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Abstract

Tomographic particle image velocimetry (Tomo-PIV) is a tech-

nique for three-component three-dimensional (3C-3D) veloc-

ity measurement based on the tomographic reconstruction of

a volume intensity field from multiple two-dimensional projec-

tion. As such the performance and accuracy of this technique is

highly dependant on the algorithm used for reconstruction. This

paper presents an evaluation of four different tomographic re-

construction algorithms, namely multiplicative algebraic recon-

struction techinique (MART); adaptive algebraic reconstruction

technique (AART); improved iterative algorithm for sparse ob-

ject reconstruction (IIASOR); and simultaneous iterative recon-

struction technique (SIRT). Results indicate that the MART and

AART algorithms provide considerably better particle field re-

constructions for fewer iterations.

Introduction

Tomographic particle image velocimetry (Tomo-PIV) (4) is a

recently introduced tool for three-component three-dimensional

(3C-3D) velocity field measurements and has the potential to

play an important role in the understanding of the complex 3D

topology of turbulent flows. The technique is based on the

tomographic reconstruction of instantaneous volumetric parti-

cle field intensity distributions from multiple simultaneous two-

dimensional (2D) projections or views of the measurement vol-

ume. Reconstructed 3D intensity fields can then be three-

dimensionally cross-correlated in 3D to determine the 3D par-

ticle displacements based on the same principles as standard

planar PIV.

The reconstruction of an image or field from multiple projec-

tions dates back to Radon (12). The earliest applications ap-

peared in the 1950s where radio astronomers used strip projec-

tions to reconstruct the distribution of radio emissions across

celestial bodies (3), and was quickly adopted for medical di-

agnostics (11) in the form of computed axial tomography or

CAT scans. The popularity of tomography stems from its non-

intrusive nature and its use of standard two-dimensional mea-

surement instruments. The widespread use of tomography in

medical diagnostics, radio astronomy and geophysics has lead

to the development of numerous reconstruction techniques that

are optimised for various applications.

The application to transient fields such as fluid flows and heat

transfer, represent a special case of reconstruction problems,

owing to the need for the simultaneous recording of each pro-

jection. View angle limitations also become apparent in practi-

cal investigations where optical access to wind or water tunnels

is often limited. For Tomo-PIV the reconstruction must also be

able to resolve the multiple high intensity sources created by the

scattering from numerous particles, while maintaining a low in-

tensity background. This requirement is important for accurate

cross-correlation based velocity extraction and is a departure

from many medical applications, which tend to focus on the re-

construction of only one or two objects at a time. The process-

ing time required for the reconstruction of the multiple large 3D

data sets needed to study turbulent statistics also requires highly

efficient reconstruction algorithms, especially if Tomo-PIV is to

become a standard laboratory tool. The algebraic family of re-

construction techniques appear particular suited to view-limited

tomography, however the reconstruction quality can still vary

greatly depending on the specific technique, relaxation parame-

ters, number of iterations and projection quality.

This paper presents a comparison of different algebraic recon-

struction algorithms towards the robust application of Tomo-

PIV. The algorithms examined include the multiplicative alge-

braic reconstruction technique (MART) (6); adaptive algebraic

reconstruction technique (AART) (10); improved iterative al-

gorithm for sparse object reconstruction (IIASOR) (9); and si-

multaneous iterative reconstruction technique (SIRT) (6). Sim-

ulated data sets are used to compare of each reconstruction with

a known particle field and thereby enable quantification of the

reconstruction quality.
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Figure 1: Schematic of multi-camera algebraic reconstruction

technique. Filled voxels represent particle locations required to

satisfy the filled pixels in each CCD recorded projection.

Tomographic Reconstruction

In Tomo-PIV multiple CCD arrays are used to record projec-

tions of a common laser illuminated particle seeded fluid vol-

ume. The intensity recorded at each detector or pixel Pi on the

CCD array, represents the integration of intensity through the il-

luminated volume along the pixel’s line-of-sight si. A schematic

of this is shown in figure 1. This can be expressed as:

Pi =
Z

∞

−∞

I (x,y,z)dsi (1)

where I(x,y,z) represents the unknown intensity source func-

tion. The goal of tomography is to invert the highly under deter-

mined integral equation from each projection to determine and

hence reconstruct the intensity distribution within the volume.

Reconstruction techniques commonly reside in either the

Fourier or spatial domain. Fourier techniques involving con-

volution are highly efficient and commonly used in medical di-

agnostics, yet in most cases require numerous equally spaced
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projections that are unlikely to be realised in most fluid flow ap-

plications. A group of techniques that are better suited to lim-

ited view reconstruction are the algebraic reconstruction meth-

ods. These require the intensity volume be divided into a 3D

grid of voxel elements as shown in figure 1. The integral along

each pixel’s line-of-sight can then be expressed in terms of a

weighting matrix Wi j, which represent the contribution of each

voxel’s intensity to that recorded by each pixel:

Pi = ∑
j

Wi jI j (2)

where I j is a vector representing the intensity of each voxel. The

contribution of each voxel to each pixel can be determined using

relative volume intersection of a cylinder and a sphere (7) rep-

resenting the pixel’s line-of-sight and voxel, respectively. The

intensity value in each voxel is then iteratively corrected such

that the calculated projections of each voxel Pi approach the

recorded intensity at each pixel. This iterative correction forms

the basis of the algebraic reconstruction techniques, however

the nature and implementation of this correction can vary sig-

nificant and subsequently effect the convergence and quality of

the reconstruction.

Algebraic Reconstruction Algorithms

Four different iterative techniques and presented below, each

being chosen for their ability to handle limited projections.

Multiplicative algebraic reconstruction technique (MART)

The MART technique (5) involves a multiplicative correction

to the voxel intensity based on the ratio of the recorded pixel

intensity Pi and the projection of voxel intensities ∑ j Wi jI
k
j from

the previous iteration k:

Ik+1
j = Ik

j

(

Pi

∑ j Wi jI
k
j

)µWi j

(3)

where µ is a relaxation parameter typically chosen between 0

and 2. Each voxel’s intensity is corrected to satisfy one projec-

tion or pixel at a time, with a single iteration being completed

only after every projection has been considered. This method

has been proven to converge to the maximum information based

entropy solution (8), which represents the most probable recon-

struction based on the recorded projections. Elsinga et al. (4)

indicate that this algorithm was preferable to that of additive al-

gebraic reconstruction technique (ART), which was shown to

leave artefacts or tracer in the reconstructed field.

Improved iterative algorithm for sparse objects (IIASOR)

Li et al. (9) introduced an algorithm referred to as the improved

iterative algorithm for sparse object reconstrution, which at-

tempts to select the sparse solution from the multiple intensity

fields that can satisfy the recorded projections. The solution

method is based on Lagrange duality, which involves perform-

ing the following iteration for each projection in each iteration

to solve for the dual variable ω j:

ωk+1
j = ωk

j +β
Pi −∑ j Wi jg1

(

ωk
j

)

MIN
(

∑ j W
2
i jg2

(

ωk
l

)

,γ
)Wi j (4)

g1 (t) =

{

t−1
ε t ≥ 1

0 t < 1
(5)

g2 (t) =

{

1
ε t ≥ 1

0 t < 1
(6)

where β is a relaxation parameter, ε is small positive number

used to perturb the solution, and MIN(a,b) returns the mini-

mum of a and b or in this case prevents the denominator from

becoming smaller than the small positive constant γ. Equation

4 converges quickly but can become unstable, prompting the

switch to the following equation to solve ω j if instability of the

solution is observed:

ωk+1
j = ωk

j +
Pi −∑ j Wi jg1

(

ωk
j

)

1
ε ∑ j W

2
i j

Wi j (7)

The initial values of ω j are given by:

ω0
j = ∑

i

Wi jPi (8)

The intensity in each voxel I j can then be determined from the

values of ω j:

Ik
j = g1

(

ωk
j

)

(9)

Adaptive algebraic reconstruction technique (AART)

This technique is an extension to the additive ART algorithm

that involves the adaptive adjustment of relaxation parameters

during each stage of the reconstruction (10). In the basic addi-

tive ART algorithm the each voxels intensity is updated for each

projection in each iteration as follows:

Ik+1
j = Ik

j −λ
i,k+1
j

(

∑
j

Wi jI
k
j −Pi

)

(10)

where λ
i,k+1
j represents the relaxation parameter for each voxel

for a given projection i and interation k. In standard ART this

relation parameter is either a constant or at least the same for

each voxel in a given iteration. In AART this relaxation param-

eter is instead adjusted for each voxel so that as each projections

is considered, the voxels that have a larger intensity contribution

to the ith projection receive the largest correction. This is done

via the ratio of the intensity contribution of each voxel yk
j to the

integration of this intensity contribution along the projection’s

lines-of-sight ∑ j Wi jy
k
j , where:

yk
j = Ik

jWi j (11)

and the relaxation parameter becomes:

λ
i,k+1
j =

yk
j

∑ j Wi jy
k
j

(12)

Simultaneous iterative reconstruction technique (SIRT)

Simultaneous algorithms such as SIRT target a least squares so-

lution to the line-of-sight integral equation, enabling simultane-

ous consideration of every projection in each iteration. The aim

of such an algorithm is to remove the sensitive of the reconstruc-

tion to error in each projection (6), requiring I j to simultaneous

satisfy all projections. The SIRT iteration (2) is shown below:

Ik+1
j = Ik

j +λk ∑i

[

Wi j

(

Pi −∑h WihIk
h

)

/∑h Wih

]

∑i Wi j
(13)

λk = α+
β

k
(14)

In this case we have incremented the relaxation parameter as

suggested by Bangliang et al. (1), which reduces the correction
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in subsequent iterations as the solution is approached. Initial

values for I0
j are obtained in the same manner as equation 8:

I0
j = ∑

i

Wi jPi (15)

Implementation of the Weighting Matrix

The weighting matrix Wi j used in each of the considered alge-

braic reconstruction techniques represents the contribution of

each voxel to each pixel, with dimension m × n where m is

the number of pixel and n is the number of voxels. A typical

1280×1024 pixel camera with a volume of 1000×1000×200

voxel grid will therefore require a matrix of 2.6×1014 elements

for each camera. This matrix is only a factor of the camera ori-

entation and measurement volume configuration and can there-

fore be calculated once and reused for each set of recorded pro-

jections, reducing reconstruction time. Unfortunately for a typ-

ical four camera Tomo-PIV setup this will require four matrices

of 2.6×1014 elements, corresponding to a file-sizes of approx-

imately 520 terra-bytes each.

CCD 

array 

Test 

Volume Voxel 

subgrids 

Pixel  
line-of-sight 

Figure 2: Pixel line-of-sight schematic for a sub-grid weighting

matrix.

Each pixel is likely to see only a small portion of the total num-

ber of voxels, meaning that the weighting matrix will be very

sparse. This lead us to divide the matrix is a series of sub-grids

along the viewing direction as shown in figure 2. These sub-

grids are sized based on greatest area seen by a pixel in each

plane, meaning that if a pixel sees at most a voxel grid of vw

voxels in each plane then the weighting matrix for each camera

can be presented by m×nw×nz where nz is the number of vox-

els in the line-of-sight direction. For the setup discussed above

this would reduce the number of elements to 2.4×109 per cam-

era. The integration along the line-of-sight of a given pixel Pi

can then be calculated as:

Pi = ∑
nz

∑
vw

Wi jI j (16)

A transposed form of the weighting matrix can similarly be

formed by considering a pixel sub-grid of pw pixels on the CCD

array for each pixel, enabling the initial solution I0
j given in

equations 8 and 15 to be calculated as:

I0
j = ∑

pw

Wi jPi (17)

requiring a matrix of n× pw elements.

Unfortunately SIRT did not lends itself as well to this approach,

resulting in considerable longer calculation times as discussed

later.

Reconstruction Artefacts and Ghost Particles

One common problem that arises in reconstruction of a particle

field is the presence of non-zero intensity regions that do not

corresponded to actual particle locations (4). Without having

prior knowledge of the true particle location it is not possible

to distinguish these regions from true particles, hence the term

ghost particles is used. These ghost particles or reconstruction

noise originate from there being multiple voxel intensity distri-

butions that are capable of satisfying the camera observed pro-

jections (see figure 3). Naturally as more projections are added

the number of possible intensity distribution should be reduced,

along with the number of ghost particles.

Figure 3: Schematic of particle location ambiguity with multi-

ple possible particle solutions when only 2 projection view an-

gles are taken. Real particle •; ghost particle ◦.

Figure 4 illustrates that as the number of particles increases so

to will the number of non-zero projections, which will results

in an increase in the possible line-of-sight intersections. The

consequence of this is that a greater number of intensity distri-

bution will now satisfy the recorded projection and more ghost

particle will be created.

Reconstruction Simulations Method

In order to assess the application of the previously discussed

algorithms to the limited-view particle field reconstruction of

Tomo-PIV, particle locations and corresponding projections

193



Figure 4: Schematic of increased possible particle solutions as

the number of particles is increased. Real particle •; ghost par-

ticle ◦.

were simulated. The simulations were carried out under the

same condition used by (4), namely a 1000× 200 voxel plane

with three cameras viewing linear projections along the minor

dimension of the interrogation region with a 20 deg angular in-

terval between each camera, similar to that shown in figure 1.

The projection simulated for each camera consisted of a single

row of 1008 pixels. 50 spherical particles with Gaussian iten-

sity distributions with a peak intensity of 4096 were randomly

located with a diameter of 3 voxels.

Reconstructions were then undertaken using each of the algo-

rithms with initial intensity distributions and relaxations param-

eters as in table 1. The CPU processing time for each algorithm,

including the time taken to load each weighting matrix and im-

age, was recorded for reconstruction on a two 2.6 GHz dual-

core AMD Opteron processors system with 16 GB RAM.

The overall reconstruction quality was evaluated by determining

a correlation coefficient Q between the reconstructed intensity

field Irec, j and the intensity fields consisting of only the Gaus-

MART IIASOR AART SIRT

I0
j = 1 ω0

j = ∑i Wi jPi I0
j = 1 I0

j = ∑i Wi jPi

µ = 1 MIN = 20 β = 1 α = 1.5

β = 1 β = 2.0

ε = 0.2

Table 1: Algorithm initial intensity distribution and relaxation

parameters

sian spheres Igaus, j:

Q =

∑ j Irec, jIgaus, j
√

∑ j I2
rec, j ∑ j I2

gaus, j

(18)

which includes variating in particle intensity, location and the

presence of ghost particles.

The relative number of ghost to true particles was determined

using a region merging technique. This involved grouping inter-

connected voxels of non-zero reconstructed intensity into mul-

tiple regions, corresponding to particles. These reconstructed

regions were then compared against common region locations

in the Gaussian sphere intensity field to determine if each region

represented a true or ghost particle.

Reconstruction Results

An example of the reconstruction after five iterations can be

seen figure 5 for each algorithm. In the case of the MART and

AART algorithms a high quality reconstruction can be seen af-

ter only a small number of iterations. The same can not however

be said for the IIASOR and SIRT algorithm. In the case of the

IIASOR algorithm the solution shows a large number of small

intensity regions with little indication of the original particles.

SIRT on the other-hand behaves in a manner similar to that re-

ported by Elsinga et al. (4) when the additive ART algorithm

was used, showing the establishment of a series of tracers along

the line-of-sight of each non-zero projection.

Figure 6 shows the extension to fifteen iterations of the same

particle field. These results indicate only a slight improvement

for both the MART and AART algorithm. Further progess has

been made by both the IIASOR and SIRT algorithms, however

each were found to require approximately 50 iteration before a

solution of similar quality of the five iterations of MART and

AART was achieved.

Plots of the reconstruction coefficient, percentage of ghost parti-

cles and CPU process time against the number of iterations are

presented in figure 7. Results show that for a limited number

of iterations a considerably higher reconstruction coefficient is

obtained by both the MART and AART algorithms. These al-

gorithms also produce a much lower number of ghost particles,

however this remaind on the order of 50%. A comparison of

the processing times indicate a slightly faster reconstruction for

the AART algorithm, with an apparent slowing of the MART

algorithm. This disparity may become more noticeable as the

number of voxels is increased.

As mentioned previously the use of a sub-grid based weighting

matrix did not lend itself to efficient implementation of the SIRT

algorithm, owing to the continuous summing along each row of

the weighting matrix. This resulted in the SIRT algorithm tak-

ing over 30 CPU seconds for a single iteration. For this reasons

SIRT has been excluded from figure 7c. It should be stated that

if some of these summations were to be performed off-line it

should be possible to considerably improve the efficiency of the

SIRT algorithm. The significantly larger number of iterations

required by this algorithm in comparision to MART and AART
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(a)

(b)

(c)

(d)

(e)

Figure 5: Reconstruction of simulated projections from 3 cameras at an angular interval of 20 deg for 50 particles in a 1000×200 voxel

plane, after five iterations. (a) Original Gaussian particles; (b) MART; (c) IIASOR; (d) AART; (e) SIRT.
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(a)

(b)

(c)

(d)

(e)

Figure 6: Reconstruction of simulated projections from 3 cameras at an angular interval of 20 deg for 50 particles in a 1000×200 voxel

plane, after fifteen iterations. (a) Original Gaussian particles; (b) MART; (c) IIASOR; (d) AART; (e) SIRT.
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Figure 7: Reconstruction quality for different numbers of iter-

ations of simulated projections from 3 cameras at an angular

interval of 20 deg for 50 particles in a 1000×200 voxel plane.

(a) Correlation coefficient; (b) percentage of ghost particles; (c)

CPU processing time.
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Figure 8: Probability density function of true and ghost parti-

cles. (a) MAART; (b) AART.

meant that further optimisation of the SIRT algorithm was not

performed in this paper.

A comparison of the probability density fuction (PDF) for the

intensity of true and ghost particles generated by both the

MART and AART algorithms can be seen in figure 8. While

both algorithms were shown to produce ghost particle on the

order of 50% it is clear that most of these particles are of much

lower intensity than the true reconstructed particles. It should

therefore be possible to remove many of these ghost particle by

careful thresh-holding of the reconstructed intensity field.

Conclusions

A series of iterative algebraic reconstructed algorithms are

specifically tested for their applicability to Tomo-PIV particle

field reconstruction. Results indicate that the MART and AART

algorithms provides higher quality reconstruction for fewer iter-

ations and less processing time than either the IIASOR or SIRT

techniques. An efficient means of implementing the weighting

matrix is also discussed.

Acknowledgements

The support of the Australian Research Council of this research

is gratefully acknowledged. C.H. Atkinson was supported by

an Australian Postgraduate Scholarship while undertaking this

research.

197



*

References

[1] Bangliang, S., Yiheng, Z., Lihui, P., Danya, Y. and

Baofen, Z., The use of simultaneous iterative recon-

struction technique for electrical capacitance tomography,

Chemical Engineering Journal, 77, 2000, 37–41.

[2] Benson, T. M. and Gregor, J., Modified simultaneous it-

erative reconstruction technique for faster parallel compu-

tation, in IEEE Nuclear Science Symposium Conference

Record, 2005, 2715–2718, 2715–2718.

[3] Bracewell, R. N., Strip integration in radio astronomy,

Australian Journal of Physics, 9, 1956, 198–217.

[4] Elsinga, G. E., Scarano, F., Wieneke, B. and van Oud-

heusden, B. W., Tomographic particle image velocimetry,

Experiments in Fluids, 41, 2006, 933–947.

[5] Gordon, R., Bender, R. and Herman, G. T., Algebraic re-

construction techniques (art) for three-dimensional elec-

tron microscopy and x-ray photography, J. Theor. Biol.,

29, 1970, 471.

[6] Herman, G. T. and Lent, A., Iterative reconstruction algo-

rithms, Compt. Biol. Med., 6, 1976, 273–294.

[7] Lamarche, F. and Leroy, C., Evaluation of the volume of

intersection of a sphere with a cylinder by elliptic inte-

grals, Computer Physics Communications, 59, 1990, 359–

369.

[8] Lent, A., Maximum entropy and the multiplicative art,

in Proc. Conf. Image Analysis and Evaluation, SPSE,

Toronto, 1976.

[9] Li, M., Kudo, H., Hu, J. and Johnson, R. H., Improved

iterative algorithm for sparse object reconstruction and its

performance evaluation with micro-ct data, IEEE Trans-

actions on Nuclear Science, 51, 2004, 659–666.

[10] Lu, W. and Yin, F., Adaptive algebraic reconstruction

technique, Med. Phys., 31, 2004, 3222–3230.

[11] Oldendorf, W. H., Solated flying spot detection of ra-

diodensity discontinuities-displaying internal structural

pattern of complex object, IRE - Transactions on Bio-

Medical Electronics, BME, 8, 1961, 68–71.

[12] Radon, J., Uber die bestimmung von funktionen durch

ihre integralwerte langs gewisser mannigfaltigkeiten, Ber.

Sachsiche Akad. Wiss., Leipzig, Math.-Phys., 69.

198


