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ABSTRACT. Let G be a noncompact connected real semisimple Lie group
with finite center, and let KX be a maximal compact subgroup of G. Let g and
t denote the respective complexified Lie algebras. Then every irreducible
representation 7 of g which is semisimple under f and whose irreducible f-
components integrate to finite-dimensional irreducible representations of K is
shown to be equivalent to a subquotient of a representation of @ belonging to
the infinitesimal nonunitary principal series. It follows that 7 integrates to
a continuous irreducible Hilbert space representation of G, and the best pos-
sible estimate for the multiplicity of any finite-dimensional irreducible repre-
sentation of ! in 7 is determined. These results generalize similar results
of Harish-Chandra, R. Godement and J. Dixmier. The representations of g in
the infinitesimal nonunitary principal series, as well as certain more general
representations of ¢ on which the center of the universal enveloping algebra
of @ acts as scalars, are shown to have (finite) composition series. A general
module-theoretic result is used to prove that the distribution character of an
admissible Hilbert space representation of G determines the existence and
equivalence class of an infinitesimal composition series for the representa-
tion, generalizing a theorem of N. Wallach. The composition series of Weyl-
group-related members of the infinitesimal nonunitary principal series are
shown to be equivalent. An expression is given for the infinitesimal spheri-
cal functions associated with the nonunitary principal series. In several in-
stances, the proofs of the above results and related results yield simplifica-
tions as well as generalizations of certain results of Harish-Chandra.

1. Introduction. In his famous ‘‘subquotient theorem’’ [6(c), p. 63, Theo-
rem 4], Harish-Chandra showed that a certain large class of irreducible repre-
sentations of a semisimple Lie algebra can be realized as subquotients (i.e.,
quotients of subrepresentations) of certain standard representations. The pur-
pose of this paper is to sharpen and simplify this theorem, and to study related
questions. We shall work with a noncompact connected real semisimple Lie
group G with finite center (although many of our results could be extended to

the case of infinite center), and we shall use algebraic techniques to investigate
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2 J. LEPOWSKY [February

the representations of G and of its Lie algebra. Several of our results had been
obtained by Harish-Chandra, R. Godement and J. Dixmier in the special case in
which G is a linear group. The treatment here is based on the study of various
maps related to a certain map P (see below)—essentially the map & introduced
by Harish-Chandra in his proof of the subquotient theorem [6(c), p. 48]. This
study leads us to generalizations, and sometimes simplifications, of Harish-
Chandra’s analysis of a map y (see [6(g), p. 260]) used extensively by him and
other authors to study spherical representations of G. After the work for this
paper had been completed, we learned that C. Rader [13] had independently ob-
tained results very close to some of our main results, including a similar gen-
eralization of Harish-Chandra’s subquotient theorem, using some of the same
methods. Our treatment and Rader’s are different in many respects, however.

In order to describe our main results, we introduce some notation. Let K
be a maximal compact subgroup of G, and let £ C g denote the respective com-
plexified Lie algebras. Let § be the universal enveloping algebra of g. A
(complex) Q-module V which is also a K-module is called a (Q, K)-module if

Eo(x.)=(k.x).- (k.0

for all £ €K, x € @ and v € V. (Module actions are denoted with a dot, and K
acts on & via the natural extension of the adjoint action of K on g.) If in ad-
dition K . v spans a finite-dimensional space on which K acts differentiably
for all v € V, and the action of £C§ on any finite-dimensional K-invariant sub-
space of V is the action induced by the differential of the action of K, then V
is said to be compatible.

Let G = KAN be an Iwasawa decomposition of G adapted to K, and let M
be the centralizer of A in K. The nonunitary principal series of G is the family
of continuous Hilbert space representations of G induced in the standard way
(see $7) from the (not necessarily unitary) finite-dimensional irreducible repre-
sentations of the subgroup MAN of G. If # is a continuous Banach space rep-
resentation of G whose restriction to K contains every irreducible representa-
tion of K with at most finite multiplicity, the corresponding space of vectors
whose K-transforms span a finite-dimensional space (that is, the space of K-
finite vectors) has a natural G-module structure which makes it a compatible
(§, K)-module —the infinitesimal representation associated with 7. Two such
Banach space representations of G are said to be infinitesimally equivalent if
their infinitesimal representations are equivalent.

Our main result is the following:

Theorem 1.1 (see Theorem 8.10). Every g-irreducible compatible (Q, K)-

module is equivalent to the (G, K)-module of K-finite vectors of some continuous
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 3

topologically irreducible (not necessarily unitary) representation of G on a
Hilbert space, and this representation may be chosen to be a subquotient (that
is, a quotient of subrepresentations on closed subspaces) of a nonunitary princi-
pal series representation. Every continuous topologically irreducible Banach
space representation of G which contains every irreducible representation of K
with at most finite multiplicity is infinitesimally equivalent to an irreducible

subquotient of a nonunitary principal series representation.

This theorem is basically a generalization of Harish-Chandra’s subquotient
theorem [6(c) p. 63, Theorem 4] from the case of linear G to the case of arbitrary
G (with finite center), in the following sense: Harish-Chandra’s theorem is
stated for g and not G, but it contains a hypothesié (namely, that ‘‘some @0 €
QF

between the linear groups and the arbitrary ones. But Harish-Chandra uses a

occurs in #’’) which in effect restricts it to a class of groups G intermediate

different definition of the nonunitary principal series from ours, and his proof

implies Theorem 1.1 only for linear groups G. The reason is that his proof de-
pends on Lemma 1, p. 28 of [6(c)], which is essentially a result about linear

groups, in view of its hypothesis concerning finite-dimensional representations
of g. Our proof of Theorem 1.1 is essentially a simplification of Harish-Chandra’s
proof, but there is one major change—Lemma 1 of [6(c)] is replaced by a result
(Theorem 1.3(b) below) applicable to arbitrary G. This enables us to remove
the linearity assumption on G. (Theorem 1.3(b) also allows us to avoid using
Theorem 1, p. 195 of [6(b)].) Using more difficult analytic techniques, Harish-
Chandra has also proved the last assertion of Theorem 1.1 for arbitcrary G (see
[6(h), Theorem 4)).

The following result is a corollary of Theorem 1.1, but in fact it can be

proved directly, much more easily:

Theorem 1.2 (see Theorems 5.4 and 5.5). Let V be a G-irreducible com-
patible (9, K)-module, and let B be an equivalence class of finite-dimensional
irreducible representations of K. Then the multiplicity with which members of
B occur in V is equal to or less than the maximum of the multiplicities with
which irreducible representations of M occur in any member of B, and this
estimate is the best possible. This bound is equal to or less than the degree

of any member of B8, and is finite. The same result holds when V is replaced
by a continuous topologically irreducible Banach space representation of G

which contains every irreducible representation of K with at most finite multi-
plicity.

The last assertion of Theorem 1.2 had been proved by Harish-Chandra since

it follows from the last assertion of Theorem 1.1, Moreover, the first assertion
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4 J. LEPOWSKY [February

had been proved by Harish-Chandra for a class of groups intermediate between
the linear groups and the arbitrary ones, in view of his subquotient theorem
(see the discussion following Theorem 1.1). But as we have indicated, our
proof is much simpler and more direct. It is based on Theorem 1.3(b) below
and the “‘minimal standard identity’’ technique used by R. Godement {5, $1]
and J. Dixmier ([3(a)] and [3(b), $15.5]) to prove a result similar to the last
assertion of Theorem 1.2 for linear groups G. Harish-Chandra had obtained a
weaker estimate [6(c), p. 36, Theorem 3] for the K-multiplicities associated
with V, in the notation of the first part of Theorem 1.2.

Let @K denote the centralizer of K in @, let X be the universal envelop-
ing algebra of f, and let 8 be an equivalence class of finite-dimensional ir-
reducible representations of K. Any member of 8 naturally induces a represen-
tation of K, and we denote its kernel by gﬁ, so that 88 is a maximal two-sided
ideal of X. Then QK N Qgﬁ is a two-sided ideal of the algebra 9'(, and the
algebra GK/GK n QQ'B has considerable significance, since its irreducible rep-
resentations correspond exactly to the irreducible representations of G whose
restriction to X contains members of B with positive multiplicity, in view of
[11, Theorem 5.5]. We do not know the full structure of the algebra GK/GK n
Qﬂ/”, but we shall say something about it.

Let a and m denote the complexified Lie algebras of A and N, and let
(@ and N denote the universal enveloping algebras of a and m. Then there is
a natural linear isomorphism of § with e @ ©X, and it follows that we may

write

G_-FeK on8.
Let
P.G—@ReK

be the corresponding projection map, and regard ( ®K as an algebra in the

natural way. Let gt K- K/gﬁ denote the quotient map, and let
P/3=(1 ®77I3)0P:Q—>@ ®K/g’8.

Also, let XM denote the centralizer of M in K with respect to the adjoint ac-

tion. Then we have

Theorem 1.3 (see Propositions 3.1, 3.2 and 3.3, and Corollaries 4.4 and 4.5).
(a) The restriction of P to @K is an algebra antibomomorphism which injects
GK into @ @ XM,

(b) The restriction of Pg to GK is an algebra antibomomorphbism with kernel

precisely GK n Qgﬁz GKn 4'89, and P,B takes GK into R ® KM/KM n ¢B)y,
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 5

In particular, P,B induces an injection
GK/GK n GIF o @ @ (KM/KM n ¢8)
which is an algebra antibomomorphism.

The last assertion of Theorem 1.3(b) implies that @K/QK N QQ'B satisfies
a certain polynomial identity, and this easily implies Theorem 1.2.

Suppose that 8 is the class of the trivial one-dimensional representation
of K, Then PIB: QK — @ is essentially the same as the mapping y studied by
Harish-Chandra in [6(g), $4]. Our proof of the equality §X n Q45 _ GKn g'Bg
is easier than Harish-Chandra’s proof of the corresponding equality QK NGt
GK NG in the special case. We prove the injectivity statements in Theorem
1.3 by generalizing the simphfied proof of Harish-Chandra’s special case given
in [7(a), p. 431, Lemma 6.13], (We also give an alternate proof of the injectivity
statement in {(a).)

Define the linear map g G- @ by pg= =(1®tr )OPB where tr, de-
notes the canonical trace map on the full matrix algebra K/8%. 1n Theotem 10. 1,
we compute the image of the map b gt GK - (, generalizing Harish-Chandra’s
corresponding results [6(g), p. 260, Theorem 1 and p. 262, Lemma 19] for the
map y. The image of g is essentially the set of Weyl group invariants in (.

We also define other mappings associated with P, and we relate them to
the “‘infinicesimal spherical functions’” associated with the representations in
the nonunitary principal series and with the finite-dimensional irreducible re-
presentations of G (see Theorems 6.5 and 7.3 and Remark 6.6), extending re-
lated results of Harish-Chandra (cf. [6(c), p. 49, Lemma 11], [9, Lemma 1.2.7]
and [12, Theorem 2.2 (2.34) and Theorem 2.3 (2.55)]). Our proofs are based on
an extension of the notion of highest weight vector (see §6); this idea was in-
spired by B. Kostant (see [9, Lemmas 1.7.5 and 1.7.6)).

We show that every representation in the infinitesimal nonunitary principal
series has a (finite) composition series (Theorem 9.7); the hard part of the proof
is due to Harish-Chandra, in the form of his deep theorem [6(i)} that distribution
characters are locally summable functions. (Several people have suggested
using Harish-Chandra’s results to prove Theorem 9.7.) Theorem 9.7 is a con-
sequence of a stronger result (Theorem 9.16) relating various finiteness condi-
tions on §-modules on which the center of § acts as scalars. The proof is
based on Theorem 1.1 as well as Harish-Chandra’s local summability theorem.
Part of Theorem 9.16 was obtained by Harish-Chandra and Dixmier for linear
groups G [3(c), Lemme 1 and Lemme 2].

Using Harish-Chandra’s character formula for the representations in the
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6 J. LEPOWSKY [February

nonunitary principal series, we show that Weyl-group-related members of the
infinitesimal nonunitary principal series have equivalent composition series,
and we relate this fact to spherical functions, infinitesimal spherical functions
and certain generalizations of highest weight vectors (Theorem 9.8). This
equivalence of composition series is a special case of a general principle
(Theorem 9.3) relating distribution characters of admissible Hilbert space rep-
resentations to the existence and equivalence of infinitesimal composition
series. The proof of this theorem (which generalizes a result of N. Wallach) is
based in turn on a much more general module-theoretic result (Theorem 11.1),
which is the subject of the Appendix.

As an alternative to using Harish-Chandra’s character formula to prove the
equivalence of composition series indicated above, we outline a proof based on
the formal intertwining integrals of R. A. Kunze and E. M. Stein for the non-
unitary principal series, F. Bruhat’s irreducibility result for the regular members
of the unitary principal series and an algebraic continuity argument (see Remark
9.11). When this idea is applied to the spherical nonunitary principal series, it
simplifies to a new, rather short, proof of the fact that the image of Harish-
Chandra’s map y (see above) lies in the set of Weyl group invariants in A (see
Remark 9. 12).

At the end of 10, we state two conjectures concerning the images of P,B
and related maps.

We are very grateful to Bertram Kostant for suggesting the problem of gen-
eralizing Harish-Chandra’s map y, providing some helpful ideas concerning
the generalization, informing us of Dixmier’s Lemma 2.2, and allowing us to

read his manuscript of [9].

2. Preliminaries on modules. The notation and terminology introduced in
this section will be used throughout the paper without explicit reference.

Algebras will be associative algebras with identity element 1, and repre-
sentations of groups, algebras or Lie algebras will be left representations.
The representation space V of a representation of a group, algebra or Lie
algebra A will be called a module over A, and the action will often be indicated
by a.v (a € A, v € V). Modules over real Lie groups, complex algebras and
complex Lie algebras are assumed to be complex vector spaces. The equiva-
lence class of a module V is denoted by [Vl Let C be the field of complex
numbers. The dual of a complex vector space V is written as V', and the pair-
ing between V and V' is denoted by (-, -). The restriction of a function f
toa subset X of its domain will be written as [| X.

Let A be a real Lie group and let V be an A-module. An element v €V
is called A-finite if A . v spans a finite-dimensional space on which the action
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 7

of A is differentiable. V is called A-finite if every element of V is A-finite.
Let A denote the set of equivalence classes of differentiable finite-dimensional
irreducible A-modules. For every a € A, let V , denote the a-primary subspace
of the A-module V, that is, the subspace of the space of A-finite vectors in V
consisting of the sum of all the irreducible A-submodules of V in the class a.
Let m([V], @) denote the multiplicity with which members of a occur in V.
Suppose that A is a Lie subgroup of a real Lie group B. Let b be the
complexified Lie algebra of B, and let B be the universal enveloping algebra
of b, We identify b-modules and $-modules in the usuval way. B acts in a ca-
nonical way as a group of algebra automorphisms of B, by unique extension of
the adjoint representation of B on its Lie algebra. In particular, A acts on B
as a group of algebra automorphisms, by restriction. For every subset § of B
and every subset J of B, let TS denote the centralizer of S in J. We regard
B-modules as A-modules by restriction, so that for every S € B and ac€A,
m(B ,a) is the multiplicity with which members of & occur in any member of f.
Let A, be a subgroup of A and let %1 be an A |-invariant subalgebra of B.
Let V be a %l-module and an A -module. We call V a (531, A 1)—module if

a-b-v)={a.-b).(a.v)

forallaeA, be 931 and v € V. (531, A )-module maps and equivalence of
(931, Al)-modules are defined in the obvious ways. The equivalence class of a
B ¥ Al)-module V is denoted by [V].

Let V be a (B, A)-module, lec a € A and let X be a fixed module in the
class a. Then the action of A on V commutes with the action of %A, so that
the space HomA(X, V) is a % -module in a natural way, by the action of B4

on V. We denote the corresponding equivalence class of $%-modules by

7(vl, a).

Lemma 2.1. Suppose that A is compact and that V is a B-irreducible
(B, A)-module. Let a €A and suppose that V £ 0. Then 7(IV), @) is an ir-
reducible class of BA-modules. Furthermore, let W be a [inite-dimensional A-
submodule of V, and let C(W) CEnd W denote the commuting ring of the action
of A on W. Then for all u € C(W), there exists x € B such that x . w = p(w)
forall weW.

To prove the lemma, we use the following argument due to J. Dixmier:

Lemma 2.2 (Dixmier). Let S be an irreducible set of operators on a vector
space V of countable dimension over C. Then the commuting ring of S on V
consists of the scalars. In particular, the conclusion holds if S is an algebra

of countable dimension cver C and V is an irreducible S-module.
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8 J. LEPOWSKY [February

Proof. Let C be the commuting ring of § on V, and let v € V, v £0.
Since C is a division ring, the map C — V givenby c > c . v (c €C) is an
injection. Hence dim C is countable. Moreover, C is a division algebra over
C. But we assert that every field over C not equal to C has uncountable di-
mension over C. Indeed, let F be such a field, and let X € F be transcendental
over C. Then {1/(X — A)| A € C} is an uncountable linearly independent set,
proving the assertion. Thus if x € C, then C(x) = C, so that x € C. Q.E.D.

Proof of Lemma 2.1. Let W and p be as stated. Since dim B is countable,
Lemma 2.2 applies. Hence by the Jacobson density theorem, there exists u € B

such that -w=y(w) for all w ¢ W. Thus
la-wy=a.pw)=a.u- -w=(a.a).(a.w)

forall a ¢ A and w € W, so that pw)=(a - u) . w forall a €A and w € W.
Integrating over the compact group A, we get plw) = x . w, where x € ‘(BA, prov-
ing the last statement.

Let X €ea. To show that Hom, X, V) is .‘BA-irreducible, we shall show
that if f, g € Hom,(X, V), [ £ 0, then there exists x € B4 such that x . f = g.
Let W= f(X) + g(X), so that W is a finite-dimensional A-submodule of V. By
the above, it is sufficient to show that there exists p € C(W) suchthat pof=g.
But if /(X) = g(X), we may choose p to be multiplication by a suitable constant
on W. Finally, if f(X) £ g(X), then f(X) Ng(X) =0, and we may choose p so
that p|f(X) is a suitable A-module map from f(X) to g(X) and so that
1| g(X)=0. Q.E.D.

Every 8 € B gives rise in a natural way to an equivalence class of (B, A)-
modules, so that for all a € ﬁ, 7(8, a) is a well-defined equivalence class of
finite-dimensional B%-modules. If B is connected, then the corresponding class
of (B, A)-modules is fB-irreducible, and if A is compact, then by Lemma 2.1,
7(B, a) is either the zero class or an irreducible class.

Let C be a complex algebra, and let @ be an equivalence class of G-
modules. We denote by Ker a the kernel in C of any representation in the class
a. If a is a class of finite-dimensional representations of C, then the character
x(a): € = C is the linear function defined by x(aXc) = tralc) for all ¢ €C,
where 7 is a representation in the class a.

Denote by ( the universal enveloping algebra of the complexified Lie al-
gebra of A, regarded as embedded in B in the natural way. A (B, A)-module
V is called compatible if it is A-finite and if the action of @ on any finite-
dimensional A-invariant subspace of V is the action induced by the differential
of the action of A.

Let a €A, and let a, be the equivalence class of finite-dimensional @-
modules induced by a. Then we define Ker a= Ker a, C (. Let V bea
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1973) REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 9

(B, A)-module, and let X € a. If V is compatible, then BA N B Ker o annihi-
lates the B*-module Hom , (X, V), so that the equivalence class V], a) of BA.
modules may be identified with an equivalence class of BA/BAN B Ker a-
modules. (Note that B4 N B Ker a is a two-sided ideal of $%.)

Let b — b (b € B) denote the transpose map, that is, the unique (involutive)
antiautomorphism of B which extends —1 on b. For every B-module V, the
contragredient B-module structure on the dual V' is defined by (v, b - v') =
(' . v, v') forall yeV, v’ €V and b€ B. The restriction to (@ of the trans-
pose map of B is the transpose map of (. For every equivalence class a of
finite-dimensional a’-modules, we let a' denote the contragredient class. Then
Ker a’ = {Ker a)t.

Let & denote the set of equivalence classes of finite-dimensional irreduc-
ible (f-modules. For every f-module V and a € @, we denote by V,the a-

primary subspace of V. An (@-module V is called finitely semisimple if

v- v,
ac@

We regard B-modules as @-modules by restriction.

Lemma 2.3. Let V be a finitely semisimple (-module, and let a € Q. If
veEV,and v£0, then (v, (V) #0.

Proof. Write
v.=1x,
i€l
a direct sum of (f-submodules X, in the class a. For each i €, we embed X:.

into V' by defining (v, x;.)z 0 forall x{ € X;. and

v € I_I Xi +Y,
jelj#1
where Y is the sum of the irreducible ({-submodules of V not in the class a.
This embedding is clearly an (f-module map, and the lemma is now clear. Q.E.D.

We now recall some of the notions of [11]. Let a¢€ ®. We define §°=
Ker aC (T, and A%< {x € B|I%x C BI* (cf. [11, §3]). Then by [11, Propositions
3.2 and 3.3], BI® (resp. A®) is precisely the subset of B which annihilates
(resp., preserves) V _ for every B -module V.

Suppose that b= a @ ¢ where a is the complexified Lie algebra of the Lie
group A, and ¢ is an a-invariant complement of & in b such that the natural
representation of 0 on ¢ is semisimple. Then for all a € &, B/BI* is a finite-
ly semisimple (f-module (see [11, Lemma 2.4]). Hence by the proof of {11, Prop-
osition 3.2], it follows that BY* is precisely the subset of B which annihilates

v, for every $B-module V which is finitely semisimple under (.
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10 J. LEPOWSKY [February

Lemma 2.4. For all ae@, AN 3B c B4

Proof. Let V be a B-module which is finitely semisimple under (¥, and let
x € AN 9B, Then x! € 9B - BUH - I by the above, so that

(x Vg Wp ) = (Vg 5. (V) =0.

But x € A% so that x - V,CV, Hence x.V_ =0 by Lemma 2.3, so that x €

B4*. Q.E.D.

Lemma 2.5.(2) Leta € ®, and let S be a transpose-invariant subset of A N
A% Then S N BI* =S 9B, In particular, B* A BI*= B2 §°B and B4

B> ABA N 443,

Proof. By Lemma 2.4, SN §*BCS nB%and S n 49 Bcs nBI*. The
second inclusion gives (§ N §¢ Byt (s N %gal)l, that is, S N BI*C s N §°B.
Q.E.D.

3. The map P: § — (01 ® XK. We shall use the notation introduced in this
section throughout the paper, often without explicit reference,

Let G be a noncompact connected real semisimple Lie group with finite
center, and let gp be its Lie algebra. Fix a Cartan decomposition gp = ER +
Pgr and an associated Iwasawa decomposition g = fR + ap + Np of gp, and
let g= £+ pand g= £+ a4+ n be the corresponding complexified decompositions.
Let G = KAN be the corresponding Iwasawa decomposition of G, so that K is
a maximal compact subgroup of G. Let M be the centralizer of A in K.

Let G, X, @ and N be the universal enveloping algebras of g, £, a and n,
respectively, and regard K, @ and T as canonically embedded in G.

Suppose that jl’ 3'2, ceey jj are the universal enveloping algebras of sub-
algebras t;, ..., t]. of g such that g is the direct sum of the t, and regard
31, v .Cf]. as canonically embedded in G. Then the map from j[ ®...8 j-,‘
o § given by

t @ ... ®t. o>ty ---t.
1 ] 1 7

is a linear isomorphism. This holds in particular when the tl are £, a and m,
taken in any order.

We now describe a basic decomposition of Q and several mappings associat-
ed with it.

We have

g=ﬂ@K=(C.l®nﬁ)@K:GK@nQ.

Let P: § — (X denote the corresponding projection map.
We give (K an algebra structure by identifying it with the algebra i®K,

(2) Lemma 2.5 will be used in the proof of Corollary 4.5.
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 11
and we regard P as a map P: G — @ ®K (cf. the map ¢ introduced by Harish-
Chandra in [6(c), p. 48]).

Proposition 3.1 (cf. [6(c), p. 48, Lemma 10)). Forall u € § and v € GX, we
bave Puv) = P(w)P(w). In particular, the restriction’ P |GX is an algebra anti-

bomomorphism.

Proof. Write

u=Q, ax. (mod nG),
v=2, b].y]. (mod nG),
)

where a, b]. e® and Xp ¥, € K. Then
uv ;Zaivxi (mod n§)
i
(since v € §K)

=2 abyx (mod n§)
i,j

(since a normalizes m)
= P(u)P () (mod ng) Q.E.D.
Proposition 3.2. P: GM — @ @ KM, and in particular, P: GK — @ @ KM,

Proof. This follows immediately from the fact that M normalizes 1 and
centralizes a., Q.E.D.

Proposition 3.3. P: GK — @ QKM is an injection, or equivalently, GK n

nG-o0.

Proof. It is sufficient to show that G A n§ — 0. To prove this, let V be
any finite-dimensional irreducible g-module. Let v' € V' be a highest restricted
weight vector of the contragredient ¢-module V', that is, a nonzero element v’
€ V' suchthat n. ¢ =0 and such that x . ' is a scalar multiple of v* for all
x €a. Let u egK N nS. Then

0=A(v, ut~v’)=(uK-V,v')=<Ku-V, )
=(u-V, K- vy =(u-V, (K@+,@n)-v’)=(u~v,Q-v’):(u-V, vy,

sothat # -V =0, Thus u =0 since § has “*sufficiently many’’ representations
[6(a), Theorem 1]. Q.E.D.

Hence the map P “‘antiembeds’” GK as a subalgebra of @ ® KM, A different
proof of Proposition 3.3 will be given in §4.
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Fix B ¢ K, and let 48 _ Ker B, so that 48 is a maximal two-sided ideal of
K Let g K- K/g'B be the projection map. Define P,B G- - @ ®K/g'8 by
=(1 ® 7,) ©P. Identifying g KMy wich XM/ XM 48, we have Pﬁ GM
- @ S (KM/KM ~ 48), and in partxcular, QK @ ® KM/KM 1 48). Further-
more, P, is an antihomomorphism on @
Let trg: K/Q'B — C denote the canonical trace map on the algebra K/Qﬁ,

which is isomorphic to a full matrix algebra over C. Define the linear map
p,3=(1 ®trﬁ) oPpg: G — Q.

Let F,Bz {y €M| m(B,y) >0}, and for all y € F,B’ let ﬂﬁ,'y = Ker 7(8, y)
in KM, Then 3[5'7 is a maximal two-sided ideal of XM since 7B, y) is an ir-
reducible class (see $2).

Now KM/KM n 48 is isomorphic to the commuting ring of the action of M on
any K-module in the class f3, and so KM/KM A48 s isomorphic to the direct

product of the matrix algebras KM/qB.y (y e F,B)‘ More precisely, it is clear
that KM 0 9= N 1 957 Lee f5: KM =T, K"/9P7 be the homomor-

phism induced by the projections g KM - KM/ﬂﬁ"y. Then

Ker /5= n ﬂﬁ,)’:KMmgB’
yel
B

and so [ induces an isomorphism KM/KM N g = Hyerﬁ KM/ﬂﬁ'y. Hence

we may regard
Pﬁ: QM—' @ e H KM/S'B"Y,
'yel"IB
or
pP,:GM — I1 R KM/4R.7,
yeI‘IB
Thus

P,B\QM: Il P,B.7

'yeI"B

where, for fixed y € rﬁ, Pﬁ,y: GM — @ ®KM/EIB'7 is defined by P,B,'Y =

1e® ",3,7) °P. Then Pﬁ'7_|gK is an antihomomorphism.
Now let trgyt KM/f]ﬁ'y — C denote the canonical trace map on the full
matrix algebra KM/4A7 . Define the linear map

_(1®aﬁy QM—»(T
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For every y € M, let d(y) denote the dimension of any module in y. For
every subset ' C F,B’ define

.M
p,B,F: Z d(y)p,&,y. g Q.
yel
Then pﬁ| G _ bgr, since every module in 8, when regarded as a KM,
module, is the direct 'gum, over y € F,B’ of d(y) copies of a module in 5(8, y).
For all A € a’, let my: (f - C be the evaluation homomorphism at A, where

@ is identified with the algebra of polynomial functions on a’. We define
P\ =(m,® 1) oP: G—K,
Poy=(m @ oPg G —KAb
par=m ot §—C,
Poya=(m@®@1)oPy.: G — KM/487,
Paya=m\ %bgy: §" €,
Para=m, °bsr: §'—C.

Then P, |GK, Pﬁ')‘@K and P,B,'y,)‘ | GK are antihomomorphisms.
Remark 3.4. Let B be the class of the trivial one-dimensional representa-
tion of K. Then §#- Kt and P/ﬁ =bg is the classical map which takes x € g
to the ('f-component of x with respect to the decomposition § = Go (Qf +nG)
(cf. [6(g), p. 247, Lemma 3], [7(a), p. 427, Lemma 6.6] and [9. Proposition 1.2.2]).
Remark 3.5, The antihomomorphisms P,B,y: GKk— (e® KM/ﬂﬁ'y may be
regarded as generalizations of the maps he in[12, $2.31.

4. The kernel of the map P, |GK. Let § be an arbitrary two-sided ideal
of K, and let wy: K — K/§ denote the projection map. Define the linear map
Pg G- ®KA by Py = 1® ”g) o P, so that Pg ]QK is an algebra anti-
homomorphism, by Proposition 3.1. In this section, we shall compute the kernel
of F‘g [ QK, and in later sections, we shall apply the result to representation
theory.

For any vector space V, let S(V) denote the symmetric algebra over V.
Let X S(g) — § denote the **symmetrization’’ mapping, that is, the unique lin-

ear isomorphism such that

1
)\(xl...xn)zn—'Zxo_(l)...xo_(n)
o

for all nonnegative integers 7 .and all x, ..., x €g (see (1, $2.7) or [6(b),

p. 192]). Here o ranges over all permutations of {1, ..., n}, the product on
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the left is taken in $(g), and the products on the right are taken in §. We note
that A is defined on S(p) by regarding S(1) C $(g). Similarly, A is defined on
S(a), and in fact the map A: $(a) ‘= ( is an algebra isomorphism since a is
abelian.

Now S(g) and § are both G-modules, by unique extension by automorphisms
of the adjoint representation of G on @, and it is clear that A is a G-module iso-
morphism. In particular, S(%) is a K-submodule of $(g), A(S(})) is a K-submodule of
G, and A|S(}) is a K-module isomorphism of S(¥) onto A(S(})).

The map F¢: S(b) ® K/ — G/G4 given by

x @ +9) — Ax)y + G
(x € S(D), y e K) is a linear isomorphism (see [11, Lemma 2.3] or [6(b), pp. 195—

196]). For every nonnegative integer i, let S{(1) denote the ith degree homo-

geneous subspace of S(%), so that

G/98 = 1 Fy(sitp ®KA.

For all nonzero x € §/G, define deg x to be the smallest nonnegative integer

n such that

x e II Fysitp @ K/9);

i=0

also define deg 0 = — oo,

Let gp be the orthogonal complement of ag in pr with respect to the
Killing form of gp, and let ¢ C p be the complexification of qp. Then S =
S(a) ® qS(Y), so that

G/G8 = Fy(s() @ K/9) ® Fy(qS(H) ® R/9).
Let f, denote the projection of G/59 onto the first summand in this decomposition.

Lemma 4.1, Identifying the image of GK in G§/C8 with GX/GK N G4, we

have that the restriction of /g to 9"/@" NG is injective. Moreover,
deg /g(x) =deg x for all x € QK/QK n G,

Proof. Let g: S(1) — S(a) be the projection with respect to the decomposi-
tion S(P) = S(a) @ qS(p), and let by =g ®1: S(H ® K/8 — 5(a) KA.

Regard K as a K-module by unique extension by automorphisms of the ad-
joint representation of K on ¥, and give S(p) ®@K/8 a K-module structure by
regarding it as the tensor product of the K-module S(1) with the quotient K-
module X/4. Then it is clear that Fg is a K-module isomorphism, where G/

is regarded as a K-module by means of the quotient of the natural representation
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of K on Q Moreover, since 9 is a semisimple K-module, QK/QKH Qg is
precisely the set of K-invariants in Q/Qﬂ Let I denote the set of K-invariants
in () ®K/4, so cthat Fg: I — GX/G¥N & is an isomorphism. It is clear that
to prove the first statement, it is sufficient to show that hy |1 is injective.

Now $(}) may be identified with the algebra of polynomial functions on p’.
Furthermore, the restriction to P of the Killing form of g is nonsingular, and thus
may be used to identify p with . Hence we may identify S(}) with the algebra
of polynomial functions on p. In the same way, we may identify $(a) with the
aigebra of polynomial functions on a. Under these identifications, g is simply
the restriction map to a. Moreover, the action of K on S(}) is identified with the
usual action of K on the space of polynomial functions on §, since the Killing
form of ¢ is K-invariant.

Choose a basis {xi} of X/4, and let

y = Zwi ® x, €l
i
(w, € S(1) be such that hy(y) = 0, that is, Swwx =0 forall u€a. Let v e
Pr+ Since K. ap = hp (see [7(a), p. 211, Lemma 6.3)), there exists k € K and
u €ag suchthat &.v=u. Now k.y=y,sothat

Zwi(/z—l cuk . x; =0.
i

But since {k . x.} is a basis of X/, we have w () = 0, so that w (%) =0, for
each i. Since the w, are polynomial functions, this implies that w,. =0, and so
y = 0, proving the first statement.

The second statement now follows immediately from the fact that the direct

sum

GG = 11 F, (s ®K/9)

i=0

is a K-module decomposition, so that
GF/GKn G = TT(F (s (0 @K nGX/GX n 9.  Q.E.D.
i=0
We note that G C Ker Pg , since

GY _ NAKS - N ¢ G 4 nE,
Regard Pg as a map on §/®4, and let

Pi=Fo 1@ oP,: /G4 — F(s(a) K /9).
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Lemma 4.2, For all x € §/G4, deg (P;‘(x) - f¢(x)) <deg x.

Proof. Since Pj is the identity on F((S(o) ® K/9), it follows from the defini-
tion of f, that it is sufficient to show that, for all y € F; (q5(0) ®K/Y), we have
deg P’;(y) <degy. Let d=degy,and for every nonnegative integer a, let S _(g)
denote the sum of the homogeneous subspaces of 5(g) of degree <a. Since qC
t 4+ n (see [7(a), p. 223, Lemma 3.6)), we have

y €(AS,_(HOK + AnS, _ LK) + 64,
But
MS,_ (0B CAS,_ [ (ME+ MS,_(9)
and
AnS,_ (0) CnA(S,_ (B + A(S,_,(9)
(see [6(b), p. 193, formula (1)]). Hence
y € (S, _ (K + nG) + G5
But

M, () C X ASMINS (DN, (B

i4j+k<d -1
(see [6(b), p. 193, Lemma 12]), so that deg P;(y) <d. Q.E.D.

Theorem 4.3. We bave that Ker P, |GK =GR N G, and that PQ*IQK/QKFW

& is injective.

Proof. The first statement follows from the second, and the second follows
immediately from Lemmas 4.1 and 4.2. Q.E.D.

We can now give a nonrepresentation-theoretic proof of Proposition 3.3:
Corollary 4.4 (same as Proposition 3.3). The map P |G is injective.
Proof. Take § =0 in Theorem 4.3. Q.E.D.
Corollary 4.5. Let 8 € K. Then the kernel of the map

Pg Gk — Il GeKxM/gt”

'ye!‘ﬁ
is QK N Qgﬁ = QK(\ Qﬁg. In particular, Pﬁ induces an algebra anti-injection
PgiGR/GKn @f— I1 @@x"/4h.

'yel‘ﬁ

Proof. Take § = 4P in Theorem 4.3, and apply Lemma 2.5. Q.E.D.
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Remark 4.6. Taking for B the trivial class in Corollary 4.5, we have Harish-
Chandra’s theorem (see [6(g), p. 260, Theorem 1] and [7(2), p. 431, Lemma 6.13])
that the kernel of the classical map P,BIQK (see Remark 3.4) is precisely §Kn
Gt - 6K N €6, and hence that P , induces an algebra injection of GK/GK N Gt
into (; in particular, §X/GX N ¥ is commurative.

We shall use the following in §10:

Lemma 4.7. Let V be a vector space and let T: X — V be alinear map.
Define the linear maps P.: G —S(a) ®V by

-1
P.=(A""®T)eP
and [.: G — S(0) ®V by
[r=U®@TF7l°f,

where F and f, denote the above maps Fy and [ ¢ in the case §-0. Forall
x € S5(a) ® V, define deg x to be the degree of x with respect to the grading of
S(a) ® V induced by the natural grading of S(a). Also, for all x € G, let deg x
denote the degree of x in the above sense, with $ =0. Then for all x € G, we
bave

deg (P (x) - [(x)) < deg x.

Moreover, if T(1) £0, then P | MS(DK) is injective (where S()K denotes the
set of K-invariants in S(¥) under the natural action of K on S(})).

Proof. The first assertion follows immediately from Lemma 4.2 for §_o,
since P =(1 @ T) © Fal oP z. Suppose that T(1) £ 0, and let x € A(S(PK).
Then deg f,(x) = deg x by Lemma 4.1 for §-0. But folx) € @ and T(1) £0,
so that deg /T(x) = deg /O(x). If PT(x) =0, then deg /O(x) =deg /T(x) <deg x
by the first assertion. Since deg /O(x) =deg x, we must have x =0. Q.E.D.

5. The bound on multiplicities. In this section, we shall apply Corollary
4.5 to representation theory, by extending techniques of R. Godement [5, $1]
and J. Dixmier ([3(a)] and [3(b), $15.5]) to groups G without faithful finite-
dimensional representations. Theorem 5.4 is a sharpening of [6(c), p. 36, Theorem
3]. Theorem 5.5 had been obtained by Harish-Chandra [6(h), Theorem 4, first

assertion], by more difficult analytic methods.

Proposition 5.1. Let V be a G-irreducible compatible (8, K)-module. Let
BeR, and let X € B. Then

dim Hom (X, V) = m({V], B),

and if Vﬁ;é 0, then the GX.module structure on Hom (X, V) naturally induces
an irreducible @K/QK N Qg'g-module structure on Homy (X, v).
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Proof. The first statement is clear, and the second statement follows from
Lemma 2.1 and the remarks in §2. Q.E.D.

Remark 5.2. Since K is connected, the second statement of Proposition 5.1
also follows from [11, Theorem 5.5].

For every B € R, let d(B) denote the degree of B, that is, the dimension of

any module in S.

Theorem 5.3. Let B € R, and let Y be an irreducible GX/GKn gg'B-module.
Then

dim Y <max m(B, y) (<d(B) < ).
v eM

Proof. For every y € FB and A € a’, let
[1 @eKM/g87 —KM/qBY

'yeI‘/B

denote the antihomomorphism obtained by projecting to the factor corresponding

to y, applying the evaluation homomorphism 7, ® 1, and composing with the trans-
pose antiautomorphism of the matrix algebra KM/S’B Y. Then by Corollary 4.5, the
homomorphisms fﬁ 5 © Pﬁ form a separating set of finitedimensional representa-
tions of GX/GK @95 of degrees equal to or less than max m(B, y) (y € M). By
Lemma 2.2, the commuting ring of Y consists of the scalars. The result now fol-

lows from the Jacobson density theorem and [5, p. 503, Lemma 1]. Q.E.D.

Theorem 5.4 (cf. [9, Lemma 1.3.2 and Remark 1.3.3]). Let V be a G-
irreducible compatible (G, K)-module. Then for all B € K,
m([V], B) <max m(B,y) (<d(B) <)

v eM

Proof. Theorem 5.4 follows immediately from Proposition 5.1 and Theorem
5.3. Q.E.D.

Theorem 5.5, Let n be a continuous topologically irreducible representation
of G on a Banach space such that the multiplicity of any element of R is finite.
Then for all B € R, the multiplicity of B in m is equal to or less than max m(B,y)
(y € M) and bence equal to or less than d(p).

Proof. By Harish-Chandra’s results [6(b)], the tepresentation of G on the
space of K-finite vectors of n defines a G-irreducible compatible (§, K)-module.
The result now follows from Theorem 5.4, Q.E.D.

Remark 5.6. The (first) bound in Theorems 5.3, 5.4 and 5.5 is the best pos-
sible, in view of F. Bruhat’s result [2, p. 193, Théoréme 7:2al concerning ir-

reducibility of the principal series.
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6. Effective highest weight maps. In §6, we shall further relate the map-
pings of §3 to representation theory.

Definition 6.1. Let V be an (@, M)-module, and let y € M, A € a'. Fix
an M-module Z in the class y, and regard Z as an (@N, M)-module by means of
A, the trivial action of n and the given action of M. We call an ((f)l, M)-module
map f: V — Z a highest weight map for V with respectto y and A. If Visa
(8, M)-module (and hence an (N, M)-module by restriction), then a highest

weight map [ is said to be effective if for all nonzero v € V, we have

() [(§ .0 Lo,

If V is a (§, K)-module and if B8 € K, then a highest weight map / is said to
be effective at 3 if (x) holds for all nonzero v € Vg

Remark 6.2. The notion of effective highest weight map was suggested by
the special case of [9, Definition 1.7.8].

Remark 6.3. In the notation of Definition 6.1 (%), /(§ . v) = /(K . v) for all
v €V, so that § may be replaced by K in (¥). Indeed,

fG. ) =fQEK . ) =TA . /K. ) =CrK . )= K . 2.

Proposition 6.4. Let V be a compatible (G, K)-module, and let B e R,
yeM, 2 ed, XeB and Zey. Let [V —Z be a highest weight map with

respect to y and A. Then there is a natural bilinear pairing
¢: Hom, (Z, X) x Hom, (X, V) — Hom, (Z, Z) ~C
given by
g hfohog

for all g € Hom, (Z, X) and b € Hom, (X, V). For such g, b, and u € GX, we
bhave

Hlg u - b) = P\ () . g, b) (= (P () - g, b))

BoY .\
If f is effective at B, the right kernel of ¢ is zero.
Proof. The first statement is clear. To prove the second, write

U= Zaiki (mod n(j),

where a, e@® and ki € XM, Let o denote the representation of G on V and

let 7 denote the representation of K on X. Then
dg u-b)=folu.h)og=foolu)ohog

- an(ai) foolk)ohog= Zn)‘(ai) [foh OT(ki) og
i i

:foh OPA(u) -8 = QS(PA(ZI) g b).
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Finally, suppose that { is effective at f3, and suppose that b € Hom,, (X,V),
b£0. If fobh=0, then

fK B = K . X)) =0,

contradicting the effectiveness of f, in view of Remark 6.3. Hence fo b £ 0,
and so there exists g € Hom,, (Z, X) such that ¢(g, b) =fohog#£0. Q.E.D.

Theorem 6.5. Let V be a compatible (S, K)-module which admits a highest
weight map [ with respect to y € M and A € ', such that [ is effective at
B €R. Then m([V], B) <m(B, y) (K =), and if m(B, y) >0, then Ker y([V], B)
O Ker P,B,'y,xng' Suppose that m({V], B) = m(B, y) > 0. Then

Ker 7(lV], B) = Ker P 5, 8K,
and o

X1, BN = p 5, 1G¥.

Moreover, let X € B and Z €y, and assume that [ V — Z. Let o denote the
representation of QK on Hom, (X, V). Then

é: Hom,, (Z, X) x Hom, (X, V) — Hom, (Z, Z) ~ C,

g, b - f Ob Og
is a nonsingular pairing, and for all u € GX, w(u) and Pﬂ y A(u) are adjoint

to each other with respect to ¢.

Proof. All the assertions follow easily from Proposition 6.4, Q.E.D.
Remark 6.6, Let V be a finite-dimensional irreducible G-module. Then
it is well known that the lowest restricted weight space Z of V is M-irreducible,
giving rise to some y € M. Let A € o' denote the lowest restricted weight of
V. Then the projection of V onto Z with respect to the restricted weight space
decomposition of V is an effective highest weight map for V with respect to
y and A, so that Theorem 6.5 applies.
Remark 6.7. Theorem 6.5 may be regarded as a generalization of [6(c),
p. 49, Lemma 11],[12, Theorem 2.2 (2.34)] (cf. Remarks 3.5 and 6.6) and [9,
Lemma 1.7.6]).

7. The nonunitary principal series. In this section, we shall construct a
series of representations admitting effective highest weight maps, so that the
results of §6 may be applied. The representations are essentially those of the
classical nonunitary principal series.

The exponential map exp: ap — A is an analytic diffeomorphism; let us

denote its inverse by log. Since every differentiable finite-dimensional
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irreducible A-module is one-dimensional, we may identify A with o', under the
exponential map. Let p € A (= o) denote half the sum of the position roots (of
g with respect to a), with multiplicities counted.

Fix ye M, A€ 4, and Z €y. Define the following MAN-module structure
on Z:

(= e(iR+P)(log a)

man - z = (iA + pa)m « z m . z)

forall m €M, a €A, n €N and z € Z (i = (- 1)). (The reason for the expres-
sion i\ + p will become apparent in the following sections.)

Let V(7Y be the space of all analytic functions f: G — Z such that
/(gman) = (man)_1 . f(g) = e~ (irMtp)loga), —1 f(g)

forall g€ G, me€M, a€A and n € N. Then v’} is a G-module under the
action given by (g - )(h) = f(g~'h) for all /€ V7*}) apnq g b € G. Furthermore,
V7N s a gg-module, and hence a g-module and a g-module, under the action

given by
- Nle) = & (lexp 1) - g, o = ;Ef— ((exp — tx)g)l, o

forall f ¢ V('y"\), x € gp and g €G. Then v¥N s a (@, G)-module.

Let V7"* denote the subspace of ALY consisting of the K-finite vectors.
Then V7* is G-invariant, and is a compatible (§, K)-module.

Let U be the space of all analytic functions f: K — Z such that f(km)
-m b f(k) forall k€ K and m € M. Then U'” is a K-module under the
action given by (k. )()) = f(k™)) for all [ € UY) and &, I € K. Moreover, U
is a (K, K)-module under the action of K determined by the following action of

fR:

G - NR) = ;‘ti (exp £x) - )B)|,_o = di: [(exp — W),

forall /e U, x ¢t and k € K.
Let U” denote the space of K-finite vectors in U”). Then U” is K-

invariant, and is a compatible (K, K)-module.

Proposition 7.1 (cf. [9, Lemma 1.7.3)). The restriction map R”*M: y7.A

—U” is a K, K)-module isomorphism whose inverse is given as follows:

((R’)’.A)— 1(/))(kan) _ e~ (iA+P)(log a)/(k)

forall f € U”, k€K, a€A and n €N. Moreover, for all B € R, we have
m([U”], B) = m(B, y), so that in particular, m([V”-*], B) = m(B, ).
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Proof. The proof of the first part of the proposition is straightforward, and
the second part of the proposition follows from the Frobenius reciprocity theo-
rem. Q.E.D.

Let 6. ,: V”'X — Z denote the evaluation map at the identity element e
of G.

Theorem 7.2 (cf. [9, Lemma 1.7.5]). We have that 8, \ is an effective
bighest weight map for vV} with respect to y and i\ + p (regarding Z as an
(AN, M)-module by means of its structure as an MAN-module).

Proof. Let f ¢ V? and x € ag. Then

S,y'}‘(x - =A(x. Ne)

d 4 (ixP)(x)
= ;;- f{exp — tx)lz:O =d_t ettt x f(e)lt=0

= (A + Pl (e) = GA + p)(x)S,, (N,

sothat &, ) isan (-module map. Similarly, 5., M) =0 forall fe VYA,
Let /EVy)‘ and m € M. Then

)‘(m-/)=(m-/)(e)=/(m—l):m~/(e)=m -6, ),

so that & YA is an M-module map and hence a highest weight map.
Finally, suppose that &, (K /) =0 for some f € V”'*. Then 5, WK )
=0, and so f(k) = 0 for all k e K. Thus /=0 by Proposition 7.1, so that

5%’\ is effective. Q.E.D.

By Theorem 6.5, Proposition 7.1 and Theorem 7.2, we now have
Theorem 7.3. Let y e M, A € A and B € R such that m(B,y) >0. Then

A K
Ker 7([V”*], B) = Ker P,B,'y,i)up‘g

and
x(n((v7 1, B)) = gy inep) Gx.

Remark 7.4. The second formula in Theorem 7.3 will be generalized by
Theorem 9.8(2) below.

Remark 7.5. The second formula in Theorem 7.3 may be regarded as a gen-
eralization of [12, Theorem 2.3 (2.55)] (cf. Remarks 3.5 and 6.7) and of [9,
Lemma 1.7.5]; cf. also [6(c), p. 49, Lemma 11].

Let y € M, AeA and Z ¢ y. Regard Z as a Hilbert space, with inner
product (-, -), on which the action of M is unitary. A measurable function f:

K — Z is said to be square integrable if
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| ¢, 1@k <,
K

where dk denotes normalized Haar measure on K. Let H”** denote the set of
equivalence classes (identifying functions whose restrictions to K differ on a
set of measure zero) of functions f: G — Z which are measurable and square

integrable on K and such that
[ (gman) = ¢~ (AP bea)y~1 ()

forall g €G, m €M, a € A and n € N. Define an inner product (-, -) in Hy,)\
by

(/1' /2) = fK (/l(k)' /z(k))dk.
Then H”* is a Hilbert space, and the action given by (w7 X (@(Mb) = /(g—lb)

(fe HYA, g b € G) defines a continuous (not necessarily unitary) representation
77X of G on HY M. Moreover, V7 X is the §-module of K-finite vectors of H”'*

. A
The representations 7"

constitute the nonunitary principal series of G,
and the (§, K)-modules V?”'* constitute the infinitesimal nonunitary principal

series.

8. The subquotient theorem. A subquotient of a module V is by definition
a module of the form Y/X, where X and Y are submodules of V such that X C
Y. This applies for example to (Q, K)-modules, to @K/QK N Qg'B-modules
(Be R) or to continuous representations of G on a Banach space; in the last
case, we require that X and Y be closed subspaces of the Banach space V.

In this section, we show that various types of irreducible modules can be real-
ized as subquotients of certain concrete modules, extending and simplifying
Harish-Chandra’s results [6(c), p. 63, Theorem 4] and [6(h), Theorem 4]. Our
proof is essentially patterned after Harish-Chandra’s proof in [6(c)], except for
our use of Corollary 4.5 and Theorem 5.3 in place of Harish-Chandra’s [6(c),
p. 28, Lemma 1] and [6(b), p. 195, Theorem 1], respectively,

Let by be a Cartan subalgebra of the complexified Lie algebra m of M, so
that §=b + a is a Cartan subalgebra of g. Choose a system of positive roots
of m with respect to b, and let M, be the sum of the positive root spaces in m,
Then M+ Ny, is the sum of the positive root spaces for a certain system of posi-
tive roots of g with respect to §, which we fix. Let M, }(m and H be the uni-
versal enveloping algebras of m, b and b, respectively, regarded as canonical-
ly embedded in G. Let Z be the center of G.

Let Wy be the Weyl group of g with respect to b, regarded as acting on §',
and let p € b be half the sum of the positive roots of g with respect to b.

For all s € Wy, let sx denote the affine transformation of ' given by
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sxv=sv —p.)+py

for all v € §'. Let s* denote the algebra automorphism of H (identified with the

algebra of polynomial functions on §') given by
(s*x)(v) = x(sx 1 I))
for all x €}, v € §'. We obtain an action
Wy — Wy ={s*|s e Wy}

of Wy as automorphisms of H. Let H* denote the set of Wy -invariants in K
with respect to this action.

For all subsets §, T C Q, let TS denote the centralizer of $ in T. For all
vep, let m,: H — C be the evaluation homomorphism at v.

The following lemma, due to Harish-Chandra, is well known, and we omit the

proof:

Lemma 8.1 (see [6(f), p. 118, Lemmas 18 and 19]). We have Qb cH+
(n + n,)§ (direct sum). Denoting by x%: Q" — X} the corresponding projection
of Qb into X, we have that x*(@) = X* and that x%: 2 = H* is an algebra

isomorphism. Forall v €Y', let
x$=m,ox*:G'—> C
Then every homomorphism from % into C is of the form x:|z for some v €Y',
The proof of the following lemma is straightforward:

b
Lemma 8.2. We bave M ™ CH,, + nwll (direct sum), giving rise to the pro-

jection map x™: mb'“ = K. Moreover,
b
Q“c&)ﬁ+ng, ch(i’)n " +n9 and QMA c (M +nG,

so that
PGHCRO®W, PEHCA®N'™ and PEM)cq oMM,
Finally,
xS=(1@xmoP: ' — K
(identifying H owith @ ®}(m).

For all p € by, let L% Hw— C denote the evaluation homomorphism at p.
For all y € M, let o, € Hm denote the lowest weight of the m-module(3) induced by
any module in the class y. Also, let

8 e, RY
X7=(1®”#7)°X'9 Q

(3) It is known that this memodule is primary but not necessarily irreducible.
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(identifying H with @ ® H,,), and for all A € d', let

L]
X;,x =(m, ® ”“y) ox%: G - ¢C

(identifying H witch @@ Hp).
Lemma 8.3. Let 8 € R and y € M such that m(B,y) >0. Then
Py LG c@ca®kM/ghY

(identifying Q@ with R ®1),

8. @MA _,

Poy=Xy: S @

and for all A € ',

8 . (OMA

Pﬁ'%xzx,y')‘.g — C.

Proof. We recall from $3 the projection g ot KM — KM/4BY | The restric-
tion of TRy tO MM is the homomorphism from M o C by which MM aces as
scalars on an irreducible M-module in the class y, and a standard argument shows

that we therefore have

MM 7 ox™: MM —C.

w
By Ho,

Hence
Psy8") — (@, ) oPYE") C @
by Lemma 8.2, and
Pa |G - ®n, YoP|GM _ (1 ®(nﬂy ox™) o P|GMA

=1 ®7, Vol @x™oP|GMA _(1@7, )ox®|GMA
y Y

(by Lemma 8.2)
= x5 16",

The last assertion of the lemma follows immediately. Q.E.D.

Fix B €K and a € X, so that P,B,'y(“) e @®KM/JBY for all y € F,B .
Consider the ring AT of polynomials in one variable with coefficients in (.
Define /(T) € (1] by

=11 det(T . 15, - Py (a)),
'yeI‘IB

where 1,3 ” denotes the identity element of i® KM/ﬂ'B'y, and det denotes the
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determinant function on @[T] ® KM/9#7 | which is isomorphic to the algebra of
m(B, y) x m(B, y) matrices with coefficients in @[T]. Then /(Pﬁ'y(a)) =0 for
all y € F,B'

For all A € @', let f,(T) denote the element of the polynomial ring C[T] ob-
tained by evaluating the coefficients of f(T) at A. Then

[@=I1 deetT 1, -P, ().
'yerﬁ

Regard @ C H in the natural way, so that @[T] C H[T). Define f(T) € H{T]
by
ramy= I s,

sEWb

where the action of W; is extended from H to HT] in the obvious way. Then
f(T) e {*[T], and so Lemma 8.1 implies that there exist z z,_ € Z(q=

degree [(T)) such that

0

(N =17+ x“(zqs 1)T‘7‘"I b+ X3 IT + 8z,

Let

1

= a? a~1 . ... K
b=a +2z,.4 + +2za+ 2 e GK.

For all v €8, lec TV(T) denote the element of C[T] obtained by evaluating

the coefficients of [ (T) at v. Then

o= I foagy =TT e 1, =Py 21)0@)
sewb yel‘ﬁ;sewh

Let

gﬁ,‘l/: n Ker P

“11a 1G5
yel‘ﬁ;sewb B.'}’.S* (V)‘ﬂ

a two-sided ideal of GX. By the above, if a G‘S‘D’,B ,» then TV(T) =T9,
Lemma 8.4. We bave that b ¢ §K n G48

Proof. Let y €I";. Then

5
Pay®) =Py (@) 4 Pp (e, WPg (@ ace s Pz
()
= Py @ Xy (e, P (@77 H ek (z),

by Proposition 3.1 and Lemma 8.3. Let
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= P,B,y(a)q + xﬂ(zq- I)P,va(a)q—l +eoee+ x8z,) eH KM/ B,
and consider the map

lom, @ L HoKM/qAY - A Hne KM/45Y — @ @ KM/457.

Then (%) equals (1 ®ﬂ"y ® 1)¢). But

=7 @)= Il s*p, @) -0

sEWb
since /(Pﬁ ,y(a)) = 0. Hence P, _(b)=0. Since this holds for all y € F,B’ we
have P (b) =0, and so b € GK A @g,ﬁ by Corollary 4.5. Q.E.D.

Lemma 8.5. Let Y be an irreducible §X/GKn Qgﬁ-module, and regard Y
as a QK‘module. Then % acts on Y according to a scalar homomorphism of the

form X3|Z for some v € §, dim Y < o and every element of £/3 , annibilates Y.

Proof. Z acts as scalars on Y by Lemma 2.2, and the existence of v follows
from Lemma 8.1. Let o: QK — End Y be the representation of QK associated
with Y. Since b € GXn @4’8 by Lemma 8.4, we have

0= 0(b) = o(@)? + olz__ Po@? !+t oz ola) + olz)

— o) 4 x 8z, ol s x 2 o) + xag) = T o)

If a € 53 , then we get 0 = o{a)? from the above discussion. Thus every element
of the two sxded ideal U(S" ‘ of o(GX) is nilpotent. But dim Y < e, by Theorem
5.3. Hence o(GK) is the fuute dimensional simple ring End Y, so that U(‘SE,B v
=0. Q.E.D.

We omit the proof of the following standard fact (see [6(c), p. 56, Lemma 14]):

Lemma 8.6. Let B be an algebra over C, let Ops Oys v o
dimensional representations of B and suppose that 0, is irreducible. If
N7 _, Ker 0, C Ker 0, then Ker 0, CKer 0 for some i=1, .- ,n

0, be finite-

Theorem 8.7, Let B € K, and let Y be an irreducible (QK/QK N Qgﬁ)-module.
Then there exist y €M and X € @ such that m(B,y) >0 and such that Y is
equivalent to a subquotient of a (finite-dimensional) (QK/gK N Qg'B)-module in
the class 7([v”"*, B). In particular, dim Y < m(B, y) < d(B) (cf. Theorem 5.3).
Denoting by o: QK — End Y the representation of QK associated with Y, we

bave Ker P |§K C Ker 0, and there exists an antibomomorphism

(QK) — End Y

BY.ix+p

P .
¢ By ik+p
such that o =o' o Pﬁ v “\+P| GK. Moreover, o(2) acts on Y according to the

scalar homomorphism x,; i)\+P‘
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Proof. By Lemma 8.5, there exists v €§’ such that o(Z) acts on Y accord-
ing to the scalar homomorphism xglz, and £B,V CKero. Foreach y € Fﬁ and
Aea P,B Y is an antihomomorphism of QK into a finite-dimensional matrix
algebra. Hence the composition of P,B YA with the transpose antiautomorphism
of this matrix algebra is a finite-dimensional representation of GK  and the kernel
of this representation is the kernel of P,B y A+ Thus by Lemma 8. 6 and the defini-
tion of g,@’v’ there exist y EF and s EWb such that Ker P,B 5, s‘l(v)|al§ C

Ker 0. Choosing A € a’ so that iA+p=sy V)l a, we have

Ker P I8X ¢ Ker o,

BV, ikep
and the existence of the antihomomorphism ¢’ is clear. By Theorem 7.3, we have
Ker 7(lv”"*], B) C Ker 0. Let

X=Xy2XD-..DX =0

be a composition series of a GX module X in the class n([V'y’)‘], B), so that
Xi/xi+1 is an irreducible gK-module forall i=0,-.--,n-1. Then for all x €
n:’:ol Ker [XZ./X“_I], we have

x" € Ker 7([V7**], B) CKer g,

so that O(nKer [x /X ]) is a two-sided ideal of U(QK) each of whose elements
is nilpotent. Since 0 is irreducible, o(GX) = End Y, and so ol Ker[X /X ]) =
0. Hence Y (regarded as a Q -module) is equivalent to Xz'/Xi+1 for some z' =
0,---,n~1, by Lemma 8.6, proving the first assertion of the theorem, and hence
the second. Finally, the last statement of the theorem follows from the last state-

ment of Lemma 8.3 and the existence of ¢’. Q.E.D.

Theorem 8.8. Let V be a G-irreducible compatible (G, K)-module, and let
B e K such that m([V], ﬁ) > 0. Then there exist y €M and A € o such that m(B, ¥)>0
and such that V is equivalent to a subquotient of the (@, K)-module v>’A In
particular, m(IV1, BY< m(B, y) < d(B) (cf. Theorem 5.4). Moreover, % acts on V

according to the scalar homomorphism X,y“ 'A+p| P

Proof. Let X €3, and let Y = HomK(X V ). Then Y is an irreducible
9 -module, by Lemma 2.1, and Y may be regarded as an irreducible @K/@K
Qgﬁ)-module. Choose y €M and X € @' as in Theorem 8.7, so that Y is equiva-
lent to a subquotient of Hom (X, V"), Now V',B ~X ®Y as (QK, K)-modules,
where QK acts on the second factor of X ® Y and K acts on the first factor
(see T11, Lemma 5.3]). Similarly, Vz;')‘ ~X ®HomK(X, VYA as (QK, K)-
modules. Thus Vﬁ is equivalent to an irreducible subquotient of the (QK, K)-
module VZ;’A. Let Z1 and 22 be (QK, K)-submodules of V%'A such that Z1
CZ, and Z,/Z is equivalent to Vs

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973) REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 29

Define the subalgebra AP of Q by AB - {x € 9|g'BxC Qgﬁf Then AR
KQK + Qgﬁ, by [11, Theorem 5.4]. Hence Z, and Z, are AP-submodules of the
AP-module Vz'k, and Z,/Z is AP-irreducible and is equivalent to the A%
module Vg. Let Z;‘i“ be the G-submodule of V! generated by Z,,
Z'I“"lx be the largest G-submodule of Zg‘i" whose intersection with VE'}‘ is Z,
(see [11, Proposition 4.6]). Then Z'zlnin /ZTax is g-irreducible, and
(Z;‘i" /Z';lax ),B'zZZ/Z1 o~ V[3 as AP-modules. Hence szi“/Z'l“"lx ~V as G.
modules, and thus as (Q. K)-modules, by [11, Theorem 4.9]. This proves the

first assertion of the theorem, and hence the second. The last assertion follows

and let

from Lemma 2.2 and the last assertion of Theorem 8.7. Q.E.D.

The last assertion of Theorem 8.8 can easily be proved directly, as follows:

Proposition 8.9. Let y ¢ M and \ € o', and let V be a (not necessarily ir-
reducible) compatible (S, M)-module which admits an effective bighest weight
map with respect to y and N\. Then % acts as scalars on V, inducing a homo-
morphism x: % — C, and x = X;g,)\ | 2. In particular, Z acts on the §-module

V'y,)\' and hence on any of its subquotients, according to the scalar homomorphism

Xy, ixeol %

Proof. Let Z €y, and let f: V -» Z be the given effective highest weight
map. Forall v €V and x EQMA, we have (recalling that P, (x) e M by Lemma
8.2)

fx . v) = Py(x) . f(v) = ("/‘L'y oy ™o Py\)x)f(v) = X;'x(x)f(v),

by Lemma 8.2. In particular, if x € Z, then for all y € G we have
fy x o)) =flx -y 0) = x;,‘(X)/(y cv) = fly . X;,A(X)U)v

so that x - v = x;‘x(x)v, by the definition of effectiveness. The last assertion
of the theorem follows from Theorem 7.2. Q.E.D.

Two continuous Banach space representations of G whose k-multiplicities
are finite are said to be infinitesimally equivalent if their (8, K)-modules of

K-finite vectors are equivalent.

Theorem 8.10. Every G-irreducible compatible (§, K)-module is equivalent
to the (G, K)-module of K-finite vectors of some continuous topologically ir-
reducible (not necessarily unitary) representation of G on a Hilbert space, and
this representation may be chosen to be a subquotient of a nonunitary principal
series representation 7”2 for some y € M and A € A. Furthermore, every
continuous topologically irreducible Banach space representation m of G such
that the multiplicity of any element of K is finite is infinitesimally equivalent

to an irreducible subquotient of some nonunitary principal series representation
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A
g

In particular, the multiplicity of any B € R in w is equal to or less than
m(B, y) < d(B) (cf. Theorem 5.5). Moreover, Z acts on the space of K-finite vectors

of m according to the scalar homomorphism x_?, ix+p| Z

Proof. The theorem follows easily from Theorem 8.8 and Harish-Chandra’s
results [6(b)] relating Banach space representations of G to the corresponding
representations of 9 on the spaces of K-finite vectors. (We note that Theorem 5,
p. 228 of [6(b)) can be sharpened to the following statement, in our context: Sup-
pose that 7 is a continuous representation of G on a Banach space H, with
finite K-multiplicities. Then there is a natural bijection between the set of closed
m(G)-invariant subspaces X of H and the set of @-submodules Y of the g-module
V of K-finite vectors of H; the correspondence is givenby X = X NV, Y
closure (Y).) Q.E.D.

9. Equivalence under the Weyl group; finiteness theorems. Let M’ be the norm-
alizer of A in K, so that the Weyl group W = M/M is a finite group. Now W acts
in a natural way on A and on @, and by contragredience, on a’ and hence on A.
W also acts in a natural way on M, as follows: Let y € M, and let Z €y, with
m: M — Aut Z the corresponding representation. For all s €W, choose a repre-
sentative m_ € M'. We define a new M-module structure on Z by m - z =
ﬂ(m; 1 mms)z forall m €M and z € Z. The equivalence class of the resulting ir-
reducible M-module depends only on s and y, and is denoted by sy. The map
from W x M to M given by (s, y) = sy is indeed an action of W on M.

In §9, we shall relate the notions of composition series (see the Appendix
for relevant definitions), spherical function, infinitesimal spherical function and
distribution character, and in the case of the nonunitary principal series, we shall
relate these notions to W. We shall also prove the equivalence of various finite-
ness assumptions on Q-modules on which the center Z of Q acts as scalars.

A continuous representation 7 of G on a separable Hilbert space H is said
to be admissible (cf. (15, $21) if

(1) as a K-representation 7 is unitary,

(2) there is a constant C such that for all 8 € R, the multiplicity of B in
H is equal to or less than Cd(B), where as usual d(B) denotes the dimension of
any module in f3.

Let 7 be an admissible representation of G on H. Let CSO(G) denote the
space of complex-valued C® functions of compact support on G. Forall f €

C;°(G), the operator

() = fG f(@)ale) dg
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(where dg denotes Haar measure on G) is of trace class (see [6(d)]). The trace
of this operator is denoted Tﬂ(/), and the resulting linear functional T, on
C(°)°(G) is a distribution, called the character of 7 (see [6(d)]).

For every B € R, let E%: H— HB be the orthogonal projection onto the 3-
primary subspace HB of H. The spherical function ¢7[73 G — C associated with
7 and B is defined by

gbz(g) =tr E% ﬂ(g)Ez

forall g €G. Then qSZ, is an analytic function on G (see [5] and [6(d)]).

Let V7 denote the K-submodule of K-finite vectors of H. Then V" is nat-
urally a gk-module, and hence a compatible (9, K)-module, under the action 7,
of § determined by

(*) 7 (x)v = (d/dt)alexp tx)|,_,

forall x € g and v € V™ (see [6(b)]). Forall x €§, let D, denote the left

invariant differential operator on G associated with x. Then forall 8 € K,
(D, d)Z)(e) =tr Ezrr*(x)Ez,,

where e denotes the identity element of G (cf. [6(d), p. 235]). The infinitesimal
spherical function associated with 7 and B is defined to be the complex-valued
linear function 5{(V™], B)) on GX,

We now establish three general facts about admissible representations.

Proposition 9.1. Let 7 and o be admissible representations of G, and let
B € R. Then the following conditions are equivalent:

(1) The spherical functions qS% and ¢>Z, are equal.

(2) The infinitesimal spherical functions x(n{lv7™], B)) and X(Y)([VU], B
are equal.

(3) The GK-modules in the classes (v, B) and p(lv°], B) have equiva-
lent composition series.

(4) The KCX-modules Vz and V% bave equivalent composition series.

Proof. We assert that the right-hand side of (%) above is determined by its
values for x € RGK only. Indeed, regard R as a subset of K (the set of equiva-
lence classes of finite-dimensional irreducible K-modules) in the natural way,
and for every y EK let A”*# denote the subset of G which takes Vﬁ into

V., for every g-module V. Then by [11, Remark 4.1}, § = E'ye]( A7 '6. In par-
ticular, the right-hand side of (*) is determined by its values for x € A”™”, But
by [11, Theorem 5.4], ABB K@K + QQ'B, and this proves the assertion.

Since spherical functions are analytic, we thus have that gbg = d)% if and
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only if the KgK-modules V% and V; have the same character. But two finite-
dimensional representations of an algebra over C have equal characters if and
only if they have equivalent composition series. This shows that (1) and (4)
are equivalent, and also that (2) and (3) are equivalent.

Let X be a K-module in the class B. Then

v’,g =~ X ® Hom (X, V7)

as K/g,B® QK-modules, where K/Q’B acts on the first factor on the right, and QK
acts on the second (see [11, Lemma 5.3]). The same assertion also holds for o

in place of 7. This shows that (3) and (4) are equivalent. Q.E.D.

Proposition 9.2. Let 7 and 0 be admissible representations of G. Then
the following are equivalent:

W T -1, )

(2) The conditions of Proposition 9.1 hold for all B € K.

Proof. The equivalence of (1) and condition (1) of Proposition 9.1 for all
B e R follows from [6(d), §7]; see also [15, Lemma 2.1]. Q.E.D.

Theorem 9.3. Let w and 0 be admissible representations of G and suppose
that Tﬂ = Ty« Then if the g-module V7 bas a composition series, the same
is true of the G-module V°, and the two G-modules bave equivalent composition
series. In particular, if V" is G-irreducible, then the same is true of V°, and

the two G-modules are equivalent.

Proof. By Propositions 9.1 and 9.2, the KGX.modules VZ and V; have
equivalent composition series. The theorem now follows immediately from
Theorem 11.1 and Remark 11.2 in the Appendix. Q.E.D.

Remark 9.4. The last assertion of Theorem 9.3 was obtained by N. Wallach
(15, Theorem 2.1]. Also, Corollary 11.10(ii) in the Appendix and Proposition 9.1
immediately imply [15, Corollary 2.1], a related result.

Remark 9.5. Our proof of Theorem 9.3 is very simple in two special cases—
the case in which V7 is G-irreducible (see the proof of Corollary 11.10, and cf.
Remark 9.4) and the case in which v? is assumed to have a composition series
for Q (see Remark 11.11).

We now apply the above results to the study of the nonunitary principal
series. We note that forall y € M and A €4, 77°* is an admissible represen-
tation of G. Let T, denote the character of 77",

The following theorem is essentially due to Harish-Chandra (see [6(e)]

and [15, Theorem 3.11):

Theorem 9.6. Forall y €M, N €A and s €W, T'y,)\ = Ts'y,sA'
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We could now combine Theorem 9.6 with Propositions 9.1 and 9.2 and Theorem
9.3. But we can be more specific, in view of the following result which we prove
below, following several people’s suggestions, using Harish-Chandra’s deep

result Theorem 9.14:

Theorem 9.7. Forall y € M and A €A, the §-module V> bas a composi-

tion series.
~ ~ ~ A
Forall y €M, A €A and B €K, let ¢>g)‘ :¢737' . We now have

Theorem 9.8, Let y €M, A €A and s eW. Then

(1) the Q-modules V7 A and V7SN bave equivalent composition series,
K K >

) pgoiaplS =05 oy isnapl S forall B €K such that m(B, y) >0,

3) T'y,k = Ts’y,s)\’

@) ¢7 =95 forall BeR,

5) x@lv”-*1, B) = x(n(vs7- <X, B) for all B €K,

(6) the GX-modules in the classes n([V’y’A], B) and n([Vsy’S)‘], B) have
equivalent composition series for all B €K,

(7) the KQK-modules VZ’)‘ and V;’y'sx have equivalent composition series
for all B €R.

If v s G-irreducible, then the same is true of VS7'5N, and the two G-
modules are equivalent. In this case, VYA admits an effective highest weight

map with respect to sy and isA + p.

Proof. All the assertions are clear from the above results in this section
and Theorems 7.2 and 7.3, Q.E.D.

Remark 9.9. It would be interesting to determine @/l the highest weight maps
for the modules Vy')‘; cf. [7(b), p. 125, Theorem 6.3} and [16] for special cases.
Remark 9.10. In (2, p. 193, Théoréme 7;2], F. Bruhat states that in the

unitary case (i.e., when A € @' is real, in our notation), the representations

LN and 7 (y € M, s €W) are equivalent. His proof is based on asser-

tion (4) of Tizz)ie);m 9.8, but his proof of this assertion has a gap, as R. Goodman
has pointed out to us; specifically, formula (7;33) on p. 195 of [2] seems to be
unjustified.

Remark 9.11. Theorem 9.8 can be proved without using Theorem 9.6, as
follows: For all x EQK, yeM, s €W and B e K such that m(B, y) >0,
p'@,,y'ihp(x) and p,B,s'y,is)up(x) are polynomial functions in A € a’'. Hence
assertion (2) of Theorem 9.8 (and hence all of Theorem 9.8) will follow if any
one of the assertions (1)~(7) is proved for a Zariski dense set of A € o' (as-
suming that y € M and s €W are fixed). In particular, it is sufficient to prove

(1) for a Zariski dense set of A € &', Hence it is sufficient to find a Zariski
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dense subset S of @' such that, for all A €85, vy s Q-irreducible and there
is a nonzero G-map from V”'* to V57 (Indeed, such a §-map must be a G-
isomorphism.) To construct §, we can use the formal intertwining operators be-
tween V7 and V7" introduced by R. A. Kunze and E. M. Stein [10, p. 390,
formula (1.5)]. These operators are well defined and nonzero as A ranges through
a certain nonempty open subset of @', in view of the convergence theorem of S. G.
Gindikin and F. L. Karpelevic [4, Theorem 1] (cf. also [7(b), p. 83]). We can now
use the result of A. W. Knapp and Stein [8] and G. Schiffmann [14] that the formal
intertwining operators can be meromorphically continued to give (finite) nonzero
intertwining operators between v”* and V75X for most A € a’ , including a
Zariski dense set of real, regular A. We may choose S to be this set, in view of
Bruhat’s irreducibility result (2, p. 193, Théoréme 7:2] for the regular members of
the unitary principal series. Another subset § may be constructed as follows:
The irreducibility of Vv’ fora single A € a' (which follows for example from
Bruhat's irreducibility result) implies the irreducibility for a topologically dense
set of A € a’ (this was pointed out to us by B. Kostant and N. Wallach). This
dense set must intersect the (open) domain of convergence of the formal intertwin-
ing operators in a Zariski dense set of A € a’, and we may choose S to be this
intersection.

Remark 9.12. Let 8 and y be the classes of the trivial one-dimensional re-
presentations of K and M, respectively. In this case, Theorem 9.8(2) was ob-
tained by Harish-Chandra, essentially by using his method of proof of Theorem
9.6 (see Remark 3.4, [6(g), p. 260, Theorem 1] and [7(a), p. 431, Lemma 6.14]).
We can give a simpler proof, as follows: Let s € W, and suppose that A € a’ js
in the domain of convergence of the formal intertwining operator which takes v7A
to V75X (= v752) (see Remark 9.11). It is easy to see that the set of such
A such that the intertwining operator is nonzero on the one-dimensional space
V%'x is precisely the subset of @' such that the integral [7(b), p. 83, formula
(8)} defining the partial c-function associated with s converges and is nonzero.
Since this set is nonempty and open, and is thus Zariski dense, we obtain
Theorem 9.8(5) for B and y trivial and all A in a Zariski dense subset of a’
and this is sufficient to prove Theorem 9.8(2) for 3 and y trivial (see the begin-
ning of Remark 9.11).

Remark 9.13. Theorem 9.8(2) may be regarded as a generalization of [12,
Theorem 2.3 (2.56)] (cf. Remarks 3.5 and 7.5).

We now prove Theorem 9.7 and some related finiteness results. The proofs

are based on the following deep result:

Theorem 9.14 (Harish-Chandra). Let x: Z — C be a homomorphism (we
recall that % is the center of §). Then there are only [initely many infinitesimally

inequivalent (see $8) continuous topologically irreducible Hilbert space repre-
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sentations of G with finite R-multiplicities such that % acts on the G-module of

K-finite vectors according to .

Proof. See the first part of the proof of Lemme 1 of [3(c)]. (The proof is
based on Harish-Chandra’s deep theorem [6(i)] that every distribution character

is actually a locally summable function on G.) Q.E.D.

Corollary 9.15. Let x: & — C be a homomorphism. Then there are only
finitely many inequivalent G-irreducible compatible (§, K)-modules on which %

acts according to y.

Proof. The corollary follows immediately from the theorem and the first as-
sertion of Theorem 8.10. Q.E.D.

Theorem 9.7 follows from the fact that (1) implies (5) in the following theorem,
in view of Proposition 8.9. However, we note that although Theorem 8.10 is used

in the proof of this theorem, it is not required to prove Theorem 9.7.

Theorem 9.16.(4) Let V be a compatible (Q, K)-module on which % acts ac-
cording to a scalar homomorphism. Then the following conditions are equivalent:

(1) Forall B €K, m([V], B) < .

(2) There is a constant C such that, for all B € K, m([V], B) < cd(B).

(3) V is a [initely generated g-module.

(4) V is a Noetherian Q-module.

(5) V bas a composition series as a g-module.

Proof. We first show that (1) implies (5). Suppose that (1) holds. If V does
not have a composition series, then for any » > 0, we can find a sequence of G-
submodules
V=VODV1 D...DVn=0
such that V, # V y forall i=0,---,2-1. Now every §-submodule of V
is the d1rect sum of its intersections with the spaces V B e K). Using this
observation, it is easy to construct G-submodules W, and X, of V. such that

V.OW.DX.DV,
i i i i+l

and such that W/X,- is G-irreducible, for all i =0, .. ,n—~1 (cf. the Appendix
and [11, Proposition 4.6]). Now Z acts on each Wi/xi according to a fixed
scalar homomorphism, and so by Corollary 9.15 there exist finitely many G-
modules Zyseoes p such that each W, /X is equivalent to one of the Z]

For each j=1, ..., p, choose ,8 ek such that m([Z 1, B ) >0, and let m.
m([v], ﬁ ), so that m. < o by hypothesxs Then there can only be at most rln
indices i between 0 and n — 1 such that Wz./Xl. Zj' Thus n cannot be lar,ger

than m, + ... +m

. a contradiction, and so (1) implies (5).

p!

(%) Theorem 9.16 appears to establish, for groups with finite center, a conjecture of
I. M. Gel'fand (see 2(c), footnote S),
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Now it is standard that (5) implies (4) and that (4) implies (3). The fact that
(3) implies (1) follows easily from [6(b), p- 195, Theorem 1]. Finally, (2) trivially
implies (1), and (5) implies (2) in view of Theorem 5.4; we may choose C to be the
number of irreducible subquotients associated with a composition series of V.
Q.E.D.

Remark 9.17. Corollary 9.15 and part of Theorem 9.16 are obtained in [3(c),

Lemme 1 and Lemme 2] for the special case in which G is a matrix group.

10, The image of the map p |Q In this section, we shall compute the image
of the map pBIQK (B € K) and obtam related results. We also state two con-
jectures.

For all s € W (see §9), let s, denote the affine transformation of a' given
by s,A=sA-p)l+p forall A€ a'. Let s* denote the algebra automorphism of
@ (identified with the algebra of polynomial functions on a') given by (s *x)(\) =
x(sy 1) for all x € @, A € a’. This gives an action W — W= {s*|s e W} of W
as automorphisms of ®. We define @¥" (o be the set of W-invariants in @ under
this action.

We recall from $3 the definitions of the symbols I"; and pB > and we recall
from $4 the map A: S(g) — G.(5) We denote by S(H)X the set of K-invariants in
S(p) under the natural action of K on $(p).

Theorem 10.1. Let 8 € K and let T' be a nonempty W-stable subset of F
Then the image of the map b1 9 — @, and in particular, the map Pg=0g rs
C‘;K—* ® is preczsely @¥*. Moreover, the restriction of p o fo )\(S(b)K) is a
bijection with Qv*. In particular, bg L(QK) g pAS(p) ) is a ring.

Proof. Forall s €W, x ¢ GX and A € a’, we have

para) = X dyp, ., ()= X AP gy, n )
verl Ve

(by Theorem 9.8(2))

= XAy, )
vel

(since T" is W-stable)
=g s, A5
so that
S*pﬁ.p(x) = pﬁ‘r(x).
Hence bgr GK— Qw*.

(5) The reader should note that the symbol A is used in two different ways in this
section.
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Using the notation of Lemma 4.7, we note that p ; . is a map essentially of
the form P specifically, if we take V = C and T: f
on K defined by

— C to be any linear map

T= 2 d(y)tr

o]
By "By
yel

on KM (see §3), then P G - $(a) is a linear map which agrees with the map
pﬁ,l“: QM — @ on QM. Since

yel
we have by L.emma 4.7 that Pgr | AS(0)K) is injective.

To show that p g I,()\(S(}s)K)) =@, we let y € @" and prove by induction
on d =deg y that there exists x € S(0)X such that bg l‘()\(x)) =y. The assertion
is clearly true if d = 0. Assume that 4> 0. We 1dent1fy @ with S(a) via the
isomorphism A.

Let S(a)¥ denote the set of W-invariants in $(a) under the action induced
by the natural action of W on a. Let g: S(h) — S(a) denote the projection map
with respect to the decomposition S(h) = S(a) @ qS(p) (see §4 for the definition
of q). Then by the theorem of C. Chevalley (see [7(a), p. 430, Theorem 6.10]), g:
S(p)¥— $(a)¥ is an isomorphism. Moreover, deg z = deg g(z) for all z € S(}),
where deg denotes the ordinary degree function on S(g).

Let A : S(a) — $(a) be the algebra automorphism determined by the condi-
tion Ap(u) =u+ plu) for all u € a. Then for all v € S(a), the highest degree
terms of v and A (v) coincide.

Now Ap(y) € S(a)¥, so that by Chevalley’s theorem, there exists z € S(p)K
such thae g(z) = Ap(y). In the notation of Lemma 4.7, with T as above, we have
{7 (\(2)) = cglz), where c is a nonzero constant (specifically, ¢ = T(1)). Hence

by Lemma 4.7, we have that
deg (PB'F()\(Z)) — cg(z)) < deg Alz) = deg =
(since z € S(p))
=deg g(z) = deg A p(y) =d
Moreover, y = Azl(g(Z)) has the same dth degree term as g(z). Thus
deg (p 5 p(M2)) - y) < 4,

and

pﬁ F(A(Z\) — Cy € @W *,

by the first part of the theorem. Hence by the inductive assumption, there exists
w € S(MX such that priMw)) = 3 r(A(z)) - ¢y. Choosing x=c™ Yz - w), we
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have that x € S(b)K and that bg r(A(x)) = y, completing the induction. Q.E.D.

Remark 10.2. Choosing 3 to be the trivial class in Theorem 10.1, we have
Harish-Chandra’s theorem (see [6(g), p- 260, Theorem 1 and p. 262, Lemma 19] and
[7(a) , p. 431, Lemma 6.14]) that the image of the classical map pB| GK (see
Remark 3.4) is precisely @%*, and that b AS(P)K) = @¥" is a linear isomor-
phism. See also Remark 9.12.

Conjecture 10.3. For every 3 ¢ K, we conjecture that the image
P4(S¥)C @ @ KM/KMn )

is W-invariant, where W acts on KM/KM 4B via the quotient of the natural
action of W on KM, and where W acts on (& via W* This would define a natural
action of W on GK/GKn QQ'B.

Conjecture 10.4. For all B €K, v, Y, € M and A, A€ A such that m(B, y)
GK - PBy1 A |GX only if there
exists s € W such that y, = sy and A, =s A, and that the image pﬁ',},(QK) c@
is precisely the subset of ( left fixed by W%, where W% = {s*|s €W and s
fixes y} (cf. [12, $3.6] and Remarks 3.5 and 9.13). This would give information
on all the possible equivalences among composition quotients of the g—modules
v”>X Note that Harish-Chandra’s converse of Theorem 9.6 above (see [ 6(e)]

and [15, Theorem 3.1]) does not appear sufficient to prove even the first asser-

>0 and m(B, y,) >0, we conjecture that Pg oy A

tion of this conjecture.

11. Appendix: Equivalence of composition series for certain modules. In
this Appendix, we establish a general module-theoretic result (Theorem 11.1),
which together with [ 6(c), p. 36, Corollary 2] or, alternatively, the results of
[11] (see Remark 11.2) is used to prove Theorem 9.3 above.

Let B be a ring (with 1), and V a (left) B-module. A composition series

of V is a finite sequence of B-submodules
V:VODV >2...2V =0
1 n
such that VZ./VI.+1 is an irreducible B-module for all i =0, -.. ;2 ~1. If
W=W,OW D>...0W =0
m

is a composition series for a $B-module W, then the two composition series are
equivalent if m = n and the factor modules V/V, | (0 <i<n-1) are equiva-
lent to the factor modules W /W, (0 <i<m-1), up to order. By the Jordan-
Holder theorem, any two composition series of a B-module are equivalent. More-
over, if a B-module V has a composition series, then any strictly descending

chain

XIDX23---DXP

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 39

of B-submodules of V can be extended to a composition series.

Now let @ be a subring of B, and regard B-modules as (- modules by restriction.
Let I' be a set of equivalence classes of irreducible (@-modules. For every (-
module V and y €I, let V,y denote the y-primary submodule of V. Suppose that
for each y €T, there is a subring A” of B with the following properties:

(1) For every B-module V, V,), is stable under A”.

(2) For every irreducible B-module V such that Vy £0, V,y is irreducible
under A7,

(3) If V and W are irreducible inequivalent B-modules such that V,y £0,
then v, and W, are inequivalent A”-modules.

Then we have the following result, which is proved below:

Theorem 11.1. Let V1 be a B-module which bas a composition series. Tben
forall y €T, the A”-module V bhas a composition series. Suppose that V? is
a B-module, that V' = z'yer y (z =1, 2), and that for every y €T, the A”-
modules Vy and V2 bave equivalent composition series. Then V? has a compo-

sition series, and V' and V? have equivalent composition series.

Remark 11.2. I[n the notation and with the assumptions of (11, §4] (for all

a 6@) Theorem 11.1 holds for I" = & and A7 = AY>Y for all y E(f in view of
[11, Propositions 3.3 and 4.5, and Theorem 4. 9]. In the notation and with the
assumptions of [11 §5] (for all a 6@) Theorem 11.1 holds for I" = @ and AY =
@B for all y E@ in view of [11, Theorem 5.5]. In partlcular Theorem 11.1
holds for B=6,@=K,'=K and A” = KGK for all y € K. (The fact that as-
sumptions (1), (2) and (3) hold in this case also follows from [6(c), p. 36, Corol-
lary 2].)

To prove Theorem 11.1, we establish the following lemmas:

Lemma 11.3. Let V be a B-module which bas a composition series. Then
forall y €T, the AY -module V,y bas a composition series.

Proof. Let
V=V oV 3---_)Vn=0

be a composition series of V. Then by assumption (2), the A -module (V /V 1)
is either zero or irreducible (0 <i <7 - 1). But the A”-module (V ) /(V
naturally injects into (V /Vz+1)'y . Hence if (V ) # (V 1)7 , then
(Vz)y/(vi+l)'y is A”-irreducible, and so the dlstmct members of the chain

v
z+l Y

Vy =W, 2V, 5.2V, ), =0
form a composition series of the A”-module V,. QE.D.

Lemma 11.4. Let V be a B-module such that V = Zyervy.‘ Let yel', and
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suppose that the AY -module Vy is irreducible. Then there exist B-submodules
X and Y of V such that XCY, V. CY, X NV, =0, and Y/X is B-irreducible.

Proof. Let Y be the B-submodule of V generated by V,y , and let X be the
sum of the B-submodules of Y which intersect V,y in 0. Then X N V,y =0, since
every (I-submodule of V, and in particular, every B-submodule of V, is the direct
sum of its intersections with the primary (f-submodules of V. It is clear that Y/X
is B-irreducible. Q.E.D.

Remark 11.5. The construction of the irreducible B-module Y/X in Lemma
11.4 generalizes the construction of the irreducible representations ﬁx’v in [12,
p. 3971

Lemma 11.6. Let V be a B-module such that V = Eyer V,. Let ye r,

and suppose that V,y # 0 and that V,y is not A”-irreducible. Then there is a
B-submodule W of V such that 0 £ W N V,y # V,y.

Proof. Define X and Y exactly as in the proof of Lemma 11.4, so that in
particular, X N Vy =0. Now (Y/X)y and V., are equivalent as A” -modules, so
that (Y/X),y is not A”-irreducible. Hence Y/X is not B-irreducible, by assump-
tion (2). Thus there is a B-submodule W of V such that X C W C Y and such that
0£Wn v, £ V,. QE.D.

Remark 11.7. In the situation of [11, $4] (see Remark 11.2), Lemma 11.6

follows immediately from the existence of extensions [11, Proposition 4.6].
Lemma 11.8. Let V be a B-module such that V = E,yer v, Let y €I, and
suppose that the AY-module V'y bhas a composition series. Let
V:Xo DYI DXI oY, DXZ >... DYn DXnDYrH-l =0
be a chain of B-submodules of V. Choose i (0 <i<n) such that
X, NV, Y, ,nV,.
Then there exists a chain of B-submodules

XK= X0 DY, DK, DY DXy 20 DY, DX, DY, =Yy

(ml. > 1) such that Yij/xij is B-irreducible and (Yij /Xij)'y £0 forall j=1,..., m,
and such that

Xi]. a) Vy = Yz',i+1 N Vy

forall j=0, ... ,m.

12

Proof. If (X N Vy)/(Yi+1 N Vy) is not A”-irreducible, then applying Lemma
1
11.6 to the B-module Xi/Yl.+1, we get a B-submodule W of V such that Y.a©

W C Xl. and such that
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Since the A” -module v, has a composition series, we can repeat this argument

to obtain a finite chain of B-submodules between X, and Yi+l whose y-primary

(f-submodules form a strictly decreasing chain whose successive quotients are

A7 -irreducible. Applying Lemma 11.4 to the successive quotients of B-modules,’

we get the desired chain. Q.E.D.

Proof of Theorem 11.1. The first assertion is proved in Lemma 11.3.

Let O, ..., 0, be the irreducible $B-modules which are the composition
quotients of V!, repeated according to multiplicity. Choose y , ...,y €T
such that for all i =1, ..., n, there exists j=1, .-+, s such that (Qi)'yj £0.

We first apply Lemma 11.8 to V = Ve, ¥y =¥, and the trivial chain v? -

X, 2Y, =0. The result is a chain of B-modules

2
14 =X0 :XOO )YOI DXOI 3---3Y0m0 DXOmODYO,mO+1=Y1=O

such that YOJ,/XOJ. is B-irreducible, each (1/0],/x0].)71 £0, and each

XOI.(WV Y ﬂVy

71: 0,j+l 1

Now we apply Lemma 11.8to V = v?, Y = ¥,, and the above chain. We continue
successively to apply Lemma 11.8 to Yi and the chain resulting from Yi-1 until
we reach y_. The final result is a chain of B modules

2 _
174 _UODWIDUIDWZDUZD..-DWtDU[DWt+I:O

such that Wl./Ul. (1 <i<y) is irreducible and (wi/Ui)yA #£0 for some j=1,
., s; moreover, for each j=1,-...,s and i=0, ... ,]t, we have that Ul. N

Vy = Wi+1 N V7 , and that the distinct members of the chain
J j

2
vyj = (Uo)yj P! (Ul)yi B TN D(Ut)yj =0

.. . 7,
form a composition series of the A ’-module vi.

By assumption (2), the nonzero Ayl-modules] of the form (Qi)y (1<i<n)
are all irreducible, and the nonzero Ayl-modules of the form (Wz./UZ.)7 (1<
i < f) are all irreducible. Since the Ayl—modules Vly and Vi, have 1equivalent
composition series, the two sets of irreducible A7l -mlodules aré the same up
to equivalence and order. Hence by assumption (3), the corresponding $-modules
Q, are equivalent to the corresponding B-modules Wl./Ul.. Continuing in this
way for Yoot Yo and taking into account the equivalences established by
the previous Yi ’s, the choice of the iz ’s implies that n = ¢ and that the B-
modules Q. (1 <i<n) are equivalent to the B-modules Wi/Ui (1<i<n), up

to order.
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It remains to show that Uz. = Wi+1 forall i =0, ..., n. But if this fails to
hold, then for some y €I" and some i =0, ... ,n, we have (Ui)y £ (Wi+1)'y . But
this contradicts the fact that the A”-modules V,ly and Vz,y have equivalent com-
position series, since the nonzero A”-modules of the form (Qi)'y are equivalent

to the nonzero A7 -modules of the form (Wi/Ui)y , up to order. Q.E.D.
Remark 11.9. The above proof of Theorem 11.1 shows that the last assertion

of Theorem 11.1 remains valid if in place of the hypothesis that V,ly and V,zy have
equivalent composition series as A ”-modules for all y € ", we assume this only

for y;, -+, ¥, (defined in the proof of Theorem 11.1), and for all the other y € r
we assume that V,ly
irreducible (-modules. In this case, A” need not exist for y # Yis ot Vge

and V,Zy are equivalent as (tmodules, and are finite sums of

Corollary 11.10 to Theorem 11.1 (cf. Remark 9.4 and [ 15, Theorem 2.1 and
Corollary 2.1]). Let V! and V? be B-modules such that Vi =3 (i=1,2),
and suppose that V' is B-irreducible. Assume either that

i
yerVy

(i) for every y €T, the A” smodules V,ly and Vg, bave equivalent composition
series (i.e., that they are equivalent), or that

(ii) for some Yo e, the Ayo-modules V,lyo and V,zy0 are nonzero and equiva-
lent, and for every other y €T, V,Iy and Vz,y are equivalent as ({-modules and

are [inite sums of irreducible @-modules. (In this case, A” need not exist for

Y # ¥
Then V? is B-irreducible and is equivalent to vl

Proof. The corollary follows immediately from Theorem 11.1 and Remark 11.9.
Alternatively, the corollary follows directly and easily from Lemma 11.4 and as-
sumptions (1), (2) and ( 3). Q.E.D.

Remark 11.11. If in the statement of Theorem 11.1, we assume in addition
that V2 has a composition series, then the last assertion of the theorem is a

simple consequence of assumptions (1), (2) and (3).
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