o  • Ul.o 1,o . . .  us- l .o ,  

= ' B~ t~_ x. In  part icular ,  note  tha t  then, us, j us , j .q_l ,  and consequent ly  B~ = " 

u -1 ' = t~21. (16) s . O  " Us ,  o 

Next,  f rom (15) we have ~(0, 0 . . . . .  0, j ,  0) = fl(0, 0 . . . . .  0, j ,  0) for 0 < j  < r~_ 1 - 1. 
! v , ! ! 

This means  tha t  U~,o" u~- l , j ' u s -2 ,0  . . .  ul ,0  = U~,o "u,-1, j  us-2,0 . . .  ul.0. Therefore,  
= ' • ' ' . - . u,_2,0). Let t ing t~_ 2 = u ,_2,0 . . .  U~.o'U~-l.j Us.o us - l ,~ ' (u~-2 ,o . ,  u'x.o'UlX.o • • -1 

u , l , o . u l l o . . .  -1 and using (16) we get U s _ l , j = t s - . l l  " '  " - u s _ 2 ,  0 U s _ l .  j t s _  2 .  Hence 
B s - i  - 1  , = (t~-l ,  - 1  1 ) ' f l "  • . . . ,  t s -  1 , = ts-1 B'~-l"t~-2. Cont inuing in this manner  we get 
(1, tl . . . .  , q - l ) -  [ ]  

It  is not  hard  to verify that  the monomia l  shuffle and inversion of a t ransversal  
logar i thmic  s ignature  remain  transversal• Also, a subgroup  involved in a t ransversal  
logar i thmic s ignature  can be refined in a "nontransversal"  way. Fo r  example ,  sup- 
pose that  the a l ternat ing g roup  ~15 is a subgroup of G and the elements  of  d s form 
the last b lock of  a logar i thmic signature. Then we can replace this b lock by a 
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Input: A logarithmic signature a = {B l . . . . .  B,} 
that is the sandwich of a transversal. 

Output: A transversal fl that is equivalent to ,,. 

Begin 

x ,-- a[s; 0]; 
xinv 4- x - i ;  
F o r j  = 0 t o  r , - -  1 do 

fl[s; j ]  *-- a [ s ; j ] '  xinv; 
F o r i =  s - -  1 to 2 do 

begin 
F o r j = 0 t o r  i - l d o  

f l [ i ; j ]  ~ x" a[i ; j];  
x ,-/~[i; 0]; 
xinv 4- x - l ;  

F o r j  = 0 t o  r i -  1 do 

fl[ i; j ]  ~ flU; J] " xinv; 
end; 

F o r j = 0 t o r l - l d o  

/~D;J] "- x.~O;j]; 
End. 

Fig. 2. Algorithm to construct  an equivalent transversal. 

nontransversal logarithmic signature for d 5. Therefore refinement does not pre- 
serve the transversal property. In the cases of sandwiching and left and right transla- 
tions, although the resulting logarithmic signatures are not transversals, in Fig. 2 
we give a polynomial-time algorithm for constructing a transversal equivalent to 
the transformed logarithmic signature. 

In view of this fact we broaden the use of the term transversal to include 
logarithmic signatures for which there exists a polynomial-time algorithm to com- 
pute an equivalent transversal. The algorithm starts with the last block B s and 
s t a n d a r d i z e s  it by multiplying on the right by the inverse of the first element 
~[s; 0] -1. The resulting block B~ is the subgroup Gs-1 with the identity as its first 
element. We then proceed upward, standardizing the j th  block by multiplying on 
the left by c~[j + 1; 0] and on the right by the new ~[ j ;  0] -1. The procedure 
terminates after the first block has been standardized. It is easily seen that the 
resulting logarithmic signature fl is a transversal. Since fl is a sandwich of a, we have 
c~ ~ ft. Note  that we could have used any element of a block for standardization, 
rather than the first one. 

An interesting question is whether there exist new types of transformations that 
would map a tame logarithmic signature to an equivalent wild one. An affirmative 
answer would lead to a public-key cryptosystem based on PGM. Suppose, for 
example, that ~ and fl are logarithmic signatures of G, with a wild and fl tame. Then 
02/~ -1 is computable in polynomial time, while/~02 -x is not. So, indeed, the existence 
of wild logarithmic signatures would give rise to one-way functions. Moreover, if 
there exist transformations which map wild logarithmic signatures to tame ones, 
we would have the trap doors required to build a public-key system. 

The logarithmic signatures we have mentioned so far have all been transversals 
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Table 2. A logarithmic signature of 
~¢s that is not a transversal. 

Block 1 

(1)(2)(3)(4)(5) 
(1 5 2)(3)(4) 
(l 3)(24)(5) 
(1)(2 3 4)(5) 
(1)(254)(3) 
(13524)  
(1)(23)(45) 
(15432)  
( 1 5342 )  
(1)(2)(345) 
(1)(2 5 3)(4) 
(1)(2)(354) 
(1)(2 5)(3 4) 
(1)(235)(4) 
(13245)  

Block 2 

(13)(2)(45) 
(1 4)(2)(3 5) 
(1)(2)(3)(4)(5) 
(135)(2)(4) 

177 

and hence tame. We conjecture that wild logarithmic signatures will occur in 
profusion for arbitrary groups. We have constructed many nontransversal loga- 
rithmic signatures for the cyclic group 7/8 and the alternating group ~¢5. In fact the 
cyclic group 7/8 turns out to be the smallest group for which there exist non- 
transversal logarithmic signatures. We exhibit one such logarithmic signature for 
d s in Table 2. The logarithmic signature has two blocks of size 15 and 4, respec- 
tively. The first block cannot be a subgroup or the translate of a subgroup since 
~¢s has no subgroups of order 15. The fact that the second block is not a translate 
of a subgroup was established by multiplying it on the left and right in all possible 
ways and then checking for closure. 

The above process is not feasible for larger groups. However, we note that the 
algorithm in Fig. 2 can be modified to yield an efficient algorithm to determine 
whether a given logarithmic signature is a transversal. At every stage, after stan- 
dardizing the current block Bi, we check the order of the group generated by 
(B i, Bi+l, . . . ,  B~). This can be done in polynomial time from [3] and the fact that 
the number of generators is polynomial in n. If the order equals rl. r~+ 1 ... rs, we 
continue; otherwise the logarithmic signature is not a transversal. 

A consequence of (9) is that the number of logarithmic signatures arising just 
from a single chain of subgroups is astronomical. Even after considering equivalence 
induced by sandwiching, we arrive at an extremely large lower bound for the size 
of.~. In Table 3 we tabulate some facts about logarithmic signatures of small groups. 
These results have been obtained by an exhaustive computation. It is amazing that 
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Table 3. Logarithmic signatures of small groups. 

G /~ 15~1 f#~ All transversal? 

2~ 4 16 24 5a4 Yes 
~'4 24 24 SP4 Yes 
Z 6 132 500 SP 6 Yes 
._'Ta 288 702 s~6 Yes 
Zs 1,152 5,568 Aa8 No 

Za x Z 2 2,304 17,088 Se a Yes 
~a 4,032 10,432 6~8 Yes 
-~a 1,344 5,280 5a a Yes 
~a 3~328 32,640 6P 8 Yes 
Z 9 648 1,224 6e9 Yes 
~o 2,160 8,208 6e o Yes 
• ~4 304,128 ? ,9"12 Yes 

the number  of  inequivalent  logar i thmic  signatures for d 4 is 304,128. We have been 
unable  to compu te  the order  of  ~--G in this case. 

6. Security of PGM 

In this section we examine the security of  P G M .  To  begin with we address  the 
security of the c ryp tosys tem under  a chosen-plaintext  at tack.  We then proceed 
to investigate algebraic proper t ies  of  P G M ,  showing that,  in general, P G M  is 
2-transitive. 

One  of the s trongest  possible security condi t ions that  can be offered by a pr ivate  
key c ryp tosys tem is that  it provides  [~ ' l - t ransi t ivi ty .  We show that  al lowing mult i-  
ple encryption,  P G M  offers I~ ' l - t ransi t iv i ty .  

Consider  the P G M  t rans format ion  E~,a defined by logar i thmic signatures ~ and  
/3. It  can be shown that  if 0t is known  up to equivalence, then a chosen-pla intext  
a t tack  will yield fl up to equivalence. The  n u m b e r  of  required plaintext-ciphertext  
correspondences  is of  the order  of  f ~ ( ~ = l  rl) where (r 1 . . . . .  rs) is the type of  ft. We 
leave it to the reader  to verify this s tatement .  O f  course the cryptanalys t  is still faced 
with the uncer ta inty  of  the type of ft. However ,  if we assume that  both  ~ and  fl are 
kept  secret, we know of no a t t ack  o ther  than  running through the set of all possible  
inequivalent  ct's, each t ime conduct ing the above  chosen-plaintext  a t tack  to deter-  
mine an appropr i a t e  ft. In  view of the extremely large number  of equivalence classes 
of  logar i thmic  signatures,  such an a t tack  is hopeless even for groups  of  relatively 
small degree (n " 20). 

We now proceed to investigate the algebraic propert ies  of  the cryptosystem.  

Lemma 6.1. Given a group G that is not cyclic o f  prime order, let x e 711G I and g e G. 
Then there exis ts  a nontrivial logarithmic signature ct e A such that a(x) = g. 

Proof.  Let [G[ = mp where p is a pr ime and m :~ 1, then there exists a subg roup  
P < G with I PI = P- Let ? be a t ransversal  logar i thmic signature for G with respect  
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to the chain G = Go > Gx = P > G2 = 1. Clearly, V has two blocks B l and  B2, and 
is of type r = (m, p). If  g ~ G, then g ~ Pu for some u ~ B~, hence g = qu for some 
q e P. O n  the o ther  hand,  given x e 771a t, we have 2-~(x) = (i,j) with respect  to the 
type r, where 0 < i < m - 1 and 0 < j < p - 1. Let  ~ be a logar i thmic signature 
that  arises f rom ~, by rearranging its elements  so that  u appears  in the i th posi t ion 
of the first b lock and q in the j t h  posi t ion of  the second block. Then  we have 
~(x) = g. [ ]  

Theorem 6.1. Given any group G, and any x, y E 771al, there exist or, fl ~ A such that 
E~,a(x) = y. In other words, ~-~ is 1-transitive. 

Proof.  Let  g be an arb i t ra ry  element  of  G. F r o m  L e m m a  6.1 there exist ct,/~ ~ A 
such that  ~(x) = g and/~(y) = g. This implies that  E~,p(x) = al~-l(x) = y. [] 

Theorem 6.2. I f  a group G has a proper subgroup H that is not normal in G, then 
9"-~ is 2-transitive. 

Proof.  Al though ~-~ is not  a group,  wi thout  loss of  generality, it will suffice to 
show that  given any x, y E 2~la I - {0}, there exist a, f l e  A such that  E,.p(0, x) = (0, y). 
Let a be a logar i thmic signature for G with respect to the chain G = G O > H = 
Ga > 1. Then  a has two blocks B 1 and B 2, and type r = (k, h) where h = IHI and 
k = [G : HI .  Given  x, y ~ ZI~ I - {0}, let 2-X(x) = (i~,j~) and 2-1(y) = (iy,jy) with 
respect to r, where 0 _< i~, iy < k and 0 < j~, jy < h. There are a l together  nine cases 
for the values ofi~, iy,j~,jy to be considered. In  each case we construct  a logar i thmic 
signature fl with type r such that  E,.p(0, x) = (0, y). 

Case 1: i~, iy,j~,jy > 0. Let fl be the same as c~ except that  we exchange the elements 
in posi t ions i~ and  iy of the first block and  the elements in posi t ions jx  and jy  in the 
second block. So we have ill-l; iy] = 0oil; i~] and/~[2 ; jy]  = ~[2; jx] .  I t  follows that  
E,,p(0, x) = (0, y). 

Case 2: i x = iy = 0 and j~, Jr > 0. This can be dealt  with in a similar m a n n e r  as 
Case 1. Here  we need to exchange the elements in the second block only. 

Case 3: i~, iy > 0 andj~ = jy = 0. Again this is similar to Cases 1 and  2. This t ime 
we only need to exchange the elements in posi t ion i~ and iy of the first block. 

Case 4: i~ = 0 and ir,jx, jr > 0. Since H is not  normal  there exist u ~ H and t ~ G 
such that  tut -1 ¢ H. Rearrange,  if necessary, the second block o f~  so tha t  ct[2;jx] = 
u, and place the identity 1 ~ G in posi t ion ct[1; 0] as the coset representat ive of  H. 
Also place 1 in posit ion ct[2; 0]. We have a(x) = ~ [2 ; j~ ] -~ [1 ;  0] = u- 1 = u ~ H. 
Since v = u- l tu t  -~ ~ H, v lies in some coset of  H, the coset representat ive of  tha t  is 
~[1; i] for some i ~ 0. Let  V be a logar i thmic  signature tha t  is obta ined  f rom ~ by 

(i) replacing ~[1; i] by u-ltut-X; 
(ii) exchanging the elements in ~[ i ;  i] and  ~[1; iy]; 

(iii) exchanging ~[2; j~]  and ~ [2 ;L ] .  
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Right translate), by t and left translate it by t-1 to obtain a new logari thmic signature 
ft. The  resulting fl has f i l l ;  0] = t, f i l l ;  iy] = u-ltu and fl[2; 13] = t -1, f l [2; jy]  = 
t-~u. It follows that/~(0) = 1 and fl(y) = u. Hence E~,p(0, x) = (0, y). 

Case 5: iy = 0 and i~, ix, Jy > 0. By Case 4, there exist two logarithmic signatures 
and fl such that  E,.a(0, y) = (0, x), but  then we have Ea,,(0, x) = (0, y). 

Case 6: ix, jy = 0 and iy, Jx > 0. Again as in Case 4 we assume that  ~1-1; 0] = 
0t[2;0] = 1 e G and ~[2; jx]  = u where t - lu t (En .  We have ~t(x)= ct[2;jx]- 
ct[1; 0] = u- 1 = u. Since v = t - lut  ¢ H, v belongs to some coset of H, with coset 
representative ~[1; i] for some i # 0. Let  y be the same as ~ except that  we replace 
ct[1; i] by t-aut and exchange the elements ~[1; i] and ct[1; iy]. Right t ranslate 7 by 
t -1 and left translate by t to get ft. The  resulting fl has fl[1; 0] = t -1, fl[1; iy] = t-~u 
and fl[2; 0] = t. It follows that  E,.a(0, x) = (0, y). 

Case 7: iy,jx = 0 and ix,jy > 0. This is symmetric to Case 6 and follows in the same 
way as Case 5 was obtained from Case 4. 

Case 8:jx = 0 and i x, it,jr > 0. Again we begin with ~[1; 0] = ~[2; 0] = 1 ~ G. Let  
a(x) = ~[2; 0]-ct[1; ix] = v where v ¢ H. Construct  fl from ~ by: 

(i) Exchanging the elements ct[1; ix] and ~[1; iy]. 
(ii) For  ct [2; jy] = u e H replacing ct[1; 0] by u- l ;  this is possible because u -1 ~ H 

and 1, u -1 represent the same right H coset. 
(iii) Finally exchanging the elements ~[2; 0] with ~[2;jy].  

We now have f i l l ;  0] = u -1, f i l l ;  ir] = v, fl[2; 0] = u, and fl[2;jy] = 1. It follows 
that  E~,p(0, x) = (0, y). 

Case 9:jy = 0 and i~, iy,jx > 0. This is symmetric to the previous case. [ ]  

Theorem 6.3. There exists a group G for which f a is not closed. 

Proof.  Table  3 shows that  3- G # No for several small groups. [ ]  

In fact we conjecture that  ~-a is almost  never closed, and when it is closed, 

Theorem 6.4. I f  a group G has a proper subgroup H of odd order, then J'~ has a 
transformation that is an odd permutation in S(iol. 

Proof.  Consider  a transversal logari thmic signature ct with respect to the chain 
G = Go > G1 = H > G2 = 1. The signature ct has two blocks and type r = (k, h), 
where h = IHI and k = [G : H].  N o w  let fl be a second logarithmic signature that  
is identical to ~, except that the first two elements in the first block are interchanged.  
It is clear tha t  ~/~-1 will be an element of order  two and have a factorizat ion as a 
product  of h transpositions. More  precisely, we have 

d~/~ -1 = (0, 1)(k, k + 1)(2k, 2k + 1) . . .  ((h - t)k, (h - 1)k + 1). [ ]  (17) 
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In view of the fact that every finite 2-transitive group contains a unique minimal 
normal subgroup that is elementary abelian or simple [1], [16], the recent classifica- 
tion of finite simple groups yields a classification of finite 2-transitive groups. This 
in turn leads to the following interesting consequence. 

Theorem 6.5. I f  G is a finite nonabelian, nonhamiltonian group with I GI different 
from q, (1 + q2), (1 + q3), (qn _ 1)/(q - 1), 2"-~(2 ~ ___ 1), 11, 12, 15, 22, 23, 24, 28, 176, 
276, where q is the power of a prime and n is a positive integer, then ~--~ is 2-transitive 
and fgG ~- ~Gt. 

Proof. The finite doubly transitive groups of degree m are known I-6] and consist 
of the class of alternating groups rim, the class of symmetric groups 6Pm, certain 
infinite classes of groups of degrees q, (1 + qZ), (I + q3), (qn 1)/(q-  1), 
2n-1(2 n + 1), where q is a power of a prime and n a positive integer, together with 
a finite set of certain sporadic groups of degrees 11, 12, 15, 22, 23, 24, 28, 176, and 
276. Since the degree of f#~ is IGI, it follows from the hypothesis that f#G must be 
isomorphic to alia I or Hal. However, since I G[ # 2 a, by Theorem 6.4 there is an odd 
permutation in f#~. Hence f#~ ~ ~Gj. [] 

Although the above results suggest that PGM is secure, we wish to make it explicit 
to the reader that the status of security for PGM is still unsettled. P G M  without 
multiple encryption is 2-transitive as we have shown, but it would be stronger to 
show that the number of transformations carrying a pair (ml, m2) of distinct mes- 
sages to a pair (c 1, c2) of distinct ciphers is independent of the particular pairs. This 
would correspond to the condition of PGM offering Ordered Perfect 2-fold secrecy 
(O(2)-secrecy) [4]. A similar comment can be made about PGM with multiple 
encryption as it relates to O([~'[)-secrecy. On the other hand, we would like to 
point out that DES is not even known to be 1-transitive. 

7. Conclusions 

In this paper we have studied the algebraic structure of the PGM cryptosystem. 
PGM is a private key cryptosystem based on logarithmic signatures of finite permu- 
tation groups. The cryptosystem possesses desirable algebraic properties from a 
cryptographic point of view. The set of PGM transformations is not closed under 
functional composition and hence not a group. This set is 2-transitive if the underly- 
ing group is not hamiltonian and not abelian. Moreover, if lG[ ~ 2 a, then the set of 
transformations contains an odd permutation. The consequence of these results is 
that the group generated by the set of transformations is nearly always the full 
symmetric group. 

PGM promises to be a fast cryptosystem. In the fastest modes of its current 
implementation PGM attains a speed of well over 6 Mbits/s on a SUN4/ 
Sparcstation 2 computer. PGM is more flexible than DES because of the versatility 
offered by changing the carrier group. Moreover, DES is not known to be 1-transitive. 

Many questions still remain unanswered. We have asked earlier whether there 
exist transformations that convert a tame logarithmic signature to a wild one. Such 
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a transformation would lead to a public-key cryptosystem. In addition, the question 
whether nontransversal logarithmic signatures are wild needs to be adressed. 

Evidence from Table 3 suggests that the condition that G possess a nonnormal  
subgroup may be unnecessary for the 2-transitivity of oqo. It would be interesting 
to investigate whether this condition can be removed. 

There is evidence to suggest that multiple encryptions using the composition of 
at most two P G M  transformations may be sufficient to cover the symmetric group 
~ol- Is it the case that ~ o ~ o  = ~ol? This would be a desirable property for the 
cryptosystem. We pose this question to the reader. 

For  encryption, being able to factor all of G is not a requirement. For  example, 
for a given e > 0, it may be possible to find subsets Xx . . . . .  Xs, Z c G with [ZI/IG[ 
< e such that each element 9 ~ G - Z has a unique factorization 9 = x s . . .  x2"xx ,  
where x i ~ Xi. Such near-factorizations have been studied in [2] for Z = {1}, but 
not much is known for nonabelian G and Z # { 1 }. 
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