# Algebraic Representation of Correlation Functions in Integrable Spin Chains 

H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama

Dedicated to the memory of Daniel Arnaudon


#### Abstract

Taking the XXZ chain as the main example, we give a review of an algebraic representation of correlation functions in integrable spin chains obtained recently. We rewrite the previous formulas in a form which works equally well for the physically interesting homogeneous chains. We discuss also the case of quantum group invariant operators and generalization to the XYZ chain.


## 1. Introduction

The investigation of integrable spin chains has a long history since Bethe's work [1], in which the Bethe Ansatz method was invented. It was only a start, and later was followed by a line of new ideas and concepts such as commuting transfer matrices, the Yang-Baxter equation, the quantum inverse scattering method, quantum groups and the quantum KZ equation. In a series of papers $[2,3,4,5]$, we studied an algebraic formula for the correlation functions in the infinite XXX, XXZ and XYZ spin chains. Our method is a synthesis of those mentioned above.

The study of correlation functions has been a highlight in the researches of these spin chains. In the early days the only knowledge was the nearest neighbor correlator, written in terms of $\log 2$ for the XXX model. It was a big surprise when Takahashi [29] found $\zeta(3)$ in the next-nearest correlator, where $\zeta(s)$ is the Riemann zeta function. In [11, 12, 13], the quantum vertex operators in the representation theory of the quantum affine $\mathfrak{s l}_{2}$ algebra were used to obtain multiple integral formulas for the general correlation functions of the XXZ model. Kitanine, Maillet, Slavnov and Terras rederived and further generalized these integral formulas to include magnetic field and time [14, 15] (see [16] for a review). Study of the finite temperature case has also been launched recently by Göhmann, Klümper and Seel [10], and progress has been made in the calculation of long distance
asymptotics of some correlators by the Lyon group [17] and Korepin, Lukyanov, Nishiyama and Shiroishi [19]. However it was not immediately understood why $\zeta(3)$ appears in the next-nearest correlators.

In $[6,7]$ Boos and Korepin explicitly performed the multiple integrals for the next-nearest case and beyond, and again found odd integer values of $\zeta(s)$. Further exact results including the XXZ chain have been obtained by Kato, Nishiyama, Sakai, Sato, Shiroishi and Takahashi [24, 25, 26, 27]. In [8], Boos, Korepin and Smirnov studied the inhomogeneous correlation functions for the XXX model, and arrived at a conjecture on the algebraic structure for the general correlation functions: in brief, one transcendental function is enough to describe all of them. In the limit of the homogeneous chain, the Taylor series expansion of this function produces the special values of $\zeta(s)$ as well as $\log 2$.

In $[2,3,4]$, we proved the conjecture by giving an algebraic formula, and obtained similar results in the XXZ and XYZ models. The number of transcendental functions increases to two and three, respectively, as the number of parameters in the models increases. The main idea in the proof was the use of the reduced quantum KZ equation, and the main ingredient in the algebraic formula was the transfer matrix defined via an auxiliary space of non-integer dimensions.

The algebraic formulas presented in these papers had some deficiencies: the beauty of the formula was marred by a chip on the edge of a comb. The relevant transfer matrices are 'incomplete', in that they act on the tensor product where two spaces are omitted. Also the formula for the inhomogeneous model consists of a sum of terms, which have poles when one tries to take the homogeneous limit. They cancel each other only after the summation. In [5], these spots were cleaned up in the XXX model.

In the present paper, we give the algebraic formula for the density matrix in a transparent form, not only in the XXX model but also in the XXZ and the XYZ models. We use the infinite XXZ chain as the main object:

$$
\begin{equation*}
H_{\mathrm{XXZ}}=\frac{1}{2} \sum_{j}\left(\sigma_{j}^{1} \sigma_{j+1}^{1}+\sigma_{j}^{2} \sigma_{j+1}^{2}+\Delta \sigma_{j}^{3} \sigma_{j+1}^{3}\right) \tag{1.1}
\end{equation*}
$$

The density matrix $\rho_{n}$ belongs to the space $\operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)^{*}$ dual to the space of local operators $\operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$. We consider the space $\left(\mathbb{C}^{2}\right)^{\otimes n}$ as the subchain of the entire infinite chain on which the XXZ Hamiltonian acts. It has the defining property

$$
\rho_{n}(\mathcal{O})=\langle\operatorname{vac}| \mathcal{O}|\mathrm{vac}\rangle .
$$

Here the right-hand side is the ground state average of the operator $\mathcal{O} \in$ End $\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$. We will give the formula for $\rho_{n}$ in the form

$$
\begin{equation*}
\rho_{n}(\mathcal{O})=\frac{1}{2^{n}} \operatorname{tr}_{\left(\mathbb{C}^{2}\right)^{\otimes n}}\left(e^{\Omega_{n}^{*}} \mathcal{O}\right), \tag{1.2}
\end{equation*}
$$

where $\Omega_{n}^{*}$ is a nilpotent linear operator acting on $\operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$. The formula for $\Omega_{n}^{*}$ is given by a twofold integral:

$$
\begin{aligned}
\Omega_{n}^{*}=\frac{1}{2 \kappa^{2}} \iint \frac{d \mu_{1}}{2 \pi i} \frac{d \mu_{2}}{2 \pi i} & \operatorname{tr}_{\mathbb{C}^{2} \otimes \mathbb{C}^{2}}\left(B\left(\mu_{1,2}\right)\left(1 \otimes \pi^{(1)}\left(\mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\right)\left(\pi^{(1)}\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right)\right) \otimes 1\right)\right) \\
& \times\left(\omega_{1}\left(\mu_{1,2}\right) X_{1, n}^{*}\left(\mu_{1}, \mu_{2}\right)+\omega_{2}\left(\mu_{1,2}\right) X_{2, n}^{*}\left(\mu_{1}, \mu_{2}\right)\right)
\end{aligned}
$$

Here, $\kappa$ is a constant, $B\left(\mu_{1,2}\right)$ is a $4 \times 4$ matrix depending on $\mu_{1,2}=\mu_{1}-\mu_{2}$, and $\omega_{i}(i=1,2)$ are certain transcendental functions. The operator $\mathcal{T}_{n}^{*}(\mu)$ is given in terms of the $L$ operator $L(\mu) \in U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \operatorname{End}\left(\mathbb{C}^{2}\right)$ as the monodromy matrix in the adjoint action:

$$
\mathfrak{T}_{n}^{*}(\mu)(\mathcal{O})=L_{1}(\mu)^{-1} \cdots L_{n}(\mu)^{-1} \mathcal{O} L_{n}(\mu) \cdots L_{1}(\mu) \in U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \operatorname{End}\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right) .
$$

The deformation parameter $q=e^{\pi i \nu}$ and the anisotropy parameter $\Delta$ in (1.1) are related as $\Delta=\frac{q+q^{-1}}{2}$. We denote the irreducible two-dimensional representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$ by $\pi^{(1)}$.

The operators $X_{i, n}^{*}\left(\mu_{1}, \mu_{2}\right)(i=1,2)$ is obtained from the monodromy matrix

$$
\operatorname{Tr}_{\mu_{1,2}} \mathcal{T}_{n}^{*}\left(\frac{\mu_{1}+\mu_{2}}{2}\right)=X_{1, n}^{*}\left(\mu_{1}, \mu_{2}\right)-\mu_{1,2} X_{2, n}^{*}\left(\mu_{1}, \mu_{2}\right)
$$

where $\operatorname{Tr}_{d}$ denotes the trace functional to be defined in the text (see (3.10)).
Formula (1.3) is in the homogeneous case, and the integrand has poles at $\mu_{i}=0(i=1,2)$. The integral means taking residues at these poles. A similar formula is also given in the inhomogeneous case where the Hamiltonian is replaced with the transfer matrix for the inhomogeneous six vertex model with the spectral parameters $\lambda_{1}, \ldots, \lambda_{n}$ associated with the tensor components of $\left(\mathbb{C}^{2}\right)^{\otimes n}$. For the details, see Theorem 3.1 and (4.2)-(4.3). In this case, the integrand has poles at $\mu_{i}=\lambda_{j}(i=1,2 ; j=1, \ldots, n)$. Taking residues at these poles we get the formula obtained in the previous paper [3].

For a general local operator $\mathcal{O}$, we need two functions $\omega_{i}(i=1,2)$ to express its expected value. However, if $\mathcal{O}$ is invariant under the action of $U_{q}\left(\mathfrak{s l}_{2}\right)$, the formula simplifies, and we need only $\omega_{1}$. This case is related to the spin chain with an open boundary condition given by the Pasquier-Saleur Hamiltonian [22]. The XXZ Hamiltonian with periodic boundary condition corresponds to the CFT with the central charge $c=1$. In contrast, the Pasquier-Saleur Hamiltonian corresponds to the CFT with $c=1-6 \nu^{2} /(1-\nu)$. The above property of the invariant operators was conjectured in [9]. We give a proof to this conjecture.

We also give a formula similar to (1.2), (1.3) for the XYZ model.
The paper is organized as follows. In Section 2, the density matrix is defined. In Section 3, an algebraic formula of the operator $\Omega_{n}$, which is dual to $\Omega_{n}^{*}$, is given. In Section 4, the algebraic formula is written in an alternative form. In Section 5, the formula for the invariant operators are given. In Section 6, the formula for the XYZ model is given.

The text is followed by three appendices. In Appendix A, we give the derivation of the new formula for $\Omega_{n}$. In Appendix B, we make a comparison between
different conventions used in this paper and in the book [12]. In Appendix C, formulas for the normalization factors are gathered for the XXZ and the XYZ models.

## 2. Density matrix for the $X X Z$ chain

Consider the XXZ Hamiltonian

$$
\begin{equation*}
H_{\mathrm{XXZ}}=\frac{1}{2} \sum_{k=-\infty}^{\infty}\left(\sigma_{k}^{1} \sigma_{k+1}^{1}+\sigma_{k}^{2} \sigma_{k+1}^{2}+\Delta \sigma_{k}^{3} \sigma_{k+1}^{3}\right) \tag{2.1}
\end{equation*}
$$

where $\sigma^{\alpha}(\alpha=1,2,3)$ are the Pauli matrices and

$$
\Delta=\cos \pi \nu
$$

is a real parameter. We consider the two regimes, the massive regime $\Delta>1$, $\nu \in i \mathbb{R}_{>0}$, and the massless regime $|\Delta|<1,0<\nu<1$.

Take a sub-interval of the lattice consisting of sites $1, \ldots, n$, where $n$ is a positive integer. Let $\left(E_{\epsilon, \bar{\epsilon}}\right)_{j}$ denote the matrix unit $\left(\delta_{a \epsilon} \delta_{b \bar{\epsilon}}\right)_{a, b= \pm}$ acting on the site $j$. By a density matrix, we mean the one whose entries are the ground state averages of products of the $\left(E_{\epsilon, \bar{\epsilon}}\right)_{j}$ 's,

$$
\begin{align*}
& \rho_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \quad=\sum_{\substack{\epsilon, \ldots, \epsilon_{n} \\
\bar{\epsilon}_{1}, \ldots, \bar{\epsilon}_{n}}} \lambda_{1}, \ldots, \lambda_{n}\langle\operatorname{vac}|\left(E_{\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}}\left(E_{\epsilon_{1}, \bar{\epsilon}_{1}}\right)_{1} \cdots\left(E_{\epsilon_{n}, \bar{\epsilon}_{n}}\right)_{n} . \tag{2.2}
\end{align*}
$$

Here we consider the model with inhomogeneities $\lambda_{1}, \ldots, \lambda_{n}$ attached to each site. More precisely, we mean the following.

Let $V=\mathbb{C}^{2}$ be the two-dimensional vector space with basis $v_{+}, v_{-}$. Throughout this paper, we set

$$
\begin{equation*}
q=e^{\pi i \nu} \tag{2.3}
\end{equation*}
$$

Denote the standard trigonometric $R$ matrix by

$$
\begin{align*}
R(\lambda) & =\frac{\rho(\lambda)}{[\lambda+1]} r(\lambda),  \tag{2.4}\\
r(\lambda) & =\left(\begin{array}{cccc}
{[\lambda+1]} & 0 & 0 & 0 \\
0 & {[\lambda]} & 1 & 0 \\
0 & 1 & {[\lambda]} & 0 \\
0 & 0 & 0 & {[\lambda+1]}
\end{array}\right) \quad \in \operatorname{End}(V \otimes V) .
\end{align*}
$$

Here the entries are arranged in the order $(++),(+-),(-+),(--)$, and

$$
[\lambda]=\frac{q^{\lambda}-q^{-\lambda}}{q-q^{-1}}
$$

The factor $\rho(\lambda)=\rho(\lambda, 2)$ will be given later (see (3.7) and (C.1), (C.2)). Introduce an auxiliary space $V_{a} \simeq V$ with spectral parameter $\lambda$, and denote by $R_{a, j}$ the
$R$ matrix acting on $V_{a} \otimes V_{j}$. Using (2.4), we consider the transfer matrix of the inhomogeneous six vertex model

$$
\begin{equation*}
\operatorname{tr}_{V_{a}}\left\{R_{a, L}\left(\lambda-\lambda_{L}\right) \cdots R_{a, n}\left(\lambda-\lambda_{n}\right) \cdots R_{a, 1}\left(\lambda-\lambda_{1}\right) \cdots R_{a,-L}\left(\lambda-\lambda_{-L}\right)\right\} \tag{2.5}
\end{equation*}
$$

which acts on the tensor product

$$
V_{-L} \otimes \cdots \otimes V_{1} \otimes \cdots \otimes V_{n} \otimes \cdots \otimes V_{L}
$$

With each $V_{j}$ we associate a spectral parameter $\lambda_{j}$, assuming for definiteness that $\lambda_{j}=0$ for $j \leq 0$ or $j \geq n+1$. Let $|\operatorname{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}}^{(L)}$ denote the eigenvector of (2.5) corresponding to the lowest eigenvalue. We denote the dual eigenvector by ${\lambda_{1}, \ldots, \lambda_{n}}^{(L)}\langle\mathrm{vac}|$, normalized so that ${ }_{\lambda_{1}, \ldots, \lambda_{n}}^{(L)}\langle\mathrm{vac} \mid \mathrm{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}}^{(L)}=1$. The vacuum expectation value in (2.2) is defined to be the thermodynamic limit

$$
\begin{aligned}
\lambda_{1}, \ldots, \lambda_{n} & \langle\operatorname{vac}|\left(E_{\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}} \\
& =\lim _{L \rightarrow \infty}{ }_{\lambda_{1}, \ldots, \lambda_{n}}^{(L)}\langle\operatorname{vac}|\left(E_{\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}}^{(L)}
\end{aligned}
$$

For an arbitrary local operator $\mathcal{O} \in \operatorname{End}\left(V^{\otimes n}\right)$, we have

$$
\begin{equation*}
\lambda_{1}, \ldots, \lambda_{n}\langle\operatorname{vac}| \mathcal{O}|\operatorname{vac}\rangle_{\lambda_{1}, \ldots, \lambda_{n}}=\operatorname{tr}_{V^{\otimes n}}\left(\mathcal{O} \rho_{n}\right) \tag{2.6}
\end{equation*}
$$

Our aim is to give an algebraic representation for the density matrix $\rho_{n}$.

## 3. Algebraic formula

The density matrix $\rho_{n}$ is an operator on $V^{\otimes n}$. To present the result, let us pass from operators to vectors in $V^{\otimes 2 n}$. We number the spaces as

$$
\begin{equation*}
V_{1} \otimes \cdots \otimes V_{n} \otimes V_{\bar{n}} \otimes \cdots \otimes V_{\overline{1}} \tag{3.1}
\end{equation*}
$$

We use the following convention for the indices: for example, if $u=\sum u^{\prime} \otimes u^{\prime \prime}$, $v=\sum v^{\prime} \otimes v^{\prime \prime}$ are vectors in $V \otimes V$, then we write

$$
u_{1, \overline{1}} v_{\overline{2}, 2}=\sum u^{\prime} \otimes v^{\prime \prime} \otimes v^{\prime} \otimes u^{\prime \prime} \quad \in V_{1} \otimes V_{2} \otimes V_{\overline{2}} \otimes V_{\overline{1}}
$$

Similarly, we indicate by suffix the tensor components on which operators act non-trivially.

Introduce a function $h_{n}$ with values in (3.1) ${ }^{1}$ :

$$
\begin{align*}
h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum \prod_{j=1}^{n}\left(-\bar{\epsilon}_{j}\right)\langle\operatorname{vac}| & \left(E_{-\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{-\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle \\
& \times v_{\epsilon_{1}} \otimes \cdots \otimes v_{\epsilon_{n}} \otimes v_{\bar{\epsilon}_{n}} \otimes \cdots \otimes v_{\bar{\epsilon}_{1}} . \tag{3.2}
\end{align*}
$$

In Section 4, we discuss more about the transition from $\rho_{n}$ to $h_{n}$, and vice versa. We mention here only that spectral parameters $\lambda_{j}, \lambda_{j}+1$ are attached to the spaces $V_{j}$ and $V_{\bar{j}}$, respectively.

[^0]The function $h_{n}$ is known to satisfy the following system of equations:

$$
\begin{align*}
& h_{n}\left(\ldots, \lambda_{k+1}, \lambda_{k}, \ldots\right)=\check{R}_{k, k+1}\left(\lambda_{k, k+1}\right) \check{R}_{\overline{k+1}, \bar{k}}\left(\lambda_{k+1, k}\right) h_{n}\left(\ldots, \lambda_{k}, \lambda_{k+1}, \ldots\right),  \tag{3.3}\\
& h_{n}\left(\lambda_{1}-1, \lambda_{2}, \ldots, \lambda_{n}\right)=A_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) h_{n}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)  \tag{3.4}\\
& \mathcal{P}_{1, \overline{1}}^{-} h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2} s_{1, \overline{1}} h_{n-1}\left(\lambda_{2}, \ldots, \lambda_{n}\right)_{2, \ldots, n, \bar{n}, \ldots, \overline{2}}  \tag{3.5}\\
& \mathcal{P}_{n, \bar{n}}^{-} h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2} s_{n, \bar{n}} h_{n-1}\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)_{1, \ldots, n-1, \overline{n-1}, \ldots, \overline{1}} .
\end{align*}
$$

Here the notation is as follows. We set $\lambda_{i, j}=\lambda_{i}-\lambda_{j}, \check{R}=P R$ with $P$ being the transposition,

$$
\mathcal{P}^{-}=\frac{1}{2}(I-P)
$$

is the projection onto $\mathbb{C} s$ where $s$ denotes the vector

$$
\begin{equation*}
s=v_{+} \otimes v_{-}-v_{-} \otimes v_{+} \in V \otimes V \tag{3.6}
\end{equation*}
$$

and

$$
\begin{aligned}
& A_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)= \\
& \quad(-1)^{n} P_{1, \overline{1}} R_{1, \overline{2}}\left(\lambda_{1,2}-1\right) \cdots R_{1, \bar{n}}\left(\lambda_{1, n}-1\right) R_{1, n}\left(\lambda_{1, n}\right) \cdots R_{1,2}\left(\lambda_{1,2}\right)
\end{aligned}
$$

We call (3.3)-(3.5) reduced qKZ (rqKZ) equations. We are going to construct a solution of these equations in a certain specific form. For that purpose, we will need three ingredients: monodromy matrix, trace functional $\operatorname{Tr}_{\lambda}$, and transcendental functions $\omega_{1}(\lambda, \nu), \omega_{2}(\lambda, \nu)$. Let us explain them.

Let $E, F, H$ be the standard generators of $U_{q}\left(\mathfrak{s l}_{2}\right)$. We consider the $L$ operator

$$
\begin{equation*}
L(\lambda)=\frac{\rho(\lambda, d)}{\left[\lambda+\frac{d}{2}\right]} \ell(\lambda) \tag{3.7}
\end{equation*}
$$

where

$$
\ell(\lambda)=\left(\begin{array}{cc}
{\left[\lambda+\frac{1+H}{2}\right]} & F q^{\frac{H-1}{2}} \\
q^{\frac{1-H}{2}} E & {\left[\lambda+\frac{1-H}{2}\right]}
\end{array}\right) \in U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \operatorname{End}(V) .
$$

Here $d$ is related to the central element of $U_{q}\left(\mathfrak{s l}_{2}\right)$

$$
C=\frac{q^{-1+H}+q^{1-H}}{\left(q-q^{-1}\right)^{2}}+E F
$$

by $C=\left(q^{d}+q^{-d}\right) /\left(q-q^{-1}\right)^{2}$. In the formula for $\ell(\lambda)$, the first tensor component $U_{q}\left(\mathfrak{S l}_{2}\right)$ will be represented in the 'auxiliary space' of arbitrary dimension, while the two-dimensional space $V$ in the second component will play the role of the 'quantum space'. The normalization factor $\rho(\lambda, d)$ is chosen to satisfy

$$
\begin{aligned}
L(\lambda) L(-\lambda) & =1 \otimes I_{V} & \quad(\text { unitarity relation) } \\
\sigma^{2} L(\lambda)^{t} \sigma^{2} & =-L(-1-\lambda) & (\text { crossing symmetry). }
\end{aligned}
$$

Here $L(\lambda)^{t}$ is the transposed matrix with respect to $\operatorname{End}(V)$. For the explicit formula of $\rho(\lambda, d)$, see (C.1), (C.2). We have, in particular,

$$
\begin{equation*}
\frac{\rho(\lambda, d)}{\left[\lambda+\frac{d}{2}\right]} \frac{\rho(\lambda-1, d)}{\left[\lambda+\frac{d}{2}-1\right]}=-\frac{1}{\left[\lambda-\frac{d}{2}\right]\left[\lambda+\frac{d}{2}\right]} . \tag{3.8}
\end{equation*}
$$

We define the monodromy matrix $T_{n}(\lambda)=T_{n}\left(\lambda \mid \lambda_{1}, \ldots, \lambda_{n}\right)$ by

$$
\begin{equation*}
T_{n}(\lambda)=L_{\overline{1}}\left(\lambda-\lambda_{1}-1\right) \cdots L_{\bar{n}}\left(\lambda-\lambda_{n}-1\right) L_{n}\left(\lambda-\lambda_{n}\right) \cdots L_{1}\left(\lambda-\lambda_{1}\right) \tag{3.9}
\end{equation*}
$$

The trace functional $\operatorname{Tr}_{\lambda}$ is the composition map

$$
\begin{equation*}
\operatorname{Tr}_{\lambda}: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right) /\left[U_{q}\left(\mathfrak{s l}_{2}\right), U_{q}\left(\mathfrak{s l}_{2}\right)\right] \rightarrow \lambda \mathbb{C}\left[\zeta, \zeta^{-1}\right] \oplus \mathbb{C}\left[\zeta, \zeta^{-1}\right] \tag{3.10}
\end{equation*}
$$

where $\zeta=q^{\lambda}$. The first map is the canonical map, and the second is defined by setting for any $m \in \mathbb{Z}$

$$
\operatorname{Tr}_{\lambda}\left(q^{m H}\right)= \begin{cases}{[m \lambda] /[m]} & \text { if } m \neq 0 \\ \lambda & \text { if } m=0\end{cases}
$$

and for any $x \in U_{q}\left(\mathfrak{S l}_{2}\right)$

$$
\operatorname{Tr}_{\lambda}(C x)=\frac{q^{\lambda}+q^{-\lambda}}{\left(q-q^{-1}\right)^{2}} \operatorname{Tr}_{\lambda}(x)
$$

An equivalent way of defining $\operatorname{Tr}_{\lambda} x$ for $x \in U_{q}\left(\mathfrak{s l}_{2}\right)$ is as follows. It is the unique element of $\lambda \mathbb{C}\left[\zeta, \zeta^{-1}\right] \oplus \mathbb{C}\left[\zeta, \zeta^{-1}\right]$ such that, for all $(k+1)$-dimensional irreducible representation $\pi^{(k)}: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}\left(\mathbb{C}^{k+1}\right)$ we have

$$
\left.\left(\operatorname{Tr}_{\lambda} x\right)\right|_{\lambda=k+1}=\operatorname{tr}_{V^{(k)}} \pi^{(k)}(x) \quad\left(k \in \mathbb{Z}_{\geq 0}\right)
$$

With this definition of $\operatorname{Tr}_{\lambda}$, the 'trace' of the monodromy matrix has a unique decomposition

$$
\begin{equation*}
\operatorname{Tr}_{\mu_{12}} T_{n}\left(\frac{\mu_{1}+\mu_{2}}{2}\right)=X_{1, n}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)-\mu_{1,2} X_{2, n}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right) \tag{3.11}
\end{equation*}
$$

where $X_{i, n}\left(\mu_{1}, \mu_{2}\right)=X_{i, n}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)(i=1,2)$ are matrices whose entries are rational functions in the variables $q^{\mu_{1}}, q^{\mu_{2}}, q^{\lambda_{1}}, \ldots, q^{\lambda_{n}}$. Note that, with the substitution $\lambda=\frac{\mu_{1}+\mu_{2}}{2}-\lambda_{j}, d=\mu_{1,2}$, the right-hand side of (3.8) becomes

$$
\begin{equation*}
-\frac{1}{\left[\mu_{1}-\lambda_{j}\right]\left[\mu_{2}-\lambda_{j}\right]} . \tag{3.12}
\end{equation*}
$$

Finally, define the functions $\omega_{i}(\lambda, \nu)(i=1,2)^{2}$ by

$$
\begin{equation*}
\nu \kappa d \log \varphi(\lambda, \nu)=\omega_{1}(\lambda, \nu) d(\lambda \nu)+\omega_{2}(\lambda, \nu) d \nu \tag{3.13}
\end{equation*}
$$

where

$$
\varphi(\lambda, \nu)=\rho(\lambda)\left(\frac{[\lambda-1]}{[\lambda+1]}\right)^{1 / 4}, \quad \kappa=\frac{\sin \pi \nu}{\pi \nu}
$$

${ }^{2}$ Our $\omega_{1}, \omega_{2}$ here are denoted $\omega$ and $\tilde{\omega}$ in [3].
and $\nu$ is given in (2.3). The function $\rho(\lambda)=\rho(\lambda, 2)$ depends also on $\nu$ and is defined in (C.1), (C.2) in each regime.

We are now in a position to state the algebraic formula. Set

$$
\begin{equation*}
\mathbf{s}_{n}=\prod_{j=1}^{n} s_{j, \bar{j}} \tag{3.14}
\end{equation*}
$$

Theorem 3.1. The following formula gives a solution of the rqKZ equations (3.3)(3.5):

$$
\begin{equation*}
h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2^{n}} e^{\Omega_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)} \mathbf{s}_{n} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & =\frac{(-1)^{n}}{2 \kappa^{2}} \iint \frac{d \mu_{1}}{2 \pi i} \frac{d \mu_{2}}{2 \pi i}\left(\omega_{1}\left(\mu_{1,2}\right) X_{1, n}\left(\mu_{1}, \mu_{2}\right)\right. \\
& \left.+\omega_{2}\left(\mu_{1,2}\right) X_{2, n}\left(\mu_{1}, \mu_{2}\right)\right) \operatorname{Tr}_{2,2}\left(T_{n}\left(\mu_{1}\right) \otimes T_{n}\left(\mu_{2}\right) \cdot B\left(\mu_{1,2}\right)\right) \tag{3.16}
\end{align*}
$$

and

$$
B(\mu)=\frac{1}{2} \frac{[\mu]}{[\mu-1][\mu+1]}\left(\begin{array}{cccc}
0 & & &  \tag{3.17}\\
& q^{\mu}+q^{-\mu} & -q-q^{-1} & \\
& -q-q^{-1} & q^{\mu}+q^{-\mu} & \\
& & & 0
\end{array}\right)
$$

Here $\omega_{i}(\lambda, \nu)$ are given in (3.13), $X_{a, n}$ are defined by (3.11), $\operatorname{Tr}_{2,2}(x \otimes y)=$ $\operatorname{Tr}_{2}(x) \operatorname{Tr}_{2}(y)$, and the matrix $B(\mu)$ acts on the auxiliary space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$. The integral in $\mu_{i}(i=1,2)$ means taking residues at the poles $\mu_{i}=\lambda_{1}, \ldots, \lambda_{n}$ which result from (3.12).

In the massive regime, $h_{n}$ coincides with the vector form of the density matrix.
Conjecturally the same formula gives also the density matrix in the massless regime as well.

In the above formula, we abbreviated all the variables $\nu, \lambda_{1}$, etc., other than $\mu_{1}, \mu_{2}$. This formula was given earlier in [3] in a different form. Since the integrand has no pole at $\lambda_{i}=\lambda_{j}$, the present formula is equally valid in the homogeneous chain where $\lambda_{1}=\cdots=\lambda_{n}=0$. We show the equivalence of the two formulas in Appendix A.

There is another representation for the operator $\Omega_{n}$ using the 'invariant' trace

$$
\begin{equation*}
\operatorname{Tr}_{\lambda}^{q}(A)=\operatorname{Tr}_{\lambda}\left(q^{-H} A\right) \tag{3.18}
\end{equation*}
$$

Define $X_{1, n}^{q}, X_{2, n}^{q}$ and $B^{q}(\mu)$ by

$$
\begin{equation*}
\operatorname{Tr}_{\mu_{12}}^{q} T_{n}\left(\frac{\mu_{1}+\mu_{2}}{2}\right)=X_{1, n}^{q}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)-\mu_{1,2} X_{2, n}^{q}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right) \tag{3.19}
\end{equation*}
$$

$$
B^{q}(\mu)=\frac{[\mu]}{[\mu-1][\mu+1]}\left(\begin{array}{cccc}
0 & & &  \tag{3.20}\\
& q & -q^{-\mu} & \\
& -q^{\mu} & q^{-1} & \\
& & & 0
\end{array}\right)
$$

Then $\Omega_{n}$ can also be written as (3.16), with $X_{a, n}\left(\mu_{1}, \mu_{2}\right)$ and $B(\mu)$ replaced by $X_{a, n}^{q}\left(\mu_{1}, \mu_{2}\right)$ and $B^{q}(\mu)$, respectively.

The existence of this second representation is a peculiar feature of the XXZ model which has analogs neither in the XXX nor in the XYZ models.

Remark 3.2. The choice of the operator $B(\mu)$ in (3.17) is not unique. For example, there is a freedom of adding identity to $B(\mu)$ (see Lemma A.5).

## 4. An alternative representation

In this section we return from vectors in $V^{\otimes 2 n}$ to operators on $V^{\otimes n}$. Let us recall some generalities concerning the action of quantum groups on these spaces.

Denote by $\pi_{\lambda}: U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right)$ the evaluation homomorphism

$$
\begin{array}{lll}
\pi_{\lambda}\left(e_{0}\right)=q^{\lambda} F, & \pi_{\lambda}\left(f_{0}\right)=q^{-\lambda} E, & \pi_{\lambda}\left(q^{ \pm h_{0} / 2}\right)=q^{\mp H / 2} \\
\pi_{\lambda}\left(e_{1}\right)=q^{\lambda} E, & \pi_{\lambda}\left(f_{1}\right)=q^{-\lambda} F, & \pi_{\lambda}\left(q^{ \pm h_{1} / 2}\right)=q^{ \pm H / 2}
\end{array}
$$

For the representation $\pi^{(k)}$ of $U_{q}\left(\mathfrak{s l}_{2}\right)$, we set $\pi_{\lambda}^{(k)}=\pi^{(k)} \circ \pi_{\lambda}$. We use the coproduct

$$
\begin{aligned}
& \Delta\left(e_{i}\right)=e_{i} \otimes 1+q^{h_{i}} \otimes e_{i} \\
& \Delta\left(f_{i}\right)=f_{i} \otimes q^{-h_{i}}+1 \otimes f_{i}
\end{aligned}
$$

to define the action of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ on a tensor product of representations.
Quite generally, for a finite dimensional $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ module $W$, its dual vector space $W^{*}$ has two module structures defined via the antipode $S$ as

$$
\langle x u, v\rangle=\left\langle u, S^{ \pm 1}(x) v\right\rangle \quad\left(x \in U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right), u \in W^{*}, v \in W\right)
$$

Denote these structures by $W^{* S^{ \pm 1}}$. We have canonical isomorphisms

$$
\left(W^{* \phi}\right)^{* \phi^{-1}} \simeq W, \quad\left(W_{1} \otimes W_{2}\right)^{* \phi} \simeq W_{2}^{* \phi} \otimes W_{1}^{* \phi}
$$

for $\phi=S^{ \pm 1}$. The canonical pairing $W^{* S} \otimes W \rightarrow \mathbb{C}$ is $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$-linear. We regard $\operatorname{End}(W)$ as a $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$-module via

$$
\operatorname{End}(W) \simeq W \otimes W^{* S}
$$

Using the trace $\operatorname{tr}_{W}(A B), \operatorname{End}(W)$ may be identified with its dual space. The induced dual module structure becomes

$$
\operatorname{End}(W)^{* S^{-1}} \simeq\left(W \otimes W^{* S}\right)^{* S^{-1}} \simeq W \otimes W^{* S^{-1}}
$$

We are mainly concerned with the 2-dimensional module $V$ where the generators $E, F, H$ act in the basis $v_{+}, v_{-}$as

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Use the letter $V(\lambda)$ to indicate the evaluation module structure $\pi_{\lambda}^{(1)}$ on $V$. We have then an isomorphism of $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$-modules

$$
V(\lambda)^{* S^{ \pm 1}} \simeq V(\lambda \mp 1), \quad v_{\epsilon}^{*} \mapsto \epsilon v_{-\epsilon}
$$

where $\left\langle v_{\epsilon}^{*}, v_{\epsilon^{\prime}}\right\rangle=\delta_{\epsilon, \epsilon^{\prime}}$. In particular, the identity operator $I_{V} \in \operatorname{End}(V)$ corresponds to $s \in V \otimes V$ given in (3.6).

We started from the tensor product

$$
\mathcal{S}_{n}=V_{1} \otimes \cdots \otimes V_{n}, \quad V_{j}=V\left(\lambda_{j}\right)
$$

corresponding to the finite interval $1, \ldots, n$ on the lattice. Our space of local operators is the $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$-module

$$
\begin{align*}
\mathcal{L}_{n} & =\operatorname{End}\left(\mathcal{S}_{n}\right)  \tag{4.1}\\
& \simeq V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right) \otimes V\left(\lambda_{n}-1\right) \otimes \cdots \otimes V\left(\lambda_{1}-1\right)
\end{align*}
$$

on which $x \in U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ operates by the adjoint action

$$
\operatorname{ad} x(\mathcal{O})=\sum x_{i}^{\prime} \mathcal{O} S\left(x_{i}^{\prime \prime}\right) \quad\left(\mathcal{O} \in \mathcal{L}_{n}\right)
$$

where $\Delta(x)=\sum x_{i}^{\prime} \otimes x_{i}^{\prime \prime}$. In contrast, density matrix belongs to the dual module

$$
\begin{aligned}
\mathcal{L}_{n}^{*} & =\operatorname{End}\left(\mathcal{S}_{n}\right)^{* S^{-1}} \\
& \simeq V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right) \otimes V\left(\lambda_{n}+1\right) \otimes \cdots \otimes V\left(\lambda_{1}+1\right)
\end{aligned}
$$

The action of $x \in U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ is, in the same notation as above,

$$
\operatorname{ad}^{\prime} x\left(\mathcal{O}^{*}\right)=\sum x_{i}^{\prime \prime} \mathcal{O}^{*} S^{-1}\left(x_{i}^{\prime}\right) \quad\left(\mathcal{O}^{*} \in \mathcal{L}_{n}^{*}\right)
$$

The vector $h_{n}(3.2)$ is nothing but the image of the density matrix $\rho_{n}$ under the latter identification.

In passing we note that, for a Hopf subalgebra $U$ of $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right), A \in \operatorname{End}(W)$ belongs to the trivial representation (i.e., ad $x(A)=\epsilon(x) A$ for all $x \in U$ where $\epsilon$ is the co-unit) if and only if $x \cdot A=A \cdot x$ for all $x \in U$. In this case we say $A$ is invariant under $U$.

With this preparation, let us rewrite our main formula in the matrix formulation. Suppose $\mathcal{O}^{*} \in \mathcal{L}_{n}^{*}$ and $v \in V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right) \otimes V\left(\lambda_{n}+1\right) \otimes \cdots \otimes V\left(\lambda_{1}+1\right)$ are identified. Then the action $v \mapsto L_{i}(\mu) v$ is translated to the left multiplication

$$
\mathcal{O}^{*} \mapsto L_{i}(\mu) \mathcal{O}^{*}
$$

while $v \mapsto L_{\bar{i}}(\mu-1) v$ is translated to

$$
\mathcal{O}^{*} \mapsto-\mathcal{O}^{*} L_{i}(\mu)^{-1}
$$

In view of the cyclicity of the trace, the action of the 'transfer matrix' (3.11) on $v$ turns into

$$
(-1)^{n} \operatorname{Tr}_{\mu_{12}} \mathcal{T}_{n}(\mu)\left(\mathcal{O}^{*}\right)
$$

where $\mu=\left(\mu_{1}+\mu_{2}\right) / 2$ and

$$
\mathcal{T}_{n}(\mu)\left(\mathcal{O}^{*}\right)=L_{n}\left(\mu-\lambda_{n}\right) \cdots L_{1}\left(\mu-\lambda_{1}\right) \cdot \mathcal{O}^{*} \cdot L_{1}\left(\mu-\lambda_{1}\right)^{-1} \cdots L_{n}\left(\mu-\lambda_{n}\right)^{-1}
$$

Notice that in this formula the normalization factor of the $L$ operator cancels out. Regard the operator $\Omega_{n}$ as acting on $\mathcal{L}_{n}^{*}$ via the above formula. Then the density matrix can be written as

$$
\rho_{n}=\frac{1}{2^{n}} e^{\Omega_{n}}(I)
$$

where $I$ is the identity operator.
Similarly, denote by $\Omega_{n}^{*}$ the operator corresponding to $\Omega_{n}$, acting on the space of local operators $\mathcal{L}_{n}$. Then the main formula (3.15) can be rewritten as

$$
\begin{equation*}
\langle\operatorname{vac}| \mathcal{O}|\operatorname{vac}\rangle=\frac{1}{2^{n}} \operatorname{tr}_{V^{\otimes n}}\left(e^{\Omega_{n}^{*}}(\mathcal{O})\right) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega_{n}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2 \kappa^{2}} \iint \frac{d \mu_{1}}{2 \pi i} \frac{d \mu_{2}}{2 \pi i} \operatorname{Tr}_{2,2}\left(B\left(\mu_{1,2}\right)\left(I \otimes \mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right) \otimes I\right)\right) \\
& \quad \times\left(\omega_{1}\left(\mu_{12}\right) X_{1, n}^{*}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)+\omega_{2}\left(\mu_{12}\right) X_{2, n}^{*}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)\right) \tag{4.3}
\end{align*}
$$

with

$$
\mathfrak{T}_{n}^{*}(\mu)(\mathcal{O})=L_{1}\left(\mu-\lambda_{1}\right)^{-1} \cdots L_{n}\left(\mu-\lambda_{n}\right)^{-1} \mathcal{O} L_{n}\left(\mu-\lambda_{n}\right) \cdots L_{1}\left(\mu-\lambda_{1}\right)
$$

and $X_{1, n}^{*}, X_{2, n}^{*}$ are constructed from $\mathcal{T}_{n}^{*}(\mu)$ as before.
Let us discuss the last formula briefly. Consider the operators $\mathcal{O}$ which act as identity either on the last or on the first site (i.e., $\mathcal{O}=\mathcal{O}^{\prime} \otimes I$ or $\mathcal{O}=I \otimes \mathcal{O}^{\prime}$ ). For such operators, we have

$$
\begin{align*}
& \Omega_{n}^{*}\left(I \otimes \mathcal{O}^{\prime}\right)=I \otimes \Omega_{n-1}^{*}\left(\mathcal{O}^{\prime}\right)  \tag{4.4}\\
& \Omega_{n}^{*}\left(\mathcal{O}^{\prime} \otimes I\right)=\Omega_{n-1}^{*}\left(\mathcal{O}^{\prime}\right) \otimes I \tag{4.5}
\end{align*}
$$

Eq. (4.5) is obvious from the definition, while (4.4) is non-trivial and follows from (A.10). This motivates us to consider a 'universal' operator

$$
\begin{aligned}
& \mathcal{T}^{*}(\mu)(\mathcal{O}) \\
& =\lim _{N \rightarrow \infty} L_{-N}\left(\mu-\lambda_{-N}\right)^{-1} \cdots L_{N}\left(\mu-\lambda_{N}\right)^{-1} \mathcal{O} L_{N}\left(\mu-\lambda_{N}\right) \cdots L_{-N}\left(\mu-\lambda_{-N}\right)
\end{aligned}
$$

Introducing further the normalized trace

$$
\operatorname{tr}=\lim _{N \rightarrow \infty}\left(\frac{1}{2} \operatorname{tr}_{V_{-N}} \cdots \frac{1}{2} \operatorname{tr}_{V_{N}}\right)
$$

and defining $\Omega^{*}$ using $\mathcal{T}^{*}(\mu)$, we can write down a universal formula

$$
\begin{equation*}
\langle\operatorname{vac}| \mathcal{O}|\mathrm{vac}\rangle=\operatorname{tr}\left(e^{\Omega^{*}}(\mathcal{O})\right) \tag{4.6}
\end{equation*}
$$

which does not refer to the size $n$ of the subsystem. For any operator acting on a finite sublattice, the right-hand side reduces automatically to this sublattice due to (4.4)-(4.5). Consider the action of the universal $\mathcal{T}^{*}(\mu)$ on a given operator $\mathcal{O}$. If $\mathcal{O}$ acts on sites $1, \ldots, n$, then the infinite right tail of $L$-operators $L_{j}$ with $j>n$ cancels. However, the left tail with $j<1$ remains. In integrable quantum field theory, this situation is typical for the action of non-local charges which transform local operators into non-local ones with an infinite tail in one direction [20].

Nevertheless, a beautiful feature of our construction is that, when we substitute $\mathcal{T}^{*}(\mu)$ into the trace and integrate, we obtain the operator $\Omega^{*}$ which sends a local operator to a local one because of (4.5).

In our opinion, this is the most important property of our construction which deserves further understanding.

## 5. Invariant operators

As we have seen in the previous section, $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ operates on our space of local operators (4.1). The algebra $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{2}\right)$ contains two subalgebras isomorphic to $U_{q}\left(\mathfrak{s l}_{2}\right)$, one generated by $e_{0}, f_{0}, q^{ \pm h_{0} / 2}$ and the other by $e_{1}, f_{1}, q^{ \pm h_{1} / 2}$. In this section, we consider the subspace of local operators which are invariant under one of these subalgebras, and show that their correlation functions do not contain the transcendental function $\omega_{2}(\lambda)$. To fix the idea, let us choose the subalgebra generated by $e_{0}, f_{0}, q^{ \pm h_{0} / 2}$ and set

$$
\mathcal{L}_{n}^{\mathrm{inv}}=\left\{\mathcal{O} \in \mathcal{L}_{n} \mid x \cdot \mathcal{O}=\mathcal{O} \cdot x \quad\left(x=e_{0}, f_{0}, q^{h_{0} / 2}\right)\right\} .
$$

In the present context, it is more convenient to use the formula for $\Omega_{n}^{*}$ using the invariant trace (see the end of Section 3),

$$
\begin{align*}
& \Omega_{n}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2 \kappa^{2}} \iint \frac{d \mu_{1}}{2 \pi i} \frac{d \mu_{2}}{2 \pi i} \operatorname{Tr}_{2,2}\left(B^{q}\left(\mu_{1,2}\right)\left(I \otimes \mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right) \otimes I\right)\right) \\
& \quad \times\left(\omega_{1}\left(\mu_{12}\right) X_{1, n}^{q *}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)+\omega_{2}\left(\mu_{12}\right) X_{2, n}^{q *}\left(\mu_{1}, \mu_{2} \mid \lambda_{1}, \ldots, \lambda_{n}\right)\right) . \tag{5.1}
\end{align*}
$$

As before, $X_{1, n}^{q *}, X_{2, n}^{q *}$ are constructed from $\mathcal{T}_{n}^{*}(\mu)$ using $\operatorname{Tr}_{\mu}^{q}$.
Lemma 5.1. The space $\mathcal{L}_{n}^{\operatorname{inv}}$ is invariant under the operator $\Omega_{n}^{*}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Proof. First we show that $\operatorname{Tr}_{\mu}^{q} \mathcal{T}_{n}^{*}(\mu)$ preserves the space $\mathcal{L}_{n}^{\text {inv }}$. Abbreviating arguments, we write

$$
\mathcal{T}_{n}^{*}(\mathcal{O})=T^{-1}(1 \otimes \mathcal{O}) T
$$

where $T=L_{n} \cdots L_{1}, L_{j}=L_{j}\left(\mu-\lambda_{j}\right)$ and $\mu=\left(\mu_{1}+\mu_{2}\right) / 2$.
Until the end of the proof, we let $x$ stand for $e_{0}, f_{0}, q^{h_{0} / 2}$. The operator $T$ belongs to $U_{q}\left(s l_{2}\right) \otimes \operatorname{End}(W)$ where $W=V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right)$. It satisfies the intertwining property

$$
\sum T\left(x_{i}^{\prime} \otimes x_{i}^{\prime \prime}\right)=\sum\left(x_{i}^{\prime \prime} \otimes x_{i}^{\prime}\right) T
$$

where $\Delta(x)=\sum x_{i}^{\prime} \otimes x_{i}^{\prime \prime}$. This equation can be rewritten as

$$
T(1 \otimes x)=\sum\left(x_{i}^{\prime \prime \prime} \otimes x_{i}^{\prime \prime}\right) T\left(S^{-1}\left(x_{i}^{\prime}\right) \otimes 1\right)
$$

where we have set $(\Delta \otimes I) \circ \Delta(x)=\sum x_{i}^{\prime} \otimes x_{i}^{\prime \prime} \otimes x_{i}^{\prime \prime \prime}$. Using the invariance of $\mathcal{O}$ and the intertwining property again, we obtain, in the notation above,

$$
\begin{equation*}
T^{-1}(1 \otimes \mathcal{O}) T(1 \otimes x)=\sum\left(x_{i}^{\prime \prime} \otimes x_{i}^{\prime \prime \prime}\right) T^{-1}(1 \otimes \mathcal{O}) T\left(S^{-1}\left(x_{i}^{\prime}\right) \otimes 1\right) \tag{5.2}
\end{equation*}
$$

We have $q^{-h_{0}} x q^{h_{0}}=S^{2}(x)$ and $\pi_{\lambda}\left(q^{-h_{0}}\right)=q^{H}$, from which follows the invariance property

$$
\operatorname{Tr}_{\lambda}^{q}\left(\operatorname{ad}^{\prime} x A\right)=\epsilon(x) \operatorname{Tr}_{\lambda}^{q}(A)
$$

Taking $\operatorname{Tr}_{\mu}^{q}$ of both sides of (5.2) and using the above invariance, we find that

$$
x \cdot \operatorname{Tr}_{\mu}^{q} \mathcal{T}^{*}(\mathcal{O})=\operatorname{Tr}_{\mu}^{q} \mathcal{T}^{*}(\mathcal{O}) \cdot x
$$

Let us show that the operator

$$
\begin{equation*}
\operatorname{Tr}_{2,2}\left(B^{q}\left(\mu_{1,2}\right)\left(I \otimes \mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right) \otimes I\right)\right) \tag{5.3}
\end{equation*}
$$

also preserves $\mathcal{L}_{n}^{\text {inv }}$. The relevant operators act on the tensor product $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes W$. To unburden the notation, let us write $T_{12}=\left(T\left(\mu_{1}\right) \otimes I\right)\left(I \otimes T\left(\mu_{2}\right)\right), B_{12}^{q}=B^{q}\left(\mu_{12}\right)$ and $\mathcal{O}_{3}=\mathcal{O}$, indicating the tensor components by the suffix. Thus the action of (5.3) on $\mathcal{O}$ is $\operatorname{Tr}_{2,2}\left(B_{12}^{q} T_{12}^{-1} \mathcal{O}_{3} T_{12}\right)$.

Writing again $\Delta(x)=\sum x_{i}^{\prime} \otimes x_{i}^{\prime \prime}$, we have

$$
\begin{equation*}
\sum\left(x_{i}^{\prime}\right)_{1}\left(x_{i}^{\prime \prime}\right)_{2} B_{12}^{q}=\sum B_{12}^{q}\left(x_{i}^{\prime}\right)_{1}\left(x_{i}^{\prime \prime}\right)_{2}=\epsilon(x) B_{1,2}^{q} \tag{5.4}
\end{equation*}
$$

Using (5.4) together with the intertwining property of $T$ and the invariance of $\mathcal{O}$, we find

$$
B_{1,2}^{q} T_{12}^{-1} \mathcal{O}_{3} T_{12} x_{3}=B_{1,2}^{q}\left(x_{i}^{\prime \prime}\right)_{3} T_{12}^{-1} \mathcal{O}_{3} T_{12} \Delta\left(S^{-1}\left(x_{i}^{\prime}\right)\right)_{12}
$$

Taking trace, moving the last factor by cyclicity and using (5.4) again, we obtain

$$
\begin{aligned}
& \operatorname{Tr}_{2,2}\left(B^{q}\left(\mu_{1,2}\right)\left(I \otimes \mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right) \otimes I\right)\right)(\mathcal{O}) \cdot x \\
& \quad=\sum \operatorname{Tr}_{2,2}\left(\Delta\left(S^{-1}\left(x_{i}^{\prime}\right)\right)_{12}\left(x_{i}^{\prime \prime}\right)_{3} B_{12}^{q} T_{12}^{-1} \mathcal{O}_{3} T_{12}\right) \\
& \quad=x \cdot \operatorname{Tr}_{2,2}\left(B^{q}\left(\mu_{1,2}\right)\left(I \otimes \mathcal{T}_{n}^{*}\left(\mu_{2}\right)\right)\left(\mathcal{T}_{n}^{*}\left(\mu_{1}\right) \otimes I\right)\right)(\mathcal{O})
\end{aligned}
$$

which was to be shown.
Lemma 5.2. For an invariant operator $\mathcal{O} \in \mathcal{L}_{n}^{\text {inv }}$, we have $\mathcal{X}_{2, n}^{q *}\left(\mu_{1}, \mu_{2}\right)(\mathcal{O})=0$.
Proof. Lemma means that the trace

$$
\begin{aligned}
& \operatorname{Tr}_{\mu_{12}}^{q}\left(L_{1}\left(\mu-\lambda_{1}\right)^{-1} \cdots L_{n}\left(\mu-\lambda_{n}\right)^{-1} \mathcal{O} L_{n}\left(\mu-\lambda_{n}\right) \cdots L_{1}\left(\mu-\lambda_{1}\right)\right) \\
& \quad=\operatorname{Tr}_{\mu_{12}}^{q}\left(L_{1}\left(\lambda_{1}-\mu\right) \cdots L_{n}\left(\lambda_{n}-\mu\right) \mathcal{O} L_{n}\left(\lambda_{n}-\mu\right)^{-1} \cdots L_{1}\left(\lambda_{1}-\mu\right)^{-1}\right)
\end{aligned}
$$

does not produce terms proportional to $\mu_{12}$. We prove this assertion by passing to the vector language and performing a gauge transformation.

Under the isomorphism (4.1), an invariant operator $\mathcal{O}$ is sent to a vector $v \in V\left(\lambda_{1}\right) \otimes \cdots \otimes V\left(\lambda_{n}\right) \otimes V\left(\lambda_{n}-1\right) \otimes \cdots \otimes V\left(\lambda_{1}-1\right)$ invariant under the action of $e_{0}, f_{0}, q^{h_{0} / 2}$. Set $g=q^{(1 / 2) \sum_{j=1}^{n}\left(\lambda_{j} \sigma_{j}^{3}+\left(\lambda_{j}-1\right) \sigma_{j}^{3}\right)}$, and introduce the gauge transformation

$$
\begin{aligned}
& e=g f_{0} g^{-1}, \quad f=g e_{0} g^{-1}, \quad q^{h / 2}=q^{-h_{0} / 2} \\
& \ell^{\prime}(\lambda)=q^{(\lambda / 2) \sigma^{3}} \ell(\lambda) q^{-(\lambda / 2) \sigma^{3}}
\end{aligned}
$$

Then $v^{\prime}=g v$ belongs to the subspace $\left(V^{\otimes 2 n}\right)^{\text {inv }}$ of vectors invariant under $U_{q}\left(\mathfrak{s l}_{2}\right)$ generated by $e, f, q^{h / 2}$.

For the proof, we show the following slightly more general statement: for any $v^{\prime} \in\left(V^{\otimes 2 n}\right)^{\text {inv }}$ and $\lambda_{1}, \ldots, \lambda_{2 n}$,

$$
\operatorname{Tr}_{\mu}^{q}\left(\ell_{1}^{\prime}\left(\lambda_{1}\right) \cdots \ell_{2 n}^{\prime}\left(\lambda_{2 n}\right)\right) v^{\prime}
$$

belongs to $\mathbb{C}\left[q^{ \pm \mu}, q^{ \pm \lambda_{1}}, \ldots, q^{ \pm \lambda_{2 n}}\right]$.
First consider the case $n=1$, choosing $v^{\prime}$ to be $s^{q}=q v_{+} \otimes v_{-}-v_{-} \otimes v_{+} \in$ $\left(V^{\otimes 2}\right)^{\text {inv }}$. Note that

$$
\begin{aligned}
& \operatorname{Tr}_{\mu}^{q}(F E A)=\operatorname{Tr}_{\mu}^{q}\left(\left[\frac{\mu+1+H}{2}\right]\left[\frac{\mu-1-H}{2}\right] A\right), \\
& \operatorname{Tr}_{\mu}^{q}(E F A)=\operatorname{Tr}_{\mu}^{q}\left(\left[\frac{\mu+1-H}{2}\right]\left[\frac{\mu-1+H}{2}\right] A\right) .
\end{aligned}
$$

Direct computation using these relations shows that the entries of $\ell_{1}^{\prime}\left(\lambda_{1}\right) \ell_{2}^{\prime}\left(\lambda_{2}\right) s_{12}^{q}$ can be reduced to elements of the subalgebra generated by $q^{-H}, E q^{-H / 2}, F q^{-H / 2}$. Since $q^{H}$ does not appear, $\operatorname{Tr}_{\mu}^{q}$ does not produce terms proportional to $\mu$.

In the general case, the same argument shows that the assertion holds for $v^{\prime}=$ $\mathbf{s}^{q}=s_{12}^{q} \cdots s_{2 n-12 n}^{q}$. From the Yang-Baxter relation, the same is true for vectors obtained from $\mathbf{s}^{q}$ by acting with an arbitrary number of matrices $\check{r}_{i}^{\prime}{ }_{i+1}\left(\lambda_{i i+1}\right)$, where

$$
\check{r}_{i i+1}^{\prime}(\lambda)=P_{i i+1} q^{\lambda \sigma_{i} / 2} r_{i i+1}(\lambda) q^{-\lambda \sigma_{i} / 2} .
$$

The operators $\check{r}_{i+1}^{\prime}(\lambda)$ are linear combinations of 1 and the generators $e_{i}=$ $\check{r}_{i+1}^{\prime}(-1)(i=1, \ldots, 2 n-1)$ of the Temperley-Lieb algebra, and vice versa. It is well known that the space $\left(V^{\otimes 2 n}\right)^{\text {inv }}$ is generated from $\mathbf{s}^{q}$ by the action of the Temperley-Lieb algebra. Hence the assertion is true for all $v^{\prime} \in\left(V^{\otimes 2 n}\right)^{\text {inv }}$.

In summary, let us present the final result for invariant operators. In the notation of Section 4, we have

Theorem 5.3. Consider a local operator $\mathcal{O}$ invariant under the action of $U_{q}\left(\mathfrak{s l}_{2}\right)$ generated by $e_{0}, f_{0}, q^{h_{0} / 2}$. For such an operator, we have

$$
\begin{equation*}
\langle\operatorname{vac}| \mathcal{O}|\mathrm{vac}\rangle=\operatorname{tr}\left(e^{\Omega_{\mathrm{inv}}^{*}}(\mathcal{O})\right) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega_{\mathrm{inv}}^{*}= & \frac{1}{2 \kappa^{2}} \iint \frac{d \mu_{1}}{2 \pi i} \frac{d \mu_{2}}{2 \pi i} \\
& \times \omega_{1}\left(\mu_{12}\right) \operatorname{Tr}_{2,2}\left(B^{q}\left(\mu_{1,2}\right) \mathcal{T}_{n}^{*}\left(\mu_{2}\right) \otimes \mathcal{T}_{n}^{*}\left(\mu_{1}\right)\right) \operatorname{Tr}_{\mu_{1,2}}^{q} \mathcal{T}_{n}^{*}\left(\frac{\mu_{1}+\mu_{2}}{2}\right) \tag{5.6}
\end{align*}
$$

Formula (5.6) is quite similar to the one in the XXX case [5].
Various methods are known for constructing bases of invariant operators (see, e.g., [21]). For example, a basis for $n=3$ is $I, U_{12}, U_{23}, U_{12} U_{23}, U_{23} U_{12}$. Here the operators $U_{i i+1}$, after the gauge transformation $U_{i i+1}^{\prime}=g^{\prime} U_{i i+1} g^{\prime-1}$ by
$g^{\prime}=q^{(1 / 2) \sum_{j=1}^{n} \lambda_{j} \sigma_{j}^{3}}$, are the (negative of the) generators of the Temperley-Lieb algebra,

$$
U_{i i+1}^{\prime}=\frac{1}{2}\left(\sigma_{i}^{1} \sigma_{i+1}^{1}+\sigma_{i}^{2} \sigma_{i+1}^{2}+\frac{q+q^{-1}}{2}\left(\sigma_{i}^{3} \sigma_{i+1}^{3}-1\right)+\frac{q-q^{-1}}{2}\left(-\sigma_{i}^{3}+\sigma_{i+1}^{3}\right)\right)
$$

(It is nothing but the local density of the Pasquier-Saleur Hamiltonian, see below.) In the homogeneous case, their expected values are

$$
\begin{aligned}
& \langle\operatorname{vac}| U_{i, i+1}|\mathrm{vac}\rangle=-\kappa a_{0} \\
& \langle\operatorname{vac}| U_{12} U_{23}|\operatorname{vac}\rangle=\langle\operatorname{vac}| U_{23} U_{12}|\mathrm{vac}\rangle=-\frac{1}{\cos \pi \nu}\left(\kappa a_{0}-3 \kappa^{3} a_{2}\right)
\end{aligned}
$$

where $\kappa=\sin \pi \nu /(\pi \nu)$ and

$$
a_{m}=\int_{-\infty}^{\infty} t^{m} \frac{\sinh (1 / \nu-1) t}{\sinh (t / \nu) \cosh t} d t
$$

Let us explain the physical meaning of correlation functions of invariant operators. We shall consider the case of massless regime $q=e^{\pi i \nu}(0<\nu<1)$, because in the present context it is more interesting from the point of view of physics. It is well known that in the continuous limit the massless XXZ model is described by CFT with the central charge $c=1$. In the continuous field theory, starting with CFT with $c=1$ one can obtain CFT with $c=1-\frac{6 \nu^{2}}{1-\nu}$ by modifying the energymomentum tensor and introducing screening operators. There is a construction which gives a lattice version of this procedure, and which is closely related to the invariance under the quantum group.

Consider first the model in the finite volume. The XXZ Hamiltonian with the usual periodic boundary condition

$$
H_{L}=\frac{1}{2} \sum_{j=1}^{L}\left(\sigma_{j}^{1} \sigma_{j+1}^{1}+\sigma_{j}^{2} \sigma_{j+1}^{2}+\cos (\pi \nu) \sigma_{j}^{3} \sigma_{j+1}^{3}\right), \quad \sigma_{L+1}^{a}=\sigma_{1}^{a}
$$

is not invariant under the quantum group. However, following Pasquier and Saleur [22] one can introduce an invariant Hamiltonian with specific boundary conditions:

$$
H_{L}^{\mathrm{inv}}=\frac{1}{2} \sum_{j=1}^{L-1}\left(\sigma_{j}^{1} \sigma_{j+1}^{1}+\sigma_{j}^{2} \sigma_{j+1}^{2}+\cos (\pi \nu) \sigma_{j}^{3} \sigma_{j+1}^{3}\right)+\frac{1}{2} i \sin (\pi \nu)\left(\sigma_{L}^{3}-\sigma_{1}^{3}\right)
$$

In the infinite volume limit, this Hamiltonian has CFT with $c=1-\frac{6 \nu^{2}}{1-\nu}$ as the continuous limit. In the finite volume there are significant differences between $H_{L}$ and $H_{L}^{\text {inv }}$; for example, Bethe Ansatz equations are very different. However, following the general logic (see, for example, [23]) we believe that in the infinite volume the ground state of the invariant model is obtained by projection of the original ground state onto the invariant subspace:

$$
|\mathrm{vac}\rangle_{\mathrm{inv}}=\mathcal{P}_{\mathrm{inv}}|\mathrm{vac}\rangle,
$$

where $\mathcal{P}_{\text {inv }}$ denotes the projection operator. Then the correlation function of any operator in the invariant model coincides with that of an invariant operator in the original model:

$$
\left.\operatorname{inv}^{\langle v a c|}|\mathcal{O}| \mathrm{vac}\right\rangle_{\mathrm{inv}}=\langle\mathrm{vac}|\left(\mathcal{P}_{\text {inv }} \mathcal{O} \mathcal{P}_{\text {inv }}\right)|\mathrm{vac}\rangle
$$

So, the correlation functions considered in this section describe the lattice version of CFT with $c=1-\frac{6 \nu^{2}}{1-\nu}$. The fact that they can be expressed in terms of a single transcendental function was predicted in [8]. Certainly, the most interesting question is that of rational $\nu$ when the space of local operators is restricted. We shall consider this situation in the future.

## 6. XYZ model

A considerable part of the previous sections can be generalized to the case of the XYZ chain

$$
\begin{equation*}
H_{\mathrm{XYZ}}=\frac{1}{2} \sum_{k=-\infty}^{\infty}\left(I_{1} \sigma_{k}^{1} \sigma_{k+1}^{1}+I_{2} \sigma_{k}^{2} \sigma_{k+1}^{2}+I_{3} \sigma_{k}^{3} \sigma_{k+1}^{3}\right) \tag{6.1}
\end{equation*}
$$

In [4] we put forward a conjectural formula for the density matrix in the elliptic setting. In comparison with the XXX and XXZ chains, however, the results obtained are incomplete: we have so far been unable to verify that the expression written down in [4] satisfies the reduced qKZ equation. In this section, we rewrite the formula conjectured in [4] into a form close to (3.15)-(3.16).

In the following, we denote by $\theta_{a}(t)(a=1,2,3,4)$ the Jacobi elliptic theta function with modulus $\tau$. We fix a generic complex number $\eta$ and use the scaled spectral parameter $t=\lambda \eta$. We deal with functions which have period 1 in the variable $t$. The parameters in the Hamiltonian (6.1) are given by $(1 / 2) I^{a}=$ $\theta_{a+1}(2 \eta) / \theta_{a+1}(0)$.

In the XYZ chain, the role of $U_{q}\left(\mathfrak{s l}_{2}\right)$ in the XXZ chain is played by the Sklyanin algebra [28]. It is an associative algebra $\mathcal{A}$ generated by four symbols $S_{\alpha}$ ( $\alpha=0,1,2,3$ ) and the defining quadratic relations

$$
\begin{align*}
& {\left[S_{0}, S_{a}\right]=i J_{b c}\left(S_{b} S_{c}+S_{c} S_{b}\right)}  \tag{6.2}\\
& {\left[S_{b}, S_{c}\right]=i\left(S_{0} S_{a}+S_{a} S_{0}\right)} \tag{6.3}
\end{align*}
$$

Here $(a, b, c)$ runs over cyclic permutations of $(1,2,3)$. The structure constants $J_{b c}=-\left(J_{b}-J_{c}\right) / J_{a}$ are parametrized as

$$
J_{a}=\frac{\theta_{a+1}(2 \eta) \theta_{a+1}(0)}{\theta_{a+1}(\eta)^{2}}
$$

The algebra $\mathcal{A}$ has two basic central elements, $K_{0}=\sum_{\alpha=0}^{3} S_{\alpha}^{2}$ and $K_{2}=\sum_{a=1}^{3}$ $J_{a} S_{a}^{2}$. We will consider only representations of $\mathcal{A}$ on which these central elements act as scalars,

$$
\begin{equation*}
K_{0}=4\left[\frac{d}{2}\right]^{2}, \quad K_{2}=4\left[\frac{d+1}{2}\right]\left[\frac{d-1}{2}\right] . \tag{6.4}
\end{equation*}
$$

Here and after we set

$$
[t]=\frac{\theta_{1}(2 t)}{\theta_{1}(2 \eta)}
$$

The parameter $d$ plays the role of the 'dimension'. For each non-negative integer $k$, the Sklyanin algebra possesses an analog $\pi^{(k)}$ of the ( $k+1$ )-dimensional irreducible representation of $\mathfrak{s l}_{2}$, on which the above relations are valid with $d=k+1$.

The $L$ operator associated with the XYZ chain has the following form.

$$
\begin{aligned}
L(t) & :=\frac{\rho(t, d)}{[t+(d / 2) \eta]} \ell(t), \\
\ell(t) & =\frac{1}{2} \sum_{\alpha=0}^{3} \frac{\theta_{\alpha+1}(2 t+\eta)}{\theta_{\alpha+1}(\eta)} S_{\alpha} \otimes \sigma^{\alpha} .
\end{aligned}
$$

Here $\rho(t, d)$ is a normalization factor (see (C.3)) which satisfies

$$
\begin{aligned}
& \rho(t, d) \rho(-t, d)=1 \\
& \frac{\rho(t, d)}{[t+(d / 2) \eta]} \frac{\rho(t-\eta, d)}{[t-\eta+(d / 2) \eta]}=\frac{1}{[(d / 2) \eta-t][(d / 2) \eta+t]} .
\end{aligned}
$$

We define the monodromy matrix by the same formula (3.9).
The $R$ matrix $R(t)$ for the XYZ chain is defined by the above formula with $d=2$ and $S_{\alpha}$ being represented by $\sigma^{\alpha}$. We need the following three functions ${ }^{3}$ $\omega_{i}=\omega_{i}(t, \eta, \tau)$ which enter the formula for $h_{n}$ :

$$
\begin{equation*}
\kappa d \log \varphi=\omega_{1} d t+\omega_{2} d \eta+\omega_{3} d \tau \tag{6.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \kappa=\frac{\theta_{1}(2 \eta)}{2 \theta_{1}^{\prime}(0)} \\
& \varphi(t):=\rho(t, 2) \cdot\left(\frac{[\eta-t]}{[\eta+t]}\right)^{1 / 4} .
\end{aligned}
$$

In the XYZ case, the trace functional is defined as follows. For each element $A$ of the Sklyanin algebra, there exists a unique entire function $\operatorname{Tr}_{\lambda} A$ with the properties [4]
(i) $\left.\operatorname{Tr}_{\lambda} A\right|_{\lambda=d}=\operatorname{tr} \pi^{(d)}(A)$ holds for all positive integers $d$,
(ii) If $A$ is a monomial in the $S_{\alpha}$ of homogeneous degree $n, \operatorname{Tr}_{\lambda} A$ has the form

$$
\operatorname{Tr}_{\frac{t}{\eta}} A=\theta_{1}(t)^{n} \times \begin{cases}g_{A, 0}(t) & (n: \text { odd })  \tag{6.6}\\ g_{A, 1}(t)-\frac{t}{\eta} g_{A, 2}(t) & (n: \text { even })\end{cases}
$$

where $g_{A, 0}(t), g_{A, 2}(t)$ and $g_{A, 3}(t):=g_{A, 1}(t+\tau)-g_{A, 1}(t)$ are elliptic functions with periods $1, \tau$. In addition, $g_{A, 1}(t+1)=g_{A, 1}(t)$.

[^1]Let us introduce $X_{a, n}(a=1,2,3)$ by

$$
\begin{aligned}
& \operatorname{Tr}_{s_{12} / \eta}\left(T\left(\frac{s_{1}+s_{2}}{2}\right)\right)=X_{1, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right)-\frac{s_{12}}{\eta} X_{2, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right), \\
& X_{3, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right)=X_{1, n}\left(s_{1}+\tau, s_{2} \mid t_{1}, \ldots, t_{n}\right)-X_{1, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$ where $X_{a, n}(a=1,2,3)$ have the following periodicity.

$$
\begin{array}{ll}
X_{a, n}\left(s_{1}+1, s_{2} \mid t_{1}, \ldots, t_{n}\right)=X_{a, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right) & (a=1,2,3) \\
X_{a, n}\left(s_{1}+\tau, s_{2} \mid t_{1}, \ldots, t_{n}\right)=X_{a, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right) & (a=2,3)
\end{array}
$$

Proposition 6.1. The conjectural formula in [4] for $h_{n}$ can be written as

$$
\begin{align*}
\Omega_{n}\left(t_{1}, \ldots, t_{n}\right)=\frac{(-1)^{n}}{2 \kappa^{2}} \iint \frac{d s_{1}}{2 \pi i} \frac{d s_{2}}{2 \pi i} & \left(\sum_{a=1}^{3} \omega_{a}\left(s_{12}\right) X_{a, n}\left(s_{1}, s_{2} \mid t_{1}, \ldots, t_{n}\right)\right) \\
& \times \operatorname{Tr}_{2,2}\left(T_{n}\left(s_{1}\right) \otimes T_{n}\left(s_{2}\right) \cdot B\left(s_{1,2}\right)\right), \tag{6.7}
\end{align*}
$$

where

$$
B(t)=-\frac{1}{4} \frac{[t][2 \eta]}{[t+\eta][t-\eta]} \sum_{a=1}^{3} \frac{\theta_{a+1}(2 t)}{\theta_{a+1}(2 \eta)} \sigma^{a} \otimes \sigma^{a} .
$$

The rewriting procedure is sketched at the end of Appendix A.3.

## Appendix A. Connection to previous results

Here we give the details about the derivation of the formula (3.16) and the second one using (3.19) and (3.20). First, in Subsection A.1, we recall the previous result in [3], where an algebraic formula for a solution of the reduced qKZ equation is constructed. Next we rewrite the formula into the exponential form in Subsection A. 2 (see Theorem A.3). Finally we obtain the integral formula (3.16) and the second one using (3.19) and (3.20) in Subsection A.3. The above rewriting procedure is applicable also to the elliptic case. We discuss it briefly at the end of Subsection A.3.

## A.1. Algebraic construction of a solution to the reduced qKZ equation

In [3] a solution $\left\{h_{n}\right\}_{n=0}^{\infty}$ of the equations (3.3)-(3.5) is constructed in an algebraic way. Let us recall it here.

First we define the operator

$$
{ }_{n} X_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \operatorname{End}\left(V^{\otimes 2(n-2)}, V^{\otimes 2 n}\right)
$$

for $1 \leq i<j \leq n$ as follows. Set

$$
\begin{align*}
{ }_{n} X_{n-2}\left(\lambda_{1}, \ldots, \lambda_{n}\right)(u) & :=\frac{1}{\left[\lambda_{1,2}\right] \prod_{p=3}^{n}\left[\lambda_{1, p}\right]\left[\lambda_{2, p}\right]}  \tag{A.1}\\
& \times \operatorname{Tr}_{\lambda_{1,2}}\left(t_{n}^{[1]}\left(\frac{\lambda_{1}+\lambda_{2}}{2} ; \lambda_{1}, \ldots, \lambda_{n}\right)\right)\left(s_{1, \overline{2}} s_{\overline{1}, 2} u_{3, \ldots, n, \bar{n}, \ldots, \overline{3}}\right)
\end{align*}
$$

where

$$
\begin{aligned}
t_{n}^{[i]}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{n}\right) & :=\ell_{\overline{1}}\left(\lambda-\lambda_{1}-1\right) \cdots \ell_{\bar{i}}\left(\widehat{\lambda-\lambda_{i}}-1\right) \cdots \ell_{\bar{n}}\left(\lambda-\lambda_{n}-1\right) \\
& \times \ell_{n}\left(\lambda-\lambda_{n}\right) \cdots \ell_{i}\left(\lambda-\lambda_{i}\right) \cdots \ell_{1}\left(\lambda-\lambda_{1}\right)
\end{aligned}
$$

Then ${ }_{n} X_{n-2}^{(i, j)}$ is defined by

$$
\begin{aligned}
& { }_{n} X_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& :=\overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \overleftarrow{P}_{n}^{(i, j)} \cdot{ }_{n} X_{n-2}\left(\lambda_{i}, \lambda_{j}, \lambda_{1}, \ldots, \widehat{\lambda_{i}}, \ldots, \widehat{\lambda_{j}}, \ldots, \lambda_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & :=R_{i, i-1}\left(\lambda_{i, i-1}\right) \cdots R_{i, 1}\left(\lambda_{i, 1}\right) \\
& \times R_{j, j-1}\left(\lambda_{j, j-1}\right) \cdots R_{j, i}\left(\lambda_{j, i}\right) \cdots R_{j, 1}\left(\lambda_{j, 1}\right) \\
& \times R_{\overline{i-1}, \bar{i}}\left(\lambda_{i-1, i}\right) \cdots R_{\overline{1}, \bar{i}}\left(\lambda_{1, i}\right) \\
& \left.\times R_{\overline{j-1}, \bar{j}}\left(\lambda_{j-1, j}\right) \cdots R_{\overline{\bar{i}, \bar{j}}\left(\lambda_{i, j}\right.}\right) \cdots R_{\overline{1}, \bar{j}}\left(\lambda_{1, j}\right)
\end{aligned}
$$

and

$$
\overleftarrow{P_{n}^{(i, j)}}:=P_{i, i-1} \cdots P_{2,1} \cdot P_{j, j-1} \cdots P_{3,2} \cdot P_{\overline{i-1}, \bar{i}} \cdots P_{\overline{1}, \overline{2}} \cdot P_{\overline{j-1}, \bar{j}} \cdots P_{\overline{2}, \overline{3}}
$$

Note that the operator $\overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a rational function in $\zeta_{j}=e^{\pi i \nu \lambda_{j}}(j=$ $1, \ldots, n$ ) because $\rho(\lambda) \rho(-\lambda)=1$.

From the definition (3.10) of $\operatorname{Tr}_{\lambda}$, the operator ${ }_{n} X_{n-2}^{(i, j)}$ can be written uniquely in the following form:

$$
\begin{equation*}
{ }_{n} X_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)={ }_{n} G_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)-\lambda_{i, j} \cdot{ }_{n} \tilde{G}_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right), \tag{A.2}
\end{equation*}
$$

where ${ }_{n} G_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ and ${ }_{n} \tilde{G}_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ are rational functions in $\zeta_{1}, \ldots, \zeta_{n}$. Take some meromorphic functions $\omega_{j}(\lambda)(j=1,2)$ and consider the operator

$$
{ }_{n} \Omega_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\omega_{1}\left(\lambda_{i, j}\right) \cdot{ }_{n} G_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)+\omega_{2}\left(\lambda_{i, j}\right) \cdot{ }_{n} \tilde{G}_{n-2}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)
$$

For an ordered set of indices $K=\left\{k_{1}, \ldots, k_{m}\right\}\left(1 \leq k_{1}<\cdots<k_{m} \leq n\right)$, we use the abbreviation

$$
\Omega_{K,\left(k_{i}, k_{j}\right)}={ }_{m} \Omega_{m-2}^{(i, j)}\left(\lambda_{k_{1}}, \ldots, \lambda_{k_{m}}\right)
$$

Define

$$
\begin{align*}
& h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \qquad:=\sum_{m=0}^{[n / 2]} \frac{(-1)^{m}}{2^{n-2 m}} \sum \Omega_{K_{1},\left(i_{1}, j_{1}\right)} \cdot \Omega_{K_{2},\left(i_{2}, j_{2}\right)} \cdots \Omega_{K_{m},\left(i_{m}, j_{m}\right)}\left(\mathbf{s}_{n-2 m}\right) . \tag{A.3}
\end{align*}
$$

Here

$$
\mathbf{s}_{m}:=\prod_{p=1}^{m} s_{p, \bar{p}} \in V^{\otimes 2 m}
$$

and the second sum in (A.3) is taken over all sequences $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{m}$ of distinct elements of $K_{1}=\{1, \ldots, n\}$ such that

$$
i_{1}<\cdots<i_{m}, \quad i_{1}<j_{1}, \quad \cdots, \quad i_{m}<j_{m}
$$

The sets $K_{2}, \ldots, K_{m}$ are defined by $K_{l}=K_{l-1} \backslash\left\{i_{l}, j_{l}\right\}$ inductively.
Now we state the main results of [3]:
Theorem A.1. The functions $\left\{h_{n}\right\}_{n=0}^{\infty}$ defined by (A.3) satisfy the equations (3.3)(3.5) if $\omega_{1}(\lambda)$ and $\omega_{2}(\lambda)$ are solutions of the following system of difference equations:

$$
\begin{align*}
& \omega_{1}(\lambda-1)+\omega_{1}(\lambda)+p_{1}(\lambda)=0  \tag{A.4}\\
& \omega_{2}(\lambda-1)+\omega_{2}(\lambda)+\omega_{1}(\lambda)+p_{1}(\lambda)+p_{2}(\lambda)=0  \tag{A.5}\\
& \omega_{1}(-\lambda)=\omega_{1}(\lambda), \quad \omega_{2}(-\lambda)=-\omega_{2}(\lambda) \tag{A.6}
\end{align*}
$$

where

$$
\begin{aligned}
& p_{1}(\lambda):=\frac{3}{4} \frac{1}{[\lambda][\lambda-1]}-\frac{1}{4} \frac{[3]}{[\lambda-2][\lambda+1]}, \\
& p_{2}(\lambda):=\frac{1}{2} \frac{1}{[\lambda-1][\lambda-2]}-\frac{1}{4} \frac{[2]}{[\lambda-1][\lambda+1]} .
\end{aligned}
$$

Moreover, $h_{n}$ gives the correlation function (3.2) in the massive regime when $\omega_{j}(\lambda)$ $(j=1,2)$ are given by (3.13).

## A.2. Another formula

In this subsection we construct an operator

$$
\widetilde{\Omega}_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \operatorname{End}\left(V^{\otimes 2 n}\right)
$$

and rewrite the formula (A.3) by using $\widetilde{\Omega}_{n}$ (see (A.11)). The procedure of rewriting here is similar to that in Section 11 of [3], but slightly different.

First note that the vector $s_{1, \overline{2}} s_{\overline{1}, 2}$ in the right-hand side of (A.1) can be replaced by $s_{1,2} s_{\overline{1}, \overline{2}}$ because of the following reason. We have the equality

$$
s_{1, \overline{2}} s_{\overline{1}, 2}=s_{1,2} s_{\overline{1}, \overline{2}}-s_{1, \overline{1}} s_{2, \overline{2}} .
$$

From the crossing symmetry

$$
\ell_{\overline{2}}\left(\frac{\lambda_{1,2}}{2}-1\right) s_{2, \overline{2}}=-\ell_{2}\left(-\frac{\lambda_{1,2}}{2}\right) s_{2, \overline{2}}
$$

and the cyclicity of the trace function, we see that

$$
\begin{aligned}
& \operatorname{Tr}_{\lambda_{1,2}}\left(t_{n}^{[1]}\left(\frac{\lambda_{1}+\lambda_{2}}{2}\right)\right) s_{2, \overline{2}} \\
& =-\operatorname{Tr}_{\lambda_{1,2}}\left(\ell_{\overline{3}}\left(\frac{\lambda_{1}+\lambda_{2}}{2}-\lambda_{3}-1\right) \cdots \ell_{3}\left(\frac{\lambda_{1}+\lambda_{2}}{2}-\lambda_{3}\right) \ell_{2}\left(\frac{\lambda_{1,2}}{2}\right) \ell_{2}\left(-\frac{\lambda_{1,2}}{2}\right)\right) s_{2, \overline{2}}
\end{aligned}
$$

Use the quantum determinant formula

$$
\begin{equation*}
\operatorname{Tr}_{d}(x \ell(\lambda) \ell(-\lambda))=\left[\frac{d}{2}+\lambda\right]\left[\frac{d}{2}-\lambda\right] \operatorname{Tr}_{d}(x) \quad\left(\forall x \in U_{q}\left(s l_{2}\right)\right) \tag{A.7}
\end{equation*}
$$

Then we find

$$
\operatorname{Tr}_{\lambda_{1,2}}\left(t_{n}^{[1]}\left(\frac{\lambda_{1}+\lambda_{2}}{2}\right)\right) s_{2, \overline{2}}=0
$$

As a result we obtain

$$
\operatorname{Tr}_{\lambda_{1,2}}\left(t_{n}^{[1]}\left(\frac{\lambda_{1}+\lambda_{2}}{2}\right)\right) s_{1, \overline{2}} s_{\overline{1}, 2}=\operatorname{Tr}_{\lambda_{1,2}}\left(t_{n}^{[1]}\left(\frac{\lambda_{1}+\lambda_{2}}{2}\right)\right) s_{1,2} s_{\overline{1}, \overline{2}}
$$

In the following we use the formula for ${ }_{n} X_{n-2}^{(i, j)}$ where $s_{1, \overline{2}} s_{\overline{1}, 2}$ is replaced by $s_{1,2} s_{\overline{1}, \overline{2}}$.
Introduce the operator ${ }_{n-1} \tilde{\Pi}_{n} \in \operatorname{End}\left(V^{\otimes 2 n}, V^{\otimes 2(n-1)}\right)$ defined by

$$
\mathcal{P}_{n, \bar{n}}^{-} u=\left({ }_{n-1} \tilde{\Pi}_{n} u\right)_{1, \ldots, n-1, \overline{n-1}, \ldots, \overline{1}} s_{n, \bar{n}},
$$

and set ${ }_{n-2} \tilde{\Pi}_{n}:={ }_{n-2} \tilde{\Pi}_{n-1} \cdot{ }_{n-1} \tilde{\Pi}_{n}$.
Now we define the operator $\widetilde{X}_{n}^{(i, j)} \in \operatorname{End}\left(V^{\otimes 2 n}\right)$ by

$$
\begin{equation*}
\widetilde{X}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=-4_{n} X_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot{ }_{n-2} \tilde{\Pi}_{n} \cdot \vec{P}_{n}^{(i, j)} \overrightarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \tag{A.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \vec{P}_{n}^{(i, j)}:= \\
& \quad P_{n-1, n-2} \cdots P_{i+1, i} \cdot P_{n, n-1} \cdots P_{j+1, j} \cdot P_{\overline{n-2}, \overline{n-1}} \cdots P_{\bar{i}, \overline{i+1}} \cdot P_{\overline{n-1}, \bar{n}} \cdots P_{\bar{j}, \overline{j+1}}
\end{aligned}
$$

and

$$
\begin{aligned}
\overrightarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & \left.:=R_{i, n}\left(\lambda_{i, n}\right) \cdots \widehat{R_{i, j}\left(\lambda_{i, j}\right.}\right) \cdots R_{i, i+1}\left(\lambda_{i, i+1}\right) \\
& \times R_{j, n}\left(\lambda_{j, n}\right) \cdots R_{j, j+1}\left(\lambda_{j, j+1}\right) \\
& \times R_{\bar{n}, \bar{i}}\left(\lambda_{n, i}\right) \cdots \widehat{R_{\bar{j}, \bar{i}}\left(\lambda_{j, i}\right)} \cdots R_{\overline{i+1,}, \bar{i}}\left(\lambda_{i+1, i}\right) \\
& \times R_{\bar{n}, \bar{j}}\left(\lambda_{n, j}\right) \cdots R_{\overline{j+1}, \bar{j}}\left(\lambda_{j+1, j}\right) .
\end{aligned}
$$

More explicitly, we have

$$
\begin{align*}
& \widetilde{X}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\frac{-4}{\left[\lambda_{i, j}\right] \prod_{p \neq i, j}\left[\lambda_{i, p}\right]\left[\lambda_{j, p}\right]} \overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)  \tag{A.9}\\
& \quad \times \operatorname{Tr}_{\lambda_{i, j}}\left(\ell_{\bar{j}}\left(\frac{\lambda_{i, j}}{2}-1\right) t_{n}^{[i, j]}\left(\frac{\lambda_{i}+\lambda_{j}}{2} ; \lambda_{1}, \ldots, \lambda_{n}\right) \ell_{j}\left(\frac{\lambda_{i, j}}{2}\right)\right) \\
& \quad \times P_{i, j} \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-} \overrightarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& t_{n}^{[i, j]}\left(\lambda ; \lambda_{1}, \ldots, \lambda_{n}\right) \\
& :=\ell_{\overline{1}}\left(\lambda-\lambda_{1}-1\right) \cdots \ell_{\bar{i}}\left(\lambda \widehat{-\lambda_{i}}-1\right) \cdots \ell_{\bar{j}}\left(\lambda \widehat{-\lambda_{j}}-1\right) \cdots \ell_{\bar{n}}\left(\lambda-\lambda_{n}-1\right) \\
& \left.\left.\times \ell_{n}\left(\lambda-\lambda_{n}\right) \cdots \ell_{\bar{j}} \widehat{\left(\lambda-\lambda_{j}\right.}\right) \cdots \ell_{\bar{i}} \widehat{\left(\lambda-\lambda_{i}\right.}\right) \cdots \ell_{1}\left(\lambda-\lambda_{1}\right)
\end{aligned}
$$

To obtain (A.9) from (A.8) we used

$$
\overleftarrow{P}_{n}^{(i, j)} s_{1,2} s_{\overline{1}, \overline{2}}\left({ }_{n-2} \tilde{\Pi}_{n} \cdot \vec{P}_{n}^{(i, j)} u\right)_{3, \ldots, n, \bar{n}, \ldots, \overline{3}}=P_{\overline{i, j}} \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-} u
$$

for $u \in V^{\otimes 2 n}$.

In the same way as (A.2) the operator $\widetilde{X}_{n}^{(i, j)}$ is decomposed into two parts:

$$
\widetilde{X}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\widetilde{X}_{1, n}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right)-\lambda_{i, j} \cdot \widetilde{X}_{2, n}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right),
$$

where $\widetilde{X}_{a, n}^{(i, j)}(a=1,2)$ are rational functions in $\zeta_{1}, \ldots, \zeta_{n}$ which take values in $\operatorname{End}\left(V^{\otimes 2 n}\right)$. Then take solutions $\omega_{1}(\lambda)$ and $\omega_{2}(\lambda)$ of the equations (A.5)-(A.6), and define

$$
\widetilde{\Omega}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\sum_{a=1,2} \omega_{a}\left(\lambda_{i, j}\right) \widetilde{X}_{a, n}^{(i, j)}\left(\zeta_{1}, \ldots, \zeta_{n}\right) .
$$

By definition we set $\widetilde{\Omega}_{n}^{(j, i)}=\widetilde{\Omega}_{n}^{(i, j)}$ for $1 \leq i<j \leq n$. Then the operator $\widetilde{\Omega}_{n}^{(i, j)}$ has the following properties:

## Proposition A.2.

(1) Suppose that $i<j$ and $k<l$. If $\{i, j\} \cap\{k, l\} \neq \emptyset$, we have

$$
\widetilde{\Omega}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot{ }_{n} \Omega_{n-2}^{(k, l)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0 .
$$

If $\{i, j\} \cap\{k, l\}=\emptyset$, we have

$$
\begin{aligned}
& \widetilde{\Omega}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot{ }_{n} \Omega_{n-2}^{(k, l)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& =-4_{n} \Omega_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot{ }_{n-2} \Omega_{n-4}^{\left(k^{\prime}, l^{\prime}\right)}\left(\lambda_{1}, \ldots, \widehat{\lambda_{i}}, \ldots, \widehat{\lambda_{j}}, \ldots, \lambda_{n}\right) \\
& \quad \times{ }_{n-4} \tilde{\Pi}_{n-2} \cdot \vec{P}_{n-2}^{\left(i^{\prime}, j^{\prime}\right)} \overrightarrow{\mathbb{R}}_{n-2}^{\left(i^{\prime}, j^{\prime}\right)}\left(\lambda_{1}, \ldots, \widehat{\lambda_{k}}, \ldots, \widehat{\lambda_{l}}, \ldots, \lambda_{n}\right)
\end{aligned}
$$

where $k^{\prime}$ and $l^{\prime}$ are the positions of $\lambda_{k}$ and $\lambda_{l}$ in $\left(\lambda_{1}, \ldots, \widehat{\lambda_{i}}, \ldots, \widehat{\lambda_{j}}, \ldots, \lambda_{n}\right)$, and $i^{\prime}$ and $j^{\prime}$ are the positions of $\lambda_{i}$ and $\lambda_{j}$ in $\left(\lambda_{1}, \ldots, \widehat{\lambda_{k}}, \ldots, \widehat{\lambda_{l}}, \ldots, \lambda_{n}\right)$.
(2) The operators $\widetilde{\Omega}_{n}^{(i, j)}$ satisfy the exchange relations:

$$
\begin{aligned}
& \check{R}_{k, k+1}\left(\lambda_{k, k+1}\right) \check{R}_{\overline{k+1}, \bar{k}}\left(\lambda_{k+1, k}\right) \widetilde{\Omega}_{n}^{(i, j)}\left(\ldots, \lambda_{k}, \lambda_{k+1}, \ldots\right) \\
& \quad=\widetilde{\Omega}_{n}^{\left(\pi_{k}(i), \pi_{k}(j)\right)}\left(\ldots, \lambda_{k+1}, \lambda_{k}, \ldots\right) \check{R}_{k, k+1}\left(\lambda_{k, k+1}\right) \check{R}_{\overline{k+1}, \bar{k}}\left(\lambda_{k+1, k}\right) .
\end{aligned}
$$

Here $\pi_{k}$ is the transposition $(k, k+1)$.
(3) The operators $\widetilde{\Omega}_{n}^{(i, j)}$ are commutative:

$$
\widetilde{\Omega}_{n}^{(i, j)} \widetilde{\Omega}_{n}^{(k, l)}=\widetilde{\Omega}_{n}^{(k, l)} \widetilde{\Omega}_{n}^{(i, j)} \quad \text { for all } \quad i<j, k<l .
$$

The proof of Proposition A. 2 is quite similar to that of Lemma 12.1, Lemma 12.2 and Lemma 12.3 in [3]. In the proof of (1), use the recurrence relation

$$
\begin{align*}
& { }_{n-1} \tilde{\Pi}_{n} \cdot{ }_{n} X_{n-2}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)  \tag{A.10}\\
& \quad= \begin{cases}0 & \text { if } j=n, \\
{ }_{n-1} X_{n-3}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \cdot{ }_{n-3} \tilde{\Pi}_{n-2} & \text { if } j<n .\end{cases}
\end{align*}
$$

Now we define the operator $\widetilde{\Omega}_{n}$ by

$$
\widetilde{\Omega}_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\sum_{1 \leq i<j \leq n} \widetilde{\Omega}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Then from Proposition A. 2 and the equality

$$
P_{1,2} P_{\overline{2}, \overline{1}} R_{1,2}(\lambda) R_{\overline{2}, \overline{1}}(-\lambda) s_{1, \overline{1}} s_{2, \overline{2}}=s_{1, \overline{1}} s_{2, \overline{2}}
$$

we get
Theorem A.3. The formula (A.3) for $h_{n}$ can be rewritten as follows:

$$
\begin{equation*}
h_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=2^{-n} e^{\widetilde{\Omega}_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)} \mathbf{s}_{n} . \tag{A.11}
\end{equation*}
$$

## A.3. Derivation of the new formula

Finally we prove that the operator $\Omega_{n}$ defined in (3.16) is equal to $\widetilde{\Omega}_{n}$.
From the definition (3.11) of $X_{a, n}(a=1,2)$, we can easily see that

$$
\operatorname{res}_{\mu_{1}=\lambda_{j}} \operatorname{res}_{\mu_{2}=\lambda_{j}} X_{a, n}\left(\mu_{1}, \mu_{2} ; \lambda_{1}, \ldots, \lambda_{n}\right)=0
$$

and

$$
\begin{aligned}
\operatorname{res}_{\mu_{1}=\lambda_{i}} \operatorname{res}_{\mu_{2}=\lambda_{j}} X_{a, n}\left(\mu_{1},\right. & \left.\mu_{2} ; \lambda_{1}, \ldots, \lambda_{n}\right) \\
& =(-1)^{a} \operatorname{res}_{\mu_{1}=\lambda_{j}} \operatorname{res}_{\mu_{2}=\lambda_{i}} X_{a, n}\left(\mu_{1}, \mu_{2} ; \lambda_{1}, \ldots, \lambda_{n}\right)
\end{aligned}
$$

The operator

$$
\operatorname{Tr}_{2,2}\left(T_{n}\left(\mu_{1}\right) \otimes T_{n}\left(\mu_{2}\right) \cdot B\left(\mu_{1,2}\right)\right)
$$

is skew-symmetric with respect to $\mu_{1}$ and $\mu_{2}$ because of the commutation relation

$$
R_{12}(\mu) B_{12}(\mu)=-B_{21}(-\mu) R_{12}(\mu)
$$

The functions $\omega_{a}(a=1,2)$ satisfy the parity conditions

$$
\omega_{a}(-\lambda)=(-1)^{a-1} \omega_{a}(\lambda)
$$

By using the above properties we have

$$
\Omega_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{1 \leq i<j \leq n} \Omega_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where

$$
\begin{aligned}
\Omega_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right):= & \frac{(-1)^{n}}{\kappa^{2}} \sum_{a=1,2} \omega_{a}\left(\lambda_{i, j}\right) \operatorname{res}_{\mu_{1}=\lambda_{i}} \operatorname{res}_{\mu_{2}=\lambda_{j}} \\
& \times X_{a, n}\left(\mu_{1}, \mu_{2} ; \lambda_{1}, \ldots, \lambda_{n}\right) \operatorname{Tr}_{2,2}\left(T_{n}\left(\lambda_{i}\right) \otimes T_{n}\left(\lambda_{j}\right) \cdot B\left(\lambda_{i, j}\right)\right)
\end{aligned}
$$

In the following we show the equality $\Omega_{n}^{(i, j)}=\widetilde{\Omega}_{n}^{(i, j)}$. To this end we prove two lemmas.

Let $B$ be a linear operator acting on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$. Then

$$
\operatorname{Tr}_{2,2}\left(T_{n}\left(\lambda_{i}\right) \otimes T_{n}\left(\lambda_{j}\right) \cdot B\right)
$$

is the operator acting on $V_{1} \otimes \cdots \otimes V_{n} \otimes V_{\bar{n}} \otimes \cdots \otimes V_{\overline{1}}$.
Lemma A.4. We have

$$
\begin{align*}
& \operatorname{Tr}_{2,2}\left(T_{n}\left(\lambda_{i}\right) \otimes T_{n}\left(\lambda_{j}\right) \cdot B\right) \\
& \quad=4 \overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) B_{i, j} \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-} \overrightarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \tag{A.12}
\end{align*}
$$

Proof. We prepare some notation. Denote by $V_{a} \otimes V_{b}\left(V_{a} \simeq V_{b} \simeq \mathbb{C}^{2}\right)$ the tensor product of the two-dimensional spaces on which the trace $\operatorname{Tr}_{2,2}$ is taken. Set

$$
V^{Q}=V_{1} \otimes \cdots \otimes V_{n} \otimes V_{\bar{n}} \otimes \cdots \otimes V_{\overline{1}}
$$

Let $R_{a, i}(\lambda)$ be the $R$ matrix acting on the $a$-th and the $i$-th component of $V_{a} \otimes$ $V_{b} \otimes V^{Q}$. We set

$$
T_{a}(\lambda)=R_{a, \overline{1}}\left(\lambda-\lambda_{1}-1\right) \cdots R_{a, \bar{n}}\left(\lambda-\lambda_{n}-1\right) R_{a, n}\left(\lambda-\lambda_{n}\right) \cdots R_{a, 1}\left(\lambda-\lambda_{1}\right)
$$

We define $T_{b}(\lambda)$ similarly. We denote by $B_{a, b}$ the operator $B$ acting on $V_{a} \otimes V_{b}$. Similarly, $B_{i, b}$, etc., are defined.

Denote by $X$ the left-hand side of (A.12). Then we have

$$
X=\operatorname{tr}_{a, b}\left(B_{a, b} T_{a}\left(\lambda_{i}\right) T_{b}\left(\lambda_{j}\right)\right)
$$

Here $\operatorname{tr}_{a, b}$ means taking trace on $V_{a} \otimes V_{b}$. We use the following properties of the $R$ matrix.

$$
\begin{align*}
& R_{1,2}(0)=P_{1,2}  \tag{A.13}\\
& R_{1,2}(-1)=-2 \mathcal{P}_{1,2}^{-}  \tag{A.14}\\
& R_{1,2}\left(\lambda_{1,2}\right) R_{1,3}\left(\lambda_{1,3}\right) R_{2,3}\left(\lambda_{2,3}\right)=R_{2,3}\left(\lambda_{2,3}\right) R_{1,3}\left(\lambda_{1,3}\right) R_{1,2}\left(\lambda_{1,2}\right)  \tag{A.15}\\
& R_{1,2}(\lambda) R_{2,1}(-\lambda)=1  \tag{A.16}\\
& R_{1,3}(\lambda) R_{1,2}(-1)=-R_{3,2}(-1-\lambda) R_{1,2}(-1)  \tag{A.17}\\
& R_{1,2}(-1) R_{1,3}(\lambda)=-R_{1,2}(-1) R_{3,2}(-1-\lambda) \tag{A.18}
\end{align*}
$$

We abbreviate the arguments of the $R$-matrices. They can be understood from the space indices $a, b, 1, \ldots, n, \overline{1}, \ldots, \bar{n}$ through the correspondences $a \leftrightarrow \lambda_{i}$, $b \leftrightarrow \lambda_{j}, 1 \leftrightarrow \lambda_{1}, \ldots, n \leftrightarrow \lambda_{n}, \overline{1} \leftrightarrow \lambda_{1}+1, \ldots, \bar{n} \leftrightarrow \lambda_{n}+1$. For example, by $R_{i, \bar{j}}$ we mean $R_{i, \bar{j}}\left(\lambda_{i, j}-1\right)$. We extend this convention to $T_{a}$ and $T_{b}$. We also use the abbreviation

$$
R_{i,[i-1,1]}=R_{i, i-1} R_{i, i-2} \cdots R_{i, 1}
$$

etc..
With the above convention, we have

$$
\begin{aligned}
& X= \operatorname{tr}_{a, b}\left\{B_{a, b}\right. \\
& \times R_{a,[\overline{1}, i=1]} R_{a, \bar{i}}(-1) R_{a,[i \mp 1, j=1]} R_{a, \bar{j}} R_{a,[j \mp 1, \bar{n}]} R_{a,[n, j+1]} R_{a, j} R_{a,[j-1, i+1]} \\
& \times P_{a, i} R_{a,[i-1,1]} \\
& \times R_{b,[\overline{1}, i=1]} R_{b, \bar{i}} R_{b,[i \mp 1, j=1]} R_{b, \bar{j}}(-1) R_{b,[j \mp 1, \bar{n}]} R_{b,[n, j+1]} \\
& P_{b, j} R_{b,[j-1, i+1]} \\
&\left.\times R_{b, i} R_{b,[i-1,1]}\right\} .
\end{aligned}
$$

We write the argument -1 in two places in order to emphasize where we can use the crossing symmetries (A.17), (A.18). Using the cyclicity of the trace, we bring $R_{a,[i-1,1]} R_{b,[i-1,1]}$ to the left of $B_{a, b}$. Then, we move $P_{a, i}$ to the left while
we change all $a$ to $i$. Finally, we can eliminate $\operatorname{tr}_{a} P_{a, i}$ because this is equal to the identity operator. Thus, we get

$$
\begin{aligned}
& X=R_{i,[i-1,1]} \operatorname{tr}_{b}\left\{R_{b,[i-1,1]} B_{i, b}\right. \\
& \times R_{i,[\overline{1}, i=1]} R_{i, \bar{i}}(-1) R_{i,[i \overline{+} 1, j=1]} R_{i, \bar{j}} R_{i,[j \overline{+} 1, \bar{n}]} R_{i,[n, j+1]} \frac{R_{i, j} R_{i,[j-1, i+1]}}{\left.\times R_{b,[\overline{1}, i-1]} R_{b, \bar{i}} R_{b,[i \bar{\mp} 1, j=} R_{b, \bar{j}}(-1) R_{b,[j \overline{+} 1, \bar{n}]} R_{b,[n, j+1]} \underline{P_{b, j}} R_{b,[j-1, i+1]} R_{b, i}\right\} .}
\end{aligned}
$$

Using the crossing symmetries (A.17), (A.18), and pushing the underlined terms to the right, we obtain

$$
\begin{aligned}
& X=R_{i,[i-1,1]} R_{[i=1, \overline{1}], \bar{i}} \operatorname{tr}_{b}\left\{R_{b,[i-1,1]} B_{i, b}\right. \\
& \times R_{i, \bar{i}}(-1) R_{[\bar{n}, j \bar{j} 1], \bar{i}} R_{\bar{j}, \bar{i}} R_{[j=1, i \overline{+1], \bar{i}}} R_{i,[n, j+1]} \\
& \times R_{[j=1, i \overline{+1]}, \bar{j}} R_{\overline{\bar{i}, \bar{j}}} R_{[i=1, \overline{1}], \bar{j}} R_{b, \bar{j}}(-1) R_{[\bar{n}, j \overline{+} 1], \bar{j}} R_{b,[n, j+1]} \\
& \left.\times \underline{R_{i, j} R_{i,[j-1, i+1]}} R_{j,[j-1, i+1]} R_{j, i} \underline{P_{b, j}}\right\} .
\end{aligned}
$$

Using the Yang-Baxter equation (A.15) and the unitarity relation (A.16), we reduce $R_{i j} R_{j i}$, and $R_{\bar{j}, \bar{i}} R_{\bar{i}, \bar{j}}$.

$$
\begin{aligned}
& X=R_{i,[i-1,1]} R_{[i=1, \overline{1}], \bar{i}} \operatorname{tr}_{b}\left\{R_{b,[i-1,1]} B_{i, b}\right. \\
& \times R_{i, \bar{i}}(-1) R_{[\bar{n}, j \overline{+1]}, \bar{i}} R_{i,[n, j+1]} R_{[j=1, i \overline{+1], j}} R_{[j=1, i \overline{+1], \bar{i}}} \\
& \left.\times R_{[i=1, \overline{1}], \bar{j}} R_{b, \bar{j}}(-1) R_{[\bar{n}, j \overline{+1]}, \bar{j}} R_{b,[n, j+1]} R_{j,[j-1, i+1]} R_{i,[j-1, i+1]} P_{b, j}\right\} .
\end{aligned}
$$

The underlined terms can be brought outside the trace. Therefore, handling $P_{b, j}$ in the same way as $P_{a, i}$, we obtain

$$
\begin{aligned}
& X=R_{i,[i-1,1]} R_{[i-1, \overline{1}], i} R_{[j=1, i \mp 1], \bar{j}} R_{j,[j-1, i+1]} R_{j,[i-1,1]} B_{i, j} \\
& \times R_{i, \bar{i}}(-1) R_{[\bar{n}, j \overline{+1], i}} R_{i,[n, j+1]} R_{[j-1, i \overline{+1]}, \bar{i}} \\
& \times R_{[i-1, \overline{1}], \bar{j}} R_{j, \bar{j}}(-1) R_{[\bar{n}, j \overline{+1], \bar{j}}} R_{j,[n, j+1]} R_{i,[j-1, i+1]} \\
& =\overleftarrow{\mathbb{R}}_{n}^{(i, j)} B_{i, j} R_{i, \bar{i}}(-1) R_{j, \bar{j}}(-1) \overrightarrow{\mathbb{R}}_{n}^{(i, j)} .
\end{aligned}
$$

This completes the proof.
To state the second lemma we introduce some notation. The $\ell$-operator is written as

$$
\ell(\lambda)=\sum_{\alpha=0}^{3} \ell^{\alpha}(\lambda) \otimes \sigma^{\alpha}
$$

where

$$
\begin{aligned}
& \ell^{0}(\lambda)=\frac{\left(q^{\lambda+\frac{1}{2}}-q^{-\lambda-\frac{1}{2}}\right)\left(q^{\frac{H}{2}}+q^{-\frac{H}{2}}\right)}{2\left(q-q^{-1}\right)} \\
& \ell^{1}(\lambda)=\frac{q^{\frac{1-H}{2}} E+F q^{\frac{(H-1)}{2}}}{2}
\end{aligned}
$$

$$
\begin{aligned}
i \ell^{2}(\lambda) & =\frac{q^{\frac{1-H}{2}} E-F q^{\frac{(H-1)}{2}}}{2} \\
\ell^{3}(\lambda) & =\frac{\left(q^{\lambda+\frac{1}{2}}+q^{-\lambda-\frac{1}{2}}\right)\left(q^{\frac{H}{2}}-q^{-\frac{H}{2}}\right)}{2\left(q-q^{-1}\right)} .
\end{aligned}
$$

For $\alpha, \beta=0,1,2,3$ we set

$$
\epsilon_{\alpha \beta}= \begin{cases}i & \text { if }(\alpha, \beta)=(1,2),(2,3),(3,1), \\ -i & \text { if }(\alpha, \beta)=(2,1),(3,2),(1,3), \\ 1 & \text { otherwise }\end{cases}
$$

Lemma A.5. Let $B \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ be an operator

$$
B=\sum_{\alpha, \beta=0}^{3} \epsilon_{\alpha \beta} B^{\alpha \beta}\left(\sigma^{\alpha} \otimes \sigma^{\beta}\right) \quad\left(B^{\alpha \beta} \in \mathbb{C}\right)
$$

Then we have

$$
\begin{align*}
\operatorname{Tr}_{\lambda_{i, j}}\left(t_{n}\left(\frac{\lambda_{i}+\lambda_{j}}{2}\right)\right) \overleftarrow{\mathbb{R}}{ }_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) B_{i, j} \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-}=\overleftarrow{\mathbb{R}}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \operatorname{Tr}_{\lambda_{i, j}} \\
\times\left(\ell_{\bar{j}}\left(\frac{\lambda_{i, j}}{2}-1\right) t_{n}^{[i, j]}\left(\frac{\lambda_{i}+\lambda_{j}}{2}\right) \ell_{j}\left(\frac{\lambda_{i, j}}{2}\right) \cdot Y\left(\lambda_{i, j}\right)\right) P_{i, j} \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-}, \tag{A.19}
\end{align*}
$$

where $Y(\lambda)$ is given by

$$
\begin{equation*}
Y(\lambda):=-4 \sum_{\alpha, \beta=0}^{3} \epsilon_{\alpha \beta} C^{\alpha \beta} \ell^{\beta}\left(\frac{\lambda}{2}-1\right) \ell^{\alpha}\left(-\frac{\lambda}{2}-1\right) . \tag{A.20}
\end{equation*}
$$

Here the coefficients $C^{\alpha \beta}$ are determined from the equality

$$
\left(\begin{array}{l}
C^{00}  \tag{A.21}\\
C^{11} \\
C^{22} \\
C^{33}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
B^{00} \\
B^{11} \\
B^{22} \\
B^{33}
\end{array}\right)
$$

and ones obtained by changing the indices $(00,11,22,33)$ in the both hand sides of (A.21) to $(01,10,23,32),(02,13,20,31)$ and $(03,12,21,30)$. In particular, if $B$ is the identity, the left-hand side of (A.19) becomes zero.

Proof. We start from the left-hand side of (A.19). The $R$-matrices $\overleftarrow{\mathbb{R}}_{n}^{(i, j)}$ go through the $\ell$-operators $t_{n}$ :

$$
\begin{equation*}
\overleftarrow{\mathbb{R}}_{n}^{(i, j)} \operatorname{Tr}_{\lambda_{i, j}}\left(\ell_{\bar{i}}\left(\frac{\lambda_{j, i},-1}{2}-1\right) \ell_{\bar{j}}\left(\frac{\lambda_{i, j},-1}{2}-1\right) t_{n}^{[i, j]}\left(\frac{\lambda_{i}+\lambda_{j}}{2}\right) \ell_{j}\left(\frac{\lambda_{i, j}}{2}\right) \ell_{i}\left(\frac{\lambda_{i, i}}{2}\right) B_{i, j}\right) \mathcal{P}_{i, \bar{i}}^{-} \mathcal{P}_{j, \bar{j}}^{-} . \tag{A.22}
\end{equation*}
$$

Now it is easy to see that the above operator becomes zero if $B$ is the identity because of the cyclicity of the trace, the crossing symmetry

$$
\ell_{1}(\lambda) \mathcal{P}_{1,2}^{-}=-\ell_{2}(-\lambda-1) \mathcal{P}_{1,2}^{-},
$$

and the quantum determinant formula (A.7).
Let us proceed the calculation of (A.22). Without loss of generality, we consider the case $i=1, j=2$ :

$$
Z:=\operatorname{Tr}_{\lambda_{1,2}}\left(\ell_{\overline{1}}\left(\frac{\lambda_{2,1}}{2}-1\right) \ell_{\overline{2}}\left(\frac{\lambda_{1,2}}{2}-1\right) t_{x}^{[1,2]}(\lambda) \ell_{2}\left(\frac{\lambda_{1,2}}{2}\right) \ell_{1}\left(\frac{\lambda_{2,1}}{2}\right)\right) B_{1,2} \mathcal{P}_{1, \overline{1}}^{-} \mathcal{P}_{2, \overline{2}}^{-}
$$

where

$$
\lambda=\frac{\lambda_{1}+\lambda_{2}}{2}
$$

We rewrite the last part of $Z$ by using

$$
B_{1,2} \mathcal{P}_{1, \overline{1}}^{-} \mathcal{P}_{2, \overline{2}}^{-}=\sum_{\alpha, \beta=0}^{3} \epsilon_{\alpha \beta} C^{\alpha \beta} \sigma_{\overline{1}}^{\alpha} \sigma_{2}^{\alpha} P_{\overline{1}, 2} \mathcal{P}_{1, \overline{1}}^{-} \mathcal{P}_{2, \overline{2}}^{-}
$$

Note that

$$
P_{\overline{1}, 2} \mathcal{P}_{1, \overline{1}}^{-} \mathcal{P}_{2, \overline{2}}^{-}=\mathcal{P}_{1,2}^{-} \mathcal{P}_{\overline{1}, \overline{2}}^{-} P_{\overline{1}, 2}
$$

Using the crossing symmetry, we rewrite $Z$ as

$$
\begin{aligned}
& Z=\sum_{\alpha, \beta=0}^{3} \epsilon_{\alpha \beta} C^{\alpha \beta} \\
& \times \operatorname{Tr}_{\lambda_{1,2}}\left(\ell_{\overline{1}}\left(\frac{\lambda_{2,1}}{2}-1\right) \sigma_{\overline{1}}^{\alpha} \ell_{\overline{1}}\left(\frac{\lambda_{2,1}}{2}\right) \mathcal{P}_{\overline{1}, \overline{2}}^{-} \cdot t_{n}^{[1,2]}(\lambda) \cdot \ell_{2}\left(\frac{\lambda_{1,2}}{2}\right) \sigma_{2}^{\beta} \ell_{2}\left(\frac{\lambda_{1,2}}{2}-1\right) \mathcal{P}_{1,2}^{-}\right) P_{\overline{1}, 2} .
\end{aligned}
$$

Then (A.19) follows from the quantum determinant formula (A.7), the following Proposition A.6, and the equality

$$
\sigma^{2} \ell(\lambda)^{t} \cdot \sigma^{2}=-\ell(-\lambda-1)
$$

Proposition A.6. Suppose that $m=\sum_{\alpha=0}^{3} m_{\alpha} \sigma^{\alpha}$ where $m_{\alpha}$ is a scalar with respect to the 2-dimensional space on which the Pauli matrices act. We have

$$
\begin{aligned}
\sigma^{\alpha} m & =-\varepsilon_{\alpha}\left(\sigma^{2} m^{t} \cdot \sigma^{2}\right) \sigma^{\alpha}+2 m_{\alpha} \\
m \sigma^{\alpha} & =-\varepsilon_{\alpha} \sigma^{\alpha}\left(\sigma^{2} m^{t} \cdot \sigma^{2}\right)+2 m_{\alpha}
\end{aligned}
$$

where $m^{t}=\sum_{\alpha=0}^{3} m_{\alpha}\left(\sigma^{\alpha}\right)^{t}$ and

$$
\varepsilon_{\alpha}= \begin{cases}1 & \text { if } \alpha=0 \\ -1 & \text { otherwise }\end{cases}
$$

The proof of Proposition A. 6 is straightforward.

Now let us prove that $\Omega_{n}^{(i, j)}=\widetilde{\Omega}_{n}^{(i, j)}$. If $B$ is the operator $B(\mu)$ defined in (3.17), the corresponding operator $Y(\lambda)$ determined by (A.20) becomes the identity. Therefore, from the formula (A.9), we obtain

$$
\begin{array}{r}
\frac{(-1)^{n}}{\kappa^{2}} \operatorname{res}_{\mu_{1}=\lambda_{i}} \operatorname{res}_{\mu_{2}=\lambda_{j}} \operatorname{Tr}_{\mu_{1,2}}\left(T_{n}\left(\frac{\mu_{1}+\mu_{2}}{2}\right)\right) \cdot \operatorname{Tr}_{2,2}\left(T_{n}\left(\lambda_{i}\right) \otimes T_{n}\left(\lambda_{j}\right) \cdot B\left(\lambda_{i, j}\right)\right) \\
=\tilde{X}_{n}^{(i, j)}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
\end{array}
$$

This implies the equality $\Omega_{n}^{(i, j)}=\widetilde{\Omega}_{n}^{(i, j)}$.
The proof of $(3.19),(3.20)$ is similar. It is easy to see that for the operator $B^{q}(\mu)$ we have $Y(\lambda)=q^{H}$. Therefore, the right-hand side of (3.16) where $X_{a, n}\left(\mu_{1}, \mu_{2}\right)$ and $B(\mu)$ are replaced by $X_{a, n}^{q}\left(\mu_{1}, \mu_{2}\right)$ and $B^{q}(\mu)$, respectively, is equal to $\Omega_{n}$.

Finally we give a sketch of the calculation in the elliptic case. The $\ell$-operator is given by

$$
\ell(\lambda)=\sum_{\alpha=0}^{3} w_{a}(\lambda) S_{\alpha} \otimes \sigma^{\alpha}
$$

Here $S_{\alpha}(\alpha=0,1,2,3)$ are the generators of Sklyanin algebra and

$$
w_{\alpha}(\lambda)=\frac{\theta_{\alpha+1}(2 t+\eta)}{2 \theta_{\alpha+1}(\eta)}
$$

where $t=\lambda \eta$. If we set

$$
B(\lambda)=-\frac{\theta_{1}(2 t) \theta_{1}(4 \eta)}{4 \theta_{1}(2 t+2 \eta) \theta_{1}(2 t-2 \eta)} \sum_{\alpha=1}^{3} \frac{\theta_{\alpha+1}(2 t)}{\theta_{\alpha+1}(2 \eta)} \sigma^{\alpha} \otimes \sigma^{\alpha}
$$

the corresponding operator $Y(\lambda)$ becomes

$$
\begin{aligned}
Y(\lambda) & =\frac{1}{4}\left\{\frac{\theta_{1}(2 t)}{\theta_{1}(2 t-2 \eta)}\left(\frac{\theta_{1}(t-3 \eta) \theta_{1}(t-\eta)}{\theta_{1}^{2}(\eta)} K_{0}-\frac{\theta_{1}^{2}(t-2 \eta)}{\theta_{1}^{2}(\eta)} K_{2}\right)\right. \\
& \left.-\frac{\theta_{1}(4 \eta)}{2 \theta_{1}(2 t-2 \eta) \theta_{1}(2 t-2 \eta) \theta_{1}(2 \eta)}\left(\frac{\theta_{1}(t-\eta) \theta_{1}(t+\eta)}{\theta_{1}^{2}(\eta)} K_{0}-\frac{\theta_{1}^{2}(t)}{\theta_{1}^{2}(\eta)} K_{2}\right)\right\},
\end{aligned}
$$

where $K_{0}$ and $K_{2}$ are the Casimir elements (6.4). Therefore we obtain

$$
\operatorname{Tr}_{\lambda}(x Y(\lambda))=\frac{\theta_{1}(2 t)}{\theta_{1}(2 \eta)} \operatorname{Tr}_{\lambda}(x)
$$

for any element $x$ of the Sklyanin algebra. This gives the formula (6.7).

## Appendix B. Relation with the vertex operator approach

Correlation functions of the XXZ model in the massive regime have been studied in the framework of representation theory $[11,12]$. The description in the present paper differs from the above literature by a few minor points. In this appendix, we compare the two in some detail.

Consider an inhomogeneous six-vertex model where an inhomogeneity parameter $\zeta_{j}$ is attached to each column $j$. By correlation functions we mean those of local operators on a single row. There are two equivalent formulations depending on whether one uses row-to-row or column-to-column transfer matrices. In this paper, correlation functions are expressed as expectation values with respect to the ground state of row-to-row transfer matrices. The latter, and hence the ground state vector, depend on the $\zeta_{j}$ while local operators do not. In [12], on the other hand, column-to-column transfer matrices are employed. Their ground state vectors are independent of $\zeta_{j}$. The inhomogeneity is encoded rather in local operators, expressed in the form of an insertion of half-column transfer matrices.

Another minor difference between [12] and the present paper is that the $R$ matrices and Hamiltonians are not identical. The parameter $q=e^{\pi i \nu}$ of the present paper and the corresponding parameter $q_{\text {JM }}$ in [12] are related by

$$
q_{\mathrm{JM}}=-q .
$$

With this identification, the $R$ matrix $R_{\mathrm{JM}}(\zeta)$ and the Hamiltonian $H_{\mathrm{JM}}$ in [12] are related to $R(\lambda)(2.4)$ and $H_{\mathrm{Xxz}}(2.1)$ by the gauge transformation

$$
\begin{equation*}
R(\lambda)=\left(\sigma^{3} \otimes 1\right) R_{\mathrm{JM}}(\zeta)\left(1 \otimes \sigma^{3}\right), \quad H_{\mathrm{XXZ}}=K H_{\mathrm{JM}} K^{-1} \tag{B.1}
\end{equation*}
$$

where $K=\prod_{j \text { : even }} \sigma_{j}^{3}$.
Correlation functions in the present paper are related to the mean value of the two expectation values with respect to the two vectors $|\mathrm{vac}\rangle_{(i)}$ considered in [12]. Taking into account the gauge transformation (B.1), we have

$$
\begin{align*}
& \prod_{j=1}^{n}\left(-\bar{\epsilon}_{j}\right)\langle\operatorname{vac}|\left(E_{-\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{-\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\mathrm{vac}\rangle  \tag{B.2}\\
& =\frac{1}{2} \sum_{i=0,1} \prod_{j=1}^{n}\left(-\bar{\epsilon}_{j}\right) \cdot{ }_{(i)}\langle\operatorname{vac}| K \cdot\left(E_{-\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{-\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n} \cdot K^{-1}|\mathrm{vac}\rangle_{(i)} \\
& =\frac{1}{2} \sum_{i=0,1} \prod_{j: \text { even }} \epsilon_{j} \prod_{j: \text { odd }}\left(-\bar{\epsilon}_{j}\right)_{(i)}\langle\operatorname{vac}|\left(E_{-\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{-\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle_{(i)}
\end{align*}
$$

The correlation functions

$$
{ }_{(i)}\langle\operatorname{vac}|\left(E_{\epsilon_{1}, \bar{\epsilon}_{1}}\right)_{1} \cdots\left(E_{\epsilon_{n}, \bar{\epsilon}_{n}}\right)_{n}|\operatorname{vac}\rangle_{(i)}
$$

can be constructed in terms of the vertex operators arising from representation theory of the quantum affine algebra $U_{-q}=U_{-q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ as follows (recall that $q_{\mathrm{JM}}=$ $-q$ ).

Denote by $\Lambda_{i}(i=0,1)$ the fundamental weights of $U_{-q}$. Let $V\left(\Lambda_{i}\right)$ be the irreducible highest weight module with highest weight $\Lambda_{i}$, and $V_{\zeta}=V \otimes \mathbb{C}\left[\zeta, \zeta^{-1}\right]$ the evaluation module in the principal picture. The vertex operator (of type I) is an intertwiner

$$
\Phi(\zeta): V\left(\Lambda_{i}\right) \longrightarrow V\left(\Lambda_{1-i}\right) \otimes V_{\zeta}
$$

Define the components $\Phi_{\epsilon}(\zeta)(\epsilon= \pm)$ by

$$
\Phi_{\epsilon}(\zeta): V\left(\Lambda_{i}\right) \longrightarrow V\left(\Lambda_{1-i}\right), \quad \Phi(\zeta) u=\sum_{\epsilon= \pm}\left(\Phi_{\epsilon}(\zeta) u\right) \otimes v_{\epsilon}
$$

Then

$$
\begin{align*}
& { }_{(i)}\langle\operatorname{vac}|\left(E_{-\epsilon_{1}, \bar{\epsilon}_{1}}\right)_{1} \cdots\left(E_{-\epsilon_{n}, \bar{\epsilon}_{n}}\right)_{n}|\operatorname{vac}\rangle_{(i)} \\
& \quad=\chi^{-1} g^{n} \operatorname{tr}_{V\left(\Lambda_{i}\right)}\left(q^{2 D^{(i)}} \Phi_{\epsilon_{n}}\left(q^{-1} \zeta_{n}\right) \cdots \Phi_{\epsilon_{1}}\left(q^{-1} \zeta_{1}\right) \Phi_{\bar{\epsilon}_{1}}\left(\zeta_{1}\right) \cdots \Phi_{\bar{\epsilon}_{n}}\left(\zeta_{n}\right)\right), \tag{B.3}
\end{align*}
$$

where $\zeta_{j}=q^{\lambda_{j}}, D^{(i)}=-\left(\Lambda_{0}+\Lambda_{1}\right)+\frac{i}{2}$, and

$$
\chi=\frac{1}{\left(q^{2} ; q^{4}\right)_{\infty}}, \quad g=\frac{\left(q^{2} ; q^{4}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}}
$$

The vertex operators satisfy the following relations:

$$
\begin{align*}
& \Phi_{\epsilon_{2}}\left(\zeta_{2}\right) \Phi_{\epsilon_{1}}\left(\zeta_{1}\right)=\sum_{\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}= \pm} R_{\mathrm{JM}}\left(\zeta_{1} / \zeta_{2}\right)_{\epsilon_{1} \epsilon_{2}}^{\epsilon_{1}^{\prime} \epsilon_{2}^{\prime}} \Phi_{\epsilon_{1}^{\prime}}\left(\zeta_{1}\right) \Phi_{\epsilon_{2}^{\prime}}\left(\zeta_{2}\right),  \tag{B.4}\\
& \xi^{D^{(1-i)}} \cdot \Phi_{\epsilon}(\zeta) \cdot \xi^{-D^{(i)}}=\Phi_{\epsilon}(\xi \zeta),  \tag{B.5}\\
& g \sum_{\epsilon= \pm} \Phi_{-\epsilon}(\zeta) \Phi_{\epsilon}(q \zeta)=\mathrm{id} . \tag{B.6}
\end{align*}
$$

The basic relations (3.3)-(3.4) are simple consequences of (B.3) and (B.4)-(B.6).

## Appendix C. The scalar factors

We collect here formulas for the scalar factors which enter the definition of the $L$-operators.

## $\underline{X X Z \text { case }}$

- Massless regime $(0<\nu<1)$

$$
\begin{equation*}
\rho(\lambda, d)=-\frac{S_{2}\left(1-\frac{d}{2}-\lambda\right)}{S_{2}\left(1-\frac{d}{2}+\lambda\right)} \frac{S_{2}\left(2-\frac{d}{2}+\lambda\right)}{S_{2}\left(2-\frac{d}{2}-\lambda\right)} \tag{C.1}
\end{equation*}
$$

where $S_{2}(\lambda)=S_{2}(\lambda \mid 2,1 / \nu)$ stands for the double sine function.

- Massive regime $\left(\nu \in i \mathbb{R}_{>0}\right)$

$$
\begin{equation*}
\rho(\lambda, d)=-\zeta \frac{\left(q^{2-d} \zeta^{-2}\right)_{\infty}}{\left(q^{2-d} \zeta^{2}\right)_{\infty}} \frac{\left(q^{4-d} \zeta^{2}\right)_{\infty}}{\left(q^{4-d} \zeta^{-2}\right)_{\infty}} \tag{C.2}
\end{equation*}
$$

where $(z)_{\infty}=\prod_{j=0}^{\infty}\left(1-z q^{4 j}\right)$.

## $\underline{X Y Z \text { case }}$

- Disordered regime $(\eta, t \in i \mathbb{R},-i \eta>0)$

$$
\begin{equation*}
\rho(t, d)=-e^{2 \pi i t} \frac{\gamma((4-d) \eta-2 t)}{\gamma((4-d) \eta+2 t)} \frac{\gamma((2-d) \eta+2 t)}{\gamma((2-d) \eta-2 t)}, \tag{C.3}
\end{equation*}
$$

where $\gamma(u)=\Gamma(u, 4 \eta, \tau)$ and

$$
\Gamma(u, \sigma, \tau):=\prod_{j, k=0}^{\infty} \frac{1-e^{2 \pi i((j+1) \tau+(k+1) \sigma-u)}}{1-e^{2 \pi i(j \tau+k \sigma+u)}}
$$

denotes the elliptic Gamma function.

- Ordered regime $(\eta, t \in \mathbb{R}, \eta<0)$

$$
\rho(t, d)=e^{-\frac{4 \pi i}{\tau}(d-1) \eta t} \times \rho^{\prime}\left(t^{\prime}, d\right)
$$

where $\rho^{\prime}\left(t^{\prime}, d\right)$ is obtained from (C.3) by replacing $t, \eta, \tau$ with

$$
t^{\prime}=\frac{t}{\tau}, \quad \eta^{\prime}=\frac{\eta}{\tau}, \quad \tau^{\prime}=-\frac{1}{\tau}
$$

respectively.

Acknowledgments. Research of HB is supported by the RFFI grant \#04-01-00352. Research of MJ is supported by the Grant-in-Aid for Scientific Research B216340033. Research of TM is supported by the Grant-in-Aid for Scientific Research A1-13304010. Research of FS is supported by INTAS grant \#03-51-3350, EC networks "EUCLID", contract number HPRN-CT-2002-00325, "ENIGMA", contract number MRTN-CT-2004-5652, and GIMP program (ANR), contract number ANR-05-BLAN-0029-01. Research of YT is supported by Grant-in-Aid for Young Scientists (B) No. 17740089. This work was also supported by the grant of 21st Century COE Program at Graduate School of Mathematical Sciences, the University of Tokyo, and at RIMS, Kyoto University.

MJ and HB would like to thank F. Göhmann and A. Klümper for interests and discussions. MJ also thanks C. Korff, J.M. Maillet and V. Terras for discussions. HB is grateful to J. Suzuki for discussions, and to P. Pyatov for explanation about $q$-traces.

## References

[1] H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Zeitschrift für Physik 71 (1931) 205.
[2] H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, A recursion formula for the correlation functions of an inhomogeneous XXX model, Algebra and Analysis 17 (2005), 115-159.
[3] H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Reduced qKZ equation and correlation functions of the $X X Z$ model, Commun. Math. Phys. 261 (2006), 245276.
[4] H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Traces on the Sklyanin algebra and correlation functions of the eight-vertex model, J. Phys. A: Math. Gen. 38 (2005), 7629-7659.
[5] H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Density matrix of a finite sub-chain of the Heisenberg anti-ferromagnet, hep-th/0506171, to appear in Lett. Math. Phys.
[6] H. Boos and V. Korepin, Quantum spin chains and Riemann zeta functions with odd arguments, hep-th/0104008, J. Phys. A 34 (2001), 5311-5316.
[7] H. Boos and V. Korepin, Evaluation of integrals representing correlations in $X X X$ Heisenberg spin chain, in MathPhys Odessey 2001, Birkhäuser (2001), 65-108.
[8] H. Boos, V. Korepin and F. Smirnov, Emptiness formation probability and quantum Knizhnik-Zamlodchikov equation, hep-th/0209246, Nucl. Phys. B 658/3 (2003), 417 -439 .
[9] H. Boos, V. Korepin and F. Smirnov, Connecting lattice and relativistic models via conformal field theory, math-ph/0311020.
[10] F. Göhmann, A. Klümper and A. Seel, Integral representations for correlation functions of the XXZ chain at finite temperature, J. Phys. A 37 (2004) 7625-7651.
[11] M. Jimbo, T. Miwa, K. Miki and A. Nakayashiki, Correlation functions of the XXZ model for $\Delta<-1$, Phys. Lett. A 168 (1992), 256-263.
[12] M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, Reg. Conf. Ser. in Math. 85, 1995.
[13] M. Jimbo and T. Miwa, Quantum Knizhnik-Zamolodchikov equation at $|q|=1$ and correlation functions of the XXZ model in the gapless regime, J. Phys. A 29 (1996), 2923-2958.
[14] N. Kitanine, J.-M. Maillet and V. Terras, Correlation functions of the XXZ Heisenberg spin- $\frac{1}{2}$-chain in a magnetic field, Nucl. Phys. B 567 (2000), 554-582.
[15] N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, Dynamical correlation functions of the $X X Z$ spin-1/2 chain, hep-th/0407223.
[16] N. Kitanine, J.-M. Maillet, N. Slavnov and V. Terras, On the algebraic Bethe Ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain, hepth/0505006.
[17] N. Kitanine, J.-M. Maillet, N. Slavnov and V. Terras, Large distance asymptotic behavior of the emptiness formation probability of the XXZ spin-1/2 Heisenberg chain, J. Phys. A 35 (2002), L753.
[18] P.P. Kulish, N.Yu. Reshetikhin and E.K. Sklyanin, Yang-Baxter equation and representation theory. I, Lett. Math. Phys. 5 (1981), 393-403.
[19] V. Korepin, S. Lukyanov, Y. Nishiyama and M. Shiroishi, Asymptotic behavior of the emptiness formation probability, Phys. Lett. A 312 (2003), 21-26.
[20] A. LeClair, F. Smirnov, Infinite quantum group symmetry of fields in massive $2 D$ quantum field theory, Int. J. Mod. Phys. A 7 (1992), 2997-3022.
[21] P. Martin, Potts models and related problems in statistical mechanics, World Scientific, Singapore, 1991.
[22] V. Pasquier, H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B 330 (1990), 523-556.
[23] N. Reshetikhin and F. Smirnov, Hidden quantum group symmetry and integrable perturbations of conformal field theory, Commun. Math. Phys. 131 (1990), 157-177.
[24] G. Kato, M. Shiroishi, M. Takahashi, K. Sakai, Next Nearest-Neighbor Correlation Functions of the Spin-1/2 XXZ Chain at Critical Region, J. Phys. A: Math. Gen. 36 (2003) L337.
[25] K. Sakai, M. Shiroishi, Y. Nishiyama and M. Takahashi, Third neighbor correlators of spin-1/2 Heisenberg antiferromagnet, Phys. Rev. E 67 (2003), 065-101.
[26] G. Kato, M. Shiroishi, M. Takahashi, K. Sakai, Third-neighbor and other four-point correlation functions of spin-1/2 XXZ chain, J. Phys. A: Math. Gen. 37 (2004) 5097.
[27] J. Sato, M. Shiroishi and M. Takahashi, Correlation functions of the spin-1/2 antiferromagnetic Heisenberg chain: exact calculation via the generating function, Nucl. Phys. B 729 (2005), 441-466.
[28] E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Func. Anal. and Appl. 16 (1982), 27-34; 17 (1983), 34-48.
[29] M. Takahashi, Half-filled Hubbard model at low temperature, J. Phys. C 10 (1977) 1298.
H. Boos*

Physics Department
University of Wuppertal,
D-42097, Wuppertal
Germany
e-mail: boos@physik.uni-wuppertal.de
M. Jimbo

Graduate School of Mathematical Sciences
The University of Tokyo
Tokyo 153-8914
Japan
e-mail: jimbomic@ms.u-tokyo.ac.jp
T. Miwa

Department of Mathematics
Graduate School of Science
Kyoto University
Kyoto 606-8502
Japan
e-mail: tetsuji@math.kyoto-u.ac.jp

[^2]F. Smirnov ${ }^{\ddagger}$

Laboratoire de Physique Théorique et Hautes Energies
Université Pierre et Marie Curie
Tour $161^{\text {er }}$ étage
4, place Jussieu
F-75252 Paris Cedex 05
France
e-mail: smirnov@lpthe.jussieu.fr
Y. Takeyama

Graduate School of Pure and Applied Sciences
Tsukuba University
Tsukuba, Ibaraki 305-8571
Japan
e-mail: takeyama@math.tsukuba.ac.jp
Communicated by Vincent Rivasseau
Submitted: January 18, 2006
Accepted: February 28, 2006

[^3]
[^0]:    ${ }^{1}$ There is an erratum in [3]; the right-hand side of the formula seven lines below (13.1) should $\operatorname{read} \prod_{j=1}^{n}\left(-\bar{\epsilon}_{j}\right)\langle\operatorname{vac}|\left(E_{-\bar{\epsilon}_{1}, \epsilon_{1}}\right)_{1} \cdots\left(E_{-\bar{\epsilon}_{n}, \epsilon_{n}}\right)_{n}|\operatorname{vac}\rangle$.

[^1]:    ${ }^{3}$ Note that $\omega_{i}$ 's here are those in [4] multiplied by $\kappa / 4$.

[^2]:    *on leave of absence from Skobeltsyn Institute of Nuclear Physics, MSU, 119992, Moscow, Russia

[^3]:    ${ }^{\ddagger}$ Membre du CNRS

