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Abstract. Suppose G is a finite cyclic group and M a closed smooth
G–manifold. In this paper we will show that there is a nonsingular real
algebraic G–variety X which is equivariantly diffeomorphic to M and
all G–vector bundles over X are strongly algebraic.

1. Introduction

Let G be a compact Lie group. A real algebraic G–variety is a G–invariant
subset {

x ∈ Ω
∣∣ p1(x) = · · · = pn(x) = 0

}

in a real G–module Ω that is the set of common zeros of a finite collection
{p1, . . . , pn} of polynomials [9]. If M is a closed smooth G–manifold and X
is a nonsingular real algebraic G–variety that is equivariantly diffeomorphic
to M , then we say that M is algebraically realized and that X is an algebraic

model of M . We call X a strongly algebraic model of M , if, in addition,
all G–vector bundles over X are strongly algebraic. This means that, up
to isomorphism, the bundles are classified by entire rational maps to equi-
variant Grassmannians with their canonical algebraic structure. Existing
results lead us to believe

Conjecture 1.1. [12, p. 32] Let G be a compact Lie group. Then every

closed smooth G–manifold has a strongly algebraic model.

Our principal result confirms the conjecture in a special case.

Theorem 1.2. Let G be a finite cyclic group. Then every closed smooth

G–manifold has a strongly algebraic model.

1.1. History. Let us give a brief review of the history. J. Nash [17] posed
the algebraic realization problem for closed smooth manifolds, and this prob-
lem has an affirmative answer, see Tognoli [22] and Akbulut-King [1], [2].
For cyclic groups G we showed that closed smooth G–manifolds are al-
gebraically realized, see [10]. See [9] for other results on the equivariant
algebraic realization problem.
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The tangent bundle of a nonsingular real algebraic variety is strongly
algebraic, so instead of algebraically realizing a manifold together with one
specific bundle, it is natural to try and algebraically realize the manifold
with all of its bundles. That this is possible is Conjecture 1.1. Benedetti and
Tognoli [3] proved this conjecture in the case where G is the trivial group.
Conjecture 1.1 is true if G is a product of an odd order group with a 2–torus,
see [12, Theorem B]. This implies Theorem 1.2 in the special case where G
is a cyclic group whose order is twice an odd number. Conjecture 1.1 is also
true if G is a compact Lie group and the action on M is semifree, see [12],
or if G is cyclic and the action on the manifold has only one isotropy type,
see [13]. Hanson [14] proved a result like Theorem 1.2 for Z4–manifolds with
one vector bundle in addition to the tangent bundle. For a more extensive
history see [13].

1.2. Structure of the paper. In Section 2 we will outline the proof of
Theorem 1.2 and at the same time introduce notation that is used thoughout
the paper. In Section 3 we collect results from the literature that we will
employ. In Sections 4 – 7 we carefully develop the proof of our main result,
Theorem 1.2. We relegate detailed proofs of some intermediate results to
Sections 8 – 13.

Here is a roadmap to the proof of Theorem 1.2. The arrows stand for
implications that are carried out in the indicated sections, and ‘P’d’ abbre-
viates ‘Proved”.

Prop 2.7
§ 3−−−−→ Prop 2.3

§ 2.1−−−−→ Theorem 1.2

§ 2.5

x § 3

x
x§ 2.1

Prop 2.8 Prop 2.4 [13] Prop 2.2

§ 8

x
x§ 5

Prop 2.9 Prop 5.1 (P’d in § 5)

§ 9

x

Prop 9.1

§ 13

x

Prop 2.10 (P’d in § 7)

2. Basic Definitions & Proof of Theorem 1.2

2.1. Simplifying the combinatorial structure. Blow-ups may be used
to simplify the isotropy structure of a G–manifold [24], and the algebraic
realization problem reduces to one for manifolds as characterized in the
following definition.
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Definition 2.1. Suppose G is cyclic. We call a G–manifold M iso-special

if locally the action on M has one or two isotropy types. If, locally, the
action has isotropy groups K and H, with K ⊂ H, then we require that the
H–fixed set is of codimension 1 in the K–fixed set.

In Section 5 we will generalize the definition of being iso–special to actions
of abelian groups (Wasserman [24] called iso–special actions simple.) and
prove:

Proposition 2.2. Let G be an abelian group and assume that all closed

smooth iso-special G–manifolds have strongly algebraic models. Then all

closed smooth G–manifolds have strongly algebraic models.

In Section 3 we will derive our next result, Theorem 2.3, from Theo-
rem 2.4 and Proposition 2.7. Generalizations of Theorems 2.3 will lead to
generalizations of Theorem 1.2.

Theorem 2.3. Let G be a cyclic group. Then every iso–special closed

smooth G–manifold has a strongly algebraic model.

Proof of Theorem 1.2. If G is cyclic, then Theorem 2.3 confirms the assump-
tions of Proposition 2.2, and with this Theorem 1.2 is proved. �

The following Theorem 2.4 for actions with one isotropy type is not only
a special case of Theorems 1.2 and 2.3, but also an essential ingredient in the
proof of Theorem 2.3. Suh [21] proved Theorem 2.4 if the isotropy groups
are of odd index in G.

Theorem 2.4. [13] Suppose G is a cyclic group and M a closed smooth

G–manifold, such that locally the action has only one isotropy type. Then

M has a strongly algebraic model.

We will get to the two isotropy group case after some preparation.

2.2. The Real Algebraic Category and Algebraic Models. In the
introduction we defined the concept of a real algebraic variety. The term
nonsingular is used with its classical meaning as in [25] or [4, Section 3.3].
One may want to look at different concepts of morphisms. Let X ⊆ Rm and
Y ⊆ Rn be varieties and f : X → Y . We call f regular if it extends to a
map F : Rm → Rn and each coordinate of F is polynomial:

Rm F−−−−→ Rn

⊆

x
x⊆

X
f−−−−→ Y

We call f entire rational, if it extends to F = P/q, so that each coordinate
of P is polynomial, and q is a nowhere vanishing polynomial.

Let Y be a nonsingular real algebraic G–variety. We call q : X → Y
an algebraic map if X is a nonsingular real algebraic G–variety and q is
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an equivariant entire rational map. Let f : M → Y be an equivariant
map from a closed smooth G–manifold M to Y . We call an algebraic map
(X, q) an algebraic model of (M,f) if there is an equivariant diffeomorphism
Φ : X →M , so that f ◦Φ is equivariantly homotopic to q.

2.3. Grassmannians and vector bundles. Let Ω be a representation
of G. Denote the Grassmannian of real subspaces of Ω of dimension d by
GR(Ω, d). One may write down polynomial equations that describe GR(Ω, d)
as a nonsingular real algebraic G–variety, see [4] or [9]. Pick a G–invariant
inner product and an orthonormal basis for Ω. Identify a subspace V of
Ω with the matrix of the orthogonal projection onto V . If n = dim Ω and
M

n×n
R

is the set of real n× n matrices, then

(2.1) GR(Ω, d) =
{
L ∈Mn×n

R
| L2 = L, Lt = L, and trace L = d

}
.

For sufficiently large Ω, one may use GR(Ω, d) as a classifying space for
G–vector bundles over G–CW complexes, i.e., isomorphism classes of G–
vector bundles are in 1–1 correspondence with equivariant homotopy classes
of maps to GR(Ω, d), see [23]. How large Ω needs to be, i.e., with which
multiplicity each irreducible representation χ of G needs to occur as a sum-
mand of Ω, depends on the dimension of the base space for the bundle and
its fibre. Still, if Ω is a summand of Ω′ and Ω is sufficiently large for a
specific situation, then so is Ω′. One crude estimate is that

multiplicity of χ in Ω > dim base + dim fibre + 1.

Definition 2.5. A vector bundle is said to be strongly algebraic if its classi-
fying map is entire rational, up to homotopy. At times we identify bundles
with their classifying maps. Then strongly algebraic bundle just means ho-

motopic to an entire rational map.

To simultaniously classify k G–vector bundles of dimensions d1, . . . , dk

we set

(2.2) G = GR(Ω1, d1)× · · · ×GR(Ωk, dk)

Convention 2.6. We say that G is sufficiently large if each of its factors
GR(Ωj , dj) classifies G–vector bundles of dimension dj in a situation usually
understood from context.

For notational as well as computational reasons, it is sometimes conve-
nient to take Ω as a universe, e.g., a direct limit of an increasing number
of copies of the regular representation of G. Then GR(Ω, d) ceases to be a
variety. In this case we still say that a map to GR(Ω, d) is entire rational if it
factors entire rationally through GR(Ω0, d) for a finite dimensional summand
Ω0 of Ω.

Consider a closed smooth G–manifold M together with equivariant vector
bundles ξ1, . . . ξk over M . We say that (M, ξ1, . . . , ξk) has an algebraic model
if there exists a nonsingular real algebraic G–variety X and an equivariant
diffeomorphism Φ : X →M , so that Φ∗ξ1, . . . , Φ∗ξk are strongly algebraic.
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We call (X,Φ∗ξ1, . . . ,Φ
∗ξk) the algebraic model for (M, ξ1, . . . , ξk). Alter-

natively, we can ask for an algebraic model for a manifold together with a
map to a sufficiently large G as in (2.2).

2.4. The Two Isotropy Group Case. We focus on iso–special manifolds
with two isotropy groups, denoted by H and K as in Definition 2.1.

Let S(G) be the set of all subgroups of G and H ⊆ S(G). We say that
a G–manifold M is of type H if the isotropy groups Gx belong to H for all
x ∈M . If we insist that the domains of representatives of bordism classes in
NG

r (Z) as well as bordisms in between them are of type H, then we express
this by writing NG

r [H](Z). We add a subscript c and write NG
r,c[{H,K}](Z)

to indicate that the codimension of the H–fixed point set in the K–fixed
point is one. In Section 3 we will deduce the two isotropy group case of
Theorem 2.3 from

Proposition 2.7. Let G, H, K, and G be as above, and G sufficiently large.

Then all classses in NG
r,c[{H,K}](G) have algebraic representatives.

2.5. Reducing the Bordism Problem. Our specialized bordism group
NG

r,c[{H,K}](G) fits into a long exact Conner–Floyd sequence:

· · · −→ NG
r [{K}](G)

ic−→ NG
r,c[{H,K}](G)

jc−→NG
r,c[{H,K}, {K}](G)

∂c−→ NG
r−1[{K}](G) −→ · · ·

(2.3)

According to Theorem 2.4, classes in NG
r [{K}] have algebraic represen-

tatives. We use this to deduce Proposition 2.7 from:

Proposition 2.8. Let G, H, K, and G be as above, and G sufficiently large.

Then elements in the kernel of

NG
r,c[{H,K}, {K}](G)

∂c−−−−→ NG
r−1[{K}](G)

are images of algebraically represented classes in NG
r,c[{H,K}](G) under the

map jc.

Deduce Proposition 2.7 from Proposition 2.8. If A ∈ NG
r,c[{H,K}](G), then

jc(A) ∈ ker(∂c). According to Proposition 2.8 there exists an algebraically
represented class class B in NG

r,c[{H,K}](G) so that jc(A) = jc(B). Due to

the exactness of the sequence in (2.3), there is a class C ∈ NG
r [{K}](G) so

that ic(C) = A + B, and C as well as ic(C) is represented by a map so that
all points in its domain have isotropy type K. Algebraic representability is
compatible with sums (disjoint union), and it follows that A = B + ic(C)
has an algebraic representative. �

We will employ bordism theoretic methods to disect the algebraic repre-
sentation problem in Proposition 2.8. At its core we find Proposition 2.9
(restated as Proposition 8.12 in Section 8 after some preparation), from
which we deduce Proposition 2.8 in Section 8.
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Proposition 2.9. Let G, H, K, and G be as above, C = G/K, and G

sufficiently large. Then elements in the kernel of

Nr−1(EC ×C Fe)
∂c−−−−→ Nr−1(EC ×C Fe)

are images of algebraically represented classes in NG
r,c[{H,K}](Fe) under the

map L ◦ jc.

In Proposition 2.9, F is a component of GH and F is a component of
GK , so that F ⊆ F, while Fe is an essential factor of F and Fe is the
corresponding factor of F, see Sections 8.4 and 8.5. The isomorphism L is
defined in Section 8.3 and EC ×C − is the Borel construction.

2.6. The homology kernel. There is a commutative diagram

(2.4)

N∗(EC ×C Fe)
∂c−−−−→ N∗(EC ×C Fe)

µ

y
yµ

H∗(EC ×C Fe, Z2)
Φ∗−−−−→ H∗(EC ×C Fe, Z2)

where Φ = Id×Cφ : EC ×C Fe → EC ×C Fe is induced by the inclusion

(2.5) φ : Fe →֒ Fe.

The vertical maps µ in (2.4) are Thom homomorphisms. They are func-
torial epimorphism, see [7, p.14]. In (9.3) we will recover the kernel of ∂c

from the kernel of Φ∗. In Theorem 11.1 we compute ker(Φ∗) from its dual,
the cokernel of Φ∗. The understanding of ker(Φ∗) combined with classical
results from [19] and [5] will allow us to reduce Proposition 2.9 to a special
case of its homological reformulation, Proposition 2.10, see Section 13.

In the following proposition BO(2) has a Z4 action, so that Z2 ⊂ Z4 acts
trivially and BO(2)Z4 = BU(1). We denote the inclusion of the fixed set by
φ : BU(1)→ BO(2). After applying the Borel construction we obtain

(2.6) Φ = Id×Cφ : EC ×C BU(1) −→ EC ×C BO(2).

We will prove the following proposition in Section 7. The proof will borrow
from [14].

Proposition 2.10. Let G = H = Z4, K = Z2, and C = G/K = Z2.

Elements in the kernel of

(2.7) Φ∗ : H∗(EC ×C BU(1), Z2)→ H∗(EC ×C BO(2), Z2)

are images of algebraically represented classes in NG
∗,c[{H,K}](BO(2)) under

the map µ ◦ L ◦ jc.

In Section 7, see Proposition 7.1, we write out a basis for the kernel of
the map in (2.7) and prove Proposition 2.10 by showing that the elements
in a modified (twisted) basis are images of algebraically represented classes
in NG

∗,c[{H,K}](BO(2)) under the map µ ◦ L ◦ jc. With this the proof of
Theorem 1.2 will be complete.
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3. Background Material from the Literature

The results in this section hold when G is a compact Lie group. The first
one says that algebraic realization problems reduce to bordism problems.

Theorem 3.1. [12, Theorem C] An equivariant map from a closed smooth

G–manifold to a nonsingular real algebraic G–variety has an algebraic model

if and only if its cobordism class has an algebraic representative.

The second result reduces the strong algebraic realization problem to one
for finite collections of bundles.

Proposition 3.2. [12, Proposition 2.13] A closed smooth G–manifold M has

a strongly algebraic model if and only if, for any finite collection {ξ1, . . . , ξk}
of G–vector bundles over M , there is an algebraic model for (M, ξ1, . . . , ξk).

Recalling the definition of an algebraic model from Subsection 2.2, this
means that there is a nonsingular real algebraic G variety X and an equivari-
ant diffeomorphism Φ : X →M that pulls back ξ1, . . . , ξk back to strongly
algebraic bundles over X, bundles whose classifying maps are homotopic to
entire rational maps.

The proof of the proposition uses that the equivariant K-theory of M is
finitely generated as a module over the representation ring R(G), and that
one may apply the basic constructions of direct sum ⊕, tensor product ⊗,
and taking orthogonal complements ⊥ to strongly algebraic vector bundles
and obtain a strongly algebraic vector bundle as result.

Suppose that G = GR(Ω1, d1) × · · · × GR(Ωk, dk) is sufficiently large for
manifolds of dimension m, see (2.2) and Convention 2.6. In view of Propo-
sition 3.2 we use a map χ : M → G so that χ is the product of classifying
maps for a set of bundles that generate the equivariant K–theory of M and
apply Theorem 3.1 to (M,χ). As a consequence we find

Proposition 3.3. A closed smooth G–manifold M of dimension m has a

strongly algebraic model if for any sufficiently large G and any equivariant

map χ : M → G its bordism class [M,χ] ∈ NG
m(G) has an algebraic model.

We will occasionally refer to another useful observation:

Proposition 3.4. If M is the disjoint union of a finite number of closed

smooth G–manifolds and each of them has a strongly algebraic model, then

so does M .

Proof of Theorem 2.3. We like to show that iso–special G–manifolds have
strongly algebraic models. According to Proposition 3.4, we may assume
that M consists of a single G–component, i.e., M is the union of a component
of M together with its translates under the action of G. Being iso–special,
M will have one or two isotropy groups.

If M has one isotropy type, then M has a strongly algebraic model ac-
cording to Theorem 2.4, and our proof is complete.
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Suppose that M is iso–special and of dimension m, and that we have the
isotropy types H and K, where K ⊂ H is of index 2. Let G be as above
and χ : M → G any equivariant map. According to Proposition 2.7, the
bordism class of (M,χ) in NG

m,c[{H,K}](G) has an algebraic representative.
Proposition 3.3 implies that M has a strongly algebraic model. So, our proof
is complete also in this second case. �

For the next result, recall the construction of the projective bundle. Let
ξ = (E → B) be a G–vector bundle with classifying map β : B → GR(Ξ, k).
The total space of the associated projective bundle is:

(3.1) RP (ξ) =
{
(x, T ) ∈ B ×GR(Ξ, 1) | (Id−β(x))T = 0

}
.

The definition of RP (ξ) is the familiar one, with subspaces being replaced
by orthogonal projection onto these spaces. The equation (Id−β(x))T = 0
expresses that im β(x) ⊇ im T . The line onto which T projects is contained
in the space that β(x) projects onto.

Proposition 3.5. [9, Proposition 5.2] If ξ is a strongly algebraic G–vector

bundle, then its projectivization RP (ξ) is a projective G–fibre bundle with

a real algebraic G-variety as total space and an entire rational projection.

If the base space B is nonsingular, then so is the total space RP (ξ) of the

bundle.

4. Projectivization and Blow-ups

Let G be a compact Lie group, M a closed smooth G manifold, and N a
G–submanifold of M . We denote the blow–up of M along N by B(M,N).
The principal conclusion of this section is:

Proposition 4.1. If N and B(M,N) have strongly algebraic models, then

so does M .

We recall the construction of a blow–up. Let M be a closed smooth G–
manifold with a collection ξ1, . . . , ξk of G–vector bundles over it. Let N be
a G–invariant submanifold of M with normal bundle ν, and let R denote the
product bundle with fibre R. We obtain bundles ξ1, . . . , ξk over RP (ν ⊕R)
by first restricting ξ1, . . . ξk over N and then pulling back the restricted
bundles over RP (ν ⊕ R).

We may identify (M, ξ1, . . . , ξk) and (RP (ν⊕R), ξ1, . . . , ξk) along a neigh-
bourhood of N that is contained in M and RP (ν ⊕ R). The result is
commonly called the blow-up of (M, ξ1, . . . , ξk) along N . It is denoted by
B((M, ξ1, . . . , ξk), N). By construction,

(4.1) B((M, ξ1, . . . , ξk), N) ∼ (M, ξ1, . . . , ξk) ⊔ (RP (ν ⊕ R), ξ1, . . . , ξk),

where ∼ indicates a cobordism.

Proposition 4.2. Let B(M, ξ1, . . . , ξk), N) and N be as above. If N has a

strongly algebraic model, then there is an algebraic model for (M, ξ1, . . . , ξk)
if and only if there is an algebraic model for B((M, ξ1, . . . , ξk), N).
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Proof. We identify N with its strongly algebraic model. Proposition 3.5
tells us that RP (ν ⊕ R) has an algebraic model and that the projection
map RP (ν ⊕ R) → N is entire rational. This means that the bundles that
we denoted by ξ1, . . . , ξk are strongly algebraic. With this, the assertion
of the proposition is a consequence of the cobordism relation in (4.1) and
Theorem 3.1. �

Proof of Proposition 4.1. Consider a collection ξ1, . . . , ξk of G–vector bun-
dles over M . Denote the corresponding collection of bundles over B(M,N)
by ξ′1, . . . , ξ′k. According to our assumption, B(M,N) has a strongly alge-
braic model, and hence (B(M,N), ξ′1, . . . , ξ

′
k) has an algebraic model. Propo-

sition 4.2 tells us that (M, ξ1, . . . , ξk) has an algebraic model. The argument
works for every finite collection ξ1, . . . , ξk of G–vector bundles over M so
that our assertion follows from Proposition 3.2. �

For reference purposes we state:

Proposition 4.3. Let H be a subgroup of a cyclic group G. If there is a

one–dimensional non–trivial representation of H, then we denote it by R−

and its kernel by K.

(1) If R− does not occur in the normal fibre to any component of MH

in M , then B(M,MH)H = ∅.
(2) Otherwise B(M,MH)H 6= ∅, and the codimension of B(M,MH)H

in B(M,MH)K is 1.

5. Simplifying Isotropy Structures and the Proof of

Proposition 2.2

In this section we simplify isotropy structures via blow-ups. We will gener-
alize the concept of being iso–special to finite abelian group in Definition 5.2.

Proposition 5.1. Let G be a finite abelian group and M a closed smooth

G manifold. There exists a finite sequence of equivariant blow-ups

(5.1) M0 = M, M1 = B(M0, A0), . . . , Mk = B(Mk−1, Ak−1)

so that Mk is iso–special. If G is cyclic, then the manifolds Ai may be chosen

to be iso–special, 0 ≤ i ≤ k − 1.

Wasserman proved the first assertion of the proposition, see [24]. Because
it is quick and of importance to this paper, we will give a proof of the
proposition if G is cyclic. Before anything else, we catch up with the

Proof of Proposition 2.2. Consider a closed smooth G–manifold M of di-
mension m. Inductively, assume that all manifolds of dimension strictly less
than m have strongly algebraic models. If M is iso–special, then M has a
strongly algebraic model. If M is not iso–special, then there is a blow–up
sequence as in (5.1), so that Mk is iso–special, thus strongly algebraic. The
Ai, 0 ≤ i ≤ k − 1, are also strongly algebraic because they are of dimension
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less than dim M . It follows from Proposition 4.1 that Mk−1, . . . , M1, and
M = M0 have strongly algebraic models. This proves our assertion. �

Definition 5.2. [24] Let G be an abelian group, M a smooth G–manifold,
and M0 a component of M with principal isotropy group K ⊆ G. Let x
be a point in M0, H its isotropy group, and N the component of MH

0 that
contains x. We call the action on M iso–special (or simple in the language
of [24]) if, for every choice of M0 and x, H/K is a vector space over Z2, and

dimZ2
H/K = codim(N,M0).

Proof of Proposition 5.1 if G is cyclic. Being iso–special is a local property,
and it suffices to consider the case where M consists of a single G–component,
i.e., it consists of a component and its translates under the action of G. We
proceed by induction over isotropy types. Let H be an isotropy group for
the action on M , so that there is no isotropy group that properly contains
H. Observe that all points in MH have isotropy type H. This means that
MH is iso–special.

Suppose that dimMH = dimM . Then M is iso–special, and the proof is
complete.

Otherwise, if dimMH < dim M , then MH will consist of components
MH

1 , . . . , MH
k , and dimMH

j < dim M for all 1 ≤ j ≤ k. Denote the blow-

up of M along MH by M = B(MH ,M). The components MH
j of MH give

rise to components M
H
j of M

H
. If the representation R− of H (defined

in Section 4) does not occur in the fibre of the normal bundle ν(MH
j ,M),

then the component MH
j will disappear in the blow–up (M

H
j = ∅), see

Proposition 4.3. If M
H

= ∅, then our inductive step is complete. We are
done with H and continue the proof with M instead of M .

Suppose, there are components MH
j of MH , so that the irreducible repre-

sentation R− of H does occur in the fibre of the normal bundle ν(MH
j ,M).

Then there is an index two subgroup K of H and codim(M
H

,M
K

) = 1,

and M
K

is iso–special. If dim M = dim MK , then M = MK , and M is
iso–special. In this case the proof is complete as well.

If dimM > dim MK , then we blow up M along the iso–special subman-

ifold M
K

to obtain M̂ = B(M,M
K

). Then M̂H = ∅ because there are no
lines that are fixed under the action of H in the fibre of the normal bundle
ν(M

K
,M ). Our inductive step is complete, we are done with H, and we

continue the proof with M̂ instead of M .
This concludes the induction and completes the proof. �

6. Adjustment tool

In [12, Section 4] we constructed a bundle that will be instrumental is two
places in this paper. Once we use it to adjust fibres of bundles, once we use
it to twist bundles. As usual, G is a cylic group, H a subgroup, and K a
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subgroup of index 2 in H. Let ρ = (E → B) be a G–vector bundle classified
by β : B → GR(Ξ, k). The total space of the associated projective bundle
(see (3.1)) is:

RP (E) =
{
(x, T ) ∈ B ×GR(Ξ, 1) | (Id−β(x))T = 0

}
.

Projection on the second factor defines a map β̃ : RP (E) → GR(Ξ, 1). Use

β̃ to pull back the canonical line bundle γR(Ξ, 1) over GR(Ξ, 1). Its total
space is

Q(E) =
{
(x, T, v) ∈ B ×GR(Ξ, 1) × Ξ | (Id−β(x))T = 0 & Tv = v

}
.

The result is a G–line bundle

(6.1) L(ρ) = (Q(E)→ RP (E)).

Lemma 6.1. [12, Lemma 4.1] If ρ is a strongly algebraic vector bundle, then

so is L(ρ). The fibre of L(ρ) over a point (x, T ) ∈ RP (Eρ) is

(6.2) L(ρ)(x,T ) = β̃(x, T ) = T ⊆ βx.

Proof. That L(ρ) is strongly algebraic is true by construction. The contain-
ment in (6.2) should be understood on the space level, namely that

T (Ξ) ⊆ βx(Ξ) = ρx,

and it holds by construction as well. �

Let us place L(ρ) into the context of iso–special G actions. As usual,
R denotes the product bundle with R as fibre. The following lemma holds
essentially by inspection. We will use it to adjust fibres of bundles, see
Subsection 8.4. It is customary to refer to B0 as the canonical zero section
and to B∞ as the section at infinity of the projective bundle.

Lemma 6.2. Let M be an iso–special G–manifold with isotropy groups H
and K, and let ρ = R ⊕ ν where ν = ν(MH ,M) is the normal bundle of

B = MH in M . Then

RP (Eρ)
H = B0 ⊔B∞ = {(b, R ⊕ 0) | b ∈ B} ⊔ {(b, 0 ⊕ νb) | b ∈ B}.

Furthermore, L(ρ)|B0
= R and the fibre of L(ρ) restricted over B∞ is the

representation R− of H.

In the upcoming construction η = (Γ→ N) is an H vector bundle over a
space N with trivial action. Let γs be the canonical line bundle over RP s.
We use the trivial action of H on RP s. We suppose that the fibre of γs is
the non-trivial representation R− of H. Set ρ = γ ⊕ R.

We have projections

(6.3)

RP (π∗
1(ρ))

π

y

RP s π1←−−−− RP s ×N
π2−−−−→ N
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We observe that

RP (π∗
1(ρ))H = B0 ⊔B∞ with B0 = B∞ = RP s ×N.

For the restriction of L(π∗
1(ρ)) over the fixed point components we have:

(6.4) L(π∗
1(ρ))|B0

= R & L(π∗
1(ρ))|B∞

= π∗
1(γ

s).

We define a bundle over RP (π∗
1(ρ))

(6.5) T
s(η) = γ ⊠ η = L(π∗

1(ρ))⊗ (π2 ◦ π)∗(η)

Proposition 6.3. Using the notation from above, we have an iso–special

H–manifold RP (π∗
1(ρ)) of type {H,K} and a bundle π∗(π∗

2(η)) over it, so

that

(1) If N is a non–singular real algebraic variety and η is a strongly

algebraic bundle, then RP (π∗
1(ρ)) is a nonsingular real algebraic H–

variety and (π2 ◦ π)∗(η)) is strongly algebraic.

(2) RP (π∗
1(ρ))H = B0 ⊔ B∞ where B0 = B∞ = RP s ×N . The normal

bundles are

ν(B0, RP (π∗
1(ρ))) = ν(B∞, RP (π∗

1(ρ))) = π∗
1(γ

s).

(3) The restrictions of ρ ⊠ η over the H–fixed set are

T
s(η)|B0

= π∗
2(η) and T

s(η)|B1
= π∗

1(γ
s)⊗ π∗

2(η).

Proof. All assertions follow straight forward from the construction. One
may note that we are using RP s with its natural algebraic structure. This
makes the canonical line bundle over RP s strongly algebraic. �

7. Proof of Proposition 2.10

In this section we prove Proposition 2.10. We deduce it from Proposi-
tion 7.1, which is also proved in this section. Throughout this section we
use the setting for Proposition 2.10, where C = Z2 and C acts on BO(2)
with fixed point set BU(1). The map Φ : EC ×C BU(1) → EC ×C BO(2)
is the one induced by the inclusion BU(1) →֒ BO(2), see (2.6).

Consider the canonical line bundles γ over RP a and η over CP b and the
projections π1 and π2 from RP a × CP b onto RP a and CP b. Let

κ0(a, b) : RP a × CP b −→ BZ2 ×BU(1) ≃ EC ×C BU(1)

be the product of the classifying maps of π∗
1(γ) and π∗

2(η) and

(7.1) κ(a, b) : RP a × CP b −→ BZ2 ×BU(1)

be the product of the classifying maps of the bundle π∗
1(γ) and π∗

1(γ)⊗π∗
2(η).

We will use the abbreviations

(7.2) κ0[a, b] = κ0(a, b)∗[RP a × CP b] & κ[a, b] = κ(a, b)∗[RP a × CP b]

for the images of the fundamental classes under the induced maps in Z2

homology. We have
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Proposition 7.1. The set B = {κ0[a, 2n + 1] | a, n ≥ 0} is a vector space

basis of ker
[
Φ∗ : H∗(EC ×C BU(1), Z2)→ H∗(EC ×C BO(2), Z2)

]
, and the

maps

κ0(a, 2n + 1) : RP a × CP 2n+1 −→ BZ2 ×BU(1) ≃ EC ×C BU(1)

are Steenrod representatives of the elements in B. They also form a set of

N∗–generators of the kernel of

(7.3) N∗(EC ×C BU(1))
∂c−→ N∗(EC ×C BO(2)).

Proof. With Z2 cofficients:

H∗(EC ×C BU(1)) ∼= H∗(BC)⊗H∗(BU(1)) ∼= Z2[w1]⊗ Z2[c1],

where w1 and c1 are the first universal Stiefel–Whitney and Chern classes.
The duals of the classes κ[a, b] with a, b ≥ 0 form a vector space basis of
H∗(BC)⊗H∗(BU(1)).

As a special case of Theorem 11.1, we find

coker Φ∗ ∼= H∗(BZ2, Z2)⊗
(
Z2[c1]/Z2[c

2
1]

)
.

For a vector space basis we only need tensor products where the second
factor is an odd power of c1. Observe that ker Φ∗ is dual to coker Φ∗ and for
a basis of the homology kernel of Φ∗ we may use the classes κ[a, b], where b
is odd. This establishes that B is a basis of ker Φ∗.

It follows from the Künneth formula ([7, p. 21], see also (9.3)) that the
Steenrod representatives

κ0(a, 2n + 1) : RP a × CP 2n+1 −→ BZ2 ×BU(1)

of the basis elements κ[a, 2n+1] of ker Φ∗ form a set of N∗ module generators
of ker ∂c in (7.3). �

Proof of Proposition 2.10. Apply the construction T in (6.5) with ρ = γa⊕R

and η = ηb, where γa is the canonical line bundle over RP a and ηb is the
canonical line bundle over CP b. The result is a strongly algebraic vector
bundle Ta(ηb). Its classifying map is an algebraic representative of a class

A in the bordism group N Z4

a+2b+1,c[{Z4, Z2}](BO(2)). As we calculated in

Proposition 6.3 (3):

(µ ◦ L ◦ jc)(A) = κ0[a, b] + κ[a, b].

Our next formula appears in [14, p. 65], and it holds if b is even. We will
supply a proof below. As usual ( ·

· ) denotes the binomial coefficients and δ
the Kronnecker symbol.

(7.4) κ0[a−2, b+1] = κ[a, b]+κ0[a, b]+
∑

n≥0

n∑

j=2

(
n
j

)
δb,n−jκ0[a−2j, b+ j].

According to Proposition 7.1, to show Proposition 2.10, it suffices to
find algebraically represented classes in NG

∗,c{[H,K]}(BO(2)) that map to
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κ0(∗, 2n + 1) under the map µ ◦L ◦ jc. To do so, we use the first coordinate
to grade the classes κ0[∗, ∗] and proceed by induction.

In the base cases (a = 2 and a = 3) the double sum in (7.4) is empty
and κ0[a − 2, b + 1] = κ[a, b] + κ0[a, b] = (µ ◦ L ◦ jc)(A), where A has the
classifying map of Ta(ηb) as an algebraic representative.

In the inductive step we treat the summand κ[a, b]+κ0[a, b] as in the base
case and in addition we use that the terms in the double sum are of lower
grading than the term on the left hand side in (7.4). More precisely, the
inductive assumption applies to terms κ0[a − 2j, b + j], where j, and with
this b + j, is odd. Treating (7.4) as an equation in ker(Φ∗), we may ignore
summands for even values of j. If the factor CP b+j has an even exponent,
then it corresponds under duality to a term with only even powers of c1

in H∗(EC ×C BU(1), Z2). These are the classes that divided out when we
formed coker(Φ∗) ∼= ker(Φ∗). �

Proof of (7.4) according to [14]. As before, we denote the canonical real and
complex line bundles by γ and η, the first Stiefel–Whitney class by w1, the
first Chern class modulo 2 by c1, and the projection from BO(1) × BU(1)
onto the first and second factor by π1 and π2.

Setting w1 = π∗
1w1(γ) and c1 = π∗

2c1(η), there is a natural identification

(7.5) H∗(BO(1)×BU(1), Z2) ∼= Z2[w1, c1].

Using the formalism in [16, p. 87]) and Proposition 6.3 (3), we find

w
(
(Ta(η))|RP a×CP b

)
= w(π∗

1(γ)× π∗
2(η)) = 1 + w2

1 + c1.

As in (7.1), κ : RP a × CP b → BO(1) × BU(1) classifies Ta(η) and we
calculate:

〈
wa′

1 cb′

1 , κ[a, b]
〉

=
〈
[κ∗w1]

a′

[κ∗c1]
b′ , [RP a]⊗ [CP b]

〉

=
〈
[π∗

1w1(γ)]a
′

[π∗
1w

2
1(γ) + π∗

2c1(η)]b
′

, [RP a]⊗ [CP b]
〉

=
b′∑

j=0

(
b′

j

)〈
π∗

1w
a′+2j
1 (γ) π∗

2c
b′−j
1 (η), [RP a]⊗ [CP b]

〉

= δa,a′δb,b′ +
b′∑

j=1

(
b′

j

)
δa,a′+2jδb,b′−j

If b is even, then
(

b+1
1

)
= b + 1 ≡ 1 (mod 2), and we find

(7.6)
〈
wa′

, cb′

1 , κ[a, b]
〉

= δa,a′ δb,b′ + δa,a′+2 δb,b′−1 +

b′∑

j=2

(
b′

j

)
δa,a′+2j δb,b′−j .
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We may write the twisted class κ[a, b] as a linear combination of non–twisted
classes κ0[·, ·]:

κ[a, b] =
∑

n≥0

Cn κ0[a + 2b− 2n, n].

We use that κ0[a
′, b′] is dual to wa′

1 cb′

1 and set a′ = a+ 2b− 2n and b′ = n in
(7.6) to calculate the coefficients Cn. In the last equation we note that the
second factor δ is 1 if and only if the first one is.

Cn =
〈
wa+2b−2n

1 cn
1 , κ[a, b]

〉

= δa,a+2b−2n δb,n + δa,a+2b−2n+2 δb,n−1 +

n∑

j=2

(
n
j

)
δa,a+2b−2n+2j δb,n−j

= δb,n + δb,n−1 +

n∑

j=2

(
n
j

)
δb,n−j.

In particular, Cb = Cb+1 = 1. For other values of n, Cn will be the sum in
our last expression for Cn. In the following computation, the first equality
is due to the definition of Cn and the second one due to the our expression
for Cn. To justify the last equality, we observe that δb,n−j = 1 if and only if
b = n− j. This allows us to replace κ0[a + 2b− 2n, n] by κ0[a− 2j, b + j].

κ[a, b] =
∑

n≥0

Cnκ0[a + 2b− 2n, n]

= κ0[a, b] + κ0[a− 2, b + 1]

+
∑

n≥0

n∑

j=2

(
n
j

)
δb,n−jκ0[a + 2b− 2n, n]

= κ0[a, b] + κ0[a− 2, b + 1]

+
∑

n≥0

n∑

j=2

(
n
j

)
δb,n−jκ0[a− 2j, b + j].

After moving two terms from one to the other side of the equation, we obtain
the formula in (7.4). �

8. Deduce Proposition 2.8 from Proposition 2.9

After a fair amount of preparation we will give the precise formulation of
Proposition 2.9, see Proposition 8.12, and apply it to prove Proposition 2.8.
Throughout, K ⊂ H ⊆ G, and K is of index 2 in H. We set C = G/K and
suppose that G is as in (2.2).

8.1. Bordism theoretic reductions. The following diagram will come
in handy. The decoration of the bordism groups spefies the permissable
isotropy groups on domains, and the c is the subscript is a reminder of the
codimension 1 assumption is the iso–special settings, see Subsection 2.4.
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The exact sequence in the first row decomposes as a direct sum of exact
sequences as in the second row, with one summand for each component F of
GK . In the middle term we restricted the codomain to (F)H = F ∩GH , the
H–fixed points. This is possible because we may assume that the domains
of representatives contract to the H–fixed point set and that maps factor
through the H–fixed point set, up to equivariant homotopy. The component
F of F ∩ GH is as in Proposition 8.3. The map s is a retraction defined in
Proposition 8.5. The isomorphism L is defined in Subsection 8.3. In the
transition to the second last row we divide out the inessential part of the
action. In the last transition we apply the Borel construction.

NG
r,c[{H,K}](G)

jc−−−−→ NG
r,c[{H,K}, {K}](G)

∂c−−−−→ NG
r−1[{K}](G)

x⊆

x⊆

x⊆

NG
r,c[{H,K}](F)

jc−−−−→ NG
r,c[{H,K}, {K}](FH

)
∂c−−−−→ NG

r−1[{K}](F)

s

y
y=

NG
r,c[{H,K}, {K}](F)

∂c,−−−−→ NG
r−1[{K}](F)

L

y∼=

y=

NG
r−1[{K}](F)

∂c−−−−→ NG
r−1[{K}](F)

∼=

y ∼=

y

NC
r−1[free](F)

∂c−−−−→ NC
r−1[free](F)

∼=

y ∼=

y

Nr−1(EC ×C F)
∂c−−−−→ Nr−1(EC ×C F)

8.2. The components of GH . We recall results from [9, §10]. Given a
representation Ω of G and a representation V of L ⊆ G, we define

(8.1) GR(Ω, V ) = {U ∈ GR(Ω, d) | U ∼= V },

where ∼= means isomorphic as representations of L. In [9, §10] we spelled
out polynomial equations that describe GR(Ω, V ) as a real algebraic vari-
ety. There is a one–to–one correspondence between the representations of
L that are summands of ResL Ω and the components of GR(Ω, d)L. We can
decompose the components GR(Ω, d)L as products. Let E be an index set
for the irreducible representations αǫ of L, ǫ ∈ E . Express V as a sum of
multiples of irreducible representations V =

∑
aǫαǫ, with ǫ ∈ E . Let Ωǫ be

the summand of Ω that restricts to a multiple of ǫ. Then

GR(Ω, V ) =
∏

ǫ∈E

GR(Ωǫ, aǫαǫ).
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More generally, let G = GR(Ω1, d1) × · · · × GR(Ωk, dk) be a product of
Grassmannians as in (2.2) and V1, . . . , Vk of representations of L with
dimVj = dj . Define coefficients ajǫ by writing each representation Vj as a
sum of multiple of the irreducible representations of L:

(8.2) Vj =
∑

ǫ∈E

ajǫαǫ.

The collection of the Vj’s determines a component F of GH :

(8.3) F =

k∏

j=1

GR(Ωj , Vj) =

k∏

j=1

∏

ǫ∈E

GR(Ωj,ǫ, ajǫαǫ).

We will suppress the dependence of F on the coefficients {ajǫ}.
8.3. The isomorphism L. We explain the construction of the map

L : NG
r,c[{H,K}, {K}](F) −→ NG

r−1[{K}](F).

The domain of f : M → F, representing a class A ∈ NG
r,c[{H,K}, {K}](F),

may be restricted to the closed G invariant unit disk bundle in a tubular
neighbourhood ν = ν(MH ,M) of the H–fixed point set. The restriction of
f to its unit sphere bundle f| : S(ν)→ F is a representative of L(A).

Proposition 8.1. The map L is an isomorphism.

Proof. We defined L on representatives of bordism classes. It is easy to see
that L defines a map of bordism classes and that it is homomorphism.

We construct the inverse of L. The domain of a representative f : N → F

of a class in NG
r−1[{K}](F) has a free involution, the action of H/K = Z2.

Because H acts trivially on the codomain F of f , we see that f factors
through N/Z2 and extends to a map Fπ over the mapping cylinder Mπ of
the quotient map π : N → N/Z2. As representative of L−1[f : N → F] we
use the class of Fπ : Mπ → F.

Let ν be a line bundle over B and π : S(ν)→ B the associated unit sphere
bundle. Denote the mapping cylinder of π by Mπ. Then D(ν) = Mπ, and it
follows that the constructions for L and L−1 are inverses of each other. �

8.4. Preferred fibres. We will standarize the fibres of bundles.

Choice 8.2. Given two irreducible representations α and β of H. We say
that α ∼K β if ResK α ∼= ResK β. We pick one irreducible representation of
H from each ∼K equivalence class and call it preferred.

We apply the adjective “preferred” to representations if they are sums
of preferred irreducible representations, and to bundles if their fibres are
preferred representations. If V is a preferred representation of H, then we
call GR(Ω, V ) preferred. This idea generalizes to components of GH , which
are products of spaces of the form GR(Ω, V ), see (8.3).

There are two observations of interest to us. The first one is true by
choice, the second one is easily checked by inspection.
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Proposition 8.3. Each component F of GK contains exactly one preferred

component F of GH .

Proposition 8.4. Let α and β be irreducible representations of H, such

that α ∼K β, and let R− be the nontrivial irreducible representation of H.

The either α ∼= β or α ∼= β ⊗ R−.

Our next result shows that we can force bundle fibres to be preferred,
module classes that come from algebraically represented ones. We make
reference to the middle two rows from our diagram in the beginning of the
section.

NG
r,c[{H,K}](F)

jc−−−−→ NG
r,c[{H,K}, {K}](F ∩GH)

∂c−−−−→ NG
r−1[{K}](F)

s

y
y=

NG
r,c[{H,K}, {K}](F)

∂c,prf−−−−→ NG
r−1[{K}](F).

Temporarily, we expanded the subscript of ∂ so that we may distinguish the
two connecting homomorphisms in this diagram.

Proposition 8.5. Let F be the preferred component of GH contained in

F ∩GH . Then there is a retraction

s : NG
r,c[{H,K}, {K}](F ∩GH)→ NG

r,c[{H,K}, {K}](F)

and elements in the kernel of (s − Id) are images, under j, of algebraically

represented classes in NG
r,c[{H,K}](F).

Corollary 8.6. Classes in the kernel of ∂c are images of algebraically rep-

resented classes in NG
r,c[{H,K}](F) under the map jc if and only if classes

in the kernel of ∂c,prf are images of algebraically represented classes in

NG
r,c[{H,K}](F) under the map s ◦ jc.

Proof of Proposition 8.5. Consider [M,f ] ∈ NG
r,c[{H,K}, {K}](F∩GH). We

will construct an algebraic representative (P,F ) of a class inNG
r,c[{H,K}](F),

such that its restriction to a neighbourhood of the H–fixed point set is of
the form (M,f)⊔(M ′f ′), and f ′ : M ′ → F maps to the preferred component
F. We set

s[f : M → F ∩GH ] = [f ′ : M ′ → F].

It will be obvious from the construction that s is linear and that s is the
identity on NG

r,c[{H,K}, {K}](F).

Set B = MH and let χ : B → BO(1) be a classifying map for the normal
bundle ν of B = MH in M . Set

P = RP (R⊕ ν).

The map f|B : B → F∩GH ⊆ GH classifies bundles ξ1, . . . , ξk over B. As
a manifold with exactly one orbit type, B has a strongly algebraic model,
see Theorem 2.4. We may assume that B is a real algebraic variety and
χ and f|B are entire rational. Each of the bundles decomposes as a direct
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sum ξj =
⊕

ξj,ǫ. The sum ranges over the index set E for the irreducible
representations αǫ of H and the fibre of ξj,ǫ is a multiple of αǫ.

We may, and we will, assume that P is a nonsingular real algebraic G–
variety, and that the projection π : P → B is entire rational, see Proposi-
tion 3.5. Set

ξj,ǫ =

{
π∗(ξj,ǫ) if ǫ is preferred

π∗(ξj,ǫ)⊗ L(R⊕ ν) if ǫ is not preferred

ξj = ⊕ξj,ǫ

where L is as in Section 6. Note also that the tensor product of strongly
algebraic bundles is strongly algebraic, see [12, Proposition 2.11]. As as-
sumed, π is entire rational, so that ξj and ξj,ǫ are strongly algebraic. Let

F : P → F ∩GH be the classifying map for the collection ξ1, . . . , ξk of bun-
dles over P . By choice F is entire rational, up to equivariant homotopy.
This concludes the construction of (P,F ) as it was asserted in the proof.

Recall that PH = B0 ⊔B∞. As before, B0 stands for the zero-section in
the projective bundle, while B∞ stands for the section at infinity. As we
stated in Lemma 6.2, the fibre of L(R ⊕ ν) over B∞ is R−, and tensoring
with R− changes a non-preferred irreducible representation into a preferred
one, see Proposition 8.4. Thus, by tensoring summands with L(R ⊕ ν) if
necessary, we assured that over B∞ the fibres of the bundles ξj are preferred.

We let M ′ be a H-invariant tubular neighbourhood of B∞ in P and f ′ the
restriction of F over M ′. Up to homotopy, f ′ = F|B∞

◦ r, where r retracts
M ′ to B∞. It follows that f ′ maps to F, up to equivariant homotopy. This
concludes the proof of the lemma. �

Proof of Corollary 8.6. “ ⇐= ”: Let f : M → F ∩ GH represent a class in
ker(∂c), and let (P,F ) and f ′ : M ′ → F be as in the proof of Proposition 8.5.
Then [M ′, f ′] ∈ ker(s ◦ ∂c,prf) because

jc[P,F ] = [M,f ] + [M ′, f ′].

For this direction of the proof, we assumed that we have an algebraic
representative (P ′, F ′) for a class in NG

r,c[{H,K}](F) that maps to (M ′, f ′)

under jc. In other words, (M ′, f ′) is a neighbourhood of the H–fixed set in
(P ′, F ′). Glue (P,F ) and (P ′, F ′) together along their common part of the

neighbourhood (M ′, f ′) of the the H–fixed set, calling the result (P̃ , F̃ ):

(P̃ , F̃ ) = (P,F )#(M ′f ′)(P
′, F ′).

Both, (P,F ) and (P ′, F ′) have an algebraic model, and (P̃ , F̃ ) is cobordant

to (P,F ) ⊔ (P ′, F ′). Thus (P̃ , F̃ ) has an algebraic model. When we apply

jc,prf to (P̃ , F̃ ), then we obtain (M,f).
“ =⇒ ”: Naturally, ker(∂c,prf ◦ s) ⊆ ker(∂c). The desired implication

follows from the observation that s is a retraction. �
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8.5. Essential and inessential representations. In this section F de-
notes a preferred component of GH . To reduce the complexity of the dis-
cussion, we will distinguish an essential and inessential factor of F. The
inessential factor will have no bearing on our argument and we will be able
to split it off in (8.11). That will leave us with the essential factor.

Definition 8.7. The essential representation α of a cyclic group H has C

as its underlying space, and a generator h of H acts by multiplication with√
−1 on it. All other irreducible representations are called inessential.

Remark 8.8. A cyclic group H will have an essential representation only if
its order is divisible by 4. For an essential representation, the action of H
extends to an action of S1.

Recall the factorization of F in (8.3) with the notation developed in Sub-
section 8.2. We break up the factorization into blocks, the essential one Fe

and an inessential one Fi.

(8.4) F = Fe × Fi =

k∏

j=1

GR(Ωj,e, aj,eαe)×
k∏

j=1

∏

ǫ∈Ei

GR(Ωj,ǫ, aj,ǫαǫ).

Being cute about our notation, we used e to also denote the index for the
essential irreducible representation of H. We denoted the index set for the
inessential irreducible representations of H by E i.

Let F be the component of GK that contains F. There is a factorization
of F that corresponds to the one of F:

(8.5) F =

k∏

j=1

GR(Ωj,e, aj,e ResK αe)×
k∏

j=1

∏

ǫ∈Ei

GR(Ωj,ǫ, aj,ǫ ResK αǫ).

We call the first factor Fe and the second one Fi.
An important distinction between inessential and essential irreducible rep-

resentation is as follows. If α is an inessential irreducible representation of
H, then α and ResK α are of the same type. They are either both real or
both complex. On the other hand, the essential representation is of complex
type, while its restriction to K is of real type.

We describe the factors in (8.4) and (8.5) in classical terms. Our principal
reference is [9, Section 10], augmented with special considerations from [13]
for the cyclic groups action case.

For the essential factor and the naturally induced action of G (and of S1)
we have

(8.6) Fe =

k∏

j=1

BU(aj,e) ⊆ Fe =

k∏

j=1

BO(2aj,e) & Fe = (Fe)G = (Fe)S
1

.

Remark 8.9. One may describe finite approximations of BO(2a) as homo-
geneous spaces, and the action of S1 on these approximations is regular, see
[11].
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On the other hand, for inessential irreducible representations αǫ of H it
follows that

(8.7) GR(Ωj,ǫ, aj,ǫαǫ) = GR(Ωj,ǫ, aj,ǫ ResK αǫ).

The reason is that both spaces are a BO(aj,ǫ) or a BU(aj,ǫ), depending on
the type of αǫ. It follows that

(8.8) Fi = Fi =
k∏

j=1

∏

ǫ∈E

BΛ(aj,ǫ),

where Λ = O or Λ = U , depending on whether αǫ is of real or complex type.
The naturally induced action of G on these spaces is trivial.

Proposition 8.10. Finite approximations of Fi have totally algebraic ho-

mology, and bordism classes in N∗(F
i) have algebraic representatives.

Proof. Throughout the argument we are using finite approximations. As
stated in [1], BO(a) has totally algebraic homology. The algebraic represen-
tatives of the homology classes are the Schubert cells. A similar argument
shows that BU(a) has totally algebraic homology. As a product of BO(a)’s
and BU(a)’s, Fi has totally algebraic homology. According to the classical
theory, classes in N∗ are algebraically represented. It follows that classes in
N∗(F

i) ∼= N∗ ⊗H∗(F
i, Z2) are algebraically represented. �

Classes in N∗(F
i) have algebraic representatives. This follows from the

nonequivariant theory because Fi is a product of BO(a)’s and BU(a)’s, and
these spaces have totally algebraic homology. The algebraic representatives
of the homology classes are Schubert cells. The argument given in [1] for
the orthogonal case also holds for the unitary case.

8.6. Stripping off inessential fibres. We continue the discussion from
Subsection 8.5. Let

(8.9) φ : Fe →֒ Fe and Φ : EC ×C Fe →֒ EC ×C Fe

be the inclusion and its Borel construction. These maps specialize to the
maps with the same name in (2.5). Recall that the action of G (and C) on

the inessential factors is trivial, and that Fi = Fi. With this we obtain an
equivariant commutative diagram:

Fe ι−−−−→ F = Fi × Fe π−−−−→ Fe

φ

y
yId×φ

y

Fe ι−−−−→ F = Fi × Fe π−−−−→ Fe

Here ι denotes an inclusion, π a projection, and π ◦ ι = Id.
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We apply the Borel construction and find the commutative diagram

EC ×C Fe −−−−→ Fi × (EC ×C Fe) = EC ×C F −−−−→ EC ×C Fe

y
y

yΦ

EC ×C Fe −−−−→ Fi × (EC ×C Fe) = EC ×C F −−−−→ EC ×C Fe

Induced in bordism, we obtain the commutative diagram

(8.10)

N∗(F
i)⊗N∗

N∗(EC ×C Fe)
∼=−−−−→ N∗(EC ×C F)

yId⊗∂e
c ∂c

y

N∗(Fi)⊗N∗
N∗(EC ×C Fe)

∼=−−−−→ N∗(EC ×C F).

The horizontal isomorphisms are the naturally induced Künneth maps, see
[7, Section 19]. The map ∂e

c is the connecting homomorphism in the bordism
sequence of the pair EC×C (Fe,Fe). Naturally, it is induced by the inclusion
Φ : EC ×C Fe → EC ×C Fe. The second vertical map is the last horizontal
one in the diagram in Subsection 8.1. The tensor products are over the
Z2–algebra N∗. For the kernels of the vertical maps in (8.10) we obtain

(8.11) ker ∂c
∼= N∗(F

i)⊗N∗
ker ∂e

c .

8.7. Deduce Proposition 2.8 from Proposition 2.9. Having estab-
lished more precise notation, we restate Proposition 2.9. We will refer to a
diagram like the one in Subsection 8.1, only that we go straight from the
second to the last row, and we only consider the essential factor of F. For
future reference (in Section 9) we add one row, where the vertical map µ is
the Thom homomorphism.

NG
r,c[{H,K}](Fe

)
je
c−−−−→ NG

r,c[{H,K}, {K}](Fe
)

∂e
c−−−−→ NG

r−1[{K}](F
e
)

L◦s

y
y

Nr−1(EC ×C Fe)
Φ∗−−−−→ Nr−1(EC ×C F

e
)

µ

y
y

H∗(EC ×C Fe, Z2)
Φ∗−−−−→ H∗(EC ×C F

e
, Z2)

Remark 8.11. F
e
has only one C–fixed component, which makes it somewhat

redundant to write L◦s instead of simply L. Keeping the s may avoid some
confusion.

Proposition 8.12. Let K ⊂ H ⊆ G be as before, and C = G/K. Let Fe be

the essential factor (Section 8.5) of a preferred component F (Section 8.4)
of GH and let Fe be as in (8.5) (see also (8.6)). Any class in the kernel of

∂e
c : Nr−1(EC ×C Fe) −→ Nr−1(EC ×C Fe)
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is (L ◦ s ◦ je
c )(A) for some algebraically represented A ∈ NG

r,c[{H,K}](Fe),

and je
c (A) has a representative M → (Fe)H factors through Fe.

Remark 8.13. If 4 does not divide the order of H, then Fe = Fe is a point
(see Definition 8.7 and 8.5) and Proposition 2.9 holds trivially.

Deduce Proposition 2.8 from Proposition 8.12. Proposition 2.8 asserts that
elements in the kernel of ∂c as in the first row of the diagram in Section 8.1
can be lifted back to algebraically represented classes in NG

r,c[{H,K}](G).

Points in the domains of representatives of classes in NG
r,c[{H,K}](G) are

in {H,K}, so that the maps factor through GK . We may thus replace
NG

r,c[{H,K}](G) by NG
r,c[{H,K}](GK). A decomposition of GK into com-

ponents leads to a direct sum decomposition of NG
r,c[{H,K}](GK). Hence it

suffices to prove Proposition 2.8 with G being replaced by GK . This gets us
to the second row in the diagram in Subsection 8.1.

Based on Corollary 8.6, the desired assertion will follow if classes in the
kernel of

NG
r,c[{H,K}, {K}](F)

∂c,prf−→ NG
r−1[{K}](F)

can be lifted back to algebraically represented classes in NG
r,c[{H,K}](F),

so that the restriction to the fixed point set factors through F. It is only
a bordism theoretic reformulation (as discussed in Subsection 8.1) to use
instead elements in the kernel of

(8.12) Nr−1(EC ×C F)
∂c−→ Nr−1(EC ×C F).

We compared the kernel of this map with the kernel of

(8.13) Nr−1(EC ×C Fe)
∂e

c−→ Nr−1(EC ×C Fe)

and found that ker ∂c
∼= N∗(F

i)⊗N∗
ker ∂e

c , see (8.11). Classes in the factor
N (Fi) have algebraic representatives, see Proposition 8.10.

A typical generator of a class in ker ∂c
∼= N∗(F

i) ⊗N∗
ker ∂e

c may be rep-
resented as a product

(f : N → Fi × (EC ×C Fe)) = (f1 : N1 → Fi)× (f2 : N2 → EC ×C Fe).

In Proposition 8.12 we asserted that (N2, f2) is the image (under the map

Le◦s◦je
c ) of an algebraically represented class A ∈ NG

r,c[{H,K}](Fe
). Denote

an algebraic representative of A by F : M → F
e
. As the action on N1 is

trivial, we see that Le◦s◦je
c maps the class of (f1 : N1 → Fi)×(F : M → F

e
)

to the class of (N, f).
The cartesian product of two entire rational maps is another entire ratio-

nal map. We conclude that (F : M → F
e
)× (f1 : N1 → Fi) is algebraic, up

to bordism, and with this we have provided an algebraic representative of a
class that maps to the one of (N, f). �
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9. Deduce Proposition 2.9 and 8.12 from Proposition 9.1
Reduction to homology

We will deduce Proposition 2.9 (reformulated as Proposition 8.12) from
its homological variant, Proposition 9.1. This proposition will be proved in
Section 13. Let Φ : EC ×C Fe → EC ×C Fe as in (8.9) and µ ◦ L ◦ s ◦ je

c as
in the diagram in Subsection 8.7.

Proposition 9.1. Let K ⊂ H ⊆ G and C = G/K be as always and Fe and

Fe as in (8.6). Any class in the kernel of

Φ∗ : H∗(EC ×C Fe, Z2) −→ H∗(EC ×C Fe, Z2)

is the image of an algebraically represented class in NG
r,c[{H,K}](Fe) under

the map µ ◦ L ◦ s ◦ je
c .

We recall the definition of the Thom homomorphism (see [7, p. 14]):

µ : N∗(EC ×C Fe)→ H∗(EC ×C Fe, Z2).

If f : M → EC ×C Fe represents a class in Nn(EC ×C Fe), then

µ[M,f ] = f∗[M ] ∈ H∗(EC ×C Fe, Z2),

where [M ] stands for the fundamental class of the manifold M . The Thom
homomorphism is functorial and it commutes with the connecting homo-
morphism in the long exact bordism sequence of a pair.

Proof of Propositions 2.9 & 8.12. Set θ[M,f ] = 1 ⊗ µ[M,f ] and consider
the diagram (a modification of the bottom square in the diagram in Subsec-
tion 8.7)

(9.1)

N∗(EC ×C Fe)
Φ∗=∂e

c−−−−→ N∗(EC ×C Fe)

θ

y
y

N∗ ⊗H∗(EC ×C Fe, Z2)
1⊗Φ∗−−−−→ N∗ ⊗H∗(EC ×C Fe, Z2)

While the Thom homomorphism µ is an epimorphism, θ may not be onto.
The top row in this diagram is the same as the map in Proposition 8.12.

To define a homorphism going upwards in (9.1) one needs to pick a basis
of H∗(EC ×C Fe, Z2) consisting of homogeneous classes. If x is a chosen
basis element, then one needs to represent it by a manifold M together with
a map f : M → EC ×C Fe so that f∗[M ] = x. This is possible and called
Steenrod representation. The induced map

(9.2) η : N∗ ⊗H∗(EC ×C Fe, Z2)→ N∗(EC ×C Fe)

is an isomorphism, see [7, p. 21]. The diagram in (9.1) with arrows go-
ing upwards does not commute due to the need of making choices. The
composition of the two constructions

H∗(EC ×C Fe, Z2)→ N∗(EC ×C Fe)→ H∗(EC ×C Fe, Z2)

will be the identity.
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In our choice for the construction of η we may start out with a basis of
ker(Φ∗) and expand it to a basis of H∗(EC ×C Fe, Z2). We may then lift
the basis elements of ker(Φ∗) (Steenrod representation) to classes in ker(∂e

c ).
With this choice the linear extension

(9.3) η : N∗ ⊗ ker(Φ∗)
∼=−−−−→ ker(∂e

c )

will be an isomorphism.
With the isomorphism in (9.3) the proof of Proposition 8.12 is an imme-

diate consequence of Proposition 9.1. �

10. Cohomology and homology of cyclic groups

Eventually we will need to understand the homology of a cyclic group
from a real algebraic point of view. We recall the relevant result. Suppose
that C is a cyclic group. In [19] Serre credits unnamed sources for

(10.1) H∗(BC, Z2) ∼=





Z2 if |C| is odd,

Z2[x] if |C| is twice an odd number,

Z2[x, y]/〈x2 = 0〉 if 4 divides |C|.
Here x stands for a class in grading 1 and y for one in grading 2.

We write ζ(r) for the unique nonzero class in Hr(BC, Z2), and ζ(r) for
its dual. One may express BC as a direct limit of finite approximations
BsC, and each BsC is a homogeneous space. As homogeneous space BsC
has a unique real algebraic structure (see [11]) which we will use thoughout.
Making use of explicit constructions from [15, 3.4.7 LEMMA] we previously
proved:

Proposition 10.1. [13] For any 0 6= ζ(r) ∈ Hr(BC, Z2) and for a suffi-

ciently large s, there exists a nonsingular real algebraic variety Z of dimen-

sion r and an entire rational map κr : Zr → BsC, such that (κr)∗[Zr] = ζ(r).

Remark 10.2. If the order of C is divisible by 4, then the relation between
even and odd dimensional classes is as follows. Consider the diagram for the
principal C–bundle classified by the map in the bottom row:

(10.2)

Z̃2r
eκ2r−−−−→ EsCyπ

yπC

Z2r
κ2r−−−−→ BsC.

View C as a subgroup of S1. To the diagram in (10.2) we associate a
diagram, which classifies the principal C–bundle in its first column:

(10.3)

Z̃2r+1 = S1 ×Z2
Z̃2r

eκ2r+1−−−−→ EsCyπ

yπC

Z2r+1 = S1/C × Z2r
κ2r+1−−−−→ BsC.
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The action of S1 on EC induces an action of S1/C on BsC, and the bundle
is classified by

(10.4) κ2r+1 : (S1/C)× Z2r → BsC where κ2r+1(t, x) = t κ2r(x).

Furthermore, if κ2r is regular, then so is κ2r+1, because it is the compo-
sition of a regular map and the regular action of (S1/C ′).

Eventually we will need a comparison.

Proposition 10.3. Consider a short exact sequence of cyclic groups

1 −→ Z2 −→ C −→ C ′ −→ 1

where 4 divides |C|. Then the following induced maps are isomorphisms:

H2N (BZ2, Z2)→ H2N (BC, Z2) & H2N+1(BC, Z2)→ H2N+1(BC ′, Z2).

11. The Cokernel of Φ∗ and kernel of Φ∗

We assume that C is of even order. In preparation for the proof of Propo-
sition 9.1 we compute the cokernel of the map

Φ∗ : H∗(EC ×C Fe, Z2) −→ H∗(EC ×C Fe, Z2),

induced by Φ : EC ×C Fe → EC ×C Fe (see (8.9)), where (compare (8.6))

(11.1) Fe = BU(a1)× · · · ×BU(ak) & Fe = BO(2a1)× · · · ×BO(2ak).

The action of C on Fe is trivial, see (8.6), and FeC
= Fe. We dropped the

‘e’ from the subscript of the multiplicities, writing ai instead of ai,e, because

we are only dealing with Fe and Fe.
According to a Künneth formula and the computation of the cohomology

of BU(a) (see [5]) applied to each factor of Fe, and with Z2–coefficients
throughout,

(11.2)
H∗(EC ×C Fe) ∼= H∗(BC)⊗H∗(Fe)

∼= H∗(BC)⊗ Z2[{cj,i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}],
where cj,i denotes the i–th Chern class modulo 2 for the j–th factor BU(aj)
of Fe.

Theorem 11.1. With the notation set up so far:

(11.3) coker Φ∗ = H∗(BC, Z2)⊗
Z2[{cj,i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}]
Z2[{c2

j,i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}]
.

Proof. In [13] we calculated H∗(EC×CFe, Z2) using the Leray–Serre spectral
sequence of the fibration

(11.4) Fe → EC ×C Fe → BC

The E2–term is (note the overline in reference to Fe)

E
∗,∗
2 = H∗(BC, Z2)⊗H∗(Fe, Z2).

The transgression and the differential at the E2–level are nontrivial.



ALGEBRAIC REALIZATION FOR CYCLIC GROUP ACTIONS 27

Let us look at the second factor first. We have a subring

(11.5) Z2[{w2
j,2i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}] ⊆ H∗(Fe).

The wj,2i are the Stiefel–Whitney classes of the real classifying bundles γ
2aj

R

over BO(2aj). By definition, γ
2aj

R
pulls back to the complex classifying

bundle γ
aj

C
over BU(aj). With Z2 coefficients we have φ∗(wj,2i) = cj,i.

For the purpose of calculating the cokernel of Φ∗ it is convenient to com-
pare spectral sequences. In addition to the fibration in (11.4) we consider
the fibration

(11.6) Fe → EC ×C Fe = BC × Fe → BC.

The E2–term of its Leray–Serre spectral sequence is

E∗,∗
2 = H∗(BC, Z2)⊗H∗(Fe, Z2).

The fibration is a product, so that the spectral sequence collapses at the
E2–level.

On the E2–level the inclusion induces the map

E2 = H∗(BC, Z2)⊗H∗(Fe, Z2)
1⊗φ∗

←−−−− E2 = H∗(BC, Z2)⊗H∗(Fe, Z2).

There is a nonzero class ζ(i) ∈ H i(BC, Z2) in each degree i (see (10.1)).

There is a differential ∇ on H∗(Fe, Z2), and dp,q
2 : E

p,q
2 → E

p+2;q−1
2 is given

by

dp,q
2 (ζ(i) ⊗ u) = ζ(i+2) ⊗∇u.

One may conclude from [8, Corollary 1.2] that

(11.7) ∇u = 0 =⇒ φ∗(u) ∈ Z2[{c2
j,i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}]

Having the identity on the first factor of the E2–term of the spectral
sequence, we conclude that

(11.8) im Φ∗ = H∗(BC, Z2)⊗ Z2[{c2
j,i | 1 ≤ j ≤ k, 1 ≤ i ≤ aj}].

The asserted formula for the cokernel of Φ∗ is an immediate consequence. �

12. Representing Characteristic Classes

We will describe Steenrod representatives of homology classes that are
dual to a standard basis of H∗(BU(a), Z2). Theorem 12.1 describes the
generators that we will use in the proof of XXXX.

Consider Borel’s diagonal map (shuffling the coordinates)

(12.1) ∆ : BU(1)× · · · ×BU(1)︸ ︷︷ ︸
a times

→ BU(a).

Identify BU(1) with CP∞ and express elements in BU(1) in homogeneous
coordinates. Then ∆ sends ([x10, x11, . . . ], [x20, x21, . . . ], . . . , [xa0, xa1, . . . ])
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to 


x10 0 · · · 0 x11 0 · · · 0 . . .
0 x20 · · · 0 0 x21 · · · 0 . . .
...

...
...

...
...

...
...

...
...

0 0 . . . xa0 0 0 . . . xa1 . . .




Borel [5] showed that the cohomology of BU(a) is a polynomial ring in
the universal Chern classes

(12.2) H∗(BU(a), Z2) ∼= Z2[c1, . . . , ca],

and the image of ∆∗ consists of the symmetric functions in the degree 2
generators z1, . . . za of the cohomology of the BU(1)’s. Furthermore, ∆∗(ci)
is the i–th elementary symmetric function in the variables {z1, . . . , za}.

Let I = (i1, . . . , ia) be a multi–index. For each 1 ≤ j ≤ a we have the
inclusion µj : CP ij →֒ BU(1), where BU(1) is the j–th factor in (12.1). For
the multi–index I we have the product µI = µi1 ×· · ·×µia. Composed with
∆ we get

(12.3) ιI : CP I = CP i1 × · · · × CP ia
µI→֒ BU(1)× · · · ×BU(1)

∆−→ BU(a).

Following Milnor [16, pp. 186] we say that two monomials zI and zI′

are equivalent if one is derived from the other one by permuting variables.
We write zI ∼ zI′ . Adding all zI′ that are equivalent of zI we get the
symmetrization of zI :

(12.4) S(zI) =
∑

zI′ .

We may apply the process of symmetrization also to maps as in (12.3):

(12.5) S
(
ιI : CP I −→ BU(a)

)
=

⊔

I′∼I

(
ιI′ : CP I′ −→ BU(a)

)

In the following the action of G or C on BO(2a) is as in (8.6). In partic-
ular, the fixed point set is BU(a).

Theorem 12.1. Let κr : Zr → BC be as in Proposition 10.1. Allow r to

vary over all non–negative integers and I over all multi–indices of length a
with at least one odd entry. The maps

(12.6) κr ×S(ιI) : Zr ×S(CP I) −→ BC ×BU(a)

are Steenrod representatives of a set of Z2 vector space generators of

ker (Φ∗ : H∗(EC ×C BU(a), Z2)→ H∗((EC ×C BU(2a), Z2)) ,

as well as a set of N module generators of the kernel of

∂ : N∗(EC ×C BU(a)) −→ N∗(EC ×C BU(2a)).

Proof. The second claim is an immediate consequence of the first one due
to the Künneth formula, see (9.2).

We address the first claim. In Theorem 11.1 we calculated

coker (Φ∗ : H∗((EC ×C BU(2a), Z2)→ H∗(EC ×C BU(a), Z2)) .
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It has a Z2 vector space basis consisiting of elements of the form ζ(r) ⊗ u,
where ζ(r) is as in (10.1) and u is a monomial in Chern classes with at least
one odd exponent.

The symmetrizations S(zI) of monomials of degree n, allowing one mono-
mial from each equivalence class, form a basis of the Z2 vector spaces of
all symmetric functions in the variables {z1, . . . .za}. Working with Chern
classes on one hand and symmetric functions on the other one allows us to
explicitely translate conditions on characteristic classes into conditions for
manifolds used to represent their duals.

Modulo squares, which are divided out in the cokernel of Φ∗, odd powers
of Chern classes map under ∆∗ to symmetrizations of polynomials in the
variables zj (1 ≤ j ≤ a) with at least one odd exponent. The fundamental
cohomology class of CP I is

(12.7) [CP I ] = µ∗(zI) = µ∗
i1

(zi1
1 ) · · · µ∗

ia(z
ia
a ).

Having an odd exponent means that one of the entires of I is odd. Thus,
Steenrod representatives for the second factor of the afore mentioned basis
elements are linear combinations of S

(
ιI : CP I −→ BU(a)

)
. Crossing the

Steenrod representatives for the first and second factor provides us with
Steenrod representatives for the duals of a basis of coker(Φ∗). �

13. Proof of Proposition 9.1

This section is meaningful only if 4 divides the oder of H. Otherwise H
does not have any essential representations, see Definition 8.7, Fe and Fe are
points, and Proposition 9.1 holds trivially. Note also that 2 divides the order
of C = G/K because K is of order 2 in H ⊆ G. After some preparation
we will prove Proposition 9.1 in the case where 4 does not divide |C|. After
some more preparation we prove we will prove the proposition in the case
where 4 divides |C|. Recall also (see (8.6)) that Fe = BU(a1)×· · ·×BU(ak).

Proposition 13.1. Proposition 9.1 holds if it does so in the special case

where Fe = BU(a).

Let us introduce some notation before we start the proof. Let Φ be as in
(8.9) and ker(Φ∗) as in Proposition 9.1. Define Φj as one of the factors.

Φj : EC ×C BU(aj) −→ EC ×C BO(2aj).

Then we may consider (the hat indicates a term that is omitted)

Kj = ker(Φj)∗ ⊗H∗(BU(a1)× · · · × B̂U(aj)× · · · ×BU(ak)) ⊂ ker Φ∗

A product maps to zero if one factor does so. This implies

Lemma 13.2. The Kj generate ker Φ∗ as j varies between 1 and k.

Proof of Proposition 13.1. In Proposition 9.1 it is asserted that we can lift
back classes in ker Φ∗ to algebraically represented classes in NG

∗,c(F
e). Ac-

cording to the lemma, it suffices to do so for classes A ∈ Kj. SetA = Aj⊗Ac
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where Aj ∈ ker(Φj)∗ (for some j) and

Ac ∈ H∗

(
BU(a1)× · · · × B̂U(aj)× · · · ×BU(ak)

)
.

Let f1 : M1 → BU(aj) be an algebraic representative for Aj lifted back
to a class in NG

r,c[{H,K}](BO(2aj)). It exists due to the k = 1 special case
of Proposition 9.1, which we are assuming. Let

f2 : M2 → BU(a1)× · · · × B̂U(aj)× · · · ×BU(ak)

be a Steenrod representative for the complementary factor Ac. The group
G acts trivially on this factor, and according to the classical theory we may
assume that this map is algebraic. The product

f1 × f2 : M1 ×M2 → BU(aj)×BU(a1)× · · · × B̂U(aj)× · · · ×BU(ak),

composed with a reshuffling of the coordinates, provides an algebraic repre-
sentative of A lifted back to a class in NG

∗,c(F
e). This is what we needed to

show to prove our assertion. �

13.1. The Case where 4 does not divide the order of C.

Lemma 13.3. If 4 does not divide the order of C, then Proposition 9.1
holds if it holds in the special case where K = Z2 and H = G = Z4.

Proof. We will work with a commutative diagram (with coefficients for the
homology throughout)

NG
∗,c[{H,K}](Fe)

J−−−−→ H∗(EC ×C Fe)
Φ∗−−−−→ H∗(EC ×C Fe)

y
y

y

NG′

∗,c [{H ′,K ′}](Fe)
J ′

−−−−→ H∗(EC ′ ×C′ Fe)
Φ′

∗−−−−→ H∗(EC ′ ×C′ Fe)
y

y
y

NG′′

∗,c [{H ′′,K ′′}](Fe)
J ′′

−−−−→ H∗(EC ′′ ×C′′ Fe)
Φ′′

∗−−−−→ H∗(EC ′′ ×C′′ Fe)

The first row is from Proposition 9.1, and J is an abbreviation for µ◦L◦s◦je
c .

In the proposition we asserted that elements in the kernel of Φ∗ are images
of algebraically represented classes in NG

∗,c[{H,K}](Fe).
There is a subgroup L of index 2 in K which acts trivially on all spaces

and fibres of bundles (encoded in Fe). The problem for G, H, and K is
the same as the one for G′ = G/L, H ′ = H/L and K ′ = K/L. Note that
K ′ = Z2 and H ′ = Z4. The group C ′ = G′/K ′ is still C. We get from the
first to the second row of the diagram by dividing out the ineffective action
of L.

Secondly, G′ has an odd order factor O′ that acts freely on the domains
of classes in NG′

∗,c [{H ′,K ′}](Fe). The factor O′ is also a factor of C ′. Set

G′′ = G′/O′, H ′′ = H ′, K ′′ = K ′, and C ′′ = G′′/K ′′ = C ′/O′, and observe
that G′′ = H ′′ = Z4. The first vertical map between the second and third
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row is obtained by passing to orbit spaces with respect to the action of O′.
The in homology are induced by quotient map C ′ → C ′′.

The converses to the vertical maps between the second and third row
are the induction map in bordism and the transfer in homology, both of
which are onto in our situation. Use [20] for bordism and [6] for homology.
Induction preserves algebraic representation [12]. In summary, if we can lift
back classes in the kernal of Φ′′

∗ to algebracially represented classes, then we
can do so also for classes in the kernel of Φ∗, and this proves the assertion
of the lemma. �

Proof of Proposition 9.1 if 4 6 | |C|. If the order of C is twice an odd number,
then, according to Lemma 13.3, we are essentially dealing with the situation
in which K = Z2, H = G = Z4 and C = Z2. The assertion is that in

NG
∗,c[{H,K}](Fe)

J−−−−→ H∗(EC ×C Fe, Z2)
Φ∗−−−−→ H∗(EC ×C Fe, Z2),

elements in the kernel of Φ∗ are images under J = µ◦L◦s◦je
c of algebraically

represented classes in NG
∗,c[{H,K}](Fe).

According to Theorem 12.1, a representative of a typical generator of the
kernel is of the form

(13.1) κr ×S(ιI) : Zr ×S(CP I) −→ BC ×BU(a)

which is obtained from a map

(13.2) κr × µI : Zr × CP i1 × · · · × CP ia −→ BC ×BU(1)× · · · ×BU(1)

after symmetrization and composition with Borel’s diagonal approximation.
The multi–index I = (i1, . . . .ia) has at least one odd entry, say ij.

According to Proposition 2.10 (proved in Section 7)

κr × ij : Zr × CP ij −→ BC ×BU(1)

is the image of an algebraically represented class in NG
r,c[{H,K}](BO(2))

under the map J . Multiply this data with the other factors in (13.2), the
maps it : CP it → BU(1) for t 6= i. We can symmetrize the second factor
of this data, including the lift back. Composed with Borel’s diagonal map
∆ we obtain an algebraic representative of a class in N Z4

∗,c [{Z4, Z2}](BU(a))
that maps to the typical generator that we started out with in (13.1). With
this we have deduced Proposition 9.1 from Proposition 2.10. �

13.2. The Case where 4 divides the order of C. Given a G equivariant
function f : M → Fe, and making use of the action of S1 on Fe = BO(2a)
(see Remarks 8.8 and 8.9 and (8.6)), we set

(13.3) f̃ : S1 ×H M → Fe setting f̃ [z, x] = zf(x).

If f : M → Fe represents a class A ∈ NG
∗,c[{H,K}](Fe), then we write Ξ(A)

for the class that is represented by f̃ : S1 ×H M → Fe. This defines an
N∗–module homomorphism

(13.4) Ξ : NG
∗,c[{H,K}](Fe) −→ NG

∗+1,c[{H,K}](Fe).
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Lemma 13.4. If A is algebraically represented, then so is Ξ(A).

Proof. If M is a nonsingular real algebraic variety, then so is the balanced
product S1 ×H M , see [18] or [11, Section 3]. If f is entire rational, then so

is f̃ . To see the latter, one uses that the action of S1 on Fe is regular (as
observed in Remark 8.9) and the universal mapping property of the algebraic
quotient, see [11, Section 3]. Taken together, if (M,f) is algebraic, then so

is (S1 ×H M, f̃). If A is algebraically represented, then so is Ξ(A). �

Lemma 13.5. Let A ∈ NG
2r,c[{H,K}](Fe) be a class in grading 2r, then

(13.5) (µ ◦ L ◦ s ◦ je
c )(Ξ(A)) = [(µ ◦ L ◦ s ◦ je

c )(A)]+1.

The superscript +1 in (13.5) indicates that we increase the grading on
the first factor of H∗(BC, Z2) ⊗H∗(F

e, Z2) by 1. In Section 10 we denoted
the unique nonzero class in Hi(BC, Z2) by ζ(i) so that

(∑
ζ(m−i) ⊗ Yi

)+1
=

∑
ζ(m−i+1) ⊗ Yi

Proof of Lemma 13.5. We abbreviate µ ◦ L ◦ s ◦ je
c in (13.5) as J . Set

(13.6) J(A) =
∑

i

ζ(2r−i) ⊗ Yi & J(Ξ(A)) =
∑

i

ζ(2r+1−i) ⊗ Y i.

Suppose A is represented by f : M → Fe. We may think of je
c (A) and

je
c (Ξ(A)) as being represented by

(13.7) χν × fH : MH → BZ2 × Fe

and

(13.8) χΞ(ν) × Ξ(f)H : (S1/H)×MH → BZ2 × Fe.

The map χν : MH → Fe classifies the normal bundle ν(MH ,M) (a line
bundle) of MH in M , while the map χΞ(ν) : (S1/H)×MH → BZ2 classifies

ν(S1×H MH , S1×H M) the normal bundle of S1×H MH = S1/H ×MH in
S1×H M . A comparison of the construction underlying Ξ in (13.3) and the
one in the transition from (10.2) to (10.3) reveals that they are the same.
(The Z2 in (10.3) corresponds to H/K = Z2 in (13.3), where K is divided
out as it acts trivially). The latter construction, the one in Remark 10.2,
increases the grading of an even-dimensional class in H∗(BC, Z2) by 1.

Note also that Yi is nonzero in (13.6) only if i is even, because Fe is a
product of BU(a)’s. As A is assumed to be in even grading, we see that the
J(A) have terms ζ(2r−i) ⊗ Yi only for even values of 2r − i. Thus the effect
of applying Ξ to A on these first terms is to increase their grading by 1.

Let us study the second factor of the map in (13.8):

Ξ(f)H : (S1/H)×MH → Fe.

As an immediate consequence of the definition in (13.3) and the fact that
S1 acts trivially on Fe (see (8.6)) we deduce that Ξ(f)H = fH ◦ π2, where
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π2 denotes the projection on the second factor. This implies that Yi = Y i

in (13.6).
Taken together, the analysis of the effect of Ξ on the first and second

factors of the summands of J(A) in (13.6) verifies the formula in (13.5). �

Proof of Proposition 9.1 if 4 divides the order of C. The claim is that in

NG
∗,c[{H,K}](Fe)

J−−−−→ H∗(EC ×C Fe, Z2)
Φ∗−−−−→ H∗(EC ×C Fe, Z2)

elements in the kernel of Φ∗ are images under J = µ◦L◦s◦je
c of algebraically

represented classes in NG
∗,c[{H,K}](Fe). Due to Proposition 13.1, we may

assume that Fe = BU(a), instead of being a product of BU(a)’s, and that
Fe = BO(2a).

By definition

ker∗(Φ∗) ⊆ H∗(EC ×C Fe, Z2) ∼= H∗(BC, Z2)⊗H∗(F
e, Z2).

We described these kernels in Theorem 12.1, and one sees that increasing
the grading by 1 in the first factor induces an isomorphism

ker2∗(Φ∗)→ ker2∗+1(Φ∗).

It follows from Lemmata 13.4 and 13.5 that if we can lift back classes in
ker2∗(Φ∗) to algebraically represented classes in NG

∗,c[{H,K}](Fe), then we
can do so also for classes in ker2∗+1(Φ∗).

We turn our attention to classes in ker2∗(Φ∗). Necessarily, they have their
first factor in H2∗(BC, Z2). Due to the isomorphism in Proposition 10.3,
we may work with Z2 instead of C and use H as acting group. In this
case the lift back to algebraically represented classes is as in the proof of
Proposition 9.1 in the case, discussed earlier in this section, where 4 does
not divide the order of C.

The map H2N (BZ2, Z2) → H2N (BC, Z2) is induced by the orbit map
BZ2 → BC, and that means geometrically that we use induction to get
from Z2–data to C–data. Finite induction, i.e., crossing with C×Z2

works
within the algebraic category. Applied to an algebraic map it results again
in an algebraic map [9, Section 3]. Allowing for a kernel of the action, we
obtain an action of G. This concludes our proof of Proposition 9.1 also in
the second case where the order of C is divisible by 4. �
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