
ar
X

iv
:2

20
3.

16
29

8v
3

 [
m

at
h.

L
O

]
 2

5
M

ar
 2

02
3

Algebraic properties of the first-order part of a problem

Giovanni Soldà Manlio Valenti

Abstract

In this paper we study the notion of first-order part of a computational problem, first
introduced in [17], which captures the “strongest computational problem with codomain N that
is Weihrauch reducible to f”. This operator is very useful to prove separation results, especially
at the higher levels of the Weihrauch lattice. We explore the first-order part in relation with
several other operators already known in the literature. We also introduce a new operator, called
unbounded finite parallelization, which plays an important role in characterizing the first-order
part of parallelizable problems. We show how the obtained results can be used to explicitly
characterize the first-order part of several known problems.

Contents

1 Introduction 1

2 Background 2

3 The first-order part of a problem 7

3.1 Previous appearances in the literature . 8

4 Some algebraic rules 9

5 The unbounded finite parallelization 12

5.1 Algebraic properties of (·)u∗ . 15

6 First-order part and diamond 18

7 The first-order part of known problems 24

7.1 Ramsey’s theorem . 31

8 Conclusions 38

1 Introduction

When working with reducibilities in computability theory, a standard strategy to show that a 6≤ b
is to explicitly present an element c such that c ≤ a and c 6≤ b. This is not specific to any particular
reducibility notion ≤, as it only exploits the transitivity of the order. Of course, there is no canonical
way to choose such a c in general, and this is very dependent on the nature of the problems under
analysis.

2020 Mathematics Subject Classification: Primary: 03D78; Secondary: 03D30, 03D55

Key words and phrases: Weihrauch reducibility, computable analysis, degree-theoretic operations.

1

http://arxiv.org/abs/2203.16298v3

In the context of computable analysis and Type-2 Theory of Effectivity, we usually work with
multi-valued functions on represented spaces and use Weihrauch reducibility to compare their uni-
form computational strength. In the attempt to provide “simple” witnesses to a non-reduction
f 6≤W g, it is natural to look for a multi-valued function h with codomain N that belongs to the
lower cone of f but not to the lower cone of g. This is very common in the literature, but all the
proofs require ad-hoc strategies and it is hard to collect them within the same framework. Recently,
Dzhafarov, Solomon, and Yokoyama [17] suggested studying the lower cone of a computational prob-
lem from a more algebraic point of view. To this end, they introduced the notion of first-order part
of a problem f , capturing the “strongest multi-valued function with codomain N that is Weihrauch
reducible to f”.

In this paper, we explore the algebraic properties of the operator that maps a problem to its first-
order part. After introducing the relevant background notions on Weihrauch reducibility (Section 2),
we formally introduce the first-order part operator (Section 3) and highlight some examples where
the first-order part of a problem has been (implicitly) used in the literature (Section 3.1).

The literature on Weihrauch reducibility enjoys a wide variety of different operators on multi-
valued functions, and the algebraic structure of the Weihrauch degrees is well-studied. In Section 4,
we study the relation of the first-order part with the most common operators and highlight the
algebraic connections between them.

In order to characterize the connections between the first-order part and the parallelization
operators, in Section 5 we introduce a new operator (·)u∗, which intuitively captures the idea of
using a problem a finite number of times in parallel, but without having to commit in advance to
the exact number of instances to use. In particular, using the unbounded finite parallelization, we
characterize the first-order part of the problems that are Weihrauch-equivalent to the parallelization
of functions with codomain N. Moreover, in the same spirit of Section 4, in Section 5.1, we study
the relation between (·)u∗ and the most common operators on multi-valued functions.

Section 6 will be devoted to the connections between the first-order part operator, the unbounded
finite parallelization operator, and the diamond operator, which roughly corresponds to closure
under compositional product.

Finally, in Section 7 we show how our results can be applied to characterize the first-order part
of several well-known problems, including in particular lim(n) and WKL(n). Moreover, we provide
some bounds for the first-order part of RT2

2, in particular answering a question raised by Brattka
and Rakotoniaina [13].

Acknowledgments

We would like to thank Vittorio Cipriani, Damir Dzhafarov, Alberto Marcone, Arno Pauly, Paul
Shafer, and Keita Yokoyama for useful discussions and many valuable suggestions during the prepa-
ration of the draft. We would also like to thank the anonymous reviewer for his/her very careful
reading of the paper and the many valuable suggestions.

Soldà’s research was partially supported by a London Mathematical Society Early Career Fellow-
ship (year 2021) and by the grant FWO Odysseus type II, ”Recursion, reflection, and second-order
arithmetic”, G0F8421N. Valenti’s research was partially supported by the Italian PRIN 2017 Grant
“Mathematical Logic: models, sets, computability”.

2 Background

We briefly recall the main notions in Type-2 Theory of Effectivity and Weihrauch reducibility that
will be needed in this paper. For a more thorough presentation, the reader is referred to [9, 28].

We write NN (resp. 2N) for the Baire space (resp. Cantor space) endowed with the product
topology. We also write N<N (resp. 2<N) for the set of finite sequences of natural numbers (resp.

2

binary sequences). In particular, we write (n0, n1, . . . , nk) for the string σ := i 7→ ni (we write
() to denote the empty string). Similarly, we denote an infinite string by (n0, n1, . . .), when it is
clear from the context how to continue the sequence. We write |σ| for the length of σ and σaτ
for the concatenation of the strings σ and τ . We use the symbol ⊑ to denote the prefix relation,
and for every string x and every n ∈ N, we denote with x[n] the prefix of x of length n. We will
use the symbol 〈·〉 to denote a fixed computable bijection N<N → N with computable inverse. It
is often convenient to write 〈n0, . . . , nk〉 in place of 〈(n0, . . . , nk)〉. We assume that the bijection
enjoys all the usual computability properties, such as σ 7→ |σ| being computable. In the literature,
the symbol 〈·〉 is often used to denote also the join between two (finite or infinite) strings with the
same length. With a small abuse of notation, if x0, . . . , xk−1 are k strings of the same length we will
write 〈x0, . . . , xk−1〉(j) := 〈x0(j), . . . , xk−1(j)〉. Moreover, if (xi)i∈N is a sequence of infinite strings
we define 〈x0, x1, . . .〉(〈i, j〉) := xi(j). It is sometimes convenient to abbreviate 〈x0, . . . , xk−1〉 with
〈xi〉i<k (analogously we write 〈xi〉i∈N for the join of infinitely many strings).

We fix a computable enumeration of (Φe)e∈N of partial computable functionals from NN to NN. In
the following, we use U to denote a fixed universal Type-2 functional, i.e. U :⊆ NN×NN → NN is s.t.
for every continuous function F :⊆ NN → NN there is w ∈ NN s.t. for every x ∈ NN, U(w, x) = F (x).
In this case we say that w is an index for F . Since continuous functionals are computable relatively
to an oracle, if w = (e)ap it is convenient to think of the w-th continuous functional as the map
q 7→ Φe(〈p, q〉). In particular, this induces a listing (Φp)p∈NN of the partial continuous functionals1

NN → NN. We hope that the context will dispel any ambiguity between Φe and Φp.
A represented space is a pair (X, δX) where X is a set and δX :⊆ NN → X is a surjective function

called representation map. For every x ∈ X we say that δ−1
X (x) is the set of δX-names or δX-codes

for x. We will avoid mentioning explicitly the representation map whenever it is clear from the
context. If (X, δX) and (Y, δY) are represented spaces, a realizer for f :⊆ X ⇒ Y , denoted F ⊢ f ,
is a function F :⊆ NN → NN s.t. (∀p ∈ dom(f ◦ δX))(δY (F (p)) ∈ f(δX(p))). Realizers allow us to
transfer properties of functions on the Baire space (such as computability or continuity) to multi-
valued functions on represented spaces. In particular, we say that a multi-valued function between
represented spaces is computable if it has a computable realizer.

Computational problems are formalized via multi-valued functions on represented spaces, and,
throughout the paper, we will use the words (computational) problem and multi-valued function
interchangeably. Weihrauch reducibility is a notion of reducibility that calibrates the uniform com-
putational strength of computational problems. If f :⊆ X ⇒ Y and g :⊆ Z ⇒ W are multi-valued
functions, we say that f is Weihrauch reducible to g, and write f ≤W g, if there are two computable
functionals Φ,Ψ :⊆ NN → NN s.t.

(∀G ⊢ g)((p 7→ Ψ(p,GΦ(p))) ⊢ f).

We say that f is strongly Weihrauch reducible to g, and write f ≤sW g, if Ψ does not have direct
access to p. In symbols, f ≤sW g if there are two computable functionals Φ and Ψ s.t.

(∀G ⊢ g)(ΨGΦ ⊢ f).

The map Φ computing names of inputs of g from names of inputs of f is called forward functional ,
while Ψ is called backward functional . Unless otherwise mentioned, we will denote the forward
functional with Φ, and use Ψ for the backward functional.

Both Weihrauch reducibility and strong Weihrauch reducibility are quasi-orders, and hence they
induce two degree structures on the class of computational problems. There are several natural
operations on multi-valued functions, and most of them lift to the Weihrauch degrees and the
strong Weihrauch degrees. Below we formally introduce the ones that we need in this paper.

The Weihrauch degrees form a distributive lattice, with join ⊔ and meet ⊓ defined as

1To be precise, it is a listing of the continuous functionals with Gδ domain.

3

• (f ⊔ g)(i, x) := {i} × f(x) if i = 0 and (f ⊔ g)(i, x) := {i} × g(x) if i = 1;

• (f ⊓ g)(x, z) := {0} × f(x) ∪ {1} × g(z).

We define the parallel product f ×g as (f ×g)(x, y) = f(x)×g(y). The parallel product captures
the idea of using f and g in parallel. We will write fn to denote the parallel product of n copies
of f (i.e. f1 := f , f2 := f × f , and so on). The finite parallelization allows us to apply a problem
a finite number of times in parallel, and is defined as f∗((xi)i<n) := {(yi)i<n : (∀i < n)(yi ∈
f(xi))}. Its infinite generalization is called parallelization, and is formally defined as the problem

f̂ := (xn)n∈N 7→ {(yi)i∈N : (∀i ∈ N)(yi ∈ f(xi))}. In other words, given a countable sequence of

f -instances, f̂ asks for a f -solution for each given f -instance. In Section 5, we will introduce a new
operator, called unbounded finite parallelization, where we ask for a finite number of instances of f
in parallel, but without having to commit in advance to the exact number of instances.

Two multi-valued functions ϕ :⊆ X ⇒ Y and ψ :⊆ Z ⇒ X can be composed letting (ϕ◦ψ)(x) :=
ϕ(ψ(z)) =

⋃
x∈ψ(z) ϕ(x) with dom(ϕ ◦ ψ) := {z ∈ dom(ψ) : ψ(z) ⊆ dom(ϕ)}. However, the

composition does not lift to Weihrauch degrees, as it requires a precise matching between the
codomain of ψ and the domain of ϕ. In general, if f :⊆ X ⇒ Y and g :⊆ Z ⇒W are two arbitrary
multi-valued functions, to capture the idea of applying f and g in series, we consider instead the
compositional product f ∗ g, defined as

f ∗ g := max
≤W

{f0 ◦ g0 : f0 ≤W f and g0 ≤W g}.

The compositional product was first introduced in [8], and proven to be well-defined in [12]. While
f ∗g is (formally speaking) a Weihrauch degree, it is convenient to identify it with its representative
whose domain is

{(p, z) ∈ NN × Z : z ∈ dom(g) and (∀q ∈ δ−1
W (g(z)))(δXΦp(q) ∈ dom(f))}

and whose output is any pair (w, y) with w ∈ g(z) and y ∈ f(δXΦpδ
−1
W (w)) (see [29] for a short

proof of the fact that this problem is a representative of the compositional product). For every f ,
we denote with f [n] the n-fold iteration of the compositional product of f with itself, i.e., f [1] = f ,
f [2] = f ∗ f , and so on. By unfolding the definition, it is straightforward to see that we can
equivalently think of f [n] as the problem that takes in input ((pi)i<n−1, x), where x ∈ dom(f) and
pi ∈ NN, and produces (yi)i<n with y0 ∈ f(x) and yi+1 ∈ f(δXΦpiδ

−1
Y (yi)). In Section 6, we will

formally introduce the diamond operator, which roughly captures the closure under compositional
product.

The operators ⊔,⊓,×, ∗, and ̂ lift to the Weihrauch and strong Weihrauch degrees. We say
that f is a cylinder if f ≡sW f × id. If f is a cylinder, then g ≤W f if and only if g ≤sW f ([5, Cor.
3.6]).

We now mention a couple of additional non-degree-theoretic operators which are nevertheless
very important in the literature.

The jump of f :⊆ X ⇒ Y is the problem f ′ :⊆ X ′
⇒ Y defined as f ′(x) := f(x), where X ′ is the

represented space (X, δX′) and δX′ maps a convergent sequence (pn)n∈N in NN to δX(limn→∞ pn).
In other words, f ′ takes in input a sequence that converges to a name of an f -instance and produces
an f -solution to that instance. We use f (n) to denote the n-th jump of a problem. Observe that, if
we define lim :⊆ (NN)N → NN by lim((pn)n∈N) := limn→∞ pn then we have f (n) ≤W f ∗ lim[n]. The
converse reduction does not hold in general (take e.g. a function f that only has computable outputs).

The equivalence f (n) ≡W f ∗ lim(n) holds if f is a cylinder, hence in particular lim[n+1] ≡W lim(n).
The total continuation or totalization of f :⊆ X ⇒ Y is the total multi-valued function Tf : X ⇒

Y defined as

Tf(x) :=

{
f(x) if x ∈ dom(f)

Y otherwise.

4

Notice that the definition of Tf is sensitive to the particular definition of f as a multi-valued
function between represented spaces. We also mention the completion of a problem, which is an
operator that maps a multi-valued function to a total one on different represented spaces. The
precise definition will be stated in Section 6. For a more detailed exposition we refer to [6].

Next, we introduce some problems which are milestones in the Weihrauch lattice. We already
mentioned lim and its jumps. Of utmost importance is the family of choice problems: every repre-
sented space (X, δX) can be endowed with the final topology induced by the map δX . The space of
open subsets of X can be equipped with a representation map using the fact that a subset U ⊂ X
is open iff its characteristic function χU : X → S has a continuous realizer, where S = {0, 1} is
equipped with the Sierpiński topology. In turn, we represent a closed set (in the final topology on
X) via a name for its complement. This intuitively corresponds to having a c.e. procedure (relative
to the code of the set) to decide membership in the complement. With a similar strategy, we can
define a representation map for every level of the Borel hierarchy on X , as well as for the families
Σ1

1(X), Π1
1(X), ∆1

1(X) (see [25, Sec. 4]).
For every level Γ of the Borel hierarchy, or Γ ∈ {Σ1

1,Π
1
1,∆

1
1} we define Γ-CX :⊆ Γ(X) ⇒ X as

the problem of choosing an element from a non-empty set A ∈ Γ(X). If Γ = Π0
1 we simply write

CX . Despite the choice problems can be defined in such generality, we will only mention the choice
problems on the sets k ∈ N, N, R, 2N, and NN. In particular, C2N ≡sW WKL, where WKL stands
for Weak König’s Lemma and is the problem of producing a path through an ill-founded subtree of
2<N. It is known that, for every n > 0, Π0

n+1-CN
≡sW Π0

n-CN

′.
There are several variants of the choice problems where we restrict our attention to (non-empty)

sets with additional properties. In particular, we write Γ-UCX if the choice is restricted to singletons.
Other useful ones are the cofinite choice principles, where the choice is restricted to cofinite sets.
It is easy to see that the cofinite choice problem for Γ subsets of N is equivalent to the problem
Γ̌−Bound, where Γ̌ is the dual class, consisting of finding a bound for a finite subset of N. The
problems CN,C2N ,CNN , and UCNN are closed under compositional product (see [9, Cor. 7.12]). We
also mention the following well-known fact that will be useful in the rest of the paper:

Theorem 2.1. Fix p ∈ NN. Let ≤pW denote the relativized version of Weihrauch reducibility where
the forward and backward functionals Φ, Ψ are required to be p-computable. For every p ∈ NN and
every problem f with finite codomain, CN 6≤pW f .

Proof. Let Y = {y0, . . . , yn} be the codomain of f and let qi be a name for yi. Assume towards a
contradiction that there are two p-computable functionals Φ,Ψ witnessing CN ≤pW f . Let 0N be a
name for N ∈ dom(CN). By continuity of Ψ, there is k0 s.t. for every i ≤ n, if Ψ(0N, qi)(0) ↓ then it
does in k0 steps. Consider now the input 0k0a(x0, . . . , xn)

a0N, where xi := Ψ(0N, qi)(0) + 1 if the
computation converges in k0 steps, and 0 otherwise. By iterating this reasoning we can diagonalize
against every possible output of f , obtaining an input for which the pair Φ,Ψ fails to compute a
valid solution.

Another important family of problems comes from Ramsey’s theorem for n-tuples and k-colors:
for every A ⊂ N, let [A]n := {B ⊂ A : |B| = n} be the set of subsets of A with cardinality n.
For k ≥ 2, a k-coloring of [N]n is a function c : [N]n → k. An infinite set H s.t. c([H]n) = {i} for
some i < k is said to be c-homogeneous for color i. A k-coloring c of [N]n can be represented by a
string p ∈ NN s.t. for each (i0, . . . , in−1) ∈ [N]n, p(〈i0, . . . , in−1〉) = c(i0, . . . , in−1). We denote the
represented space of k-colorings of n-tuples with Cn,k.

We define RTnk : Cn,k ⇒ 2N as the total multi-valued function that maps a coloring c to the set
of all c-homogeneous sets. Similarly we define RTnN :

⋃
k≥1 Cn,k ⇒ 2N as RTnN(c) := RTnk (c), where

k − 1 is the maximum of the range of c. Note that the input for RTnN does not include information
on which colors appears in the range of the coloring.

A coloring c : [N]n → k, with n ≥ 1 is called stable if, for every x ∈ [N]n−1, limy→∞ c(x ∪ {y})
exists. We denote with SRTnk (resp. SRTnN) the restriction of RTnk (resp. RTnN) to stable colorings.

5

The uniform computational content of Ramsey’s theorems is well-studied (see e.g. [13, 15, 16, 24]).
We finally mention the following two problems:

• LPO : 2N → {0, 1} is defined as LPO(p) := 1 iff (∃n)(p(n) = 1). It is often convenient to think
of LPO as the problem of finding a yes/no answer to a Σ0,p

1 or Π0,p
1 question.

• WF : 2N → {0, 1} is the characteristic function of (the set of characteristic functions for) well-
founded trees.

It is known that, for every n,
̂
LPO

(n) ≡sW lim
(n). Moreover, ŴF ≡sW Π1

1−CA, where Π1
1−CA is the

problem of producing the characteristic function of A ⊂ N given a Π1
1-code for it (see also [20]).

A very important result in classical computability theory is Kleene’s fixed point theorem, also
called recursion theorem (see e.g. [27, Sec. 2.2]). An important observation is that the recursion
theorem relativizes to continuous functionals (by essentially the same proof).

Theorem 2.2. For every total continuous map F : NN → NN there is w ∈ NN s.t. ΦF (w) = Φw.
Moreover, w can be found uniformly from F .

We conclude this section with the following lemma, which will be useful in the rest of the paper.

Lemma 2.3. There are two sequences (An)n∈N and (Bn)n∈N of subsets of N s.t.

(1) for every n, 1n0 ⊑ Bn;

(2) for every n, ∅′ 6≤T An, ∅′ 6≤T Bn, but ∅′ ≤T An ⊕Bn;

(3) for every computable sequence (ei)i∈N ⊂ N and every computable functional Ψ there is x ∈ N

s.t. if for every i, {ei}
Bi(x) ↓= γi ⊑ Bi then

∅′(x) 6= Ψ(x, 〈γi〉i∈N, 〈Aj〉j∈N).

Proof. The construction of the sets (An)n∈N and (Bn)n∈N is done using a finite extension argument.

At each stage s we will have a finite prefix A
(s)
n (resp. B

(s)
n) of An (resp. Bn). For the sake of

readability, we write A(s) =
⊕

n∈N
A

(s)
n and B(s) =

⊕
n∈N

B
(s)
n . Moreover, we say that A(s+1)

extends A(s) if, for each n, A
(s)
n ⊑ A

(s+1)
n .

Let X,Y ⊂ N be Turing-incomparable sets with X ⊕ Y ≡T ∅′. Intuitively, we will build An and
Bn as follows: the first bit of An is X(0) while the first bits of Bn code n. Then the following bits
of An will code the position in Bn where to find Y (0) (which will possibly be some large value k).
Then, the bits after Bn(k) will code the position in An where to find X(1), and so on. In other
words, we “stretch” X and Y into An and Bn, so that ∅′ ≤T An⊕Bn but we cannot Bn-computably
map x to the prefix of Bn needed to compute ∅′(x).

We start by defining A
(0)
n := (X(0)) and B

(0)
n := 1n0 for every n. We also define c0 := 1 (this is

just an index to keep track of what is the next element of X and Y we need to code).
At stage s = 〈e, h〉 if {e} is not total then there is nothing to do: we simply let A(s+1) := A(s),

B(s+1) := B(s), cs+1 := cs and go to the next stage. Assume {e} is total and let ei := {e}(i). We

look for some computable extension A(s+1) of A(s) and B(s+1) of B(s) s.t. for every n, A
(s+1)
n and

B
(s+1)
n are of the form respectively

A(s)
n

a1|B
(s)
n |+|σn|0aτn

a(X(cs))

B(s)
n

aσn
a(Y (cs))

a1|A
(s+1)
n |−10

for some σn, τn ∈ 2<N, and such that one of the following conditions hold:

6

• there are i, n, x ∈ N s.t. {ei}
B(s+1)

n (x) ↓= γi, |γi| ≤ |B
(s+1)
n | and γi 6⊑ B

(s+1)
n ;

• there are i, n, x ∈ N s.t. for every extension B̄n of B
(s+1)
n , {ei}B̄n(x) ↑;

• there is x ∈ N s.t., letting γi(x) := {ei}B
(s+1)
i (x) for every i, and defining γ(x) :=

⊕
i∈N

γi(x),

either {h}γ(x)⊕A
(s+1)

(x) ↓6= ∅′(x) or, for every extension Ā of A(s+1), {h}γ(x)⊕Ā(x) ↑.

We then define cs+1 := cs + 1 and go to the next stage.
Observe that a choice of A(s+1) and B(s+1) as described is always possible: if this is not the case

then, for some s = 〈e, h〉, for every computable extensions A(s+1) and B(s+1) as above we would
have:

• for every i, x, {ei}B
(s+1)
i (x) ↓=: γi(x) ⊑ B

(s+1)
i

• for every x, {h}γ(x)⊕A
(s+1)

(x) = ∅′(x), where γ(x) :=
⊕

i∈N
γi(x).

However, since both A(s+1) and B(s+1) are computable (they were obtained by uniformly com-
putably extending A(0) and B(0) finitely many times), this would imply that ∅′ is computable,
which is obviously a contradiction.

For every n, we define An := lims→∞ A
(s)
n and Bn := lims→∞B

(s)
n . Observe that both A(s) and

B(s) are extended infinitely many times, hence for every n, An, Bn ∈ 2N. It is trivial to see that
the obtained sets satisfy the conditions (1), (3) above. To show that condition (2) is satisfied notice
that, for every n, we can (uniformly) compute the sets X and Y (fixed at the beginning), hence
∅′ ≤T An ⊕ Bn. The conditions ∅′ 6≤T An and ∅′ 6≤T Bn are satisfied by construction. Indeed, to
show that ∅′ 6≤T An pick e s.t., for every i, {e}(i) = e0 and {e0} is the function that returns the
first bit of the oracle. For every s and every function ϕ using An as oracle, we can compute an

index h for a function s.t., if ηi(x) := {ei}B
(s+1)
i (0) for every i and η :=

⊕
i∈N

ηi, {h}η⊕A = ϕAn .
In particular, at stage 〈e, h〉 we diagonalized against any such ϕ. With a similar reasoning, notice
that if ∅′ ≤T Bn via a computable function ψ, then we can choose e and h appropriately so that
{e}(n) is the index of a function mapping x to the prefix of Bn necessary to ψ to compute ∅′(x),
and h simulates ψ on the corresponding column of its oracle.

3 The first-order part of a problem

Recall that, if w = (e)ap, Φw(x) simulates the e-th computable Turing functional with oracle p and
input x. We conventionally represent the natural numbers via the map p 7→ p(0). Let us now define
formally the first-order part of a problem:

Definition 3.1. We say that a computational problem f :⊆ X ⇒ Y is first-order , and write f ∈ F ,
if there is a computable injection Y → N with computable inverse. For every problem f :⊆ X ⇒ Y ,
the first-order part of f is the multi-valued function 1f :⊆ NN ×X ⇒ N defined as follows:

• instances are pairs (w, x) s.t. x ∈ dom(f) and for every y ∈ f(x) and every name py for y,
Φw(py)(0) ↓;

• a solution for (w, x) is any n s.t. there is a name py for a solution y ∈ f(x) with Φw(py)(0) ↓= n.

Observe that any first-order problem is strongly Weihrauch equivalent to some problem with
codomain N. Intuitively, the first-order part of f behaves “just like f , but stops at the first bit”.
The motivation for this notion comes from the following fact:

Proposition 3.2 ([17]). For every problem f , 1f ≡W max≤W{g ∈ F : g ≤W f}.

7

We briefly give the idea of the proof, as it can guide the intuition when working with the first-
order part of a problem. Observe that 1f is a first-order problem (by definition) and 1f ≤W f ,
hence 1f belongs to {g ∈ F : g ≤W f}. Let g be a first-order problem that reduces to f via the
functionals Φ, Ψ. Assume without loss of generality that g :⊆ NN

⇒ N and f :⊆ NN
⇒ NN (this

makes the presentation easier, as we do not have to keep track of the representation maps). By
definition of Weihrauch reducibility, for every input p ∈ dom(g), Φ(p) ∈ dom(f) and, for every
solution q ∈ fΦ(p), Ψ(p, q)(0) ∈ g(p). We can computably find a string r ∈ NN s.t. for every t ∈ NN,

Φr(t) = Ψ(p, t).

It is straightforward to check that (r,Φ(p)) is a valid input for 1f , and that 1f(r,Φ(p)) = Ψ(p, q)(0),
for some solution q ∈ fΦ(p), i.e. it uniformly computes g.

Equivalently2, we can define the first order part of f as the partial multi-valued function s.t.

• instances are triples (p, e, i) ∈ NN × N × N s.t. δXΦe(p) =: x ∈ dom(f) and for every py ∈
δ−1
Y (f(x)), Φi(p, py)(0) ↓;

• a solution for (p, e, i) is any n s.t. Φi(p, py)(0) ↓= n, for some name py of a solution for
fδY Φe(p).

The two definitions yield two strongly Weihrauch equivalent problems. The difference lies in the
fact that, in the first case, we need to consider an input w ∈ NN that (intuitively) codes also the
original input for the function we are reducing to f , while in the second case we need to specify two
integer indexes, as the input will be automatically accessible (as part of the definition of Weihrauch
reducibility).

Remark 3.3. Observe that the first-order part 1f is Weihrauch-equivalent to the problem of pro-
ducing “sufficiently long” prefixes of f -solutions. More precisely, 1f is Weihrauch-equivalent to the
problem that takes in input a pair (w, x) ∈ dom(1f) and produces a prefix σ for some solution
y ∈ f(x) s.t. Φw(σ)(0) ↓. Indeed, a solution for (w, x) ∈ dom(1f) can be uniformly computed from
(w, x) and a sufficiently long prefix σ for a solution of f(x). The converse reduction follows e.g. by
Proposition 3.2. In other words, it can be useful to think of 1f as the problem of mapping (w, x) to
a prefix of y ∈ f(x) that satisfies the c.e. condition named by w.

The first-order part is a degree-theoretic interior operator, hence a common strategy to charac-
terize the first-order part of a problem f is to show that a first-order function f0 reduces to f and
that, for every first-order g, if g ≤W f then g ≤W f0.

3.1 Previous appearances in the literature

As already mentioned, while Dzhafarov, Solomon, and Yokoyama were the first to consider the
operator 1(·) on multi-valued functions, there are several results in the literature on Weihrauch
degrees that implicitly characterize (or provide a bound for) the first-order part of a problem.
Observe e.g. that the non-reduction CR 6≤W C2N [2] can be proved knowing that CN ≤W CR but
CN 6≤W C2N , i.e.

1CR 6≤W
1C2N . In fact, we have 1WWKL ≡W

1C2N ≡W C∗
2 [17] while 1CR ≡W CN

(Corollary 7.3). Besides, [9, Thm. 8.2] lists a number of computational problems that are Weihrauch
equivalent to CN, immediately characterizing their first-order part.

The first-order part of lim was characterized in [8, Prop. 13.10], where the authors show that
1lim ≡W CN. We generalize this result in Theorem 7.2.

In [13, Prop. 3.4], the authors characterize the first-order part of the problems RT
1
k and SRT

1
k

for k ≥ 2 or k = N. More results on the first-order part of principles related to Ramsey’s theorem
will be obtained in Section 7.

2This is actually the original definition used by Dzhafarov, Solomon, and Yokoyama.

8

Let (X, δX) and (Y, δY) be two represented spaces. A multi-valued function f is called densely
realized if for every p ∈ dom(f ◦ δX), δ−1

Y ◦ f ◦ δX is dense in dom(δY). By [9, Prop. 4.13], if
f :⊆ X ⇒ Y is densely realized and δY is total then 1f ≤W id. In particular, the problems MLR,
NON, and NHA, defined as “given p ∈ NN, produce some q ∈ NN s.t. q is Martin-Löf random (resp.
non-computable, non-hyperarithmetic) relatively to p” are all densely realized, and therefore their
first-order part is uniformly computable. The same applies to the problem COH (see e.g. [10, Def.
12.1] and [9, Prop. 8.16]).

The use of the first-order part is particularly helpful when studying principles at the higher levels
of the Weihrauch lattice. In [21], the authors show that CNN <W TCNN [21, Prop. 8.2.1] using the
fact that WF 6≤W LPO ∗ CNN ≡W CNN , while WF ≤W LPO ∗ TCNN . The first-order part of CNN was
explicitly characterized in [18, Prop. 2.4], showing that 1CNN ≡W Σ1

1-CN
. The same argument shows

that 1UCNN ≡W Σ1
1-UCN

and 1TCNN ≡W T(Σ1
1-CN

).
In [21, Lem. 4.7] the authors (implicitly3) use the fact that Π1

1−Bound 6≤W Σ1
1-WKL to separate

Σ1
1-WKL from Σ̂1

1-CN
, where Σ1

1-WKL is the generalization of WKL to binary trees presented via
a Σ1

1 code (see [21, Def. 4.2]). In fact, [1, Cor. 3.19] strengthen this observation, showing that
̂Π1
1−Bound |W Σ1

1-WKL ≡W Σ̂1
1-C2. The principle Π1

1−Bound was used in the context of the
Weihrauch degrees of some infinite-dimensional generalizations of Ramsey theorems [22, Thm. 4.11],
and played an important role in [18]: in particular, the authors explicitly prove that Π1

1−Bound ≡W
1DS, where DS is the problem of producing an infinite descending sequence through an ill-founded
linear order.

The characterization of the first-order part of problems proved very helpful also in the analysis
of the uniform computational strength of Cantor-Bendixson theorem [14].

4 Some algebraic rules

We now prove some results describing the interaction between the first-order part operator and some
well-known operators on multi-valued functions.

Proposition 4.1. For every multi-valued functions f and g,

(1) 1(f ⊔ g) ≡W
1f ⊔ 1g;

(2) 1(f ⊓ g) ≡W
1f ⊓ 1g;

(3) 1f × 1g ≤W
1(f × g);

(4) 1f ∗ 1g ≤W
1(f ∗ g) ≤W

1f ∗ g.

None of the above reductions can be reversed. In fact,

(5) there are f, g s.t. 1f ∗ 1g 6≤W
1(f × g);

(6) there are f, g s.t. 1(f × g) 6≤W
1f ∗ 1g.

Proof. Without loss of generality, we assume that f and g are multi-valued functions on the Baire
space.

(1) This is straightforward from the definitions. Recall that an input for f ⊔ g is of the type (i, x)
where x ∈ dom(f) if i = 0 and x ∈ dom(g) if i = 1.

To prove the left-to-right reduction it suffices to map (w, (i, x)) to (i, (w, x)). To prove the
right-to-left reduction it suffices to consider the inverse map (i, (w, x)) 7→ (w, (i, x)).

3Since Σ
1

1
-WKL is parallelizable, Π1

1
−Bound ≤W Σ

1

1
-WKL iff ̂

Π
1

1
−Bound ≤W Σ

1

1
-WKL.

9

(2) To prove the left-to-right reduction notice that, by the monotonicity of 1(·), 1(f ⊓ g) ≤W
1f

and 1(f ⊓ g) ≤W
1g. Since ⊓ is the meet in the Weihrauch lattice, we obtain 1(f ⊓ g) ≤W

1f ⊓ 1g. To prove the right-to-left reduction, recall that, by definition,

(1f ⊓ 1g)((w, x), (v, z)) = 1f(w, x) ⊔ 1g(v, z).

We can uniformly compute r ∈ NN s.t.

Φr(〈i, t〉) =

{
〈0,Φw(t)〉 if i = 0,

〈1,Φv(t)〉 if i = 1.

It follows that every solution for 1(f ⊓ g)(r, (x, z)) is a solution for (1f ⊓ 1g)((w, x), (v, z)).

(3) To show that the reduction holds it suffices to consider the map ((w, x), (v, z)) 7→ (r, (x, z))
where Φr(〈y, t〉) = 〈Φw(y),Φv(t)〉. The fact that the converse reduction does not hold (in
general) follows from point (6).

(4) For the first reduction, notice that, by the monotonicity of 1(·), 1f ∗ 1g ≤W f ∗ g. Since 1f ∗ 1g
is a first-order problem we have 1f ∗ 1g ≤W

1(f ∗ g).

To prove the second reduction, observe that a solution for 1(f ∗ g)(w, (v, z)) is Φw(t, y)(0) for
some t ∈ g(z) and y ∈ f(Φv(t)). To show that 1(f ∗ g) ≤W

1f ∗ g it is enough to consider the
map (w, (v, z)) 7→ (r, z), where r ∈ NN is s.t.

Φr(t) = 〈p,Φv(t)〉;

Φp(y) = Φw(t, y).

A counterexample for the reduction 1(f ∗ g) ≤W
1f ∗ 1g is given by f = g = lim. Indeed, we

will show 1(lim(n)) ≡W C
(n)
N

(Theorem 7.2), hence a reduction would yield

C′
N ≡W

1(lim ∗ lim) ≤W
1lim ∗ 1lim ≡W CN ∗ CN ≡W CN,

which is a contradiction.

To show that the reduction 1f ∗g ≤W
1(f ∗ g) can fail it is enough to notice that the right-hand

side always has computable solutions. An explicit counterexample can therefore be obtained
by choosing again f = g = lim.

(5) The non-reduction is witnessed by f = g = LPO [12, Proof of Prop. 4.8(6)].

(6) To show that the reduction 1(f × g) ≤W
1f ∗ 1g can fail, let (An)n∈N and (Bn)n∈N be as in

Lemma 2.3 and let A := A0, B := B0. In particular we have

• ∅′ 6≤T A, ∅
′ 6≤T B, ∅′ ≤T A⊕B

• for every e, if {e}A⊕B = ∅′ then the map sending x to the prefix of B used in the
computation {e}A⊕B(x) is not B-computable.

Let f (resp. g) be the constant map returning the characteristic function of A (resp. B).
Clearly, χ∅′ ≤W

1(f × g). On the other hand χ∅′ 6≤W
1f ∗ 1g. Notice indeed that 1f is equiva-

lent to the map that, given w produces a sufficiently long prefix A[n] of A s.t. Φw(A[n])(0) ↓.
Analogously, we can think of 1g as producing a sufficiently long prefix of B.

Assume there is a reduction χ∅′ ≤W
1f ∗ 1g as witnessed by Φ,Ψ. For every x, Φ(x) =

〈Φ1(x),Φ2(x)〉 is s.t. Φ2(x) is an input for 1g and Φ1(x) is the index of a functional that,
given A and the prefix of B produced by 1g, computes χ∅′ . Since all computations are done
uniformly, this corresponds to the existence of two indexes e and i for computable functions s.t.
{e}B(n) = B[m] and {i}A⊕B[m](n) = χ∅′(n). Hence, the existence of a Weihrauch reduction
contradicts the properties of A and B.

10

The counterexample used to show that 1(f × g) 6≤W
1f ∗ 1g suggests also how to show that, in

general, 1(f × f) 6≤W
1f ∗ 1f . Indeed, letting A,B as above, we can define f so that f(0) := χA and

f(1) := χB. It is not hard to adapt the proof of Proposition 4.1(6) to show that such f satisfies the
claim.

We can also explore the connections between the first-order part and the jump in the Weihrauch
lattice. To this end, we introduce the following notion:

Definition 4.2. We say that a first-order problem f is a first-order cylinder if, for every first-order
g,

g ≤W f ⇒ g ≤sW f.

Notice that no first-order problem can be a (classical) cylinder: indeed, we already noticed that
every first-order problem is strongly Weihrauch equivalent to a problem with codomain N, and
therefore only has computable outputs (hence, in particular, it cannot strongly compute id).

Proposition 4.3. If f is a cylinder then 1f is a first-order cylinder.

Proof. Let g be a first-order problem and assume g ≤W
1f via Φ,Ψ. Without loss of generality we

can assume that g has codomain N. Let also ΦS ,ΨS be two computable functionals witnessing the
reduction id×f ≤sW f . Let v ∈ NN be s.t.

Φv(p) = Ψ(p0,Φp1(p2)),

where 〈〈p0, p1〉, p2〉 = ΨS(p).
Let pt be a name for an input t of g, and let Φ(pt) be a name for an input (wt, xt) of 1f . We

claim that the maps pt 7→ (v,ΦS(〈pt, wt〉, xt)) and id witness g ≤sW
1f . Indeed, ΦS(〈pt, wt〉, xt) is

a name for some y ∈ dom(f) s.t. every name pz for some z ∈ f(y) uniformly computes (via ΨS)
a name for a pair (〈pt, wt〉, pr), where pr is a name for some r ∈ f(xt). In particular, we obtain
Φv(pz)(0) = Ψ(pt,Φwt

(pr))(0), which is a valid solution for g(t) (as g has codomain N).

As a trivial consequence, if f is a cylinder, g is a first-order cylinder and g ≡W
1f , then g ≡sW

1f
and hence g′ ≡sW (1f)′ (as the jump lifts to the strong Weihrauch degrees).

Proposition 4.4. For every multi-valued function f , 1(f ′) ≤sW (1f)′. Moreover, if f is a cylinder
then 1(f ′) ≡sW (1f)′.

Proof. The first statement is a trivial consequence of the definitions. Indeed, given an input (w,x)
for 1(f ′), where x = (xn)n∈N is a sequence that converges to x ∈ dom(f), it is enough to consider
the input (w,x) for (1f)′, where w = (wn)n∈N is the constant sequence wn := w. Clearly

(1f)′(w,x) = 1(f ′)(w,x).

Assume now that f is a cylinder. In particular, f ′ is a cylinder and f ∗ lim ≡sW f ′. This implies
that

(1f)′ ≤sW
1f ∗ lim ≤sW f ∗ lim ≡sW f ′

Since (1f)′ is first-order, the maximality of the first-order part implies that (1f)′ ≤W
1(f ′). By

Proposition 4.3, 1(f ′) is a first-order cylinder, hence (1f)′ ≤sW
1(f ′).

The reduction (1f)′ ≤W
1(f ′) can fail if f is not a cylinder. To see this, one can simply notice that

(1f)′ takes in input a sequence ((wn)n∈N, (xn)n∈N) that converges to (w, x) and produces 1f(w, x),
whereas the input for 1(f ′) is of the type (v, (zn)n∈N), where (zn)n∈N converges to an input for f .
The forward functional of the reduction (1f)′ ≤W

1(f ′) would have to commit to some v(0) (i.e.
to some index for a Turing machine) in a finite number of steps. One can diagonalize against the
reduction by changing the sequence (wn)n∈N after that stage, so that limn→∞ wn(0) = w(0) is the
index of a different computable function. This procedure does not work if f is a cylinder, as in that
case f ′ ≡W f ∗ lim, hence one can use lim to get the correct (w, x).

11

5 The unbounded finite parallelization

Let us introduce the following “unbounded-∗” operator. Intuitively it generalizes the finite paral-
lelization ∗, by relaxing the requirement that the number of instances of the problem is specified as
part of the input.

Definition 5.1. For every f :⊆ X ⇒ Y define fu∗ :⊆ NN ×XN
⇒ (NN)

<N
as follows:

• instances are pairs (w, (xn)n∈N) s.t. (xn)n∈N ∈ dom(f̂) and for each sequence (qn)n∈N, with
δY (qn) ∈ f(xn), there is k ∈ N s.t Φw(〈qi〉i<k)(0) ↓ in k steps;

• a solution for (w, (xn)n∈N) is every finite sequence (qn)n<k s.t. for every n, δY (qn) ∈ f(xn)
and Φw(〈qi〉i<k)(0) ↓ in k steps.

Observe that, given how the join of finitely many strings is defined, k is uniformly computable
from 〈qi〉i<k. The definition needs to be adapted in case a different definition for the join is used.
Similarly, the bound on the number of steps guarantees that we can see sufficiently long prefixes of
each qi. A larger bound can be chosen without affecting the development of the theory, as long as it
can be uniformly computed from k. We underline that choosing a computable bound is important
for the proof of the following Proposition 5.4.

One can think of fu∗ as the problem that, given an input for f̂ (i.e. a sequence of inputs for
f), produces “sufficiently many” names for solutions, where the “sufficiently many” is determined
precisely by the convergence of a given Turing functional. In other words, we require to have a c.e.
procedure (relatively to the input) that tells us how many columns of the output we need to take a
look at.

Proposition 5.2. For every problem f :⊆ X ⇒ Y , f ≤sW f∗ ≤sW fu∗ ≤W f̂ .

Proof. The first reductions is obvious and the second one is straightforward by definition. To prove
the last reduction, fix (w, (xn)n∈N) ∈ dom(fu∗) and, for each n, let pn be a δX -name for xn. Let

also (yn)n∈N ∈ f̂((xn)n∈N) and let qn be a δY -name for yn.
The backward functional of the reduction is given by the map Ψ such that, when executed with

input (w, (pn)n∈N, (qn)n∈N), it returns 〈qn〉n<k where k is minimum s.t. Φw(〈qn〉n<k)(0) converges
in k steps. The existence of such k is guaranteed by the definition of fu∗.

Similarly to the case of the first-order part, the definition of fu∗ can be equivalently given by
replacing w ∈ NN with a couple of indexes e, i ∈ N for Turing functionals (see the comments after
Definition 3.1).

We can characterize the Weihrauch degree of fu∗ using a reduction game.

Definition 5.3. Let f :⊆ X ⇒ Y , g :⊆ A⇒ B be two partial multi-valued functions. We define the
reduction game U(f → g) as the following two-player game: Player 1 starts by playing a δA-name
pa for some a ∈ dom(g) and Player 2 answers with an index e ∈ N s.t. Φe(pa) = 〈pi〉i∈N where, for
every i, pi is a δX -name for xi ∈ dom(f). If Player 2 does not have a valid move then Player 1 wins,
otherwise the game continues.

On the (n+1)-th move Player 1 produces a δY -name qn for some yn ∈ f(xn), and Player 2 either
declares victory and plays a 〈pa, q0, . . . , qn〉-computable δB-name for b ∈ g(a), or passes his turn.

Player 1 wins if Player 2 never declares victory.

Proposition 5.4. For every f :⊆ X ⇒ Y , g :⊆ A⇒ B,

g ≤W fu∗ ⇐⇒ Player 2 has a computable winning strategy for U(f → g).

12

Proof. Assume g ≤W fu∗ via Φ,Ψ. For every δA-name pa for a g-instance a, Φ(pa) produces the

index w ∈ NN for a continuous functional, and a name 〈pi〉i∈N for an instance of f̂ . In particular,
letting π2 := 〈p, q〉 7→ q, the index of π2 ◦ Φ is a valid first move for Player 2. On the k-th move,
Player 2 checks whether Φw(〈qi〉i<k)(0) ↓ in k steps. If yes then Player 2 declares victory and returns
Ψ(pa, 〈qi〉i<k), otherwise he passes. The fact that Φ,Ψ witness a Weihrauch reduction implies that
there is k s.t. Player 2 declares victory at stage k, and therefore he has a computable winning
strategy for U(f → g).

Assume now that Player 2 has a computable winning strategy σ for U(f → g). We claim that
the reduction g ≤W fu∗ is witnessed by the maps Γ (forward) and ∆ (backward), defined as follows:
the functional Γ maps a name pa for a ∈ dom(g) to (w,Φe(pa)), where e ∈ N is the first move played

by Player 2 (i.e. Φe(pa) is a name for a valid input of f̂) and w ∈ NN is an index for the continuous
functional that, upon input 〈qi〉i<k, checks whether Player 2 declares victory on his k-th move (when
playing following σ). The backward functional ∆ is to the map that sends pa, q0, . . . , qk−1 to a name
for b ∈ g(a).

Since σ is computable then so are Γ and ∆. Notice that w need not be computable, as the
strategy σ also has access to the original input pa. Moreover, since σ is a winning strategy for
Player 2, there is a finite stage k in which Player 2 declares victory, i.e. (w,Φe(pa)) is a valid input
for fu∗ and ∆ computes a (name for a) valid solution of g(a).

We now show that (·)u∗ respects both Weihrauch and strong Weihrauch reductions.

Theorem 5.5. For every f :⊆ X ⇒ Y , g :⊆ A⇒ B,

(1) f ≤W g ⇒ fu∗ ≤W gu∗;

(2) (fu∗)u∗ ≡W fu∗.

In particular, (·)u∗ is a closure operator. The above properties hold also if we replace ≤W with ≤sW.

Proof. (1) Assume f ≤W g via Φ,Ψ. Let (w, (xn)n∈N) be a valid input for fu∗ and, for each n,
let pn be a name for xn. We can uniformly compute the pair (r, (Φ(pn))n∈N), where r ∈ NN is
s.t. for every k ∈ N

Φr(〈qn〉n<k) = Φw(〈Ψ(pn, qn)〉n<k).

Notice that, since Φ and Ψ witness the reduction f ≤W g, the pair (r, (Φ(pn))n∈N) is a valid
input for gu∗. Moreover, if (qn)n<k is a solution of gu∗(r, (Φ(pn))n∈N), then (Ψ(pn, qn))n<k is
a valid solution for fu∗(w, (xn)n∈N). The same argument shows that f ≤sW g implies fu∗ ≤sW

gu∗, the only difference is that, instead of r, we consider r̄ s.t. Φr̄(〈qn〉n<k) = Φw(〈Ψ(qn)〉n<k).

(2) The proof is essentially a definition-chasing exercise. Let (w, (ti)i∈N) be valid input for
(fu∗)u∗, where, for every i, ti = (wi, (δX(pij))j∈N) is a valid input for fu∗. A solution for

(fu∗)u∗(w, (ti)i∈N) is a finite sequence (zi)i<h, where zi = (qij)j<ki is a valid output for

fu∗(wi, (δX(pij))j∈N).

We can uniformly compute an index r ∈ NN s.t. Φr behaves as follows: given in input
〈v〈i,j〉〉i,j<N , let h := max{n : 〈n, 0〉 < N} and, for each i < h, let ki := max{m :
〈i,m〉 < N}. For every i < h and j < ki, define qij := v〈i,j〉. The functional Φr simu-

lates Φw(〈〈q
i
j〉j<ki 〉i<h) for h steps and Φwi

(〈qij〉j<ki) for ki steps. If all of the simulations
converge then Φr converges (with dummy output), otherwise it diverges.

We then consider the pair (r, (δX(p̄〈i,j〉))i,j∈N), where p̄〈i,j〉 := pij . It is straightforward to
show that (r, (δX(p̄〈i,j〉))i,j∈N) is a valid input for fu∗. Indeed, for each i ∈ N, there is a finite
sequence (qij)j<ki s.t. for every j < ki, δY (q

i
j) ∈ f(δX(pij)) and Φwi

(〈qij〉j<ki) converges in

ki steps. Similarly, there is h s.t. Φw(〈〈qij〉j<ki 〉i<h) converges in h steps. Moreover, every

13

solution (v〈i,j〉)〈i,j〉<N for fu∗(r, (δX(p̄〈i,j〉))i,j∈N) can be unpacked (as explained above) into
the solution (zi)i<h for (fu∗)u∗(w, (ti)i∈N).

This also proves that (fu∗)u∗ ≡sW fu∗ (as the reduction is, in fact, a strong Weihrauch
reduction).

Notice that, whenever f is a first-order problem, fu∗ is strongly Weihrauch equivalent to a
problem with range N<N (it has to produce finitely many natural numbers). With a small abuse of
notation, it is convenient to identify fu∗ with a strong Weihrauch equivalent first-order problem.

The operator (·)u∗ allows us to characterize the degree of the first-order part of a parallelizable
problem.

Proposition 5.6. For every multi-valued function f , 1(f̂) ≡W
1(fu∗).

Proof. The right-to-left reduction follows trivially from fu∗ ≤W f̂ (Proposition 5.2) and the fact
that 1(·) is degree-theoretic. To prove the left-to-right reduction, let (w,x), with x := (xi)i∈N, be

an input for 1f̂ . If 〈qi〉i∈N is a name for a solution of f̂(x), then Φw(〈qi〉i∈N)(0) ↓. Let r ∈ NN be an
index for the functional that, upon input 〈pi〉i<k simulates

Φw(〈p0, . . . , pk−1, 0
N, 0N, . . .〉)

for k steps, and enters an endless loop if Φw does not converge on 0. It is straightforward to check
that (r, (r,x)) is a valid input for 1(fu∗) and that

1(fu∗)(r, (r,x)) ⊂ 1(f̂)(w,x).

Theorem 5.7. For every first-order f ,

1(f̂) ≡W fu∗ ≡W (1f)u∗.

Proof. This follows directly from Proposition 5.6, as if f is first-order then so is fu∗.

This result characterizes the first-order part of all the problems that are Weihrauch-equivalent
to the parallelization of some first-order problem. Several applications of this result will be made
explicit in Section 7.

Notice that not every parallelizable problem is the parallelization of some first-order problem.
As a counterexample, consider the problem CNN . As mentioned, it is known that 1CNN ≡W Σ1

1-CN
.

If CNN ≡W f̂ for some first-order f then f ≤W Σ1
1-CN

and hence CNN ≤W Σ̂1
1-CN

, against [1, Thm.
3.30].

Theorem 5.7 can be restated saying that (·)u∗ and 1(·) commute for first-order problems. The
same statement, however, holds for a much wider class of problems. Observe for example that the
unbounded finite parallelization and the first-order part commute also for every f :⊆ NN → NN.
Indeed, for every j ∈ N, let wj be s.t. Φwj

(p) returns the prefix of length j of p. The idea is that,

since f is single-valued, given the input (w, (xi)i∈N) for
1(f̂), for every i we can compute longer and

longer prefixes of f(xi) by considering the input (wj , x〈i,j〉)〈i,j〉∈N for 1̂f . To obtain the reduction
1(f̂) ≤W (1f)u∗, it is therefore enough to map (w, (xi)i∈N) to the input (r, (wj , x〈i,j〉)〈i,j〉∈N) for
(1f)u∗, where r is s.t. Φr(〈yi,j〉〈i,j〉<k) = Φw(〈yi,ki〉〈i,ki〉<k) and ki is the greatest j s.t. 〈i, j〉 < k.
Intuitively: Φr simulates Φw on the longest prefixes of solutions available. This argument can be
adapted to show that, whenever f :⊆ NN

⇒ NN is finitely valued (for every p ∈ dom(f), |f(p)| < ℵ0),

we have 1(f̂) ≡W (1f)u∗.
However, the following counterexample shows that (·)u∗ and 1(·) do not commute in general.

Proposition 5.8. There is f with 1(f̂) 6≤W (1f)u∗.

14

Proof. Let (An)n∈N and (Bn)n∈N be as in Lemma 2.3, namely:

(1) for every n, 1n0 ⊑ Bn;

(2) for every n, ∅′ 6≤T An, ∅′ 6≤T Bn, but ∅′ ≤T An ⊕Bn;

(3) for every computable sequence (ei)i∈N ⊂ N and every computable functional Ψ there is x ∈ N

s.t. if for every i, {ei}Bi(x) ↓= γi ⊑ Bi then

∅′(x) 6= Ψ(x, 〈γi〉i∈N, 〈Aj〉j∈N).

Let f : N ⇒ 2N be defined as f(0) := {Bn : n ∈ N} and f(n+1) := {An}. We show that ∅′ ≤W
1(f̂),

while ∅′ 6≤W (1f)u∗, where we are identifying ∅′ with its characteristic function. The reduction is

straightforward: given n, consider the input (i)i∈N for f̂ . The result of f(0) is Bj for some j ∈ N

(uniformly computable from Bj by checking the first bits), hence using Bj and Aj = f(j + 1) we
can compute ∅′.

Recall that, by definition, an input for (1f)u∗ is a pair (w, z), where

• z = (wi, xi)i∈N, with wi ∈ NN and xi ∈ N,

• for every i and every yi ∈ f(xi), Φwi
(yi)(0) ↓=: γxi

,

• for some k ∈ N, Φw(〈γxi
〉i<k)(0) ↓.

Observe that (1f)u∗ ≤W F , where F is the problem that takes in input a sequence (vj)j∈N of indexes
for continuous functionals and returns both 〈An〉n∈N and a sequence (ηi)i∈N of finite strings where,
for every i, ηi is a sufficiently long prefix of Bi such that Φvi(ηi)(0) ↓. Intuitively, this can be
shown by letting (vj)j∈N be the subsequence (win)n∈N of (wi)i∈N s.t. xin = 0. Since the output of
F contains all the An’s, it is clear that we can uniformly compute a correct solution of (1f)u∗ by
properly rearranging the columns.

Assume ∅′ ≤W F via Φ,Ψ. In particular, for every n, Φ(n) produces a sequence (Φi(n))i∈N of (in-
dexes for) computable functionals. Let (ei)i∈N be the computable sequence defined as Φei(X)(n) :=
ΦΦi(n)(X)(0). Let also x ∈ N be a witness of the property (3) of the sets An, Bn for the sequence
(ei)i∈N and the functional Ψ.

A valid solution for F (Φ(x)) is the pair (〈Aj〉j∈N, 〈γi〉i∈N), where γi is a prefix of Bi s.t.
ΦΦi(x)(γi)(0) ↓. We have therefore reached a contradiction, as

∅′(x) 6= Ψ(x, 〈γi〉i∈N, 〈Aj〉j∈N),

against the definition of Weihrauch reducibility.

Notice that this implies that the reduction 1(f̂) ≤W
1̂f fails in general (by Theorem 5.7).

Open Question 5.9. Can we characterize exactly the class of problems for which 1(·) and (·)u∗

commute?

5.1 Algebraic properties of (·)u∗

Theorem 5.10.

(1) fu∗ ⊔ gu∗ ≤W (f ⊔ g)u∗;

(2) (f ⊓ g)u∗ ≡W fu∗ ⊓ gu∗;

(3) fu∗ × gu∗ ≤W (f × g)u∗;

15

(4) (f∗)u∗ ≡W (fu∗)∗ ≡W fu∗;

(5) (f̂)u∗ ≡W (̂fu∗) ≡W f̂ ;

(6) (f ∗ g)u∗ ≤W fu∗ ∗ ĝ.

None of the above reduction can be reversed. In fact,

(7) there are f, g s.t. fu∗ ∗ gu∗ 6≤W (f × g)u∗;

(8) there are f, g s.t. (f × g)u∗ 6≤W fu∗ ∗ gu∗.

Proof. (1) The reduction is straightforward from the fact that fu∗ ≤W (f ⊔ g)u∗ and gu∗ ≤W

(f ⊔ g)u∗, as ⊔ is the join in the Weihrauch lattice. An explicit reduction can be obtained by
considering the map (i, (w,x)) 7→ (w, (i,x)) for every x := (xn)n∈N.

A counterexample for the right-to-left reduction can be obtained by choosing any f and g
s.t. f 6≤W ĝ and g 6≤W f̂ . This condition is equivalent to f̂ |W ĝ, and, as example, we
can choose f = WKL and g = COH. Any forward functional for the reduction, upon input
(w, (in, xn)n∈N), should commit, after finite time, to some b ∈ {0, 1} specifying whether it is
producing an input for fu∗ or gu∗. Assume without loss of generality that b = 0 (the proof
in case b = 1 is obtained by swapping the roles of f and g). By changing the input so that
in = 1−b = 1 for every sufficiently large n, we can exploit the reduction (f⊔g)u∗ ≤W fu∗⊔gu∗

to obtain a reduction gu∗ ≤W fu∗ ≤W f̂ , against g 6≤W f̂ .

(2) The reduction follows from (f ⊓ g)u∗ ≤W fu∗ and (f ⊓ g)u∗ ≤W gu∗, as ⊓ is the meet
in the Weihrauch lattice. An explicit reduction can be obtained by considering the map
(w, (xn, zn)n∈N)) 7→ ((w, (xn)n∈N), (w, (zn)n∈N)).

To prove the right-to-left reduction, let ((wf , (xn)n∈N), (wg, (zn)n∈N)) be a valid input for

fu∗ ⊓ gu∗. Observe that, for every solution (b〈i,j〉, y〈i,j〉)〈i,j〉∈N for f̂ ⊓ g((xi, zj)〈i,j〉∈N), either
(∀i)(∃j)(b〈i,j〉 = 0), or (∀j)(∃i)(b〈i,j〉 = 1). We consider the input (w, (xi, zj)〈i,j〉∈N), where

w ∈ NN is an index for the functional that, upon input (b〈i,j〉, y〈i,j〉)〈i,j〉<k, works as follows:
by exhaustive search, it produces two sequences s = (sn)n and t = (tm)m of maximal length
s.t. sn = y〈n,j〉 for some j s.t. b〈n,j〉 = 0, and symmetrically, tm = y〈i,m〉 for some i s.t.
b〈i,m〉 = 1. It then simulates Φwf

(s) and Φwg
(t) for k steps, and halts iff one of the two halts.

The definition of (·)u∗ guarantees that Φw halts whenever the input (and hence one between
s and t) is sufficiently long.

(3) The left-to-right reduction is straightforward: given (wf , (xi)i∈N) and (wg, (zi)i∈N) we can
uniformly compute the input (w, (xi, zi)i∈N) for (f × g)u∗, where w is s.t. Φw(〈(ai, bi)〉i<k)
simulates Φwf

(〈ai〉i<k) and Φwg
(〈bi〉i<k). The fact that the right-to-left reduction can fail

follows from point (8).

(4) It follows from the fact that f∗ ≤W fu∗ and that (·)u∗ is a closure operator.

(5) It follows from the fact that fu∗ ≤W f̂ and that the parallelization is a closure operator.

(6) This is essentially a definition-chasing exercise. Let (w, (wi, zi)i∈N) be an input for (f ∗ g)u∗.

By definition, for every name 〈pi〉i∈N of a solution of f̂ ∗ g((wi, zi)i∈N) there is k ∈ N s.t.
Φw(〈pi〉i<k)(0) ↓. For every i, pi is a name for a pair (vi, ui), where vi ∈ g(zi) and ui ∈
f(Φwi

(vi)). Given (w, (wi, zi)i∈N), we can uniformly compute r ∈ NN s.t.

Φr(〈ti〉i∈N) = 〈s, 〈Φwi
(ti)〉i∈N〉,

where s ∈ NN is s.t.
Φs(〈yi〉i<k) = Φw(〈ti, yi〉i<k).

16

Intuitively: we do not lose any computational power if the sequence (vi)i∈N of g-solutions is
passed as input to fu∗. It is routine to check that (r, (zi)i∈N) is a valid input for fu∗ ∗ ĝ
and that a solution for (f ∗ g)u∗)(w, (wi, zi)i∈N can be uniformly computed from a solution
(fu∗ ∗ ĝ)(r, (zi)i∈N) by truncating the sequence of solutions for ĝ((zi)i∈N.

A counterexample for the right-to-left reduction is readily obtained choosing f = g = CN.
Indeed, CN is closed under composition and under (·)u∗ (see e.g. Theorem 7.2), hence (CN ∗

CN)
u∗ ≡W CN, while lim ≤W CN ∗ ĈN.

(7) As a counterexample, it is enough to take f = g = lim.

(8) The proof follows the one of Proposition 4.1(6). Let (An)n∈N and (Bn)n∈N be as in Lemma 2.3
and let A := A0, B := B0. In particular we have

• ∅′ 6≤T A, ∅′ 6≤T B, ∅′ ≤T A⊕B

• for every e, if {e}A⊕B = ∅′ then the map sending x to the prefix of B used in the
computation {e}A⊕B(x) is not B-computable.

If we identify each set with its characteristic function then clearly ∅′ ≤W (A × B)u∗. On the
other hand ∅′ 6≤W Au∗ ∗ Bu∗. Notice indeed that, by definition, an input for Au∗ is a pair
(w,x), with x = (xi)i∈N being a sequence of natural numbers. Without loss of generality, we
can assume that xi = i and that Φw is just computing a (finite) prefix of A. In other words,
we can assume that the input of Au∗ is the index of a continuous function that, given A,
produces a finite prefix of A (the same argument applies also to B).

Assume there is a reduction ∅′ ≤W Au∗ ∗ Bu∗ as witnessed by Φ,Ψ. The input for Au∗ ∗ Bu∗

is a pair (e, w) where w is an input for Bu∗ and Φe(B
u∗(w)) is an input for Au∗.

For every n, Φ(n) = 〈Φ1(n),Φ2(n)〉 is s.t. Φ2(n) is the index for a computable functional that,
given n and B, produces a prefix B[m] of B and, ΦΦ1(n)(B[m]) is the index of a computable
functional that, given A, computes ∅′. Since all computations are done uniformly, this corre-
sponds to the existence of two indexes e and i for computable functions s.t. {e}B(n) = B[m]
and {i}A⊕B[m](n) = ∅′(n). Hence, the existence of a Weihrauch reduction contradicts the
properties of A and B.

Theorem 5.11. For every multi-valued function f , (f ′)u∗ ≤sW (fu∗)′. Moreover, if f is a cylinder
then (f ′)u∗ ≡sW (fu∗)′.

Proof. The first statement follows from the definitions: notice indeed that the domains of (f ′)u∗

and (fu∗)′ share the same underlying set (NN × XN), the only difference being in the respective
representations. Let (w, (xn)n∈N) be an input for (f ′)u∗. Given a double sequence (pn,m)n,m∈N

where limm→∞ pn,m =: pn is a name for xn, we can uniformly compute a sequence in NN converging
to 〈w, 〈pn〉n∈N〉, i.e. to a name of the input (w, (xn)n∈N) for (f

u∗)′.
Assume now that f is a cylinder, so that f ≡sW id×f and f ′ ≡sW (id×f)′. We show that

(fu∗)′ ≤sW ((id×f)′)u∗, and the claim follows from the fact that (·)u∗ is strong-degree-theoretic. A
name for the input (w, (xn)n∈N) for (f

u∗)′ is (essentially) a sequence (wi)i∈N converging to w ∈ NN

and a double sequence (qn,m)n,m∈N where limm→∞ qn,m =: qn is a name for xn. Clearly the sequence
(〈wm, qn,m〉)m∈N converges to a name for (w, xn). Let r ∈ NN be s.t.

Φr(〈〈w, t0〉, . . . , 〈w, tk−1〉〉) = Φw(〈ti〉i<k).

It follows that 〈r, 〈wm, qn,m〉m∈N〉 is a name for a valid input of ((id×f)′)u∗ and that, applying
((id×f)′)u∗, we obtain a solution for (fu∗)′(w, (xn)n∈N) = fu∗(w, (xn)n∈N).

17

The reduction (fu∗)′ ≤sW (f ′)u∗ can fail if f is not a cylinder, see the comments after Proposition 4.4.
An explicit counterexample is the constant function.

We now show that, under the relatively mild assumption that f̂ is a cylinder, Theorem 5.7 can
be strengthened as follows:

Theorem 5.12. For every first-order f and every n ∈ N, if f̂ is a cylinder then 1((f̂)(n)) ≡sW

(fu∗)(n).

Proof. The statement can be proved by induction on n ∈ N. Fix a first-order problem f such that
f̂ is a cylinder and, for the sake of readability, let F := f̂ .

Observe first of all that fu∗ is a first-order cylinder. Indeed, let g be a first-order problem s.t.
g ≤W fu∗. Let Φ,Ψ be two functionals witnessing the strong reduction g ≤sW F . For every name
z of an input for g, let x be the input for F named by Φ(z). For every name 〈yi〉i∈N for a solution
of F (x), there is k s.t. Ψ(〈yi〉i<k)(0) ↓∈ g(z). In particular, letting w be an index for Ψ, the maps
z 7→ (w,x) and Ψ witness g ≤sW fu∗.

Moreover, 1F is a first-order cylinder (Proposition 4.3), and therefore Theorem 5.7 implies
fu∗ ≡sW

1F . This proves the statement for n = 0.
Assume now that the claim holds up to n. Since F is a cylinder, and the jump of a cylinder

is a cylinder ([9, Prop. 6.14]), applying Proposition 4.4 we have 1(F (n+1)) ≡sW (1(F (n)))′. By the
inductive step

1(F (n+1)) ≡sW ((fu∗)(n))′ ≡sW (fu∗)(n+1).

Corollary 5.13. For every first-order f and every n ∈ N, if f̂ is a cylinder then

1((f̂)(n)) ≡sW (fu∗)(n) ≡sW (f (n))u∗.

Proof. The first equivalence is Theorem 5.12. Since (f̂)′ ≡sW (̂f ′) [8, Prop. 5.7(3)], the second

equivalence can be obtained by applying Theorem 5.12 to g = f̂ (n).

6 First-order part and diamond

The diamond operator was introduced in [23, Def. 9] using generalized register machines, and
intuitively f⋄ captures the possibility of calling f as oracle an arbitrary but finite number of times
during a computation (with the constraint of having a c.e. condition that tells you when no more
calls will be made). In [29, Def. 4], the author gives an alternative definition by means of a “higher-
order” model of computation, and shows that the diamond operator corresponds to closure under
compositional product for pointed problems ([29, Thm. 1]).

If f is a first-order problem, a clear upper bound for 1(f̂) is given by f⋄. It is therefore natural
to ask what is the relation between the first-order part, the unbounded finite parallelization, and
the diamond operators.

In the following, we will mostly use the game-theoretic definition introduced by [19, Def. 4.1 and
def. 4.3].

Definition 6.1. Let f, g :⊆ NN
⇒ NN be two partial multi-valued functions. We define the reduction

game G(f → g) as the following two-player game: on the first move, Player 1 plays x0 ∈ dom(g),
and Player 2 either plays an x0-computable y0 ∈ g(x0) and declares victory, or responds with an
x0-computable instance z1 of f .

For n > 1, on the n-th move (if the game has not yet ended), Player 1 plays a solution xn−1 to
the input zn−1 ∈ dom(f). Then Player 2 either plays a 〈x0, . . . , xn−1〉-computable solution to x0
and declares victory, or plays a 〈x0, . . . , xn−1〉-computable instance zn of f .

18

If at any point one of the players does not have a legal move, then the game ends with a victory
for the other player. Player 2 wins if it ever declares victory (or if Player 1 has no legal move at
some point in the game). Otherwise, Player 1 wins.

We say that g is Weihrauch reducible to f in the generalized sense, and write g ≤gW f , if Player
2 has a computable winning strategy for the game G(f → g), i.e. there is a Turing functional Φ s.t.
Player 2 always plays Φ(〈x0, . . . , xn−1〉), and wins independently of the strategy of Player 1.

We described the game assuming that f, g have domain and codomain NN. The definition can
be extended to arbitrary multi-valued functions, and the moves of the players are names for the
instances/solutions.

For every f :⊆ X ⇒ Y we define f⋄ :⊆ N× NN
⇒ Y <N as the following problem:

• dom(f⋄) is the set of pairs (e, d) s.t. Player 2 wins the game G(f → id) when Player 1 plays
d as his first move, and Φe is a winning strategy for Player 2;

• a solution is the list of moves of Player 1 for a run of the game.

Intuitively, in the reduction game G(f → g), Player 1 plays the role of the oracle f , while Player
2 plays the role of the algorithm trying to compute a solution for g, calling the oracle finitely many
times. It is easy to see that g ≤W f⋄ if and only if g ≤gW f . In particular, this interpretation means
that e above can be read as an index of a computation containing a special instruction, namely a
call to the oracle f .

Remark 6.2. Observe that if f is first-order then so is f⋄.

We can compare the intuition given in the above paragraph with the informal description of
fu∗: one would expect that, loosely speaking, a problem corresponding to “an arbitrary number of
applications of f in sequence” always computes “an arbitrary number of parallel applications of f”.
The next Proposition shows that this is indeed the case.

Proposition 6.3. For every multi-valued function f :⊆ X ⇒ Y , fu∗ ≤W f⋄.

Proof. It is enough to notice that, for every partial multi-valued functions f, g, if g ≤W fu∗, then
by Proposition 5.4, Player 2 has a computable winning strategy for the game U(f → g). The same
strategy allows him to win the game G(f → g) for every initial move of Player 1.

Remark 6.4. We notice that, if g ≤sW fu∗, then a solution to any input a of g can be found just
from the list of the moves of Player 1 in the game U(f → g). In particular, if g ≤sW fu∗ then
g ≤sW f⋄, i.e. fu∗ ≤sW f⋄.

We now prove a generalization of the aforementioned result of Westrick which is useful to present
upper bounds for f⋄.

Theorem 6.5. For every two multi-valued functions f, g :⊆ NN
⇒ NN such that g is pointed, we

have that
g ∗ f ≤W g ⇒ f⋄ ≤W g.

Proof. The proof is essentially the same as the one of [29, Thm. 1]: we try to follow the same
notation as much as is allowed by the other conventions we have fixed so far in this document.

Let ∆ and Γ respectively the forward and backward functionals of g ∗ f ≤W g. Fix a uni-
versal Turing functional U s.t. U(n,m, p, q) := Φn(m, p, q). Consider the function F : N → N s.t.
U(F (n), e, d, 〈yi〉i<k) works as follows:

(1): We think of (e, d) as an input for f⋄. We simulate the computation Φe(d). If Player 2 declares
victory then go to (3). Otherwise, Player 2 makes an oracle call. Let Q(e, d, 〈〉) be the instance
of f that we are asking to be solved by f . If k = 0 then go to (4), otherwise go to (2-0).

19

(2-i): Use yi as an answer to the i-th oracle call. Carry on with the computation until either
the computation halts (i.e. Player 2 declares victory), in which case we move to (3), or the
(i + 1)-st request to use f is made. If i+ 1 < k, we go to (2-i+ 1), otherwise go to (4).

(3): We output a computable element of dom(g), which we can do by the assumption that g is
pointed.

(4): Let wk ∈ NN be s.t. Φwk
(yk) = U(n, e, d, 〈yi〉i≤k). Clearly wk is uniformly computable from

n, e, d, 〈yi〉i<k. The computation U(F (n), e, d, 〈yi〉i<k) then returns

∆(wk, Q(e, d, 〈yi〉i<k)),

where Q(e, d, 〈yi〉i<k) is the instance of f submitted upon the (k + 1)-st request to use f .

Clearly F is total and computable, hence, by the relativized recursion theorem, for every e, d
there is a fixed point n for the function F .

We now define the maps Φ,Ψ which will witness the reduction f⋄ ≤W g. Define Φ := (e, d) 7→
U(n, e, d, 〈〉). The functional Ψ, when executed with input z0, works as follows: we divide the
computation in stages, where, at the beginning of each stage s we have defined zs ∈ NN and a finite
sequence ps := (yi)i<s. At stage 0 we define p0 := 〈〉. At every stage s, we run the computation
U(n, e, d, 〈yi〉i<s). If the computation enters condition (3) above then we return (yi)i<s. If the
computation enters condition (4), we let (ys, zs+1) := Γ(zs, (ws, Q(e, d, 〈yi〉i<s))) where ws ∈ NN is
computed by U(n, e, d, 〈yi〉i<s) as defined above, and we go to stage s+ 1.

We now show that the functionals Φ and Ψ witness the reduction f⋄ ≤W g. Let us first notice
that, if for every k and every i < k, yi ∈ f(Q(e, d, 〈yj〉j<i)) then

U(n, e, d, 〈yi〉i<k) ∈ dom(g).

To prove this it is enough to notice that all the (y0, . . . , yk−1) as above ordered by extension form
a well-founded tree (possibly with continuum-sized branching). The key observation is that the
sequences (y0, . . . , yk−1) that satisfy the hypotheses above are exactly the (possibly partial) runs of
the game G(f → id) such that Player 1’s first move is d and Player 2 plays according to the strategy
e. The claim can therefore be proved by induction on the rank of this tree (as is done in [29, Claim
on p. 5]). This implies that U(n, e, d, 〈〉) = Φ(e, d) ∈ dom(g).

Let us now show that if z0 ∈ g(U(n, e, d, 〈〉)) then Ψ(z0) is a valid solution for f⋄(e, d). Assume
that, at each stage s, the sequence (yi)i<s as defined by Ψ(z0) is a valid (partial) run of the game
G(f → id) and zs ∈ g(U(n, e, d, 〈yi〉i<s)). We show that either (yi)i<s is a solution of f⋄(e, d) or
(yi)i<s+1 and zs+1 satisfy the inductive hypotheses. This suffices to prove the claim as the case
s = 0 is trivially verified. If the computation U(n, e, d, 〈yi〉i<s) enters case (3) then by construction
Player 2 declares victory, hence we are done. Otherwise the computation enters case (4). By the
inductive step,

zs ∈ g(U(n, e, d, 〈yi〉i<s)) = g(∆(ws, Q(e, d, 〈yi〉i<s))).

Since Γ is the backward functional of the reduction g ∗ f ≤W g, we obtain that the pair

(ys, zs+1) = Γ(zs, (ws, Q(e, d, 〈yi〉i<s)))

is s.t. ys ∈ f(Q(e, d, 〈yi〉i<s)) and zs+1 ∈ g(Φws
(ys)) = g(U(n, e, d, 〈yi〉i<s+1)).

Notice that we only need the stronger problem g to be pointed, whereas there is no such as-
sumption on f .

It is natural to ask whether the implication f ∗ g ≤W g ⇒ f⋄ ≤W g also holds. Interestingly,
although f ∗g ≤W g implies that f [n] ≤W g for any natural number n, this is not enough to conclude
that f⋄ ≤W g.

20

Proposition 6.6. There are partial multi-valued functions f, g :⊆ NN
⇒ NN such that g is pointed,

f ∗ g ≤W g, but f⋄ 6≤W g.

Proof. Let {qi : i ∈ N} be a set of Turing-incomparable sets. We define f :⊆ 2N ⇒ 2N as
f(0N) := {(i)aqi : i ∈ N} and f(qi+1) := qi for every i. We also let g :=

⊔
n∈N

f [n].
Let us identify q0 with the constant map x 7→ q0. Pauly and Yoshimura [3] observed that

q0 ≤W f⋄ but for every n, q0 6≤W f [n]. This, in particular, implies that q0 6≤W g, hence
f⋄ 6≤W g. On the other hand, to show that f ∗ g ≤W g it is enough to notice that an input
(pn−1, (n, ((pi)i<n−1, x))) for f ∗ g can be uniformly mapped to (n + 1, ((pi)i<n, x)) ∈ dom(g) and
that (f ∗ g)(pn−1, (n, ((pi)i<n−1, x))) = g(n+ 1, ((pi)i<n, x)).

Theorem 6.5 will be a useful tool in various proofs concerning the question of when it is the case
that fu∗ ≡W f⋄. The first result we give is essentially a direct proof of Cu∗

N
≡W C⋄

N
(which holds

by Theorem 5.7, see Theorem 7.2). The main idea behind the proof is that, in order to compute
C⋄
N
(e, x), we can simulate a run of the game G(CN → id) (i.e. we can simulate a computation with

oracle CN) and “guess” the possible moves of Player 1 (i.e. guess the results of the oracle calls). This
generates a subtree of N<N corresponding to the possible sequences of moves for Player 1. Observe
that, if the guess is a legal move for Player 1 then we are guaranteed (by the definition of diamond)
that Player 2 will declare victory after finitely many moves. On the other hand, if the guess is not
a legal move for Player 1 then we have no information on the behavior of Φe, which may fail to
produce a valid input for CN (it may produce a name for an empty set, or also fail to produce an
infinite string). However, since the graph of CN is closed, it is c.e. (relatively to the input) to check
whether we are guessing a wrong answer to an oracle call. Since every finite string is extendible to a
valid input for CN, this guarantees that we can always compute a valid input for CN, and therefore
obtain a reduction C⋄

N
≤W Cu∗

N
.

These ideas can be formally presented as follows.

Proposition 6.7. If f : NN
⇒ N is s.t. {(n, x) : n ∈ f(x)} ∈ Π0

1 then fu∗ ≡W f⋄.

Proof. The reduction fu∗ ≤W f⋄ follows from Proposition 6.3. To prove that f⋄ ≤W fu∗, we show
that fu∗ ∗ f ≤W fu∗ (Theorem 6.5). Since fu∗ ∗ f is a first-order problem, it is enough to show that

fu∗ ∗ f ≤W f̂ (Theorem 5.7).
We define the forward functional Φ as the map that sends an input (p, x) ∈ dom(fu∗ ∗ f) to

(xn)n∈N∪{−1} defined as follows: first of all we define x−1 := x.
Before the formal definition of xn with n ≥ 0, we give an intuition of how the functional works.

Intuitively, if n ∈ f(x), then Φp(n) is (a name of) (wn, (z
n
i)i∈N). We would like to run Φp(n) for

every guess n of a possible solution to f , and define x〈n,i〉 := zni . However, there is one major
obstacle that needs to be overcome in order to make this work: there is no guarantee that, upon
being given an n such that n 6∈ f(x), Φp(n) will actually return a valid input for fu∗.

To address this issue, we build Φ(p, x) in stages. Let ϕ be a ∆0
1 formula such that

n ∈ f(x) ⇐⇒ (∀k)(ϕ(n, x, k)),

which exists by our assumptions on f .
At every stage s, for every unmarked n < s, we check whether (∀k < s)(ϕ(n, x, k)) holds: if it

does, we run Φp(n) for s steps. We interpret its output as a prefix of 〈qni 〉i∈N and write the prefix
of qni+1 as prefix of x〈n,i〉. If there is k < s s.t. ϕ(n, x, k) does not hold, then n /∈ f(x). We label n

as marked and we extend x〈n,i〉 concatenating with 0N. After having checked every n we go to the
next stage.

We claim that Φ(p, x) as defined above is an instance of f̂ : indeed, suppose for a contradiction
that this were not the case, then there are minimal n and i such that x〈n,i〉 /∈ dom(f). Notice that,
by the totality of f , this means that x〈n,i〉 is a finite string. This implies that n /∈ f(x), otherwise,
by definition of compositional product, x〈n,i〉 = π〈n,i〉(Φ(p, x)) = πi+1(Φp(n)), i.e. x〈n,i〉 ∈ dom(f).

21

But if n 6∈ f(x), there is a stage s such that ¬ϕ(n, x, s) holds, and hence, by construction, x〈n,i〉 is

an infinite string, which is a contradiction. This proves that Φ(p, x) ∈ dom f̂ .

We now define the return functional Ψ: given (p, x) and 〈nj〉j∈N∪{−1} ∈ f̂(Φ(p, x)), we run

U(π0Φp(n−1), 〈n〈n−1,i〉 : i ∈ N〉),

where U is a fixed universal Turing functional. We are guaranteed that this computation will
converge by definition of unbounded parallelization, and it will do so after finitely many computa-
tional steps, say k. The map Ψ then outputs the pair (n−1, 〈n〈n−1,i〉 : i < k〉), which clearly is in
fu∗ ∗ f(p, x), thus concluding the proof.

Proposition 6.8. For every f : NN
⇒ k s.t. {(x, n) : n ∈ f(x)} ∈ Π0

1 we have f∗ ≡W f⋄.

Proof. We refine the proof of Proposition 6.7 and show that f∗ ∗ f ≤W f∗. This follows from the
fact, since f has codomain k, given (p, x) ∈ dom(f∗ ∗ f) we can uniformly compute a bound b ∈ N

s.t. for every n < k, either Φp(n)(0) ↓< b or we find a witness < b of the fact that n /∈ f(x). Letting
C := {n < k : Φp(n)(0) ↓ in b steps}, we can define

N :=
∑

n∈C

Φp(n)(0).

Since f is total, it is not hard to show that a solution for (f∗ ∗ f)(p, x) can be uniformly computed
using fN .

The hypotheses of Proposition 6.7 are sufficient for fu∗ ≡W f⋄, but not necessary. The following
theorem is based on the same ideas, but uses weaker hypotheses and therefore is more general. Before
we can state it, we need to recall what a complete problem is.

Definition 6.9. We adopt the following convention: for every p ∈ NN, we denote by p−1 ∈ NN∪N<N

the (finite or infinite) string (p− 1)(n) := p(in − 1), where in is the n-th non-zero element of p.
Let (X, δX) be a represented space. The completion (X, δX) of (X, δX) is defined as follows:

X := X ∪ {⊥} (with the understanding that ⊥ 6∈ X), and δX : NN → X is given by

δX(p) :=

{
δX(p− 1) if p− 1 ∈ dom(δX)

⊥ otherwise.

Let f :⊆ X ⇒ Y be a problem. Then, the completion of f is the problem f : X ⇒ Y defined as

f(x) :=

{
f(x) if x ∈ dom(f)

Y otherwise.

We say that a problem f is complete if it is Weihrauch equivalent to its completion: f ≡W f .

Theorem 6.10. For every complete problem f :⊆ X ⇒ N, fu∗ ≡W f⋄.

Proof. The right-to-left reduction follows from Proposition 6.3, hence we now show the left-to-right
one. Since the unbounded finite parallelization is degree-theoretic, by Theorem 6.5, it is enough to
show that fu∗ ∗ f ≤W f

u∗
.

Intuitively speaking, the proof is similar to the one of Proposition 6.7: given a certain instance
(p, x) of fu∗ ∗ f , the forward functional Φ of the reduction uses the first position of the input to fu∗

to store x, whereas the other positions will contain strings corresponding to a guess of what f(x)
may be. The difference is that now it is not c.e. to determine whether a guess is wrong. However,
we can force the computation to produce valid instances of f even when we are guessing a wrong

22

solution for f(x). Outputs corresponding to wrong guesses will not be used in the computation of
a solution for fu∗ ∗ f . Without loss of generality, we prove the theorem for X = NN.

Let ΦC ,ΨC be a pair of functionals witnessing the reduction f ≤sW f . The forward functional
Φ is the map that, given an input (p, x) for fu∗ ∗ f , produces a pair (w, (xk)k∈N) defined in stages
as follows: we first let x0 := ΦC(x). To define xk for k > 0, recall that, for every n ∈ f(x),
Φp((n)

a0N) = 〈wn, 〈qni 〉i∈N〉 for some (wn, (qni)i∈N) ∈ dom(fu∗). Observe however that there is a
computable functional ∆ s.t., for every n, ∆(p, (n)a0N) = 〈wn, 〈qni 〉i∈N〉, where wn, qni ∈ NN and,
if n ∈ f(x), then for every i, δ

NN(q
n
i) = qni (intuitively, this can be done simulating ΦC(Φp(q)) and

interleaving the output with zeroes to guarantee that we produce an infinite string). We then define
x〈n,i〉+1 := qni .

We also let w ∈ NN be an index for the continuous functional that works as follows: given
in input 〈yi〉i<k, let m0 := ΨC(y0)(0). We run Φp((m0)

a0N), so to obtain (a name for) a pair
(v, (zk)k∈N). The functional Φw returns (m0)

aΦv(〈mi+1〉i<h) where mi+1 := ΨC(y〈m0,i〉+1)(0) and
h is largest so that, for every i < h, 〈m0, i〉 + 1 < k. Clearly, the convergence of Φw(〈yi〉i<k)
depends on the convergence of Φv(〈mi+1〉i<h). The backward functional Ψ simply outputs ΨC(y0)
and ΨC(y〈m0,i〉+1) for sufficiently many i.

It is a definition-chasing exercise to verify that, for every (p, x) ∈ dom(fu∗ ∗ f), Φ produces a

valid input for f
u∗
. Indeed, for every k ∈ N, clearly xk ∈ dom(f). Moreover, the functional Φw

essentially just looks at the columns corresponding to m0 which, by construction, is a valid solution
to f(x). The claim therefore follows from the fact that Φp produces a valid input for fu∗ when
executed on valid solution for f(x).

This also implies that Ψ correctly computes a valid solution for the compositional product, hence
concluding the proof.

Notice that the completion of a first-order problem is not necessarily Weihrauch-equivalent to a
first-order problem. In other words, the previous theorem does not imply that, for every first-order
problem f , f

u∗
≡W f

⋄
.

Proposition 6.11. CN

u∗
<W CN

⋄
, and therefore CN is not Weihrauch-equivalent to any first-order

problem.

Proof. The reduction follows trivially from Proposition 6.3. To prove the separation, observe that
CN ≤W lim ([6, Prop. 8.2]). Hence CN

u∗
≤W lim (Proposition 5.2) and, in particular, C′

2 6≤W CN

u∗
.

We show that C′
2 ≤W CN ∗ CN ≤W CN

⋄
instead, therefore proving the separation. We think of

an input for C′
2 as a sequence x ∈ 2N, and C′

2(x) = {b < 2 : (∀i)(∃j > i)(x(j) = b)}.
For every x ∈ 2N, we first define the set

Ax := {n ∈ N : (∀k > n)(x(k) = x(n))}.

Applying CN to Ax we obtain some p ∈ NN s.t. if Ax 6= ∅ then p is a δ
N
-name for some n ∈ Ax,

otherwise p is just an arbitrary string.
Since LPO ≤W CN, we can use CN to check whether (∃i)(p(i) 6= 0). Observe that the existence

of such i does not guarantee that p is a valid name for some n ∈ Ax (valid names need to have
infinitely many non-0 coordinates). If there is no such i, we return 0, otherwise we let m be the
least i s.t. p(i) 6= 0 and return x(p(m)− 1).

We now show that this procedure computes an element of C′
2(x) using CN twice. Observe that if

Ax 6= ∅ then p is a δ
N
-name for n ∈ Ax. This implies that there is a least m s.t. p(m)− 1 = n, and

therefore the procedure returns a correct solution. Otherwise, if Ax = ∅ then C′
2(x) = {0, 1}, and

therefore any answer is correct (so we only need to be sure that the procedure returns some b < 2,
which is easily checked).

Finally observe that, if CN were a first-order problem then, by Theorem 6.10, CN

u∗
≡W CN

⋄
,

against CN

u∗
<W CN

⋄
.

23

7 The first-order part of known problems

In this section, we apply the previously obtained results to characterize the first-order part of several
problems that are well-known in the literature. To this end, we also prove some theorems providing
sufficient conditions for proving that fu∗ 6≤W f∗.

We start by characterizing the first-order part of WKL. As already mentioned, the equivalence
1WKL ≡W C∗

2 was already proved in [17]. However, the technique used is ad-hoc, while the same
result follows from a more general argument.

Proposition 7.1. 1WKL ≡sW C⋄
2 ≡sW Cu∗2 ≡sW C∗

2.

Proof. The equivalence 1WKL ≡W Cu∗2 is just an application of Theorem 5.7, whereas C⋄
2 ≡W

Cu∗2 ≡W C∗
2 follows from Proposition 6.8 and the fact that C2 ≡W TC2 ([6, Prop. 6.3]). To complete

the proof it is enough to show that C∗
2 is a first-order cylinder, as C∗

2 ≤sW Cu∗2 ≤sW C⋄
2 is trivial, and

if C∗
2 is a first-order cylinder then both the equivalences 1WKL ≡W C∗

2 and C⋄
2 ≡W C∗

2 are strong.
Let g be a first-order problem s.t. g ≤W C∗

2 via Φ,Ψ. For every name z of some input for g, we
can uniformly compute a bound b ∈ N s.t., letting (Azi)i<k be the input for C∗

2 named by Φ(z), for
every name y of a solution for C∗

2((A
z
i)i<k), we have

Ψ(z, y)(0) = Ψ(z[b], y)(0).

This follows from the fact that, for every finite string σ ∈ 2k, either Ψ(z, σ)(0) ↓ (and hence it
converges after reading a finite prefix of z) or Ψ(z, σ)(0) ↓. In the latter case, there is i < k s.t.
σ(i) /∈ C2(Ai), which is a c.e. condition (relatively to Ai). This is the same argument exploited in
the proof of Proposition 6.8. Since idN<N ≤sW C∗

2 and C∗
2 × C∗

2 ≡sW C∗
2 we have g ≤sW C∗

2.

Theorem 7.2. For every n ∈ N, 1(lim(n)) ≡sW C
(n)
N

≡sW (C
(n)
N

)⋄ ≡sW (LPO(n))u∗ ≡sW (LPO(n))⋄.

Proof. The fact that lim(n) ≡W
̂
LPO(n) ≡W Ĉ

(n)
N

is well-known in the literature, and can easily be

proved using lim ≡sW L̂PO ≡sW ĈN ([9, Thm. 6.7] and [4, Cor. 3.11]) and (f̂)′ ≡sW (̂f ′) [8, Prop.
5.7(3)]. Applying Corollary 5.13, we immediately obtain

1(lim(n)) ≡sW (Cu∗N)(n) ≡sW (C
(n)
N

)u∗ ≡sW (LPOu∗)(n) ≡sW (LPO(n))u∗.

We now prove that (Cu∗
N
)(n) ≡sW C

(n)
N

. Observe first that Cu∗
N

≤W CN: indeed, a solution for
Cu∗
N
(w, (An)n∈N) can be easily obtained choosing an element from the set

{σ ∈ N<N : (∀i < |σ|)(σ(i) ∈ Ai) ∧ Φw(σ)(0) ↓ in |σ| steps}.

Since CN is a first-order cylinder (Proposition 4.3), we obtain Cu∗
N

≤sW CN. Moreover, given that
CN ≤sW Cu∗

N
(Proposition 5.2) and that the jump is strong-degree theoretic, the claim follows.

To conclude the proof, observe that the reductions C
(n)
N

≤sW (C
(n)
N

)⋄ and (LPO(n))u∗ ≤sW

(LPO(n))⋄ are straightforward, while the converse reductions (C
(n)
N

)⋄ ≤sW C
(n)
N

and (LPO(n))⋄ ≤sW

(LPO(n))u∗ follow from the facts that the diamond of a first-order problem is first-order and that

both C
(n)
N

and (LPO(n))u∗ are first-order cylinders (Proposition 4.3).

Corollary 7.3. 1CR ≡W CN.

Proof. Since 1lim ≡W CN (Theorem 7.2), the statement follows easily from CN ≤W CR ≤W lim and
the fact that the first-order part is a degree-theoretic operator.

24

Observe that, as a corollary of Theorem 7.2, we obtain CN ≡W C∗
N
≡W Cu∗

N
. This is not the case

for LPO: indeed LPO <W LPO
∗ <W LPO

u∗. The fact that the reduction LPO
∗ <W LPO

u∗ is strict
follows from the fact that LPOu∗ can compute the problem “given A ∈ Σ0

1(N), say if A is empty
and, if not, produce its minimum”. The same problem cannot be solved by LPO∗.

More generally, the following Theorem 7.5 provides a sufficient condition for f∗ <W fu∗. In
particular, it can be used to show that, for every n > 0, (LPO(n))∗ <W (LPO(n))u∗.

We first prove the following technical lemma.

Lemma 7.4. Let f be a multi-valued function s.t. LPO ≤W f . Assume for simplicity that f has
codomain NN. For every w ∈ NN we can uniformly compute x ∈ dom(f) and a computable functional
ΨΣ s.t.

Φw(x)(0) ↓ ⇐⇒ (∀y ∈ f(x))(ΨΣ(y)(0) = 1),

Φw(x)(0) ↑ ⇐⇒ (∀y ∈ f(x))(ΨΣ(y)(0) = 0).

Proof. Assume LPO ≤W f via Φ, Ψ and let z = Φ(0N). Define p ∈ 2N as follows: we search for the
least s ∈ N s.t. Φw(z[s])(0) ↓ in s steps. If we find such s, we let p := 0ta1N for some t sufficiently
large so that z[s] ⊑ Φ(0ta1N). Otherwise, we let p := 0N.

It is clear that p is uniformly computable from w: we just need to simulate Φw(z). If the
computation never halts we keep concatenating zeros to obtain 0N, otherwise we can compute a
sufficiently large t that satisfies the second condition.

Let x := Φ(p) and ΨΣ := y 7→ Ψ(p, y). Notice that if Φw(z)(0) ↑ then x = z and therefore
Φw(x)(0) ↑. Moreover, for every y ∈ f(x), ΨΣ(y)(0) = Ψ(0N, y)(0) = 0, as Ψ is the backward func-
tional of a Weihrauch reduction. Similarly, if Φw(z)(0) ↓ then, by the continuity of Φw, Φw(x)(0) ↓.
In this case, for every solution y of f(x) we obtain LPO(p) = 1 = ΨΣ(y)(0).

Theorem 7.5. Let f :⊆ NN
⇒ k be s.t. LPO ≤W f . If there is x ∈ dom(f) s.t.

(∀i ∈ f(x))(∀n ∈ N)(∃z ∈ dom(f))(z[n] ⊑ x ∧ i /∈ f(z))

then f∗ <W fu∗.

Before formally proving the theorem, let us sketch the idea of the proof: intuitively, the reason
why the reduction fails is that any forward functional witnessing fu∗ ≤W f∗ eventually commits to
some (finite) number N of instances of f to solve in parallel. Since f has codomain k, N instances
of f can only result in kN possible different solutions. Since fu∗ does not have such a bound, we
can diagonalize against all kN possible different solutions. However, since the input of fu∗ includes
the index w of a functional giving the condition on the number of columns in the output of fu∗,
we need to be sure that we can pick a suitable input for fu∗ with “more columns” than what the
hypothetical reduction fu∗ ≤W f∗ would require. This cannot be done, for example, whenever f is
parallelizable.

Proof. Assume that there is a reduction fu∗ ≤W f∗ witnessed by the functionals Φ, Ψ. Let also
x ∈ dom(f) be as in the hypotheses.

By Lemma 7.4, given w and x we can uniformly compute x0 ∈ dom(f) and an index for the
computable functional ΨΣ s.t.

Φ(w, 〈x0, x, . . .〉)(0) ↓ ⇐⇒ (∀y ∈ f(x0))(ΨΣ(y)(0) = 1),

Φ(w, 〈x0, x, . . .〉)(0) ↑ ⇐⇒ (∀y ∈ f(x0))(ΨΣ(y)(0) = 0),

where 〈x0, x, . . .〉 is the join of countably many strings, the first one being x0 and all other ones being
x. Consider the functional F : NN → NN defined as F (w) := v, where v ∈ NN is s.t. Φv(〈yi〉i<n) works
as follows: it first simulates ΨΣ(y0) until it converges in 0 (if this never happens then Φv(〈yi〉i<n) ↑).
Then

25

• if ΨΣ(y0)(0) = 0 then it immediately halts and returns 0;

• if ΨΣ(y0)(0) > 0 then it waits until Φ(w, 〈x0, x, . . .〉)(0) commits to some m, and halts iff
n > km + 1.

Clearly F is total and continuous (in fact it is x-computable), hence, by the recursion theorem
(Theorem 2.2), there is w s.t. ΦF (w) = Φw.

Consider the pair (w,x) where x := (x0, x, . . .), and x0 is obtained applying Lemma 7.4 to the

fixed point w. We first show that it is a valid input for fu∗. Clearly x ∈ dom(f̂). If (yi)i∈N is
a sequence of f -solutions for x, then Φw(〈yi〉i<n) works as follows: it first simulates ΨΣ(y0). By
construction, ΨΣ(y0)(0) ↓= b. If b = 0 then Φw(〈yi〉i<n) halts immediately, otherwise it simulates
Φ(w, 〈x0, x, . . .〉). However, again by construction, b = 1 implies that Φ(w, 〈x0, x, . . .〉)(0) ↓= m,
and therefore Φw(〈yi〉i<n) halts whenever n is sufficiently large. This proves that (w,x) is a valid
input for fu∗.

Let s0 be sufficiently large so that, upon input (w,x), the forward functional Φ commits to some
m after s0 steps. In particular, since f has codomain k, there are only km possible answers for
f∗(Φ(w,x)). Recall also that, by construction, a valid answer for fu∗(w,x) is a (finite) sequence
(yi)i<n with n > km + 1. We iteratively diagonalize against every possible outcome of f∗(Φ(w,x)).
We proceed as follows: for the sake of readability, let z0 := x. At each stage t < km, zt is of the
form (x0, z0, . . . , zt−1, x, . . .). We check if there is an unmarked finite sequence b0, . . . , bm−1, with
bi < k, s.t.

Ψ(w, zt, 〈bi〉i<m)

produces a (name for a) valid solution (yti)i<n of fu∗(w, zt) (with a small abuse of notation, we are
identifying bi with its name). If there is none then we are done. Otherwise, by continuity, there is
s ∈ N s.t. Ψ(w, zt, 〈bi〉i<m) produces such a solution in s steps.

Let st+1 := st + s + 1 and choose zt ⊒ x[st+1] so that ytt /∈ f(zt). We then define zt+1 :=
(x0, z0, . . . , zt, x, . . .), label the sequence (bi)i<m as marked and go the next stage. Notice that, at
each stage, (w, zt) is still a valid input for fu∗.

After finitely many stages (km in the worst case), we find a valid input for fu∗ for which the
forward functional Φ produces (a name for) m instances of f but such that the backward functional
cannot compute a correct solution, against the fact that Φ, Ψ witness a Weihrauch reduction.

Corollary 7.6. For every k ≥ 2, n > 0, (C
(n)
k)∗ <sW (C

(n)
k)u∗, and therefore

(C
(n)
2)∗ <sW (C∗

2)
(n) ≡sW (C

(n)
2)u∗ ≡sW (Cu∗2)(n) ≡sW

1(WKL(n)).

Proof. Fix k ≥ 2 and n > 0. The strict reduction (C
(n)
k)∗ <sW (C

(n)
k)u∗ is a simple application of

Theorem 7.5. Moreover, since WKL(n) ≡sW Ĉ
(n)
2 and Ĉ2 is a cylinder, applying Corollary 5.13 we

obtain
(C

(n)
2)u∗ ≡sW (Cu∗2)(n) ≡sW

1(WKL(n)).

To conclude the proof it is enough to show that, for every n ≥ 0, (C∗
2)

(n) ≡sW (Cu∗2)(n). This
can be proved by induction on n: the base step was already proved in Proposition 7.1. If the claim
holds up to n, then

(C∗
2)

(n+1) ≡sW ((C∗
2)

(n))′ ≡sW ((Cu∗2)(n))′ ≡sW (Cu∗2)(n+1).

Corollary 7.7.

(1) (Σ1
1-C2)

∗ <W (Σ1
1-C2)

u∗ ≡W (Σ1
1-C2)

⋄ ≡W
1Σ1

1-WKL;

(2) (Π1
1-C2)

∗ <W (Π1
1-C2)

u∗ ≡W (Π1
1-C2)

⋄ ≡W
1UCNN .

26

Proof. (1) : The first strict reduction is an application of Theorem 7.5, whereas the equivalence

(Σ1
1-C2)

u∗ ≡W
1Σ1

1-WKL follows from Σ1
1-WKL ≡W

̂Σ1
1-C2 ([21, Lem. 4.6]) using Theorem 5.7.

Finally, the reduction (Σ1
1-C2)

⋄ ≤W (Σ1
1-C2)

u∗ follows from the fact that Σ1
1-WKL is closed

under compositional product ([21, Prop. 4.8]).

(2) : Similarly to (1), the first strict reduction follows from Theorem 7.5, while the equivalence

(Π1
1-C2)

u∗ ≡W
1UCNN follows from Theorem 5.7 and [21, Thm. 3.11] (the principle Π̂1

1-C2 cor-
responds the principle named Σ1

1-Sep in [21]). Finally, the reduction (Π1
1-C2)

⋄ ≤W (Π1
1-C2)

u∗

follows from the fact that UCNN is closed under compositional product.

Corollary 7.8. WF
∗ <W WF

u∗ ≡W WF
⋄ ≡W

1Π1
1−CA.

Proof. The fact that WF
∗ <W WF

u∗ is a straightforward application of Theorem 7.5. The equiva-
lence WFu∗ ≡W

1Π1
1−CA follows from Theorem 5.7. Finally, the equivalence WFu∗ ≡W WF⋄ follows

from Theorem 6.10, as WF is complete [6, Cor. 11.3(1)].

Theorem 7.5 is far from being a characterization of the problems f s.t. f∗ <W fu∗. Another
sufficient condition is given by the following theorem.

Definition 7.9 ([9, Def. 4.10]). A problem f :⊆ NN
⇒ NN is called fractal if, for every clopen

A ⊂ NN with dom(f) ∩ A 6= ∅, f |A ≡W f .

Theorem 7.10. For every first-order pointed fractal f s.t. LPO ≤W f and, for every n ∈ N,
fn+1 6≤W fn, we have f∗ <W fu∗.

Proof. Assume there is a reduction fu∗ ≤W f∗ as witnessed by the functionals Φ,Ψ. Fix a com-
putable point x ∈ dom(f). The proof is similar to the one of Theorem 7.5, the difference is that now
we use the fractality of f to show that a reduction fu∗ ≤W f∗ would yield a reduction fn+1 ≤W fn

for some n.
Using Lemma 7.4 we know that, given w and x we can uniformly compute x0 ∈ dom(f) and an

index for the computable functional ΨΣ s.t.

Φ(w, 〈x0, x, . . .〉)(0) ↓ ⇐⇒ (∀y ∈ f(x0))(ΨΣ(y)(0) = 1),

Φ(w, 〈x0, x, . . .〉)(0) ↑ ⇐⇒ (∀y ∈ f(x0))(ΨΣ(y)(0) = 0),

where 〈x0, x, . . .〉 is the join of countably many strings, the first one being x0 and all other ones
being x.

Consider the functional F : NN → NN defined as F (w) := v, where v ∈ NN is s.t. Φv(〈yi〉i<k) works
as follows: it first simulates ΨΣ(y0) until it converges in 0 (if this never happens then Φv(〈yi〉i<k) ↑).
Then

• if ΨΣ(y0)(0) = 0 then it immediately halts and returns 0;

• if ΨΣ(y0)(0) > 0 then wait until Φ(w, 〈x0, x, . . .〉)(0) commits to some n, and halts iff k > n+1.

Clearly F is total and computable, hence, by the recursion theorem (Theorem 2.2), there is a
computable w ∈ NN s.t. ΦF (w) = Φw.

Consider the pair (w,x) where x := (x0, x, . . .), and x0 is obtained applying Lemma 7.4 to the
fixed point w. Is it not hard to see that (w,x) ∈ dom(fu∗) (again, see the proof of Theorem 7.5).
Let σ be a sufficiently long prefix of the name of (w,x) s.t. Φ(σ) commits to a number n of instances
of f needed to solve fu∗(w,x). By the continuity of Φ, every instance of fu∗ whose name extends σ
can be solved with fn. Since σ is a finite string, it only commits to a finite prefix on a finite number
of columns of the input. More precisely, we think of σ as the prefix of an infinite string obtained by

27

joining countably many strings pi. In particular, let τi be the prefix of pi contained in σ, and let h
be s.t. for every i ≥ h, τi = ().

Since f is a fractal, for every 0 < i < h we have f ≡W f |τi , where f |τi indicates the restriction
of f to inputs with names that begin with τi. Let ϕi, ψi be the forward and backward functionals
of the reduction f ≤W f |τi .

By construction, for every (zi)i<n+1 ∈ dom(fn+1), a solution for fn+1((zi)i<n+1) can be uni-
formly computed from a solution to fu∗(w, (x0, ϕ0(z0), . . . , ϕn(zn), x, . . .)): just take the first n+ 2
columns, ignore the first one, and apply the correspondent ψi. This shows that a reduction
fu∗ ≤W f∗ yields a reduction fn+1 ≤W fn, against the hypotheses.

We can use Theorem 7.10 to show e.g. that TC∗
N <W TCu∗N . In the following Theorem 7.12, we

give a better characterization of the degree of TCu∗N . We first prove the following lemma.

Lemma 7.11. For every n ∈ N, TCn+1
N

6≤W TCnN.

Proof. Fix n > 0 (the case n = 0 is trivial) and assume that the reduction is witnessed by the maps
Φ,Ψ. In the following, for the sake of readability, we identify a closed subset of N with its name.

We want to define an input p = (pi)i<n+1 so to diagonalize against Φ,Ψ. For each stage s, we
define an input ps = (psi)i<n+1 for TCn+1

N
and a placeholder ts. At stage 0, we first check if there

is a sufficiently large t0 so that

Ψ(0t0 , . . . , 0t0 , 0, . . . , 0)(0) ↓= 〈a
(0)
i 〉i<n+1,

for some a
(0)
0 , . . . , a

(0)
n ∈ N, where Ψ is executed with (n + 1)-many 0t0 and n-many 0. If there is

such a t0 then, for every i < n + 1, define p0i := 0t0a(a
(0)
i + 1)a0N, otherwise define p0i := 0N. We

can already define psn := p0n for every s.
At stage s + 1, let qs = (qsi)i<n := Φ(ps) be an input for TCnN. Let bs = (bsi)i<n be the “least

solution of TCnN(q
s)”, i.e. for every i < n, bsi + 1 is the least positive number not enumerated by qsi

(if qsi enumerates every positive number, we let bsi := bs−1
i if s > 0, and 0 otherwise). If, for every

i < n, bs−1
i = bsi (i.e. if all the minima remained unchainged), then the input ps witness the fact

that Φ,Ψ are not a valid reduction, hence we can stop the construction (i.e. define pri := psi for every
i < n and r > s). Otherwise, let ts+1 > ts be sufficiently large so that

• the prefix of qs produced by Φ(ps[ts+1]) is long enough so that, for every i < n and every
m < bsi , there is j s.t. qsi (j) = m+ 1;

• Ψ(ps0[ts+1], . . . , p
s
n[ts+1], b

s
0, . . . , b

s
n−1)(0) ↓= 〈a

(s+1)
i 〉i<n+1, for some a

(s+1)
0 , . . . , a

(s+1)
n ∈ N.

For every i < n define ps+1
i := psi [ts+1]

a(a
(s+1)
i + 1)a0N and go to the next stage.

For every i < n+ 1 we define pi := lims→∞ psi , and let q = (qi)i<n := Φ(p). The fact that the
sequence (ts)s is strictly increasing guarantees that the limits are well-defined.

Observe that, if for some i < n, bsi changes infinitely many times then, by the continuity of Φ,
qi is (a name for) the empty set. Let J ⊂ n be s.t. for every j ∈ J , bsj changes finitely many times.
If J 6= ∅, then fix s sufficiently large so that, for every j ∈ J and every r > s, bsj = brj . At stage
s + 1, we diagonalized against the possible solution (bs0, . . . , b

s
n−1). Since, for every i /∈ J , qi is a

name for the empty set, we have that (bs0, . . . , b
s
n−1) ∈ TCnN(q), against the fact the Φ,Ψ witness the

reduction. This implies that J = ∅, and hence, for every i < n, qi is the empty set. This implies that
(0, . . . , 0) ∈ TCN(q). However, we diagonalized against (0, . . . , 0) in stage 0 (using the (n + 1)-th
instance pn of TCn+1

N
), hence we obtained again a contradiction with the fact that Φ,Ψ witness a

Weihrauch reduction.

Notice that, since TCN and its parallel products TCnN are total fractals, combining [9, Thm. 7.15]
with the previous result we obtain, as a corollary, that for every n, TCn+1

N
6≤W TCnN ∗ CN.

28

Theorem 7.12. TCN <W TC∗
N <W TCu∗N ≡W TC⋄

N ≡W C′
N
.

Proof. The fact that the first two reductions are strict are corollaries of Lemma 7.11 and Theorem 7.10
respectively (as TCN is a pointed fractal). The reduction TCu∗N ≤W TC⋄

N is trivial (Proposition 6.3)
and TC⋄

N ≤W C′
N

follows from TCN ≤W C′
N

[6, Cor. 8.14] and the fact that C′
N

is closed under
diamond (Theorem 7.2). To conclude the proof we show that C′

N
≤W TCu∗N . Since C′

N
≡W BWTN

[13, Fact 2.3(1)], it is enough to show that TCu∗N suffices to find a number that appears infinitely
many often in a given sequence x ∈ NN (provided that such a number exists). We first define a
sequence of inputs for TCN. For every m ∈ N, let Am := {a ∈ N : (∀i > a)(x(i) 6= m)}. Moreover,
for every a,m, define Ba,m := {b ∈ N : b > a and x(b) = m}. Clearly all the sets Am and Ba,m

are closed, hence they can be arranged so to be an instance of T̂CN. Given am ∈ TCN(Am) and
ba,m ∈ TCN(Ba,m), we can compute a cluster point of the sequence as follows: for every m, we check
if x(bam,m) = m. If yes, then Am = ∅ and hence m is a cluster point. If not, then Am 6= ∅ and m
appears only finitely many times in x. The existence of a cluster point guarantees that it can be

found by unbounded search using only finitely many columns of the output of T̂CN.

Corollary 7.13. T(lim) <W T̂CN ≡W lim′.

Proof. It is not hard to check that T(lim) ≤W T̂CN. Indeed, it suffices to notice that, given a
sequence (pn)n∈N in NN, the i-th instance of TCN can be used to find the limit of (pn(i))n∈N if it

exists. In other words, TCN ≡W T(limN). The equivalence T̂CN ≡W lim′ follows from Theorem 7.12,

as T̂CN ≡W Ĉ′
N
. Finally, T̂CN 6≤W T(lim) because lim′ has a computable input with solution ∅′′,

whereas every computable input for T(lim) has a solution computable in ∅′.

We now show that Π1
1−Bound∗ <W Π1

1−Boundu∗. Unfortunately, Π1
1−Bound does not have

finite range, and therefore we cannot apply Theorem 7.5 directly. Moreover, it is closed under
product (as we show in the proof Theorem 7.16), hence Theorem 7.10 cannot be applied either. We
will exploit instead the fact that Π1

1−Bound is upwards closed (namely if b ∈ Π1
1−Bound(A) then

every b′ > b is a valid solution as well).
We first prove the following technical lemmas. Without loss of generality, we will assume

that an input for Π1
1−Bound is an initial segment of N. This follows from the fact that if X ∈

dom(Π1
1−Bound) then Y := {n : (∃m ≥ n)(m ∈ X)} is a finite Π1

1 initial segment of N and
Π1

1−Bound(Y) = Π1
1−Bound(X). In particular, we will use the fact that if X ∈ dom(Π1

1−Bound)
and x /∈ X then x ∈ Π1

1−Bound(X).

Lemma 7.14. TCN ≤W Π1
1−Bound. Moreover, the reduction is witnessed by total functionals.

Proof. We think of a name for a closed subset X of N as a string q ∈ NN s.t. n /∈ X iff (∃i)(q(i) =
n+ 1). In particular, every q ∈ NN can be seen as the name for some closed X ∈ Π0

1(N). Consider
the computable function g : NN × N → N that maps q ∈ NN and s ∈ N to the smallest n ∈ N s.t.
(∀i < s)(q(i) 6= n+ 1), i.e. n is the smallest number not enumerated by q by stage s. Given a name
q for X ∈ Π0

1(N), we can uniformly compute a Π1
1 name for the set

A := {n ∈ N : (∃x ∈ N)(x+ 1 /∈ ran(q)) ∧ (∃i, j > n)(g(q, i) 6= g(q, j))}.

Notice that such a set is finite (it can be empty) and that, for every b bounding A, g(q, b) ∈
TCN(X). In particular, the maps q 7→ A and g are total maps witnessing the reduction TCN ≤W

Π1
1−Bound.

Lemma 7.15. Given a name for a continuous functional D : NN → NN we can uniformly compute
pA ∈ NN and (an index for) a computable function Γ: N → N s.t. pA is a Π1

1 name for a finite set
A ⊂ N (i.e. A ∈ dom(Π1

1−Bound)) and, letting X be the closed subset of N named by D(pA) we
have

X 6= ∅ ⇒ (∀b /∈ A)(Γ(b) ∈ X).

29

Proof. Let ΦΠ,ΨΠ be two total maps witnessing the reduction TCN ≤W Π1
1−Bound. At stage 0, we

define z0 := 0N and t0 := 0.
At stage i+ 1, we search for some sufficiently large ti+1 > ti s.t.

D(ΦΠ(zi[ti+1]))(i) ↓= ni.

Clearly such ti+1 exists, as every infinite string can be seen as a name for a valid input of TCN. We
define

zi+1 := zi[ti+1]
a(ni)

a0N.

Let z := limi→∞ zi. Observe that the sequence (zi)i∈N is convergent and its limit is uniformly
computable (as for every i, zi+1[i] = zi[i]), hence z is well-defined. Define pA := ΦΠ(z) and
Γ := b 7→ ΨΠ(pA, b)(0). Let also A ∈ Π1

1(N) be the set named by pA.
Let X be the closed subset of N named by D(pA). Observe that X is exactly the set named by z.

If n /∈ X then there is i s.t. D(pA)(i) = n+1. By construction, z(ti+1) = zi+1(ti+1) = n+1, hence,
for every b /∈ A, Γ(b) = ΨΠ(pA, b) 6= n (because ΨΠ is the backward functional of a Weihrauch
reduction).

Theorem 7.16. Π1
1−Bound ≡W Π1

1−Bound∗ <W Π1
1−Boundu∗ ≡W

1 ̂Π1
1−Bound.

Proof. The equivalenceΠ1
1−Bound ≡W Π1

1−Bound∗ is straightforward: one direction is trivial, while
for the other it is enough to notice that, for every (An)n<k ∈ dom(Π1

1−Bound∗) and every j < k,
we have Π1

1−Bound(
⋃
n<k An) ∈ Π1

1−Bound(Aj). Moreover, the equivalence Π1
1−Boundu∗ ≡W

1(̂Π1
1−Bound) is an application of Theorem 5.7, so we only need to show that Π1

1−Bound∗ <W

Π1
1−Boundu∗.
The reduction is trivial from Proposition 5.2. Assume towards a contradiction that there is a

reduction Π1
1−Boundu∗ ≤W Π1

1−Bound as witnessed by the maps Φ,Ψ. Let (An)n>0 be a com-

putable input for ̂Π1
1−Bound with no computable solution. The existence of such (An)n>0 follows

e.g. from the fact that UCNN ≤W
̂Π1

1−Bound (see the proof of [18, Prop. 5.21]). We want to define
w ∈ NN and A0 ∈ dom(Π1

1−Bound) so to obtain a valid input (w,A := (An)n∈N) for Π
1
1−Boundu∗

that diagonalizes against Φ,Ψ.
Let F : NN → NN be the total computable functional that works as follows: given w ∈ NN, we

can (uniformly) compute an index u ∈ NN for the functional Dw : NN → NN that maps A ∈ NN to
(a name for) the closed set

Xw := {m ∈ N : (∀b)(Ψ(w, (A,A1, A2, . . .), b)(0) ↓= 〈ri〉i<h ⇒ h < m)}.

By Lemma 7.15, we can uniformly compute an input Aw for Π1
1−Bound and an index for a com-

putable function Γw s.t.
Xw 6= ∅ ⇒ (∀b /∈ Aw)(Γw(b) ∈ Xw).

The functional F maps w to an index v ∈ NN s.t. Φv(〈bi〉i<k) halts iff k > Γw(b0).
Clearly F is total and computable, hence, by the recursion theorem (Theorem 2.2), it has a

computable fixed point. We define w as a fixed point for F (i.e. ΦF (w) = Φw) and A0 := Aw as the

input for Π1
1−Bound obtained applying Lemma 7.15 to the functional Dw.

It is straightforward to show that (w,A) ∈ dom(Π1
1−Boundu∗). Indeed, A ∈ dom(̂Π1

1−Bound)
by definition, and Φw(〈bi〉i<k) halts whenever k is sufficiently large (recall that Γw is always defined
on solutions of Π1

1−Bound(A0)).
Let B be the finite Π1

1 subset of N named by Φ(w,A). Observe that, since (w,A) is a valid
input for Π1

1−Boundu∗, there is m ∈ N s.t.

(∀b)(Ψ(w,A, b)(0) ↓= 〈ri〉i<h ⇒ h < m). (⋆)

30

Indeed, if b is a bound for B then Ψ(w,A, b)(0) ↓= 〈ri〉i<h and for every i < h, ri ∈ Ai. If
lim supb→∞ |Ψ(w,A, b)(0)| = +∞ then, simulating Ψ(w,A, b) for every b > b0 (for some sufficiently

large b0), we could obtain a computable solution for ̂Π1
1−Bound(A), which contradicts the hypothe-

ses.
However, any valid solution for Π1

1−Boundu∗(w,A) is s.t. its length is somem satisfying (⋆), and
therefore, for every b ∈ Π1

1−Bound(B), Ψ(w,A, b) cannot be a valid solution for Π1
1−Bound(w,A),

against the fact that Ψ was the backward functional of a Weihrauch reduction.

7.1 Ramsey’s theorem

In this section, we analyze the first-order part of SRTnk and RTnk (see Section 2 for their definitions).
As already mentioned, the first-order part of the principles SRT1

k and RT1
k was already characterized

in [13].

Proposition 7.17. For every k ≥ 2 and for k = N we have limk ≡W SRT1
k and C′

k ≡W RT1
k.

Proof. This is essentially [13, Prop. 3.4], as C′
k ≡W BWTk [13, Fact 2.3(1)].

In particular, although SRT1
k and RT1

k are not first-order problems in their standard formulation
(i.e., if we require the output to be an infinite homogeneous set), they are Weihrauch-equivalent to
a first-order problem, namely the partial multifunction with the same instances but outputting the
color of an infinite homogeneous set.

We now turn our attention to Ramsey’s theorem for n-tuples and k-colors, for n, k ≥ 2. We first

show that, for every n and k ≥ 2, C
(n)
N

6≤W RTn+1
k . This answers negatively an open question raised

by Brattka and Rakotoniaina [13, Question 7.10].

Lemma 7.18. For every n > 0, Σ0
n+1−Bound ≡W Σ0

1−Bound
(n).

Proof. This follows from the fact that, for every n, Σ0
n+1−Bound ≡W Σ0

n−Bound′. Indeed, observe

that a name for a Σ0
n set B can be thought of as a string p ∈ 2N s.t.

x ∈ B ⇐⇒ (∃i0)(∀i1) . . . (Qin−1)(p(〈x, i0, . . . , in−1〉) = 1),

where Q = ∃ if n is odd and Q = ∀ otherwise. For every convergent sequence (pi)i∈N and every
j ∈ N, limi→∞ pi(j) = 1 is a ∆0

2 property (relatively to the sequence).
To prove that Σ0

n−Bound′ ≤W Σ0
n+1−Bound notice that, if (qi)i∈N is a sequence in 2N converging

to a name q for a Σ0
n set B, then we can uniformly compute a name for the set

{x ∈ N : (∃i0)(∀i1) . . . (Qin−1)(q(〈x, i0, . . . , in−1〉) = 1)},

which is clearly Σ0
n+1 relatively to (qi)i∈N.

We now prove the converse reduction, i.e. that Σ0
n+1−Bound ≤W Σ0

n−Bound′. Let p be a name

for a Σ0
n+1 set B, i.e. a string p ∈ 2N s.t.

x ∈ B ⇐⇒ (∃i0)(∀i1) . . . (Qin)(p(〈x, i0, . . . , in〉) = 1).

For every m ∈ N, we define the sequence pm ∈ 2N as follows: for every x, i0, . . . , in−1 ∈ N,

pm(〈x, i0, . . . , in−1〉) = 1 ⇐⇒ (Qin < m)(p(〈x, i0, . . . , in−1, in〉) = 1)),

where Q = ∃ if n is even and Q = ∀ otherwise.
We claim that the sequence (pm)m∈N converges. Let us fix x, i0, . . . , in−1 ∈ N. Suppose first

that Q = ∃. Then, if there exists ī such that p(〈x, i0, . . . , in−1, ī〉) = 1, then for every m > ī,

31

pm(〈x, i0, . . . , in−1〉) = 1. Otherwise, for every m, pm(〈x, i0, . . . , in−1〉) = 0. In either way, we have
that limm→∞ pm(〈x, i0, . . . , in−1〉) exists. A similar verification can be carried out if Q = ∀.

Finally, we show that p′ := limm→∞ pm is a name for the Σ0
n set B. Again, we suppose at first

that Q = ∃. We then notice that

x ∈ B ⇐⇒ (∃i0)(∀i1) . . . (∃in)(p(〈x, i0, . . . , in〉) = 1)

⇐⇒ (∃i0)(∀i1) . . . (∀in−1)(∃m)(pm(〈x, i0, . . . , in−1〉) = 1)

⇐⇒ (∃i0)(∀i1) . . . (∀in−1)(lim
m→∞

pm(〈x, i0, . . . , in−1〉) = 1)

⇐⇒ (∃i0)(∀i1) . . . (∀in−1)(p
′(〈x, i0, . . . , in−1〉) = 1),

as we wanted. The verification for Q = ∀ is analogous.

Lemma 7.19. For every k ∈ N, LPOk ∗WKL ≡W WKL× LPOk.

Proof. The statement is trivial for k = 0, hence assume k > 0. The right-to-left reduction is
straightforward. To prove the left-to-right one, we first observe that WKL ≡W TC2N [6, Prop. 6.1]
and that WKL is closed under parallel product. We show that LPOk ∗WKL ≤W WKL×TCk2N ×LPOk.
Fix (w, T) ∈ dom(LPOk ∗WKL). By definition, for every x ∈ [T], Φw(x) = 〈pxi 〉i<k, where each pxi
is an input for LPO. For every i < k, we can define a tree Si s.t.

[Si] = {x ∈ [T] : LPO(pxi) = 0}.

For every j ∈ {1, . . . , k}, fix an enumeration (σja)a<(kj)
of the strings in 2k with exactly j ones. We

can define a tree Zj s.t.

[Zj] =

{
σja

ay ∈ NN : a <

(
k

j

)
∧ (∀i : σja(i) = 1)(y ∈ [Si])

}
.

Define also qj ∈ NN s.t. LPO(qj) = 1 iff Zj is well-founded. Notice that all the Zj and the qj are
uniformly computable from (w, T).

Let the forward functional Φ be the map that sends (w, T) to (T, (Zj)1≤j≤k, (qj)1≤j≤k). Let also
the backward functional Ψ be the map that, upon input (x, (yj)1≤j≤k, (bj)1≤j≤k), works as follows:
if bi = 1 for every i < k then return (x, 1k). Otherwise, let j̄ be the largest j such that bj = 0, and

let yj̄ = σj̄a
axj̄ for some a <

(
k
j̄

)
. Then, on input (x, (yj)1≤j≤k, (bj)1≤j≤k), Ψ returns (xj̄ , τ) with

τ := i 7→ 1− σj̄a(i).
We now show that (xj̄ , τ) is a valid solution to the instance (w, T) of LPOk ∗WKL (the case of

Ψ outputting (x, 1k) being trivial). It is immediate to verify that xj̄ is indeed a path through T , so

we only have to check that τ is a valid LPOk-solution to Φw(xj̄). Observe that, by construction, if
bj = 1 for some j, then bl = 1 for every l ≥ j. By the definition of Zj̄, we know that, for every i < k

s.t. σj̄a(i) = 1, LPO(p
xj̄

i) = 0. Therefore, we only need to show that if σj̄a(i) = 0 then LPO(p
xj̄

i) = 1.

Suppose towards a contradiction that this is not the case. Fix i s.t. σj̄a(i) = 0 = LPO(p
xj̄

i). In

particular, this implies that j̄ < k (as σj̄a has exactly j̄ ones). Let ρ be the string defined as ρ(i) = 1
and, for h 6= i, ρ(h) := σj̄a(h). Then clearly, ρ has j̄+1 ones, which implies that Zj̄+1 is ill-founded,
against the maximality of j̄: if Zj̄+1 is ill-founded then bj̄+1 = 0.

The following proof was obtained jointly with Arno Pauly.

Theorem 7.20. For every n and k ≥ 2, C
(n)
N

6≤W RTn+1
k .

32

Proof. The claim for n = 0 follows from [13, Prop. 7.8], hence assume n > 0. We prove a slightly
stronger statement, namely

Σ0
n+1−Bound 6≤W RT1

k ∗WKL(n).

Observe indeed that Σ0
n+1−Bound ≤W C

(n)
N

, as C
(n)
N

≡W Π0
n+1-CN

(hence we can just use C
(n)
N

to

choose a bound for a given finite Σ0
n+1 set). Moreover, since RTn+1

k ≤W RTnk ∗WKL′ [13, Cor. 4.14],

and using the fact that (WKL′)[n] ≡W WKL(n) [9, Thm. 7.53(2)], we obtain

RTn+1
k ≤W RT1

k ∗WKL(n).

We identify RT1
k with the Weihrauch-equivalent problem of computing the color of a homoge-

neous solution for the given coloring.
Assume that Σ0

n+1−Bound ≤W RT1
k ∗WKL(n) via Φ,Ψ. In particular, for every name pA of some

A ∈ dom(Σ0
n+1−Bound), Φ(pA) is (a name for) a pair (w, T) ∈ dom(RT1

k ∗WKL(n)). Observe that,

since RT1
k has codomain k, for every path x ∈ [T], there is j < k s.t. Ψ(pA, x, j)(0) ↓. Moreover,

since Σ0
n+1−Bound(A) is upwards closed, for every x ∈ [T] we have

max{b ∈ N : (∃j < k)(Ψ(pA, x, j)(0) ↓= b)} ∈ Σ0
n+1−Bound(A).

In particular, this implies that Σ0
n+1−Bound can be uniformly computed from WKL(n) if the back-

ward functional is allowed k mind-changes. This can be made precise writing Σ0
n+1−Bound ≤W

LPO
k ∗WKL

(n), i.e.
LPOk → Σ0

n+1−Bound ≤W WKL(n).

Applying Lemma 7.18 we obtain

LPOk → Σ0
1−Bound(n) ≤W WKL(n).

Moreover, by [12, Thm. 3.13], a representative of LPOk → Σ0
1−Bound(n) is the following problem:

given in input x ∈ dom(Σ0
1−Bound(n)), LPOk → Σ0

1−Bound(n) produces a pair (p, 〈yi〉i<k) ∈ NN×NN

s.t. Φp(〈LPO(yi)〉i<k) ∈ Σ0
1−Bound(n)(x). In particular,

LPOk → Σ0
1−Bound(n) = (LPOk → Σ0

1−Bound)(n).

By the jump inversion theorem [11, Thm. 11], we have

LPOk → Σ0
1−Bound ≤∅(n)

W WKL,

where ≤∅(n)

W denotes Weihrauch-reducibility relatively to the n-th Turing jump of ∅. We therefore
have

UCN ≡W Σ0
1−Bound ≤∅(n)

W LPOk ∗WKL ≤W WKL ∗ LPOk,

where the second reduction follows from Lemma 7.19.
Observe that the choice elimination principle [9, Thm. 7.25] relativizes to any oracle (see also

[18, Thm. 3.9]), hence we obtain

UCN ≤∅(n)

W LPOk,

which contradicts Theorem 2.1 as CN ≡W UCN.

We are now ready to prove the following bounds for the first-order parts of SRTnk and RTnk . We
underline that, for every k > 2, (C2)

(n) <W (Ck)
(n). This is well-known in the literature and can be

easily proved using e.g. [9, Prop. 7.18] and the jump inversion theorem [11, Thm. 11].

33

Theorem 7.21. For every n, k ≥ 2,

(Ck)
(n) <W

1(SRTnk) ≤W
1(RTnk) <W (C∗

2)
(n).

Proof. The reduction (Ck)
(n) ≤W

1(SRTnk) can be proved observing that the proof of [13, Theorem
3.5] generalizes to any number of colors. To prove that the reduction is strict, recall that CN is not
computed by any partial multi-valued function with finite codomain (Theorem 2.1). On the other
hand, using [13, Prop. 7.8 and Cor. 3.25] we have CN ≤W SRT2

2, and hence clearly CN ≤W SRTnk for
every n, k ≥ 2.

Finally, 1(RTnk) ≤W (C∗
2)

(n) follows from RTnk ≤W WKL(n) [13, Corollary 4.18], 1(WKL(n)) ≡W

(C∗
2)

(n) (Corollary 7.6) and the Weihrauch-degree theoreticity of the first-order part operator. The

fact that the reduction is strict follows from C
(n−1)
N

6≤W RTnk (Theorem 7.20) and C
(n−1)
N

≤W (C∗
2)

(n)

(by Corollary 7.6, as C
(n−1)
N

≤sW WKL(n)).

In the case of Ramsey’s theorem for pairs, we can refine the result as follows:

Corollary 7.22. For every k ≥ 2,

(Ck)
′′ <W

1(SRT2
k) <W

1(RT2
k) <W (C∗

2)
′′.

Proof. In light of Theorem 7.21, we only need to show that 1(RT2
k) 6≤W

1(SRT2
k). This follows

from the fact that RT1
N ≤W RT2

2 [13, Cor. 3.25], while RT1
k+1 6≤W SRT2

k [13, Prop. 3.4(2) and Cor.
6.6].

We now refine the lower bounds on the degree of 1(SRT2
k). In fact, SRT2

2 computes several
first-order problems that are not below (Ck)

′′, for every k ≥ 2. To be more precise, we will see that
these problems are actually solved by a multi-valued function weaker than SRT2

2. We summarize
the results concerning 1(SRT2

k) and
1(RT2

k) in Figure 1.

C′′
k

1SRT2
k

1RT2
k

(C∗
2)

′′

LPO′
1u-SRT2

2

RT1
N

C′
N

TCN

Figure 1: Reductions and non-reductions concerning the first-order parts of SRT2
k and RT2

k for any
k ≥ 2. The arrows indicate strict Weihrauch reduction in the direction of the arrow. Every reduction
which is not in the transitive closure of the diagram is known to not hold.

Definition 7.23. u-SRT2
k is the restriction of SRT2

k to unbalanced colorings, i.e. to colorings
c : [N]n → k such that there exists an i < k such that every infinite c-homogeneous set has color i.

As already mentioned, it is known that CN ≤W SRT2
2. The next result is an improvement in this

reduction.

Proposition 7.24. TCN ≤W u-SRT2
2.

34

Proof. Let p ∈ NN be an instance of TCN. We define an instance c : [N]2 → 2 of u-SRT2
2 in stages,

in such a way that, at every stage s, the color of pairs (x, y) with x ≤ s and y ≤ s+ 1 is decided.
Consider the computable function g :⊆ N → N that maps s ∈ N to the smallest n ∈ N s.t.

(∀i < s)(p(i) 6= n+ 1), i.e. n is the smallest number not enumerated by p by stage s. Observe that
g is non-decreasing.

At stage 0, we set c(0, 1) := 0. At step s > 0, we check if g(s) = g(s− 1). If yes then for every
x < s we set c(x, s+ 1) := c(x, s), and c(s, s+ 1) := 0. Otherwise, if g(s) > g(s− 1) then, for every
x ≤ s, we set c(x, s+ 1) := 1. This concludes the construction.

It is easy to see that the coloring is stable: for every x, there exists at most one y such that
c(x, y) 6= c(x, y + 1). To show that c is unbalanced, we consider two cases: if, for infinitely many
steps s, it happens that g(s) > g(s − 1) then, for every x, limy c(x, y) = 1, which implies that c is
unbalanced. If instead there are only finitely many s as above, then for cofinitely many x it holds
that, for every y > x, c(x, y) = 0, which again yields that c is unbalanced.

Let H be an infinite c-homogeneous set: if it is c-homogeneous for color 1, then, from the
discussion above, it follows that p is an enumeration of all of N, hence we can output any number.
If instead H is c-homogeneous for 0, let h be the minimum element of H , and let m := g(h). By
the construction, we know that at no future stage will m be enumerated by p, which means that m
is a valid solution to p, thus proving the reduction.

Let Sort : 2N → 2N be the function that, on input p, outputs 0na1N if there are exactly n positions
i such that p(i) = 1, and 0N if there are infinitely many such positions i. The problem Sort was
introduced in [23, Sec. 5], and was studied in [16] to calibrate the Weihrauch-degree of the problem
CFI∆0

2
of finding an infinite subset of a cofinite set given by a ∆0

2 approximation. It is known that,
for every k ∈ N, Sort 6≤W C′′

k: this follows from the fact that CN <W Sort (see [23, Prop. 24]),
so Sort ≤W C′′

k would imply CN ≤W C′′
k, which is impossible since CN reduces to no multi-valued

function with finite range (Theorem 2.1).

Proposition 7.25. Sort ≤W u-SRT2
2.

Proof. Let an instance p of Sort be given. The proof follows closely the one of Proposition 7.24,
except that we define the function g as the map that sends s to the maximum i < s s.t. p(i) = 1.
The definition of the coloring c is otherwise identical.

By the proof above, we know that c is an instance of u-SRT2
2. Let H be an infinite c-homogeneous

set. Again, if H if c-homogeneous for color 1, it means that there are infinitely many positions i
such that p(i) = 1, and hence we can output 0N. If instead H is c-homogeneous for color 0, we just
have to notice that for every x ∈ N, if limy c(x, y) = 0, then for every y > x it holds that c(x, y) = 0.
In particular, this means that if limy c(x, y) = 0, then every position i ∈ N such that p(i) = 1 is
such that i < x. Hence, let h be the minimal element of H : since limy c(h, y) = 0 (as c is stable),
we can count the number n of positions i < h such that p(i) = 1, and we can thus output 0na1N,
proving the reduction.

Proposition 7.26. LPO′ ≤W u-SRT2
2.

Proof. It is easy to see that LPO′ is Weihrauch equivalent to the problem isInfinite : 2N → 2 which,
given an infinite binary string, outputs 1 if and only if there are infinitely many n ∈ N such that
p(n) = 1. Observe that, in the proof of Proposition 7.25, the solution H is homogeneous for color 1
iff there are infinitely many i s.t. p(i) = 1. In other words, the color of any homogeneous solution for
the coloring c defined as in the proof of Proposition 7.25 is the correct solution for isInfinite(p).

We remark that TCN, LPO
′ and Sort are pairwise incomparable, as proved in [23]. From this, it

follows that so are TCN, C
′′
k and Sort: we have already mentioned that TCN 6≤W C′′

k and Sort 6≤W C′′
k.

The fact that C′′
k 6≤W TCN and C′′

k 6≤W Sort follows from the known fact that LPO′ ≤W C′′
k (see e.g.

[9, Thm. 7.55]).

35

It is natural to ask whether 1(u-SRT2
k) ≡W

1(SRT2
k). We now show that this is not the case,

by proving that C′′
k 6≤W u-SRT2

k. In order to do this, we recall the concept of Erdős-Radó tree
associated to a coloring of pairs.

Definition 7.27. Let c : [N]2 → k be a coloring. The Erdős-Radó tree associated to c is the tree
Tc ⊆ N<N defined in stages as follows: at stage 0, we enumerate () and (0) in Tc. At stage s + 1,
we look for the longest string σ enumerated in Tc up to stage s such that, for every i < j < |σ|,
c(σ(i), σ(j)) = c(σ(i), s+ 1). We then enumerate σa(s+ 1) in Tc, and move to the next stage.

We remark that, although not immediately apparent, the definition above is well-posed: at
every stage s+ 1, only one string σ is selected to be extended to σa(s+ 1). Indeed, suppose for a
contradiction that there are two maximal strings σ0 and σ1 eligible to be extended to σ0

a(s + 1)
and σ1

a(s+ 1), and let σ be their longest common initial segment: we know that σ 6= (), since (0)
is an initial segment of σ. But then,

c(σ(|σ| − 1), s+ 1) = c(|σ| − 1, σ0(|σ|)) 6= c(σ(|σ| − 1), σ1(|σ|)) = c(σ(|σ| − 1), s+ 1),

which is a contradiction.
Although the definition is somewhat different, the construction above yields the same tree ob-

tained by the usual description of Erdős-Radó tree (see e.g. [26, Lem. III.7.4]): we prefer the con-
struction above because it is, in a sense, simpler to parse than the original, more general definition.
For every coloring of pairs c, Tc is an infinite finitely-branching tree and it is computable in the
coloring. We remark that every number n ∈ N appears in Tc exactly once. This allows us to prove
the following result.

Lemma 7.28. Let c : [N]2 → k be an instance of SRT2
k. Then, Tc has exactly one infinite path.

Proof. Suppose for a contradiction that Tc had two infinite paths p0 and p1, and let σ be their
longest common segment (by the definition of Tc, (0) is an initial segment of σ, so σ is non empty).
Then, by definition of Tc, for every n ∈ N,

c(σ(|σ| − 1), p0(|σ| + n)) 6= c(σ(|σ| − 1), p1(|σ| + n)).

But this implies that limi c(σ(|σ| − 1), i) does not exist, which contradicts the stability of c.

The result above allows us to show that u-SRT2
2 is Σ0

3-measurable.

Proposition 7.29. u-SRT2
k ≤W lim′, and hence 1u-SRT2

2 ≤W C′
N
.

Proof. We prove a slightly stronger statement, namely u-SRT2
k ≤W limk ∗ lim.

Fix an unbalanced stable coloring c. We first claim that, given a path p through Tc, we can use
limk to obtain an homogeneous solution for c. For i < k, let Li := {n ∈ N : limj c(p(n), j) = i}.
Notice that exactly one of the Li is infinite, since otherwise there would be infinite c-homogeneous
sets for more than one color, contradicting the assumption that c is unbalanced. By the definition
of Tc, for every n ∈ N, limi c(p(n), i) = c(p(n), p(n+ 1)), so we can use limk to find the i such that
Li is infinite. This shows that Li is a solution to c, proving our claim.

Observe that, even if Tc is finitely branching (in fact, every string has at most k immediate suc-
cessors), the set [Tc] is not computably compact (i.e. the map n 7→ max{m : (∀σ ∈ T)(σ(n) ≤ m)}
is not computable). Indeed, if it were computably-compact then, by [9, Thm. 7.23] and Lemma 7.28,
we could uniformly compute a path through Tc (as UC2N ≡W id, see e.g. [9, Cor. 7.26]). However,
since an homogeneous solution for c can be obtained from a path through Tc using limk, this would
imply e.g. that TCN ≤W limk, which is clearly a contradiction.

To conclude the proof, it is enough to notice that lim suffices to compute a bound q for a path
through Tc (q is a bound if there is p ∈ [Tc] s.t. for every n, p(n) ≤ q(n)). Given such a bound

36

q, we can compute the subtree {σ ∈ Tc : (∀i < |σ|)(σ(i) ≤ q(i))}. Since this tree is infinite and
q-computably compact, we can now apply UC2N to obtain a path, and limk to obtain a homogeneous
solution for c.

The fact that 1u-SRT2
2 ≤W C′

N
follows from Theorem 7.2.

Corollary 7.30. For every ℓ, k ≥ 2, (Cℓ)
′′ 6≤W u-SRT2

k, and hence 1u-SRT2
k <W

1SRT2
k.

Proof. By the fact that Cℓ is lim-computable but not computable, it follows that C′′
ℓ is lim′′-

computable but not lim′-computable (see also the proof of [7, Prop. 9.1]). Hence, by Proposition 7.29,
the claim follows. The separation 1u-SRT2

k <W
1SRT2

k then follows from Theorem 7.21.

For completeness, we conclude this section by studying the relationship between RT1
N and the

benchmark problems LPO′, Sort, and TCN. As a preliminary observation, we notice that the results
we gave above already imply that none of LPO′, Sort, and TCN computes RT1

N, since RT1
N is not

solved by SRT2
k for any k ∈ N. We will now show that RT1

N is not powerful enough to compute any
of the other three problems.

Lemma 7.31. RT1
N |W LPO′.

Proof. We already said that RT1
N 6≤W LPO′. Then, suppose for a contradiction that LPO′ ≤W RT1

N.

This would then imply that lim′ ≡W L̂PO′ ≤W R̂T1
N ≡W WKL′, which is a contradiction.

To show that RT1
N does not compute neither TCN nor Sort, we will need the following preliminary

lemma.

Lemma 7.32. LPO ∗ RT1
N ≤W RT1

N.

Proof. Let us consider (p, c) ∈ dom(LPO ∗ RT1
N), where c : N → N is a coloring of the integers such

that its range is bounded by some k ∈ N. We build a coloring f : N → N, the range of which will be
bounded by 2k, as follows.

For every s, we examine the coloring c until we find a c-homogeneous set of size s, call it Hs,
and let is := c(Hs). We then run Φp(Hs) for s steps, thus obtaining a finite string σs. There are
now two cases: if σs(n) = 0 for every n < |σs|, we set f(s) := 2is (notice that this includes the case
that σs = ()), otherwise, we put f(s) := 2is + 1.

Notice that f is indeed an instance of RT1
N, provided c is: indeed, since for every s there exists

a c-homogeneous set of size s, f is total, and its range is 2k, where k is the range of c.
Let Φ be the Turing functional mapping a pair (p, c) ∈ NN×NN, where c ∈ dom(RT1

N), to f defined
as above. Moreover, let Ψ be the Turing functional defined as follows: on every input (p, c,H), where
(p, c) is as before and H ⊆ N, let i, b be s.t. Φ(p, c)(H) = 2i + b, and let Si := {x ∈ N : c(x) = i}.
Then, Ψ(p, c,H) outputs the pair (Si, b). We claim that the functionals Φ,Ψ as above witnesses the
reduction LPO ∗ RT1

N ≤W RT
1
N.

We have already shown that f = Φ(p, c) is an instance of RT1
N. Let H be an infinite f -

homogeneous set. We start by showing that Si is an infinite c-homogeneous set. Notice that
by definition, Si is c-homogeneous, so we only have to show that it is infinite. This follows easily
from the observation that if H is f -homogeneous for 2i+b, by construction there are infinitely many
s such that Si has size at least s, which proves that Si is infinite.

Hence, we only have to show that b is a valid answer to LPO(Φp(Si)). We claim that H is f -
homogeneous for an even color if and only if Φp(Si)(n) = 0 for every n ∈ N: notice that, if we do this,
then indeed b is as we want. Suppose at first that H is homogeneous for 2i, for some i < k. Then,
for every s ∈ H , by the definition of f we have that there is a set Hs of size s c-homogeneous for i
and such that Φp(Hs)(n) = 0 for every n such that Φp(Hs)(n) converges. Notice moreover that, for
every s ∈ H , Hs is an initial segment of Si: it follows that Φp(Si)(n) = lims∈H,s→∞ Φp(Hs)(n) = 0
for every n (Φp(Si) is a total function, since we have already shown that Si is a c-homogeneous

37

set). Hence, indeed, 0 is a correct answer to the LPO-instance Φp(Si). Suppose next that H is
f -homogeneous for 2i+ 1, for some i. Then, for every s ∈ H , the definition of f gives us that there
is a c-homogeneous Hs such that, for some n ∈ N, Φp(Hs)(n) = 1. It then follows from an analysis
similar to the previous case that 1 is a correct answer to the LPO-instance Φp(Si), which concludes
the proof of the claim.

We now introduce two problems that were originally defined in [23].

Definition 7.33. We define the following functions:

• isFiniteS : 2
N → S is the function such that, on input p ∈ 2N, outputs ⊤ if there are only finitely

many n such that p(n) = 1, and ⊥ otherwise.

• isInfiniteS : 2
N → S is the function such that, on input p ∈ 2N, outputs ⊤ if there are infinitely

many n such that p(n) = 1, and ⊥ otherwise.

Notice that the two problems above are weakenings of isInfinite (which we have introduced in
Proposition 7.26) and of isFinite, which is the problem with domain 2N and codomain 2 such that
isFinite(p) = 1 if and only if there are finitely many n such that p(n) = 1, which are both equivalent
to LPO′. It is clear that the difference between the isFiniteS and isFinite (and between isInfiniteS and
isInfinite) is in the representation of the solution. Recalling that, for every p ∈ 2N, δS(p) = 0 if and
only if p = 0N, the following result is immediate.

Lemma 7.34. isFinite ≤W LPO ∗ isFiniteS and isInfinite ≤W LPO ∗ isInfiniteS.

We are now ready to prove that RT1
N does not compute neither TCN nor Sort.

Proposition 7.35. Sort 6≤W RT1
N and TCN 6≤W RT1

N.

Proof. By [23, Prop. 24], isFiniteS ≤W Sort and isInfiniteS ≤W TCN. Now, suppose for a contradiction
that Sort ≤W RT1

N: since isFinite ≡W LPO′, by Lemma 7.32 and Lemma 7.34 we would have that

LPO′ ≤W LPO ∗ isFiniteS ≤W LPO ∗ RT1
N ≤W RT1

N,

which contradicts Lemma 7.31, thus proving that Sort 6≤W RT1
N.

The other non-reduction is proved analogously.

8 Conclusions

In this paper, we explored the algebraic relations between the first-order part operator and several
other operators on multi-valued functions already introduced in the literature. We now recap the
results and highlight a few questions that remained open.

In Section 4, we study the relations between 1(·) and the operators ⊔,⊓,×, ∗, and ′. Moreover,
to better understand the connections between the first-order part and the parallelization operator,
in Section 5 we introduced the unbounded finite parallelization (·)u∗ and explored its connections
with the operators ⊔,⊓,×,̂, ∗, and ′.

In particular, Theorem 5.7 and its generalization Theorem 5.12 characterize the first-order part
of the parallelization of a first-order problem. As already mentioned, these theorems can be
rephrased as the commutativity, for first-order problems between the first-order part and the un-
bounded finite parallelization. We can then update the Open Question 5.9 as follows:

Open Question 8.1. Under which hypotheses on f we have 1(f̂) ≡W (1f)u∗? How about
1((f̂)(n)) ≡sW (fu∗)(n), for n ∈ N?

38

In Section 6, we explored the connections between first-order part, unbounded finite paralleliza-
tion, and the diamond operator. Theorem 6.10 provides a sufficient condition under which (·)u∗ and
(·)⋄ coincide. Again, this is not a necessary condition, and therefore it is natural to ask:

Open Question 8.2. Under which hypotheses on f we have fu∗ ≡W f⋄?

Going in the opposite direction, it would be interesting to better understand when these opera-
tions are different. In Theorem 7.5 and Theorem 7.10 we provided some sufficient conditions under
which the finite parallelization differs from its unbounded counterpart. The following question was
raised by Arno Pauly:

Open Question 8.3. Is there a first-order problem s.t. f∗ <W fu∗ <W f⋄? How about f <W

f∗ <W fu∗ <W f⋄?

In Section 7 we characterize the first-order part of several well-known principles, including
lim(n) and WKL(n). A possible candidate to answer positively the first part of the last question
is Π1

1−Bound: indeed, we proved in Theorem 7.16 that f∗ <W fu∗. The proof strategy differs from
the ones used to prove Theorem 7.5 and Theorem 7.10, and can certainly be applied to other bound-
ing principles as well. It is not clear, however, whether Π1

1−Bound⋄ ≤W Π1
1−Boundu∗. Besides,

Π1
1−Bound ≡W Π1

1−Bound∗, hence it is not a viable example to answer positively the second part
of the last question.

Finally, we provided some bounds on the first-order part of some principles related to Ramsey
theorem. The following problem remains open:

Open Question 8.4. For n > 2, 1RTnk ≤W
1SRTnk?

References

[1] Anglès d’Auriac, Paul-Elliot and Kihara, Takayuki, A Comparison Of Various Analytic Choice
Principles, The Journal of Symbolic Logic 86 (2021), no. 4, 1452–1485, doi:10.1017/jsl.2021.37.

[2] Brattka, Vasco, de Brecht, Matthew, and Pauly, Arno, Closed choice and a Uniform
Low Basis Theorem, Annals of Pure and Applied Logic 163 (2012), no. 8, 986–1008,
doi:10.1016/j.apal.2011.12.020.

[3] Brattka, Vasco, Dzhafarov, Damir D., Marcone, Alberto, and Pauly, Arno, Measuring the
Complexity of Computational Content: From Combinatorial Problems to Analysis (Dagstuhl
Seminar 18361), Dagstuhl Reports 8 (2019), no. 9, 1–28, doi:10.4230/DagRep.8.9.1.

[4] Brattka, Vasco and Gherardi, Guido, Effective Choice and Boundedness Principles in Com-
putable Analysis, The Bulletin of Symbolic Logic 17 (2011), no. 1, 73–117.

[5] , Weihrauch degrees, omniscience principles and weak computability, The Journal of
Symbolic Logic 76 (2011), no. 1, 143–176.

[6] , Completion of Choice, Annals of Pure and Applied Logic 172 (2021), no. 3, 102914,
doi:10.1016/j.apal.2020.102914.

[7] Brattka, Vasco, Gherardi, Guido, and Hölzl, Rupert, Probabilistic computability and choice,
Information and Computation 242 (2015), 249–286, doi:10.1016/j.ic.2015.03.005.

[8] Brattka, Vasco, Gherardi, Guido, and Marcone, Alberto, The Bolzano-Weierstrass Theorem
is the jump of Weak König’s Lemma, Annals of Pure and Applied Logic 163 (2012), no. 6,
623–655, doi:10.1016/j.apal.2011.10.006.

39

https://doi.org/10.1017/jsl.2021.37
https://doi.org/10.1016/j.apal.2011.12.020
https://doi.org/10.4230/DagRep.8.9.1
https://doi.org/10.1016/j.apal.2020.102914
https://doi.org/10.1016/j.ic.2015.03.005
https://doi.org/10.1016/j.apal.2011.10.006

[9] Brattka, Vasco, Gherardi, Guido, and Pauly, Arno, Weihrauch Complexity in Computable Anal-
ysis, pp. 367–417, Springer International Publishing, 2021, doi:10.1007/978-3-030-59234-9 11.

[10] Brattka, Vasco, Hendtlass, Matthew, and Kreuzer, Alexander P., On the Uniform Compu-
tational Content of Computability Theory, Theory of Computing Systems 61 (2017), no. 4,
1376–1426, doi:10.1007/s00224-017-9798-1.

[11] Brattka, Vasco, Hölzl, Rupert, and Kuyper, Rutger, Monte Carlo Computability, 34th
Symposium on Theoretical Aspects of Computer Science (STACS 2017) (Dagstuhl, Ger-
many) (Vollmer, Heribert and Vallée, Brigitte, eds.), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 66, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017,
doi:10.4230/LIPIcs.STACS.2017.17, pp. 17:1–17:14.

[12] Brattka, Vasco and Pauly, Arno, On the algebraic structure of Weihrauch degrees, Logical
Methods in Computer Science 14 (2018), no. 4, 1–36, doi:10.23638/LMCS-14(4:4)2018.

[13] Brattka, Vasco and Rakotoniaina, Tahina, On the uniform computational content of Ramsey’s
theorem, The Journal of Symbolic Logic 82 (2017), no. 4, 1278–1316, doi:10.1017/jsl.2017.43.

[14] Cipriani, Vittorio, Marcone, Alberto, and Valenti, Manlio, The Weihrauch lattice
at the level of Π1

1−CA0: the Cantor-Bendixson theorem, submitted, available at
https://arxiv.org/abs/2210.15556.

[15] Dorais, François G., Dzhafarov, Damir D., Hirst, Jeffry L., Mileti, Joseph R., and Shafer,
Paul, On uniform relationships between combinatorial problems, Transactions of the American
Mathematical Society 368 (2016), 1321–1359, doi:10.1090/tran/6465.

[16] Dzhafarov, Damir D., Goh, Jun Le, Hirschfeldt, Denis R., Patey, Ludovic, and Pauly, Arno,
Ramsey’s theorem and products in the Weihrauch degrees, Computability 9 (2020), no. 2, 85–
110, doi:10.3233/COM-180203.

[17] Dzhafarov, Damir D., Solomon, Reed, and Yokoyama, Keita, On the first-
order parts of problems in the Weihrauch degrees, preprint, 2023, available at
https://arxiv.org/abs/2301.12733.

[18] Goh, Jun Le, Pauly, Arno, and Valenti, Manlio, Finding descending sequences through
ill-founded linear orders, The Journal of Symbolic Logic 86 (2021), no. 2, 817–854,
doi:10.1017/jsl.2021.15.

[19] Hirschfeldt, Denis R. and Jockusch, Carl G., On notions of computability-theoretic reduc-
tion between Π1

2 principles, Journal of Mathematical Logic 16 (2016), no. 1, 1650002(1–59),
doi:10.1142/s0219061316500021.

[20] Hirst, Jeffry L., Leaf management, Computability 9 (2020), no. 3-4, 309–314,
doi:10.3233/COM-180243.

[21] Kihara, Takayuki, Marcone, Alberto, and Pauly, Arno, Searching for an analogue of ATR0

in the Weihrauch lattice, The Journal of Symbolic Logic 85 (2020), no. 3, 1006–1043,
doi:10.1017/jsl.2020.12.

[22] Marcone, Alberto and Valenti, Manlio, The open and clopen Ramsey theorems in the Weihrauch
lattice, The Journal of Symbolic Logic 86 (2021), no. 1, 316–351, doi:10.1017/jsl.2021.10.

[23] Neumann, Eike and Pauly, Arno, A topological view on algebraic computation models, Journal
of Complexity 44 (2018), 1–22, doi:10.1016/j.jco.2017.08.003.

40

https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/s00224-017-9798-1
https://doi.org/10.4230/LIPIcs.STACS.2017.17
https://doi.org/10.23638/LMCS-14(4:4)2018
https://doi.org/10.1017/jsl.2017.43
https://arxiv.org/abs/2210.15556
https://doi.org/10.1090/tran/6465
https://doi.org/10.3233/COM-180203
https://arxiv.org/abs/2301.12733
https://doi.org/10.1017/jsl.2021.15
https://doi.org/10.1142/s0219061316500021
https://doi.org/10.3233/COM-180243
https://doi.org/10.1017/jsl.2020.12
https://doi.org/10.1017/jsl.2021.10
https://doi.org/10.1016/j.jco.2017.08.003

[24] Patey, Ludovic, The weakness of being cohesive, thin or free in reverse mathematics, Israel
Journal of Mathematics volume 216 (2016), 905–955, doi:10.1007/s11856-016-1433-3.

[25] Pauly, Arno, On the topological aspects of the theory of represented spaces, Computability 5

(2016), no. 2, 159–180, doi:10.3233/COM-150049.

[26] Simpson, Stephen G., Subsystems of Second Order Arithmetic, 2 ed., Cambridge University
Press, Cambridge, 2009.

[27] Soare, Robert I., Turing Computability: Theory and Applications, 1 ed., Springer, 2016,
doi:10.1007/978-3-642-31933-4.

[28] Weihrauch, Klaus, Computable Analysis: An Introduction, 1 ed., Springer-Verlag, Berlin, 2000.

[29] Westrick, Linda Brown, A note on the diamond operator, Computability 10 (2021), no. 2,
107–110, doi:10.3233/COM-20029.

Giovanni Soldà, Department of Mathematics: Analysis, Logic and Discrete Mathematics,
Ghent University,
Krijgslaan 281 S8, 9000 Ghent, BE

E-mail address: giovanni.a.solda@gmail.com

Manlio Valenti, Department of Mathematics, Computer Science and Physics
University of Udine
Udine, UD 33100, IT

Current address: Department of Mathematics
University of Wisconsin – Madison
Madison (WI), 53706, USA

E-mail address: manliovalenti@gmail.com

41

https://doi.org/10.1007/s11856-016-1433-3
https://doi.org/10.3233/COM-150049
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.3233/COM-20029
giovanni.a.solda@gmail.com
manliovalenti@gmail.com

	1 Introduction
	2 Background
	3 The first-order part of a problem
	3.1 Previous appearances in the literature

	4 Some algebraic rules
	5 The unbounded finite parallelization
	5.1 Algebraic properties of ()u*

	6 First-order part and diamond
	7 The first-order part of known problems
	7.1 Ramsey's theorem

	8 Conclusions

