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ABSTRACT.   Let  G  be a noncompact connected real semisimple Lie group
with finite center, and let  K  be a maximal compact subgroup of  G.   Let   g  and
f denote the respective complexified Lie algebras.   Then every irreducible

representation  n of   g which is semisimple under   f   and whose irreducible t-
components integrate to finite-dimensional irreducible representations of K  is
shown to be equivalent to a subquotient of a representation of   g belonging to
the infinitesimal nonunitary principal series.   It follows that  77 integrates to
a continuous irreducible Hilbert space representation of  G, and the best pos-
sible estimate for the multiplicity of any finite-dimensional irreducible repre-
sentation of   t  in  77 is determined.   These results generalize similar results
of Harish-Chandra, R. Godement and J. Dixmier.   The representations of  g   in
the infinitesimal nonunitary principal series, as well as certain more general
representations of   g on which the center of the universal enveloping algebra
of   g acts as scalars, are shown to have (finite) composition series.   A general
module-theoretic result is used to prove that the distribution character of an
admissible Hilbert space representation of  G determines the existence and
equivalence class of an infinitesimal composition series for the representa-
tion, generalizing a theorem of N. Wallach.   The composition series of Weyl-
group-related members of the infinitesimal nonunitary principal series are
shown to be equivalent.   An expression is given for the infinitesimal spheri-
cal functions associated with the nonunitary principal series.   In several in-
stances, the proofs of the above results and related results yield simplifica-
tions as well as generalizations of certain results of Harish-Chandra.

1.   Introduction.   In his famous   "subquotient theorem" [6(c), p. 63, Theo-

rem 4], Harish-Chandra showed that a certain large class of irreducible repre-

sentations of a semisimple Lie algebra can be realized as subquotients (i.e.,

quotients of subrepresentations) of certain standard representations.   The pur-

pose of this paper is to sharpen and simplify this theorem, and to study related

questions.   We shall work with a noncompact connected real semisimple Lie

group G with finite center (although many of our results could be extended to

the case of infinite center),  and we shall use algebraic techniques to investigate
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2 J. LEPOWSKY [February

the representations of  G  and of its Lie algebra.   Several of our results had been

obtained by Harish-Chandra, R. Godement and J. Dixmier in the special case in

which  G  is a linear group.   The treatment here is based on the study of various

maps related to a certain map  P  (see below)—essentially the map rf introduced

by Harish-Chandra in his proof of the subquotient theorem [6(c), p. 48].   This

study leads us to generalizations, and sometimes simplifications, of Harish-

Chandra's analysis of a map  y (see [6(g), p. 260]) used extensively by him and

other authors to study spherical representations of G.   After the work for this

paper had been completed, we learned that C. Rader [13] had independently ob-

tained results very close to some of our main results, including a similar gen-

eralization of Harish-Chandra's subquotient theorem, using some of the same

methods.   Our treatment and Rader's are different in many respects, however.

In order to describe our main results, we introduce some notation.   Let  K

be a maximal compact subgroup of  G, and let   î C 9 denote the respective com-

plexified Lie algebras.   Let  f-j  be the universal enveloping algebra of  9.   A

(complex) Lf-module   V which is also a K-module is called a ({j, K)-module if

k ■ (x ■ v) = (k ■ x) . (k ■ v)

for all  k £ K,   x £ y  and  v £ V.   (Module actions are denoted with a dot, and  K

acts on \j via the natural extension of the adjoint action of  K on   9.)   If in ad-

dition  K ■ v spans a finite-dimensional space on which  K  acts differentiably

for all  v € V, and the action of   Í C ^  on any finite-dimensional  K-invariant sub-

space of  V  is the action induced by the differential of the action of  K, then   V

is said to be compatible.

Let  G = KAN be an Iwasawa decomposition of  G  adapted to  K, and let  M

be the centralizer of A  in  K.   The nonunitary principal series of G  is the family

of continuous Hilbert space representations of  G  induced in the standard way

(see §7) from the (not necessarily unitary) finite-dimensional irreducible repre-

sentations of the subgroup MAN  of  G.   If  77 is a continuous Banach space rep-

resentation  of   G   whose restriction to  K contains every irreducible representa-

tion of  K with at most finite multiplicity, the corresponding space of vectors

whose  K-transforms span a finite-dimensional space (that is, the space of  K-

finite vectors) has a natural ^-module structure which makes it a compatible

, K)-module— the infinitesimal representation associated with 77.   Two such

Banach space representations of  G  are said to be infinitesimally equivalent if

their infinitesimal representations are equivalent.

Our main result is the following:

Theorem 1.1   (see Theorem 8.10).   Every ^¡-irreducible compatible  (L¡, K)-

module is equivalent to the ((-¡,  K)-module of K-finite vectors of some continuous

(§
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 3

topologically irreducible (not necessarily unitary) representation of G on a

Hilbert space, and this representation may be chosen to be a subquotient (that

is, a quotient of subrepresentations on closed subspaces) of a nonunitary   princi-

pal series representation.   Every continuous topologically irreducible Banach

space representation of G which contains every irreducible representation of K

with at most finite multiplicity is infinitesimally equivalent to an irreducible

subquotient of a nonunitary principal series representation.

This theorem is basically a generalization of Harish-Chandra's subquotient

theorem [6(c) p. 63, Theorem 4] from the case of linear  G to the case of arbitrary

G (with finite center), in the following sense:   Harish-Chandra's theorem is

stated for   3 and not  G, but it contains a hypothesis (namely, that "some   3    e

0F  occurs in  77") which in effect restricts it to a class of groups   G  intermediate

between the linear groups and the arbitrary ones.   But Harish-Chandra uses a

different definition of the nonunitary principal series from ours, and his proof

implies Theorem 1.1 only for linear groups  G.   The reason is that his proof de-
pends on Lemma 1, p. 28 of [6(c)], which is essentially a result about linear

groups, in view of its hypothesis concerning finite-dimensional representations

of  g.   Our proof of Theorem 1.1 is essentially a simplification of Harish-Chandra's

proof, but there is one major change—Lemma 1 of [6(c)] is replaced by a result

(Theorem 1.3(b) below) applicable to arbitrary  G.   This enables us to remove

the linearity assumption on  G.   (Theorem 1.3(b) also allows us to avoid using

Theorem 1, p. 195 of [6(b)].)   Using more difficult analytic techniques, Harish-

Chandra has also proved the last assertion of Theorem 1.1 for arbitrary  G  (see

[6(h), Theorem 4]).
The following result is a corollary of Theorem 1.1, but in fact it can be

proved directly, much more easily:

Theorem 1.2 (see Theorems 5.4 and 5.5).   Let  V  be a ^-irreducible com-

patible  (y, K)-module, and let  ß  be an equivalence class of finite-dimensional

irreducible representations of  K.    Then the multiplicity with which members of

ß occur in  V  is equal to or less than the maximum of the multiplicities with

which irreducible representations of M  occur in any member of ß, and this

estimate is the best possible.    This bound is equal to or less than the degree

of any member of ß, and is finite.    The same result holds when  V is replaced
by a continuous topologically irreducible Banach space representation of G

which contains every irreducible representation of K with at most finite multi-

plicity.

The last assertion of Theorem 1.2 had been proved by Harish-Chandra since

it follows from the last assertion of Theorem 1.1.   Moreover, the first assertion
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4 J. LEPOWSKY [February

had been proved by Harish-Chandra for a class of groups intermediate between

the linear groups and the arbitrary ones, in view of his subquotient theorem

(see the discussion following Theorem 1.1).   But as we have indicated, our

proof is much simpler and more direct.   It is based on Theorem 1.3(b) below

and the "minimal standard identity" technique used by R. Godement [5, §l]

and J. Dixmier ([3(a)] and [3(b), §15.5]) to prove a result similar to the last

assertion of Theorem 1.2 for linear groups  G.   Harish-Chandra had obtained a

weaker estimate [6(c), p. 36, Theorem 3] for the K-multiplicities associated

with  V, in the notation of the first part of Theorem 1.2.

Let \i     denote the centralizer of  K in y, let a be the universal envelop-

ing algebra of   Ï, and let  ß be an equivalence class of finite-dimensional ir-

reducible representations of   K.   Any member of  ß naturally induces a represen-

tation of a, and we denote its kernel by 3^, so that 9" is a maximal two-sided

ideal of A.   Then -j    n LßP 1S a two-sided ideal of the algebra §    , and the
algebra )-¡   /\j    C\ \ß" has considerable significance, since its irreducible rep-

resentations  correspond   exactly to the irreducible representations of ^ whose

restriction to A  contains members of ß with positive multiplicity, in view of

[11, Theorem 5.5].   We do not know the full structure of the algebra ^)   /^     O

\f>  , but we shall say something about it.

Let   a and  n denote the complexified Lie algebras of A  and N, and let

(t and R denote the universal enveloping algebras of   & and  Tt.   Then there is

a natural linear isomorphism of  )j with JT ® U ® A, and it follows that we may

write

§ = (Ï®a errg.

Let

P:§-(5®K

be the corresponding projection map, and regard  Cl ® A  as an algebra in the

natural way.   Let 77 o : A —» a/§^ denote the quotient map, and let

Pß=(l <8>nß)°P:§^Q<S>K/iß.

Also, let K     denote the centralizer of M  in a with respect to the adjoint ac-

tion.   Then we have

Theorem 1.3 (see Propositions 3.1, 3.2 and 3.3, and Corollaries 4.4 and 4.5).

(a)   The restriction of P  to §     is an algebra antihomomorphism which injects

§K   into Q®KM.
(b)   The restriction of Pß  to §     is an algebra antihomomorphism with kernel

precisely §K H gçj/3 = §« n ^§, and   Pß takes §*   into  ft ® (KM/KM H $ß).
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 5

In particular,  P g induces an injection

§K/§K n §iß ^ <? ®(KM/KM n a")

which is an algebra antihomomorphism.

The last assertion of Theorem 1.3(b) implies that §   /§    n §!P satisfies

a certain polynomial identity, and this easily implies Theorem 1.2.

Suppose that  ß is the class of the trivial one-dimensional representation

of K.   Then Pß: §    —> u is essentially the same as the mapping  y studied by

Harish-Chandra in [6(g), §4].   Our proof of the equality §K O §^ = §K C\ $ß§
is easier than Harish-Chandra's proof of the corresponding equality  y    O Lf t =

§     O f L( in the special case.   We prove the injectivity statements in Theorem

1.3 by generalizing the simplified proof of Harish-Chandra's special case given

in [7(a), p. 431, Lemma 6.13].  (We also give an alternate proof of the injectivity

statement in (a).)

Define the linear map pß: § —* Q by pg = (l ® tr g) ° Pß , where trß de-

notes the canonical trace map on the full matrix algebra JÍ/ÍP.   In Theorem 10.1,

we compute the image of the map P g- Ç)     ~* u, generalizing Harish-Chandra's

corresponding results  [6(g), p. 260, Theorem 1 and p. 262, Lemma 19] for the

map y.   The image of p g is essentially the set of Weyl group invariants in U.

We also define other mappings associated with P, and we relate them to

the "infinitesimal spherical functions" associated with the representations in

the nonunitary principal series and with the finite-dimensional irreducible re-

presentations of G (see Theorems 6.5 and 7.3 and Remark 6.6), extending re-

lated results of Harish-Chandra (cf. [6(c), p. 49, Lemma 11], [9, Lemma 1.2.7]
and [12, Theorem 2,2 (2.34) and Theorem 2.3 (2.55)]).   Our proofs are based on

an extension of the notion of highest weight vector (see §6); this idea was in-

spired by B. Kostant (see [9, Lemmas 1.7.5 and 1.7.6]).

We show that every representation in the infinitesimal nonunitary principal

series has a (finite) composition series (Theorem 9.7); the hard part of the proof

is due to Harish-Chandra, in the form of his deep theorem [6(i)] that distribution

characters are locally summable functions.   (Several people have suggested

using Harish-Chandra's results to prove Theorem 9.7.) Theorem 9.7 is a con-

sequence of a stronger result (Theorem 9.16) relating various finiteness condi-

tions on (^-modules on which the center of § acts as scalars.   The proof is

based on Theorem 1.1 as well as Harish-Chandra's local summability theorem.

Part of Theorem 9.16 was obtained by Harish-Chandra and Dixmier for linear

groups  G [3(c), Lemme 1 and Lemme 2],

Using Harish-Chandra's character formula for the representations in the
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6 J. LEPOWSKY [.February

nonunitary principal series, we show that Weyl-group-related members of the

infinitesimal nonunitary principal series have equivalent composition series,

and we relate this fact to spherical functions, infinitesimal spherical functions

and certain generalizations of highest weight vectors (Theorem 9.8).   This

equivalence of composition series is a special case of a general principle

(Theorem 9.3) relating distribution characters of admissible Hubert space rep-

resentations  to the  existence and equivalence of infinitesimal composition

series.   The proof of this theorem (which generalizes a result of N. Wallach) is

based in turn on a much more general module-theoretic result (Theorem 11.1),

which is the subject of the Appendix.
As an alternative to using Harish-Chandra's character formula to prove the

equivalence of composition series indicated above, we outline a proof based on

the formal intertwining integrals of R. A. Kunze and E. M. Stein for the non-

unitary principal series, F. Bruhat's irreducibility result for the regular members

of the unitary principal series and an algebraic continuity argument (see Remark

9.11).   When this idea is applied to the spherical nonunitary principal series, it

simplifies to a new, rather short, proof of the fact that the image of Harish-

Chandra's map  y (see above) lies in the set of Weyl group invariants in Ci  (see

Remark 9. 12).
At the end of §10, we state two conjectures concerning the images of Pg

and related maps.

We are very grateful to Bertram Kostant for suggesting the problem of gen-

eralizing Harish-Chandra's map  y, providing some helpful ideas concerning

the generalization, informing us of Dixmier's Lemma 2.2, and allowing us to

read his manuscript of [9].

2.   Preliminaries on modules.   The notation and terminology introduced in

this section will be used throughout the paper without explicit reference.

Algebras will be associative algebras with identity element 1, and repre-

sentations of groups, algebras or Lie algebras will be left representations.

The representation space   V of a representation of a group, algebra or Lie

algebra  A  will be called a module over A, and the action will often be indicated

by a ■ v (a £ A,   v £ V).   Modules over real Lie groups, complex algebras and

complex Lie algebras are assumed to be complex vector spaces.   The equiva-

lence class of a module   V is denoted by [V].    Let C  be the field of complex

numbers.   The dual of a complex vector space  V  is written as   V , and the pair-

ing between  V and  V    is denoted by   (.,.).   The restriction of a function /

toa subset X  of its domain will be written as  j | X.

Let A  be a real Lie group and let  V be an A-module.   An element  v £ V
is called A-finite if A ■ v spans a finite-dimensional space on which the action
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 7

of  A  is differentiable.   V is called A-finite if every element of  V is   A-finite.

Let  A denote the set of equivalence classes of differentiable finite-dimensional

irreducible A-modules.   For every  cxeA, let  Va denote the a-primary subspace

of the A-module V, that is, the subspace of the space of A-finite vectors in  V

consisting of the sum of all the irreducible A-submodules of  V in the class   a.

Let  m([V], a)  denote the multiplicity with which members of  a occur in  V.

Suppose that A  is a Lie subgroup of a real Lie group B.   Let  Í) be the

complexified Lie algebra of B, and let  Jo be the universal enveloping algebra

of  b.   We identify b-modules and  .ß-modules in the usual way.   B  acts in a ca-

nonical way as a group of algebra automorphisms of Jo, by  unique extension of

the adjoint representation of  B  on its Lie algebra.   In particular, A   acts on £

as a group of algebra automorphisms, by restriction.   For every subset S  of B

and every subset J   of Jo, let J     denote the centralizer of S in J .   We regard

ß-modules as A-modules by restriction, so that for every  ß £ B and  a £ A,

m(ß , a) is the multiplicity with which members of a occur in any member of ß.

Let  A     be a subgroup of  A  and let  J3.   be an A .-invariant subalgebra of Jo.

Let  V be a J),-module and an A-module.   We call  V a  (J8 ., A A-module if

a ■ (b ■ v) = (a ■ b) ■ (a ■ v)

for all a £ A ., b £ A,  and  v £ V.   (■&,, A.)-module maps and equivalence of

(¡D., A ^-modules are defined in the obvious ways.   The equivalence class of a

(Sj, AjJ-module V is denoted by [V].
Let  V be a ($, A)-module, let a e A  and let X be a fixed module in the

class  a.   Then the action of A  on  V commutes with the action of iß   , so that

the space  HornA(X, V)  is a £   -module in a natural way, by the action of $

on   V.   We denote the corresponding equivalence class of  ,n   -modules by

r/([V], a).

Lemma 2.1.   Suppose that  A   is compact and that  V  is a %-irreducihle

(% A)-module.   Let  a £ A  and suppose that Va/ 0.   Then  7/([V], a) is an ir-

reducible class of J)   -modules.    Furthermore, let  W  be a finite-dimensional A-

submodule of   V, and let  C(W) C End W denote the commuting ring of the action

of A  on  W.    Then for all p. £ C(W), there exists x £ Jo     such that x ■ w = p(w)

for all w £W.

To prove the lemma, we use the following argument due to J. Dixmier:

Lemma 2.2 (Dixmier).   Let S  be an irreducible set of operators on a vector

space  V  of countable dimension over C.    Then the commuting ring of S on  V

consists of the scalars.   In particular, the conclusion holds if S is an algebra

of countable dimension over C   and V  is an irreducible S-module.
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8 J. LEPOWSKY [February

Proof.   Let  C be the commuting ring of S on  V, and let v e V, v 4 0.

Since  C is a division ring, the map C —» V given by  c \-~* c . v (c e C) is an

injection.   Hence dim C is countable.   Moreover, C is a division algebra over

C.   But we assert that every field over  C not equal to  C has uncountable di-

mension over C.   Indeed, let  F be such a field, and let  X £ F be transcendental

over   C.   Then  U/(X - A)| A £ CS is an uncountable linearly independent set,

proving the assertion.   Thus if x e C, then  C(x) = C, so that x e C.     Q.E.D.

Proof of Lemma 2.1.   Let  W and p be as stated.   Since dim Jo is countable,

Lemma 2.2 applies.   Hence by the Jacobson density theorem, there exists  u e &

such that  u • w = ¡i(w) for all w e W.   Thus

p(a • w) = a • p(w) = a . (u • w) = (a • u) • (a • w)

fot all a £ A  and  w £ W, so that p(w) = (a • u) • w tot all a e A  and w e VI.

Integrating over the compact group A, we get p(w) = x • w, where x e 5o   , prov-

ing the last statement.

Let X e a.    To show that Hom/l(X, V) is S   -irreducible, we shall show

that if f, g £ Hom/l(X, V), f 4 0, then there exists x e S     such that x ■ f = g.
Let W = f(X) + g(X), so that  W is a finite-dimensional A-submodule of  V.   By
the above, it is sufficient to show that there exists  p £ C(W) such that p ° f = g.

But if f(X) = g(X), we may choose  p to be multiplication by a suitable constant

on   W.   Finally, if f(X) 4 g(X), then f(X) O g(X) = 0, and we may choose p so
that p | f(X) is a suitable A-module map from f(X) to g(X) and so that

p.|g(X) = 0.    Q.E.D.
Every  ß £ B  gives rise in a natural way to an equivalence class of  (Jo, A)-

modules, so that for all  a £ A,  rj(ß, a) is a well-defined equivalence class of

finite-dimensional 5)   -modules.   If  B  is connected, then the corresponding class

of (Jo, A)-modules is Jo-irreducible, and if  A  is compact, then by Lemma 2.1,

rj(ß, a)  is either the zero class or an irreducible class.

Let  C  be a complex algebra, and let  a be an equivalence class of C-

modules.   We denote by Ker a the kernel in C of any representation in the class

a.   If  a is a class of finite-dimensional representations of C, then the character

X(a)'- C —* C is the linear function defined by x(a)(c) = tr ^c) ror a^ c e C,

where  n is a representation in the class a.

Denote by U the universal enveloping algebra of the complexified Lie al-

gebra of A, regarded as embedded in .& in the natural way.   A (Jo, A)-module

V  is called compatible if it is A-finite and if the action of U  on any finite-

dimensional A-invariant subspace of  V  is the action induced by the differential

of the action of A.
Let  a £ A, and let a.  be the equivalence class of finite-dimensional Cf-

modules induced by  a.   Then we define Ker a= Ker a^ C if.   Let  V be a
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1973] REPRESENTATIONS OF SEMISIMPLE LIE GROUPS 9

(ÍB, A)-module, and let  X £ a.   If  V  is compatible, then $    O $  Ker a annihi-
lates the  Jo   -module  Hom.(X,  V), so that the equivalence class  7?([V], a)  of Jo   -

modules may be identified with an equivalence class of Jo   /&    O ,B Ker a-

modules.   (Note that  Jo    C\ Jo Ker a is a two-sided ideal of  Jj   .)

Let   b H> b' (b £ S) denote the transpose map, that is, the unique (involutive)

antiautomorphism of Jo which extends -1  on Í).   For every Jo-module  V, the

contragredient -B-module structure on the dual  V    is defined by ( v, b • v') =

(bl • v, v')   for all v £ V, v'   £ V'  and  b £ SB.   The restriction to  U of the trans-

pose map of SB is the transpose map of Ct.   For every equivalence class a of

finite-dimensional (f-modules, we let a', denote the contragredient class.   Then

Ker a' = (Ker a)'.
Let u denote the set of equivalence classes of finite-dimensional irreduc-

ible u-modules.   For every (l-module   V and  a e Of, we denote by Vathe  a-

primary subspace of  V.   An (l-module   V is called finitely semisimple if

v-Uva.
aed

We regard .B-modules as u-modules by restriction.

Lemma 2.3.   Let  V be a finitely semisimple d-module, and let  a £ (l.  If

v £Vaand v / 0, then (v, (v')a,)    / 0.

Proof.   Write

va=Ux„a i
i el

a direct sum of (t-submodules X . in the class  a.   For each  i £ I, we embed X.i i
into  V    by defining   (v, x' ) = 0  for all %'. e X    and

v £     LI    X. + Y,
jel-.iM

where   Y is the sum of the irreducible (l-submodules of  V not in the class  a.

This embedding is clearly an U-module map, and the lemma is now clear.    Q.E.D.

We now recall some of the notions of [11].   Let a £ (Ï.   We define  ia=

Ker aC (Î, and  Aa= \x e $|3 ax C ®áa} (cf. [11, §3]).   Then by [11, Propositions

3.2 and 3.3], Jo§    (resp. A  ) is precisely the subset of Jo which annihilates

(resp., preserves)  V   lot every Jj-module  V.

Suppose that  fc = a © c   where   a is the complexified Lie algebra of the Lie

group A, and  C is an  a-invariant complement of  a in  b such that the natural

representation of  a on  c is semisimple.   Then for all a £ u, íB/íBía is a finite-

ly semisimple (l-module (see [ll, Lemma 2.4]).   Hence by the proof of [11, Prop-

osition 3.2], it follows that  J»    is precisely the subset of ÍB  which annihilates

Vafor every Jo-module   V which is finitely semisimple under U.
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10 J- LEPOWSKY [February

Lemma 2.4.   For all a £ fl,  A an 9°$ C $9a.

Proof.   Let   V be a i)-module which is finitely semisimple under  u, and let

x e Aan 9a«.   Then x' £ (9a®)' = ®(9a)' = %a'   by the above, so that

(x . va (v')a, > = <va, *' . (y')a,) =o.

But x e A , so that  x • VaC Va.   Hence  x • Va- 0  by Lemma 2.3, so that  x e
89a.    Q.E.D.

Lemma 2.5.(2)  Lez a £ (f, and let S  be a transpose-invariant subset of Aa O

Aa'.    Then S n%a = S 0 9*8.    In particular,   %A O %a= %A n 9°$  a„¿ (KB'1 O
íB9a=ffS^n9aj3.

Proof. By Lemma 2.4, Sn 9°$ C S n $9a and S n 9a' S C 5 n$9a'. The
second inclusion gives (S n 9a# %)' C (S n J39a' )', that is, 5 n %iaC S n 9°$.

Q.E.D.

3.   The map  F: h) —> (1 ® A.   We shall use the notation introduced in this

section throughout the paper, often without explicit reference.

Let  G be a noncompact connected real semisimple Lie group with finite

center, and let   gR  be its Lie algebra.   Fix a Cartan decomposition   gR =  ER +

pR  and an associated Iwasawa decomposition   gR = fR + aR + nR   of   gR, and

let   g= ï+ p and   g= t+a+nbe the corresponding complexified decompositions.

Let   G = KAN be the corresponding Iwasawa decomposition of  G, so that   K is

a maximal compact subgroup of  G.   Let  M  be the centralizer of  A  in   K.

Let  y, A, if and  R be the universal enveloping algebras of   g, t, a and   n,

respectively, and regard  a, (f and  R as canonically embedded in  y.

Suppose that J   , J ,, ... , J     are the universal enveloping algebras of sub-

algebras   t , . . . , t. of  g such that   g is the direct sum of the   t., and regard

J ,, • • •  , J .  as canonically embedded in  y.   Then the map from A, ® • • -® J

to  y given by

r, ® . . . ® r. h-» r    ...z.

is a linear isomorphism.   This holds in particular when the   t. are   E, a, and   n,

taken in any order.

We now describe a basic decomposition of ij and several mappings associat-

ed with it.
We have

§ = JlffiC = (C . 1 © nR)8K = SK © rig.
Let   P: § —' ifa denote the corresponding projection map.

We give  (fK an algebra structure by identifying it with the algebra  if ® A,

(2) Lemma 2.5 will be used in the proof of Corollary 4.5.
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and we regard   P as a map  E: g —> u ® K. (cf. the map  cf introduced by Harish-

Chandra in [6(c), p. 48]).

Proposition 3.1 (cf. [6(c), p. 48, Lemma 10]).   For all u £ g and v eg   , we

have  P(uv) = P(v)P(u).    In particular, the restriction' P |g      zs an algebra anti-

homomorphism.

Proof.   Write

i   i

v = ¿^ b .y .ri
i

where  a., b. £ Cl  and  x., y. £ iv.   Theni      i i   /;

u = ¿_,a.x.       (mod ng),

(mod rtg),

uv =/L,a.vx.       (mod ng)i    i "
i

(since  v £\i   )

=  Xfl.fc.v.x.        (mod ng)"~^   i  y j   i "
i.i

(since   a normalizes  n)

= P(v)P(u)       (mod ng).       Q.E.D.

Proposition 3.2.   P: gA1 — ö ®KM, ötz^ in particular, P: gK - ff ®KM.

Proof.   This follows immediately from the fact that  M  normalizes  Tt and

centralizes   a.     Q.E.D.

Proposition 3.3.   P: y     —» (l ®X      zs an injection, or equivalently,   g     O

ng = 0.

Proof.   It is sufficient to show that g     O ng = 0.   To prove this, let   V be

any finite-dimensional irreducible Q, -module.   Let  v'   £ V    be a highest restricted

weight vector of the contragredient g-module   V , that is, a nonzero element  v'

£ V    such that  n . v'  =0  and such that  x ■ v'  is a scalar multiple of  v'   for all

x £ a.   Let u £§K O ng.   Then

0 = (V, u< ■ v') = (uK ■ V, v') =(Ku ■ V, v')

= (u ■ V, K • v') = (u • V, (KQ + gn) • v>) = (u - V. § ■ v1) = (u ■ V, V'),

so that  u ■ V = 0.   Thus  u = 0  since  g has "sufficiently many" representations

[6(a), Theorem l].     Q.E.D.
Hence the map  P  "antiembeds" g     as a subalgebra of U ®K   .   A different

proof of Proposition 3.3 will be given in §4.
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Fix  ß £ K, and let 9^= Ker ß, so that 9^ is a maximal two-sided ideal of

K.   Let 77o:K —> K/9^ be the projection map.   Define  P o : § —* Q ® K/9^ by
Pß = (1 ® nß) o P.   Identifying  rj ß(KM) with KM / KM D i?, we have   P.: gM
-. Ö ®(KM/KM n 9^), and in particular, P^: gK - G ® (KM/KM n 9^).   Further-
more, Pß is an antihomomorphism on g   .

Let tr a- a/9^ —* C denote the canonical trace map on the algebra a/9^,

which is isomorphic to a full matrix algebra over  C.   Define the linear map

Pß-<X9ttß)°Pßi§-8.
Let r^= \y £ M\ m(ß,y) > 0], and for all y e Yß, let §ß-y = Ker 77(18, y)

in A   .   Then 5 is a maximal two-sided ideal of A     since 7/(/8, y) is an ir-

reducible class (see §2).

Now A   /a    O 9^ is isomorphic to the commuting ring of the action of M  on

any K-module in the class   ß, and so A   /a     O 9^ is isomorphic to the direct

product of the matrix algebras A   /5 (y e r»).   More precisely, it is clear

that KMn$ß= nverJß-y.   Let /fl:KM -IL-  KM/^-y be the homomor-
/   fc 1p /-> /   tlf)

phism induced by the projections nß    : X    -* A  /5       .   Then

Ker//8=   H   äÄ7=KA,n
?eI>

and so fa induces an isomorphism A   /a    n 9^ —♦ I]      r   a   /5       •   Hence

we may regard

p„:gM- a ®n KM/^y,3
y*rß

or

pß-.§M - n ö®KM/aAo'.

Thus

pß\§M= n pAr-

where, for fixed  y e 1^, P^y : gM - G Ä KM/$ß-y  is defined by Pßy =

(1 ®Ußy) °P.   Then p/3r|gK  is an antihomomorphism.

Now let tr^y : K   /^'y -* C denote the canonical trace map on the full

matrix algebra A   /§",y.   Define the linear map

PA7 = (1®trAy)oPAr:§A'^0-
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For every y £ M, let d(y) denote the dimension of any module in y.   For

every subset Y C Y a, define

P     - Z4y)pÄ7:gM^ö.
H' yeT

Then    pjg    =P ß v   > since every module in ß, when regarded as a X   -

module, is the direct sum, over y £ Y g, oí d(y) copies of a module in r)(ß, y).

For all X £ a', let 77^: (t   -* C be the evaluation homomorphism at À, where

u  is identified with the algebra of polynomial functions on  <X'.   We define

PX = UX®1)°P:§.-K,

pß,x = ̂ ®V°rß--$-Wß,
Pß,x =nx°Pß'- §^c>

PÄ7,x = (77x®l)oPÄy:g^K-/5Ä^

Pß.y,y=\°Pß.y--^^^
pß,r,\ = 7T\ opß,r: §M-"C.

Then P^ |g   , P«Jg     and Pgy » |g      are antihomomorphisms.

Remark 3.4.   Let ß be the class of the trivial one-dimensional representa-

tion of K.   Then 9^ = Xt   and P. = p ß is the classical map which takes  x £ g

to the (T-component of x with respect to the decomposition g = u ®(gt + ng)

(cf. [6(g), p. 247, Lemma 3], [7(a), p. 427, Lemma 6.6] and [9, Proposition 1.2.2]).
Remark 3.5.   The antihomomorphisms Pß y : gK — & ® KM/5Är  may be

regarded as generalizations of the maps h^  in [12, §2.3].

4.   The kernel of the map  Pj |g   .   Let 9 be an arbitrary two-sided ideal

of X, and let  77, : X —> X/9  denote the projection map.   Define the linear map

P, : g — Q ®X/9 by Pj   = (1 ® ni ) ° P, so that Pj | gK is an algebra anti-
homomorphism, by Proposition 3.1.  In this section, we shall compute the kernel

°f Pj I g   , and in later sections, we shall apply the result to representation

theory.

For any vector space  V, let S(V) denote the symmetric algebra over V.

Let  X: S(o) —► g denote the "symmetrization" mapping, that is, the unique lin-

ear isomorphism such that

1     ^
X(x,   ■ ■ ■ X   ) =-   ¿^   X. , .   • • • X.   .1 n'      n\ ad) er{n)

a

for all nonnegative integers  72 and all x., . ■ ■ , x    eg (see [l, §2.7] or [6(b),

p. I92]).   Here a ranges over all permutations of \ 1, • ■ ■ , n], the product on
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the left is taken in 5(g), and the products on the right are taken in g.   We note

that  A is defined on 5(p) by regarding 5(p) C 5(g).   Similarly, A is defined on
5(a), and in fact the map A: 5(a) — (1 is an algebra isomorphism since   a is

abelian.
Now 5(g) and g ate both G-modules, by unique extension by automorphisms

of the adjoint representation of  G on  g, and it is clear that A is a G-module iso-

morphism.   In particular, 5(p) is a K-submodule of 5(g), A(5(p)) is a K-submodule of

g, and  A|5(p) is a K-module isomorphism of 5(p) onto A(5(p)).

The map F¡ : 5(p) ®K/9 — g/g9 given by

x ® (y + 9) r^ A(x)y + g9

(x e5(p), y e a) is a linear isomorphism (see [11, Lemma 2.3] or [6(b), pp. 195 —

196]).   For every nonnegative integer  i, let  5!(p)   denote the zth degree homo-

geneous subspace of 5(p), so that

DO

§/§3= II Fi(5'(p)®K/9).
1=0

For all nonzero x £ g/g9, define deg x to be the smallest nonnegative integer

n such that

n

xe  II Fi(5Hp)®K/9);
¿=o

also define deg 0 = - oo.
Let   qR  be the orthogonal complement of   aR  in   ^R  with respect to the

Killing form of   gR, and let   Cf C p be the complexification of CfR.   Then 5(p) =
5(a) ©q5(p), so that

g/g9=Fj(5(a)®K/9)©Fj(g5(p)®X/9).
Let /. denote the projection of g/g9 onto the first summand in this decomposition.

Lemma 4.1.   Identifying the image of g     in g/g9  with g   /g    n g9, iz/e

have that the restriction of f.   to g   /g    Pi g9   is infective.   Moreover,

deg /§(x) = deg x for all x 6 gK/gK n g9.

Proof.   Let g: 5(p) —'t5(a) be the projection with respect to the decomposi-

tion 5(p) = 5(a) © q5(p), and let h¡ = g ® 1: 5(p) ® K/9 —5(a) ® Jv/9.
Regard a as a K-module by unique extension by automorphisms of the ad-

joint representation of K on   Ï, and give 5(p) ®K/9    a K-module structure by

regarding it as the tensor product of the K-module  5(p) with the quotient K-

module K/9.   Then it is clear that  F.   is a K-module isomorphism, where  g/g9

is regarded as a K-module by means of the quotient of the natural representation
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of   K on g.   Moreover, since g  is a semisimple K-module, g   /g    O g9 is

precisely the set of K-invariants in g/g9.   Let  / denote the set of /(-invariants

in  S(p) ®X/9, so that  E. : / —» g   /g    O g9  is an isomorphism.   It is clear that

to prove the first statement, it is sufficient to show that  h. \ I is injective.

Now S(p)  may be identified with the algebra of polynomial functions on   p/.

Furthermore, the restriction to   p of the Killing form of   g is nonsingular, and thus

may be used to identify   p. with   p. .   Hence we may identify  S(p)  with the algebra

of polynomial functions on  p.   In the same way, we may identify S(a) with the

algebra of polynomial functions on   O.   Under these identifications, g is simply

the restriction map to   a.   Moreover, the action of  K on  S(p)  is identified with the

usual action of  K on the space of polynomial functions on   p, since the Killing

form of  g is K-invariant.

Choose a basis   \x ] of X/9, and let

y = ¿\w. ® x . £ IJ      t~^1    i i

i

(w. £ S(p)) be such that h¡(y) = 0, that is, X .w .(u)x. = 0 fot all u £ a.   Let v £
pR.   Since   K • a   = pR (see [7(a), p. 211, Lemma 6.3]), there exists  k £ K and

u £ &„   such that  k • v = u.   Now  k ■ y = y, so that

Yw.(k~l . u)k . x. = 0.*—á    i i
i

But since   \k ■ x.] is a basis of X/9, we have  w .(v) = 0, so that  w.(pR) = 0, for

each  z.   Since the  w . are polynomial functions, this implies that   w. = 0, and so

y = 0, proving the first statement.

The second statement now follows immediately from the fact that the direct

sum

§/g9= II Ft (s <(p)® X/9)

is a K-module decomposition, so that

gK/gK n g9 = II (Ff (SHp) ® X/9) n (gK/gK n g9)).     Q.E.D.
i=0

We note that g9 C Ker P. , since

g9 = MM = M9 c m + ng.
Regard   P,   as a map on g/g9, and let

P* = F} o (A"1® l)oPä:g/g9^FJWa)®X/9).
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Lemma 4.2.   For all x £ g/g9,  deg(P*(x) - f^x)) < deg x.

Proof.   Since  Pj is the identity on F. (5(a) ®K/§), it follows from the defini-

tion of /.   that it is sufficient to show that, for all y e F, (c}5(p) ®K/9), we have

deg P Ay) < deg y.   Let d = deg y, and for every nonnegative integer a, let 5 (g)

denote the sum of the homogeneous subspaces of 5(g) of degree < a.   Since   q C

ï + rt (see [7(a), p. 223, Lemma 3.6]), we have

y e (X(Sd_  fp)f)K + X(nSd_  fp))K) + g9.

But

M5¿_ i(p)í) C X(Sd_ (p))f + X(Sd_ fg))

and

Mn5rf_ j(p)) C nX(Sd_ Í0) + A(5rf_ ig))

(see [6(b), p. 193, formula (1)]).   Hence

y e (X(Sd_ jigW + n§) + g9:
But

M5rf_ ig)) C      Z        A(5;(n))A(5.(a))A(5fe(i))
i+j+k<d— 1

(see [6(b), p. 193, Lemma 12]), so that deg P*(y) < ¿.     Q.E.D.

Theorem 4.3.   We èave zèflZ Ker P,, |gK = gK n §j,  <W that  P*|gK/gKn

g9  is infective.

Proof.   The first statement follows from the second, and the second follows

immediately from Lemmas 4.1 and 4.2.    Q.E.D.
We can now give a nonrepresentation-theoretic proof of Proposition 3.3:

Corollary 4.4 (same as Proposition 3.3).   The map  P | g     is infective.

Proof.   Take 9 = 0  in Theorem 4.3.    Q.E.D.

Corollary 4.5.   Let  ß £ K.    Then the kernel of the map

Pß:§K -    Il   (3®AM/5Ärß
yeTß

is g    n g9^ = g   n 9^g.   In particular, P» induces an algebra anti-infection

Pß: gVgK n §iß -   Il  Ö®KM/5Är.
yerß

Proof.   Take 9 = iß in Theorem 4.3, and apply Lemma 2.5.    Q.E.D.
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Remark 4.6.   Taking for  ß the trivial class in Corollary 4.5, we have Harish-

Chandra's theorem (see [6(g), p. 260, Theorem l] and [7(a), p. 431, Lemma 6.13])
that the kernel of the classical map  P Jg     (see Remark 3.4) is precisely §   H

§i = gK n  ig, and hence that  Pß induces an algebra injection of gK/gK O gf

into U; in particular, g   /g    n gí is commutative.

We shall use the following in §10:

Lemma 4.7.   Let V be a vector space and let  T: X —' V èe a linear map.

Define the linear maps  P   ■. g  —»S(a) ® V  èy

PT = (A_1 ®T)oP

«W /„: g — 5(a) ® V by

fT=(l ®T)«F-' °/0.

where FQ  and /. denote the above maps  F.   and f . in the case 9=0.   For all

ï £ S(a) ® V, define deg x to be the degree of x with respect to the grading of

5(a) ® V induced by the natural grading of 5(a).   Also, for all x £ g, let deg x

denote the degree of x in the above sense, with 9=0.   Then for all x £ g, we

have

deg(PT(x)-fT(x)) <degx.

Moreover, if T(l)/0, then P_ | A(5(p)   )  zs injective (where 5(p)     denotes the

set of K-invariants in 5(p) under the natural action of K on 5(0).

Proof.   The first assertion follows immediately from Lemma 4.2 for 9 = 0,

since PT = (1 ® T) o F~ ! o P *.   Suppose that  T(l) ¿ 0, and let x £ A(5(p)K).

Then deg fQ(x) = deg x by Lemma 4.1 for 9 = 0.   But  fQ(x) £ & and  T(l) / 0,
so that deg /_(*) = deg fQ(x).   If PT(x) = 0, then deg /0(x) = deg fT(x) < deg x
by the first assertion.   Since deg f0(x) = deg x, we must have x = 0.    Q.E.D.

5.   The bound on multiplicities.   In this section, we shall apply Corollary

4.5 to representation theory, by extending techniques of R. Godement [5, §1]

and J. Dixmier ([3(a)] and [3(b), §15.5]) to groups  G without faithful finite-
dimensional representations.   Theorem 5.4 is a sharpening of [6(c), p. 36, Theorem

3].   Theorem 5.5 had been obtained by Harish-Chandra [6(h), Theorem 4, first
assertion], by more difficult analytic methods.

Proposition 5.1.   Let  V be a (^-irreducible compatible (g, K)-module.   Let

ß £ k, and let X e ß.   Then

dim HomK (X, V) = m([V], ß),

and if Vg/ 0, then the g   -module structure on Hom„ (X, V) naturally induces

an irreducible  g   /g    O CßP-module structure on HomK(X,  V).
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Proof.   The first statement is clear, and the second statement follows from

Lemma 2.1 and the remarks in §2.    Q.E.D.
Remark 5.2.   Since  K is connected, the second statement of Proposition 5.1

also follows from [11, Theorem 5.5].
For every ß £ K, let d(ß) denote the degree of ß, that is, the dimension of

any module in  ß.

Theorem 5.3.   Let  ß £ K, and let   Y  be an irreducible  gK/gK n ^-module.

Then

dim Y < max  m(ß, y)       (¿ d(ß) < oc).
y eM

Proof.   For every  y e Y „ and  A 6 a', let

Iß y    II    ff®AM/3Ä7 -^KM/$ß'y
yevß

denote the antihomomorphism obtained by projecting to the factor corresponding

to  y, applying the evaluation homomorphism  n^ ® 1, and composing with the trans-

pose antiautomorphism of the matrix algebra A   /5       •   Then by Corollary 4.5, the

homomorphisms /„     ° P o form a separating set of finite-dimensional representa-

tions of  g   /g    H g9^ of degrees equal to or less than  max m(ß, y)  (y £ M).   By

Lemma 2.2, the commuting ring of   Y consists of the scalars.   The result now fol-

lows from the Jacobson density theorem and [5, p. 503, Lemma lj.    Q.E.D.

Theorem 5.4 (cf. [9, Lemma 1.3.2 and Remark 1.3.3]).   Let  V  be a g-
irreducible compatible (g,  K)-module.    Then for all ß e K,

m([v], ß) < max   m(ß, y)       (< d(ß) < oc),
-y eM

Proof.   Theorem 5.4 follows immediately from Proposition 5.1 and Theorem

5.3.    Q.E.D.
Theorem 5.5,   Let n be a continuous topologically irreducible representation

of G on a Banach space such that the multiplicity of any element of K  is finite.

Then for all ß £ K, the multiplicity of ß in n is equal to or less than maxm(ß,y)

(y £ M) and hence equal to or less than d(ß).

Proof.   By Harish-Chandra's results [6(b)], the representation of  g  on the

space of K-finite vectors of   n defines a g-irreducible compatible  (g,  K)-module.

The result now follows from Theorem 5.4.    Q.E.D.

Remark 5.6.   The (first) bound in Theorems 5.3, 5.4 and 5.5 is the best pos-
sible, in view of F. Bruhat's result [2, p. 193, Theoreme 7;2a]  concerning ir-

reducibility of the principal series.
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6.   Effective highest weight maps.   In §6, we shall further relate the map-

pings of §3 to representation theory.

Definition 6.1.   Let  V be an (uJl, M)-module, and let y £ M, X £ a.   Fix
an M-module  Z in the class y, and regard  Z as an (ClJí, M)-module by means of

X, the trivial action of n and the given action of M.   We call an (Cul, M)-module

map /: V —» Z a highest weight map for V with respect to y and X.   If  V is a

(g, M)-module (and hence an  ((t/i, M)-module by restriction), then a highest

weight map / is said to be effective if for all nonzero v £ V, we have

(*) /(§ -v)/0.

If V is a (g, K)-module and if ß £ K, then a highest weight map / is said to

be effective at ß ii (*) holds for all nonzero v £ V ß.

Remark 6.2.   The notion of effective highest weight map was suggested by

the special case of [9, Definition 1.7.8].
Remark 6.3.   In the notation of Definition 6.1 (*), /(g ■ v) = /(X • v) for all

v £ V, so that g  may be replaced by X  in  (*).   Indeed,

/(§ • v) = f(7(6K . v) = Jlfl . f(K . v) = C/(X . „) = /(K • v).
Proposition 6.4.   Let  V  be a compatible (g, K)-module, and let ß £ K,

y £ M, Â e a , X £ ß and Z £ y.    Let f: V —► Z  be a highest weight map with
respect to  y and X.    Then there is a natural bilinear pairing

cf>: HomM (Z, X) x Horn^ (X, V) -» HomM (Z, Z) <* C

given by

g,   h r^> f ° h ° g

for all g £ HomM (Z, X)  oW i e   HomK (X,  V).    For such g, h, and u £ gK, we
have

<b(g. u.h) = <f>(Px(u) ■ g, h) (= <f>(P Ar >x(«) - g. h)).

If f is effective at  ß, the right kernel of cp is zero.

Proof.   The first statement is clear.   To prove the second, write

u = ¿_.a.k.       (mod ng),~T    i   i
i

where a. £ (f and k. £ X   .   Let a denote the representation of g on V and

let T denote the representation of X  on X.   Then

<f)(g, u • b) = f °(u ■ h) o g = f o o\u) °h ° g

= ^7Tx(a.) f °o(k) oh o g = Y,n (a.) f °h ° r(k ) °g
i i

= f°k°Px(u) ■ g = <b(Px(u) . g, h).
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Finally, suppose that / is effective at  ß, and suppose that h £ HonvíX.V),

h 4 0.   If f oh = 0, then

/(K . h(X))=f(h(K • X))=0,

contradicting the effectiveness of /, in view of Remark 6.3.   Hence / ° h /0,

and so there exists g £ HomM (Z, X) such that cf>(g, h)=f°h°g40.    Q.E.D.

Theorem 6.5.   Let  V be a compatible (g, K)-module which admits a highest

weight map f with respect to y £ M and X £ a., such that f is effective at

ß £ K.   Then m([v], ß) < m(ß, y) (< °c), and if m(ß, y) > 0, then Ker rf([V], ß)
3 Ker Pß y x | gK.   Suppose that m([V], ß) = m(ß, y) > 0.   Then

Kerr?([V], /3) = KerP/gjrjgK,
and

x(rri[v],ß)) = PßiyX\§K.

Moreover, let X £ ß and Z £ y, and assume that f: V —> Z.   Let a> denote the

on Horn,, (X, V).    Then

cf.: HomM (Z, X) x Hom/< (X, V) — HomM (Z, Z) * C,

g,  h h» / °h ° g

is a nonsingular pairing, and for all u £ g   , cú(u) and C«       (u) are adjoint

to each other with respect to  cf>.

Proof.   All the assertions follow easily from Proposition 6.4.     Q.E.D.

Remark 6.6.   Let  V be a finite-dimensional irreducible  G-module.   Then

it is well known that the lowest restricted weight space  Z  of  V is M-irreducible,

giving rise to some  y £ M.   Let  A e a   denote the lowest restricted weight of

V.   Then the projection of V onto Z with respect to the restricted weight space

decomposition of V is an effective highest weight map for V with respect to

y and A, so that Theorem 6.5 applies.
Remark 6.7.   Theorem 6.5 may be regarded as a generalization of [6(c),

p. 49, Lemma 11] ,[12, Theorem 2.2 (2.34)] (cf. Remarks 3.5 and 6.6) and [9,
Lemma 1.7.6]).

7.   The nonunitary principal series.   In this section, we shall construct a

series of representations admitting effective highest weight maps, so that the

results of §6 may be applied.   The representations are essentially those of the

classical nonunitary principal series.

The exponential map exp: aR —» A is an analytic diffeomorphism; let us

denote its inverse by  log.   Since every differentiable finite-dimensional
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irreducible A-module is one-dimensional, we may identify A with  a , under the

exponential map.   Let  p £ A  (= a ) denote half the sum of the position roots (of

g with respect to  a), with multiplicities counted.

Fix  y £ M, X E A, and Z  6 y.   Define the following MAN-module structure
on Z:

man ■ z = (iX + p)(a)m . z       (= eUX+p)il°e a)m . z)

fot all m £ M,  a £ A,  n £ N and z £ Z (z = (- 1)   ).   (The reason for the expres-

sion zA + p will become apparent in the following sections.)

Let  V 7 '      be the space of all analytic functions f: G —* Z such that

f(gman) = (man)-1 . /(g) = e-ux*pWois a)m~ l ./(g)

for all g e G,  m £ M,  a £ A  and n £ N.   Then V(y '  ' is a G-module under the

action given by  (g • f)(h) = f(g~  tí) fot all / £ V     '      and  g, h £ G.   Furthermore,

V     '     is a g_-module, and hence a g-module and a g-module, under the action

given by

(x ■ f)(g) -y «exp tx) . f)(g)\t=0 =± /((exp - tx)g)\t=0

for all / e V(7'X), x £ gR  and g £ G.   Then V(r'X) is a  (g, G)-module.
*v X ( *v X ̂

Let  V   '    denote the subspace of  V consisting of the K-finite vectors.

Then  V   '     is g-invariant, and is a compatible (g, K)-module.

Let   U(y)  be the space of all analytic functions f: K —» Z  such that f(km)

= m~    ■ f(k)   for all   k £ K and  m £ M.   Then  U y    is a K-module under the
action given by  (k ■ /)(/) = f(k~ll) for all / E U(y) and  k, I £ K.   Moreover, U(7)
is a (X, /O-module under the action of X determined by the following action of

V
U . /)(*) = Í.    ((exp tx) . /)U)|<=0  = - /((exp - tx)k)\tm0

for all / e L/(r),   x e iR   and  /fe e K.
Let  (7^ denote the space of /(-finite vectors in  U^y'.   Then L/7' is X-

invariant, and is a compatible  (X,  K)-module.

Proposition 7.1  (cf. [9, Lemma 1.7.3]).   The restriction map  R7êX: V7,X
—> U '   is a (X,  K)-module isomorphism whose inverse is given as follows:

((Ry'X)-\f))(kan) = e-ux+P){[°ea7(k)

for all f £ U7,   k £ K,  a £ A  and n £ N.   Moreover, for all ß e K, we have

m([U7],ß) = m(ß, y), so that in particular,   m([V7lX], ß) = m(ß,y).
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Proof. The proof of the first part of the proposition is straightforward, and

the second part of the proposition follows from the Frobenius reciprocity theo-

rem.    Q.E.D.
Let ¿5    . : V        —' Z denote the evaluation map at the identity element e

/»A
of G.

Theorem 7.2 (cf. [9, Lemma 1.7.5]).   We have that  8    .   is an effective

highest weight map for V with respect to  y and iX + p (regarding  Z  as an

((fJT, M)-module by means of its structure as an MAN-module).

Proof.   Let / £ V7,X   and  x £ aR.   Then

Sy.X{x • A = (x * f)ie)

= |/(exP-^U = |  *'(''X+')(x)/(*)|/=o

= (z'A + p)(x)f(e) = (iX + p)(x)8yX(f),

so that  <5     >   is an if-module map.   Similarly,   8     An . /) = 0  for all / £ Vy'   .
Let / e Vy'X and  m £ M.   Then

8y XU ■ f) = (m . f)(e) = f(m-l) = m . f (e) = m . Sy^(f),

so that S    x   is an M-module map and hence a highest weight map.

Finally, suppose that <5     X(K • /) = 0 for some / £ Vy'   .   Then 8    A[K . f)
= 0, and so f(k) = 0  for all  k £ K.    Thus / = 0  by Proposition 7.1, so that

8 is effective.    Q.E.D.
By Theorem 6.5, Proposition 7.1 and Theorem 7.2, we now have

Theorem 7.3.   Let y £ M, X e Â  and ß £ K such that  m(ß, y) > 0.   Then

Ketr,([Vy-X],ß) = KetPß^y^+p\§K

and

xWvy>x],ß)) = pß/ytiX+p\SK.
Remark 7.4.   The second formula in Theorem 7.3 will be generalized by

Theorem 9.8(2) below.
Remark 7.5.   The second formula in Theorem 7.3 may be regarded as a gen-

eralization of [12, Theorem 2'.3 (2.55)] (cf. Remarks 3-5 and 6.7) and of [9,
Lemma 1.7.5]; cf. also [6(c), p. 49, Lemma 11].

Let y £ M,  X £ A  and  Z e y.   Regard  Z as a Hilbert space, with inner

product  (•,•), on which the action of M  is unitary.   A measurable function  /:

K —' Z is said to be square integrable if
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I.(f(k),  f(k))dk<oc,
K

*v Xwhere dk denotes normalized Haar measure on  K.   Let  H' •     denote the set of

equivalence classes (identifying functions whose restrictions to  K differ on a

set of measure zero) of functions f: G — Z which are measurable and square

integrable on  K and such that

f(gman) = e-UX+p)(h*a)m-1 . f (g)

y Xfor all g e G, m e M, a e A  and n 6 N.   Define an inner product (• , •) in H   '

by

(/,, f2)= JK (/,(*), f2(k))dk.

Then H7, is a Hilbert space, and the action given by (n ' (g)(f))(h) = f(g~ tí)

(fe H7, , g, h £ G) defines a continuous (not necessarily unitary) representation

n7,X  of G on H7,X.   Moreover, V7,     is the g-module of /(-finite vectors of H7•

The representations  77 constitute the nonunitary principal series of G,

and the  (g,  /()-modules   V7'     constitute the infinitesimal nonunitary principal

series.

8.   The subquotient theorem.   A subquotient of a module  V is by definition

a module of the form  Y/X, where  X and   V are submodules of  V such that X C

Y.   This applies for example to (g, /()-modules, to g   /g    O g9^-modules

(/S e K) or to continuous representations of  G on a Banach space; in the last

case, we require that  X  and   V  be closed subspaces of the Banach space   V.

In this section, we show that various types of irreducible modules can be real-

ized as subquotients of certain concrete modules, extending and simplifying

Harish-Chandra's results [6(c), p. 63, Theorem 4] and [6(h), Theorem 4].   Our

proof is essentially patterned after Harish-Chandra's proof in [6(c)], except for

our use of Corollary 4.5 and Theorem 5.3 in place of Harish-Chandra's [6(c),

p. 28,  Lemma l] and [6(b), p. 195, Theorem l], respectively.
Let   t)m be a Cartan subalgebra of the complexified Lie algebra   m  of  M, so

that   i) = h>m + & is a Cartan subalgebra of   g.   Choose a system of positive roots

of m with respect to  b¡m, and let nm be the sum of the positive root spaces in  m.

Then  n+ nm is the sum of the positive root spaces for a certain system of posi-

tive roots of  g with respect to  \), which we fix.   Let ¡Hi, Km and K be the uni-

versal enveloping algebras of  m, i)m and   h, respectively, regarded as canonical-

ly embedded in  g.   Let  ¿ be the center of g.

Let W\) be the Weyl group of  g with respect to  i), regarded as acting on  f)',

and let  pn £ h   be half the sum of the positive roots of  g with respect to  \).

For all  s £ W^ , let  s* denote the affine transformation of   \)   given by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 J. LEPOWSKY [February

s*v = s(v _pb) + Plj

tot all v £ É) .   Let  s* denote the algebra automorphism of K (identified with the

algebra of polynomial functions on 6> ) given by

(s*x)(v) = x(s*1p)

for all x £ K, v e £) .   We obtain an action

Wt - w; = ,5*|5 e W„]

of W(,  as automorphisms of H.   Let K   denote the set of   W^ -invariants in H

with respect to this action.

For all subsets 5, T C g, let T    denote the centralizer of 5 in T.   For all

v £ £)', let 77j,: K —► C be the evaluation homomorphism at v.

The following lemma, due to Harish-Chandra, is well known, and we omit the

proof:

Lemma 8.1   (see [6(f), p. 118, Lemmas 18 and 19]).   We have    §* C K +
(n + Ttm)g (direct sum).   Denoting by XB : g    —» JÍ the corresponding projection

of g    into K, we have that X9^) = H*  arzrf zrbzzr  X*: ^  ~~* A* z's cz?2 algebra

isomorphism.   For all v £ § , /ez

T¿e« every homomorphism from i into  C  is of the form  xv I -" for some v e § .

The proof of the following lemma is straightforward:

Lemma 8.2.   We have M       C Hm + rtm?iT (direct sum), giving rise to the pro-

jection map  xm' ^ m —'  ^m.   Moreover,

gaC(2JR + ng,    g"c(DlIt'm +ng    and   §MA C fflfiM + ng,

so that

p(ga)c(f®JR,   P(g")c(î®5ïï1'm   a«^   p(gA1A)c(f®)llA1.

Finally,

(identifying H ifz'z¿ if ®Hm).

For all p e §m, let 77   : ■".„,—* C denote the evaluation homomorphism at p.

For all y e M, let p    e i)m denote the lowest weight of the m-module(3) induced by

any module in the class y.   Also, let

X«   =(l®Vy)oy<':g,,-(î

(*) It is known that this m-module is primary but not necessarily irreducible.
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(identifying K with u ®Hm), and for all À e a', let

X«     = K®^  )°X«:§*-Cy
(identifying H  with (l ® Km).

Lemma 8.3.   Let ß £ K and y £ M such that m(ß, y) > 0.   Then

Pßy(§MA)cßcß®KM/Sß'7

(identifying & with & ® 1),

P„      =y9:gM'4-(î,ßty \y      a

and for all X £ a.',

P - v9     ■ QMA -» C

Proof.   We recall from §3 the projection 77g     : X    —» X   /^,y.   The restric-

tion of 77o      to Jll     is the homomorphism from M     to  C  by which m     acts as

scalars on an irreducible M-module in the class y, and a standard argument shows

that we therefore have

77Ay|5nM=77^0X™:))]M^C.

Hence

PAy(gA1'4)  = ((l®77Ar)oP)(g^)C(Í

by Lemma 8.2, and

PÄrl§M^=a®^y)°P|g^=(l®UM     oxm))op|gMA

= (1 ® 7TU   ) o (1  ® xm) o P | §MA = (1 £ } 0 xg |gMA

(by Lemma 8.2)

g ißMA
Ay I J '

The last assertion of the lemma follows immediately.     Q.E.D.

Fix ß £K and a egK, so that P ß y(a) eQ®Km/^-7 for all y £Yß.
Consider the ring (T[T] of polynomials in one variable with coefficients in u.

Define f(T) £ ft[T]  by

f(T)=   II    det(T.lfl„-   PñAa)),
7eTß

ß,y~    ß,yK

where  l ß      denotes the identity element of u ® X   /5       , and det denotes the
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determinant function on (f[T] ® A /$ , which is isomorphic to the algebra of

m(ß, y) x m(ß, y) matrices with coefficients in (f[T]. Then f(P R »,(0)) = 0 for

ail  y eYß.
For ail A e a', let f^(T) denote the element of the polynomial ring  C[T]  ob-

tained by evaluating the coefficients of f(T) at  A.   Then

/x(D=n    det(T-lßy-PßyJa)).
yerß

Regard (f C K in the natural way, so that Q[T] C J\[T].   Define / (T) e j\[T]
by

7"(T) =   Il    s*f(T),

where the action of  Wt   is extended from K to n[T]  in the obvious way.   Then

/ (T) e K*[T], and so Lemma 8.1 implies that there exist z_, • • • , 2     , e % (q =

degree  / (T))  such that

J(T) = T" + xBU9 . ATq~ l + • • • + x9(^!)T + x9(2o)-

Let

6 = aq + z?_ ja«" 1 + - • • + zxa + z0 e gK.

For all  v £ 6)', let /   (T) denote the element of C[T]   obtained by evaluating

the coefficients of / (T) at v.   Then

r„(r)=n ^-i(I0i.m-   n    «»et(T.iAy-pAyt,-i(10|,M)
■«^ ?eI>s<wh

Let

£-    - D KerPo        _i      ,    iß*,Av „ Ar.**   (v) 0 Ia

a two-sided ideal of g   .   By the above, if a el„    , then / J/T) = Tq.

Lemma 8.4.   We We that  b e gK n g9^

Proof.   Let  y cF».   Then

PÄy(fc) - pÄrw? + pÄru€. ^i*-i + • • • * PAyU0)

= Pß.yW + Xy U€_ ¿P^M*" 1 + • • • + X9 (-o)'

by Proposition 3.1 and Lemma 8.3.   Let
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c = PB¡y(aY + x*(zq_ X)Pßty(a)«~l + ... + y«(2()) e K ® KW.

and consider the map

i «.Tr    ® i: K®KM/^y = Q®Km<s>KM/^y^&®KM/^y.ßy
Then (*) equals  (1 ® 77u    ® 0(c).   But

y

c = f(Pßy(a)) =   u  s*f(Pßy(a)) = 0
sewj

since /(Po y(0)) = 0.   Hence  P ß    (b) = 0.   Since this holds for all y £ r„, we

have  P Ab) = 0, and so b £ gK Ó g9^ by Corollary 4.5-    Q.E.D.

Lemma 8.5.   Let  Y bean irreducible gK/gKn ^-module, and regard Y

as a g   -module.   Then ¿ acts on  Y according to a scalar homomorphism of the

form Xyl^ f0T some v £ h)', dim Y < °o and every element of   P       annihilates   Y.

Proof.   í acts as scalars on   Y  by Lemma 2.2, and the existence of v follows

from Lemma 8.1.   Let  tr: g    —' End Y be the representation  of g     associated

with  Y.   Since b £ g    n g9p by Lemma 8.4, we have

0 = o(b) = a(a)q + o(zq_ x)a(a)q~ l + . . . + o(z x)a(a) + a(z0)

= o\aY + ̂ K_iW«)9_1 + • • • + X»(«) + x!^o} = /"><*))■

If a e Jl^ v, then we get 0 = o(ar  from the above discussion.   Thus every element

of the two-sided ideal cr(x ß v^ of (Hg   ) is nilpotent.   But dim Y < °°, by Theorem

5-3.   Hence   cr(g   ) is the finite-dimensional simple ring End Y, so that °~(à~g „ )
= 0.    Q.E.D.

We omit the proof of the following standard fact (see [6(c), p. 56, Lemma 14]):

Lemma 8.6.    Let m be an algebra over C, let  a., a  , ■ ■ ■ , a    be finite-

dimensional representations of Jo and suppose that a    is irreducible.   If
C\"   , Ker a. C Ker o      then Ker a. C Ker o.   for some  i = 1, ■ • • , n.1   ' i =1 z U' i 0   ¡

Theorem 8.7.   Let ß £ K, and let  Y be an irreducible (gK/gK n ffi)-module.
Then there exist y eM and X £ a   such that m(ß, y) > 0 and such that  Y is

equivalent to a subquotient of a (finite-dimensional) (g   /g    n )~p   )-module in

the class  Tj([Vy'k], ß).   In particular, dim Y < m(ß, y) < d(ß) (cf. Theorem 5.3).
Denoting by er: g    —> End Y the representation of g     associated with  Y, we

have Ker P ß      ..      | g    C Ker o", anii there exists an antihomomorphism

"'■■Pß,r.ix+P®K)-^Y
such that a = a'  o p ^     | g   .    Moreover, o(%) acts on  Y according to the

scalar homomorphism y*  .       | ¿.
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Proof.   By Lemma 8.5, there exists v e §    such that a(i) acts on  Y accord-

ing to the scalar homomorphism Xv l^> an<^ ^-ß v ^ ^er a'   ^or eacn Y e ^ß  an<^

A eaiP„x  is an antihomomorphism of g     into a finite-dimensional matrix

algebra.   Hence the composition of Pß y x  with the transpose antiautomorphism

of this matrix algebra is a finite-dimensional representation of g   , and the kernel

of this representation is the kernel of Pß y x.   Thus by Lemma 8.6 and the defini-

tion of Xß    , there exist y £ Yo and s £ W.   such that Ker Pq       _ i(l>)\a |g    C

Ker a.   Choosing A e a   so that z'A + p = s~  (v)\ 0., we have

K"Pß,y,iX+P\SKcKe<°>

and the existence of the antihomomorphism a   is clear.   By Theorem 7.3, we have

Ker 7?([Vr'A], ß) C Ker a.   Let

X = Xn DX, 3 ..OX   =0U 1 n

be a composition series of a g   -module X  in the class r¡([Vy'   ], ß), so that

X./X .  ,   is an irreducible g   -module for all z = 0, ■ ■ ■ ,72-1.   Then for all x £

(Í"=V+Ker [X./X! + 1], we have

x" eKer r¡([Vy-X], ß)CKeta,

so that cKflKer [X ,/X.     ]) is a two-sided ideal of (Kg   ) each of whose elements

is nilpotent.   Since a is irreducible, c(g   ) = End Y, and so cr((|Ker[X ./X .  J) =

0.   Hence  Y (regarded as a g   -module) is equivalent to X./X.  ,   for some  i =

0, ■ • ■ , n - 1, by Lemma 8.6, proving the first assertion of the theorem, and hence

the second.   Finally, the last statement of the theorem follows from the last state-

ment of Lemma 8.3 and the existence of o .    Q.E.D.

Theorem 8.8.   Let V  be a ^¡-irreducible compatible  (g, K)-module, and let

ß £ K such that m([v], ß) > 0.   Then there exist y e M and X e a' such that m(ß, y) > 0

and such that  V  is equivalent to a subquotient of the (g, K)-module  V       .    In

particular, m([V~\, ß) < m(ß, y) < d(ß) (cf. Theorem 5.4).   Moreover, ¿ acts on  V

according to the scalar homomorphism v,8 ■>   „I ■"■° ^ y, iX+P

Proof.   Let X e ß, and let  Y = HomK (X, Vß).   Then  Y is an irreducible
g   -module, by Lemma 2.1, and   V  may be regarded as an irreducible  (g   /g    n

g9^)-module.   Choose y £ M and A e a' as in Theorem 8.7, so that Y  is equiva-

lent to a subquotient of HomK (X, Vy'  ).   Now Vß ^X ® Y as  (g   , K)-modules,

acts on the second factor of X ® Y and K acts on the first factor

(see [11, Lemma 5.3D.   Similarly,   Vy'X =* X <g> HomK(X, VrX) as  (gK,  K)-
modules.   Thus   Vß is equivalent to an irreducible subquotient of the  (y   , K)-

module  vZ'X.   Let Zj  and Z2  be (gK, K)-submodules of VyßlX   suchthat Zj
C Z-  and Z /Z.   is equivalent to  Vg.
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Define the subalgebra Aß of g by A/3= {x e g|9^x C Qeß\.   Then Aß =
a§    + g9  , by [ll, Theorem 5.4].   Hence  Zj   and Z     are A^-submodules of the

A ̂ -module  VZ'   , and Z /Z    is A ̂ -irreducible and is equivalent to the A^-

module  Vg.   Let Z™ln   be the g-submodule of V        generated by Z     and let

Z™ax   be the largest g-submodule of Z™ln   whose intersection with  VZ      is Z

(see [11, Proposition 4.6]).   Then Z™in/Z™ax   is g-irreducible, and

(zmin /z»»)   »Z^Zj  «  V^ as A^-modules.   Hence Z™ln/Z™ax~V as g-

modules, and thus as  (g, K)-modules, by [ll, Theorem 4.9].   This proves the

first assertion of the theorem, and hence the second.   The last assertion follows

from Lemma 2.2 and the last assertion of Theorem 8.7.    Q.E.D.

The last assertion of Theorem 8.8 can easily be proved directly, as follows:

Proposition 8.9.   Let   y e M  and A 6 a  , and let  V  be a (not necessarily ir-

reducible) compatible (g, M)-module which admits an effective highest weight

map with respect to y and A.    Then ¿ acts as scalars on  V, inducing a homo-

morphism x: " —' C, and x = X-y a I '" PariicuIar- ■" acts on the ^-module

V       , and hence on any of its subquotients, according to the scalar homomorphism

x9 ■     12.
Proof.   Let Z ey, and let /: V —> Z  be the given effective highest weight

map.   For all  v e V  and x eg      , we have (recalling that  P\(x) eM     by Lemma

8.2)
f(x . v) = Px(x) . f(v) - (,riL    o xm 0 Px)(x)f(v) = y«    (x)((v),

M'y Y    '  A

by Lemma 8.2.   In particular, if x € ¿, then for all y í[j we have

f(y ■ (x ■ v)) = f(x . (y . v)) . xy ,xU)/(y • v) = f\y ■ y^UW,

so that x • v = xX Ax)v, by the definition of effectiveness.   The last assertion
/ i A

of the theorem follows from Theorem 7.2.     Q.E.D.
Two continuous Banach space representations of G whose  K-multiplicities

are finite are said to be infinite s imally equivalent if their (g,  K)-modules of

K-finite vectors are equivalent.

Theorem 8.10.   Every ^-irreducible compatible (g, K)-module is equivalent

to the  (g, K)-module of K-finite vectors of some continuous topologically ir-

reducible (not necessarily unitary) representation of G  on a Hilbert space, and

this representation may be chosen to be a subquotient of a nonunitary principal

series representation n   '     for some y eM and X e A.    Furthermore, every

continuous topologically irreducible Banach space representation n of G such

that the multiplicity of any element of K  is finite is infinite s imally equivalent

to an irreducible subquotient of some nonunitary principal series representation
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77   '  .   In particular, the multiplicity of any ß £ K  in n is equal to or less than

m(ß, y) < d(ß) (cf. Theorem 5.5).   Moreover, % acts on the space of K-finite vectors

of 77 according to the scalar homomorphism y9 n\    •

Proof.   The theorem follows easily from Theorem 8.8 and Harish-Chandra's

results [6(b)] relating Banach space representations of G to the corresponding

representations of g on the spaces of K-finite vectors.   (We note that Theorem 5,

p. 228 of [6(b)] can be sharpened to the following statement, in our context:   Sup-

pose that 77 is a continuous representation of G  on a Banach space H, with

finite  /(-multiplicities.   Then there is a natural bijection between the set of closed

7r(G)-invariant subspaces X of H and the set of g-submodules   Y of the g-module

V of /(-finite vectors of H; the correspondence is given by  X !—► X O V, Y i-»

closure (Y).)    Q.E.D.

9.   Equivalence under the Weyl group; finiteness theorems.   Let M   be the norm-

alizer of A   in  /(, so that the Weyl group W = M /M  is a finite group.   Now W acts

in a natural way on A  and on &, and by contragredience, on   a    and hence on A.

W also acts in a natural way on M, as follows:   Let y £ M, and let Z Ey, with

77: M  —» Aut Z the corresponding representation.   For all s e W, choose a repre-

sentative m    £ M .   We define a new M-module structure on Z  by  m • z =

n(m~   mm )z  for all m EM and z eZ.   The equivalence class of the resulting ir-

reducible M-module depends only on  s  and y, and is denoted by  sy.     The map

from W x M  to M  given by (s, y) H» sy is indeed an action of W on M.

In §9, we shall relate the notions of composition series (see the Appendix

for relevant definitions), spherical function, infinitesimal spherical function and

distribution character, and in the case of the nonunitary principal series, we shall

relate these notions to W.   We shall also prove the equivalence of various finite-

ness assumptions on  g-modules on which the center ¿> oí g acts as scalars.

A continuous representation 77 of G on a separable Hilbert space H  is said

to be admissible (cf. [15, §2]) if
(1) as a K-representation  77 is unitary,

(2) there is a constant C  such that for all ß £ K, the multiplicity of ß in

H  is equal to or less than  Cd(ß), where as usual  d(ß) denotes the dimension of

any module in ß.
Let 77 be an admissible representation of G on H.   Let C. (G) denote the

space of complex-valued C     functions of compact support on G.   For all / £

C™(G), the operator

*(/)=   / f(g)n(g)dg
G
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(where dg denotes Haar measure on G) is of trace class (see [6(d)]).   The trace

of this operator is denoted  T-(f), and the resulting linear functional  T    on

C'T(G) is a distribution, called the character oí tr (see [6(d)]).

For every ß £ K, let Eß: H —> Hß be the orthogonal projection onto the ß-

primary subspace Hß oí H.   The spherical function <b „: G —>C  associated with

77 and ß is defined by

</$g) = tr E£ rr(g)E"g

for all g eG.   Then cf>ß is an analytic function on  G (see [5] and [6(d)]).

Let V denote the K-submodule of K-finite vectors of H. Then V is nat-

urally a gR-module, and hence a compatible (g, K)-module, under the action 77^

of g determined by

(*) n*(x)v = (d/dt)rr(exp tx)v\¡^0

fot all x £ gR  and v £ Vn (see [6(b)]).   For all x £ g, let Dx denote the left
invariant differential operator on G associated with x.   Then for all ß £ K,

(Dx<p,Tß)(e) = tiE7Tß^(x)Enß,

where e denotes the identity element of G (cf. [6(d), p. 235]).   The infinitesimal

spherical function associated with  77 and ß  is defined to be the complex-valued

linear function  ^([V77], ß)) on gK.

We now establish three general facts about admissible representations.

Proposition 9.1.   Let n and o be admissible representations of G, and let

ß £ K.   Then the following conditions are equivalent:

(1) The spherical functions cf>ß and q>ß are equal.

(2) The infinitesimal spherical functions \(rj([Vn], ß)) and y(7/([VCT], ß))

are equal.

(3) The  g   -modules in the classes  r/itK77], ß) and rpAiV\, ß) have equiva-

lent composition series.

(4) The Xg   -modules   Vg and Vg have equivalent composition series.

Proof.   We assert that the right-hand side of (*) above is determined by its

values for x £ Xg     only.   Indeed, regard  K as a subset of X (the set of equiva-

lence classes of finite-dimensional irreducible X-modules) in the natural way,

and for every y e X, let Ay,p denote the subset of g which takes  Vß into

V     for every g-module  V.   Then by [ll, Remark 4.l], g = S      cA^"^.   In par-
• ■ • - • ß ß

ticular, the right-hand side of (*) is determined by its values for x £AH'H.   But

by [ll, Theorem 5.4], Ap,p = Xg    + g9^, and this proves the assertion.

Since spherical functions are analytic, we thus have that 4>ß= 4>ß if and
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only if the Kg   -modules  l/J and Vß have the same character.   But two finite-

dimensional representations of an algebra over C have equal characters if and

only if they have equivalent composition series.   This shows that (1) and (4)

are equivalent, and also that (2) and (3) are equivalent.

Let X  be a A-module in the class ß.   Then

Vnß ea X ®HomK(X, Vn)

as  a/9^® g   -modules, where  K/i^ acts on the first factor on the right, and gK

acts on the second (see [ll, Lemma 5.3]).   The same assertion also holds for a

in place of 77.   This shows that (3) and (4) are equivalent.    Q.E.D.

Proposition 9.2.   Let n and o be admissible representations of G.    Then

the following are equivalent:

(1) T   =T  .77 cr

(2) The conditions of Proposition 9.1 hold for all ß e K.

Proof.   The equivalence of (1) and condition (1) of Proposition 9.1 for all

ß £ K follows from  [6(d), §7]; see also [l5, Lemma 2.l].     Q.E.D.

Theorem 9.3.   Let n and a be admissible representations of G and suppose

that  T   = Ta.   Then if the ^¡-module  V    has a composition series, the same

is true of the '¿¡-module  Va, and the two ^-modules have equivalent composition

series.   In particular, if Vn  is  \j-irreducible, then the same is true of V , and

the two {^-modules are equivalent.

Proof.   By Propositions 9.1 and 9.2, the Kg   -modules   VUß and  VZ have
equivalent composition series.   The theorem now follows immediately from

Theorem 11.1 and Remark 11.2 in the Appendix.     Q.E.D.
Remark 9.4. The last assertion of Theorem 9.3 was obtained by N. Wallach

[15, Theorem 2.l]. Also, Corollary ll.lO(ii) in the Appendix and Proposition 9.1
immediately imply  [15, Corollary 2.1], a related result.

Remark 9.5.   Our proof of Theorem 9.3 is very simple in two special cases—

the case in which  V     is  g-irreducible (see the proof of Corollary 11.10, and cf.

Remark 9.4) and the case in which  V    is assumed to have a composition series

for g (see Remark 11.11).
We now apply the above results to the study   of the nonunitary principal

~ ~       y A
series.   We note that for all y 6 M and A eA,  77 '•     is an admissible represen-

y a
tation of G.   Let T     x denote the character of n ' •   .

The following theorem is essentially due to Harish-Chandra (see [6(e)]

and [15, Theorem 3.ll):

Theorem 9.6.   For all y e M, A e Â and s e W,  TyX = Tsy sy
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We could now combine Theorem 9.6 with Propositions 9.1 and 9.2 and Theorem

9.3.   But we can be more specific, in view of the following result which we prove

below, following several people's suggestions, using Harish-Chandra's deep

result Theorem 9.14:

Theorem 9.7.   For all y £ M and X £ A, the {¿-module  V has a composi-

tion series.

For all y e M,  X e Â  and ß £ K, let </>^'X = cp77,7'   .   We now have

Theorem 9.8.   Ler y £ M, X £ A  and s eW.   Then
(1) the [¿-modules  V        and Vs have equivalent composition series,

(2) Pß,-y1\+p\®K = Pß,sy,,sX+P\®K for all ß £ K such that m(ß,y)>0,

(3) Ty,\ = ^sy.sA'
(4) cf>y-X = cf>sy'sX for all ß £ t

(5) x(7?([vr'Xl,ß)) = x¥[^r'sX],/3))/or«/ZJ8 ek,
(6) the gK-modules in the classes r](Wy'X], ß) and r]([Vsy'sX], ß) have

equivalent composition   series for all ß £ K,

(7) the  Xg   -modules   Vg      and VSo have equivalent composition series

for all ß EK.
If V is  {¿-irreducible, then the same is true of V's"'     , an¿ i}¡e [WO L¡.

modules are equivalent.   In this case,   V        admits an effective highest weight

map with respect to sy   and isX + p.

Proof.   All the assertions are clear from the above results in this section

and Theorems 7.2 and 7.3.    Q.E.D.
Remark 9.9.   It would be interesting to determine all the highest weight maps

for the modules   V       ; cf. [7(b), p. 125, Theorem 6.3] and [16] for special cases.

Remark 9.10. In [2, p. 193, Theoreme 7;2], F. Bruhat states that in the
unitary case (i.e., when X £ a ¡s real, in our notation), the représentations

77    ^   and 77 (y £ M, s £W) ate equivalent.   His proof is based on asser-

tion (4) of Theorem 9.8, but his proof of this assertion has a gap, as R. Goodman

has pointed out to us; specifically, formula (7;33) on p. 195 of [2] seems to be

unjustified.

Remark 9.11.   Theorem 9.8 can be proved without using Theorem 9.6, as

follows:   For all x £ gK, y eM, s £ W and ß £ K such that m(ß, y) > 0,

Pgy ix+n^ an<^  Pß   y  ■ \   p^ are polynomial functions in À e a'.   Hence

assertion (2) of Theorem 9.8 (and hence all of Theorem 9.8) will follow if any

one of the assertions (1)—(7) is proved for a Zariski dense set of X £ a   (as-

suming that y £ M and s elf are fixed).   In particular, it is sufficient to prove

(1) for a Zariski dense set of X £ a .   Hence it is sufficient to find a Zariski
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dense subset 5 of   &'  such that, for all A e 5,   Vy'    is   g-irreducible and there

is a nonzero g-map from  V to  Vsy,s   .   (Indeed, such a g-map must be a g-

isomorphism.)   To construct 5, we can use the formal intertwining operators be-

tween  Vy,X  and Vsy,sX  introduced by R. A. Kunze and E. M. Stein [10, p. 390,

formula (1.5)1.   These operators are well defined and nonzero as A ranges through

a certain nonempty open subset of  û  , in view of the convergence theorem of S. G.

Gindikin and F. I. Karpelevic [4, Theorem l] (cf. also [7(b), p. 83l).   We can now

use the result of A. W. Knapp and Stein [8] and G. Schiffmann [14] that the formal

intertwining operators can be meromorphically continued to give (finite) nonzero

intertwining operators between  V        and  Vsy,s    fot most X £ a.  , including a

Zariski dense set of real, regular A.   We may choose 5 to be this set, in view of

Bruhat's irreducibility result [2, p. 193, Theoreme 7;2] for the regular members of

the unitary principal series.   Another subset 5 may be constructed as follows:

The irreducibility of  V fot a single A e a    (which follows for example from

Bruhat's irreducibility result) implies the irreducibility for a topologically dense

set of A e a    (this was pointed out to us by B. Kostant and N. Wallach).   This

dense set must intersect the (open) domain of convergence of the formal intertwin-

ing operators in a Zariski dense set of A e a  , and we may choose 5 to be this

intersection.

Remark 9.12.   Let ß  and y be the classes of the trivial one-dimensional re-

presentations of K and M, respectively.   In this case, Theorem 9.8(2) was ob-

tained by Harish-Chandra, essentially by using his method of proof of Theorem

9.6 (see Remark 3-4, [6(g), p. 260, Theorem l] and [7(a), p. 431, Lemma 6.14]).
We can give a simpler proof, as follows:   Let s £ W, and suppose that X £ 0.     is

y Ain the domain of convergence of the formal intertwining operator which takes   V   '

to Vs7,sX (= Vy'sX) (see Remark 9.11).   It is easy to see that the set of such

A  such that the intertwining operator is nonzero on the one-dimensional space

VZ-    is precisely the subset of   a'  such that the integral [7(b), p. 83, formula

(8)] defining the partial c-function associated with s  converges and is nonzero.

Since this set is nonempty and open, and is thus Zariski dense, we obtain

Theorem 9.8(5) for ß   and   y   trivial and all   A in a Zariski dense subset of  a (

and this is sufficient to prove Theorem 9-8(2) for ß and y  trivial (see the begin-

ning of Remark 9.11).
Remark 9.13.   Theorem 9.8(2) may be regarded as a generalization of [12,

Theorem 2.3 (2.56)] (cf. Remarks 3.5 and 7.5).
We now prove Theorem 9.7 and some related finiteness results.   The proofs

are based on the following deep result:

Theorem 9.14 (Harish-Chandra).    LeZ  y: %—' C  be a homomorphism (we

recall that 2> is the center of g).   Then there are only finitely many infinit es imally

inequivalent (see §8) continuous topologically irreducible Hilbert space repre-
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sentations of G with finite  k-multiplicities such that ¿ acts on the '¿¡-module of

K-finite vectors according to  x-

Proof.   See the first part of the proof of Lemme 1 of [3(c)].   (The proof is

based on Harish-Chandra's deep theorem [6(i)] that every distribution character

is actually a locally summable function on G.)    Q.E.D.

Corollary 9.15.   Let y: Z> —>C  be a homomorphism.   Then there are only

finitely many inequivalent ¿¡-irreducible compatible   (g, K)-modules on which i

acts according to   y.

Proof.   The corollary follows immediately from the theorem and the first as-

sertion of Theorem 8.10.    Q.E.D.
Theorem 9.7 follows from the fact that (1) implies (5) in the following theorem,

in view of Proposition 8.9.   However, we note that although Theorem 8.10 is used

in the proof of this theorem, it is not required to prove Theorem 9.7.

Theorem 9.16.(4) Let V be a compatible  (g, K)-module on which Z acts ac-

cording to a scalar homomorphism.    Then the following conditions are equivalent:

(1) For all ß ek, m([v], ß) < «..
(2) There is a constant C such that, for all ß e K,  to([1/], /3) < Cd(ß).

(3) V is a finitely generated ¿¡-module.

(4) V  is a Noetherian ¿¡-module.

(5) V has a composition series as a ¿¡-module.

Proof.   We first show that (1) implies (5).   Suppose that (1) holds.   If  V does
not have a composition series, then for any  n > 0, we can find a sequence of g-

submodules

V = VnDV, D ■■■ DV   =0U 1 n

such that V. 4 V.  j  for all i = 0, •••,«- 1.   Now every g-submodule of V
is the direct sum of its intersections with the spaces  Vß (ß e K).   Using this

observation, it is easy to construct g-submodules  W . and X. of  V . such that

V. D W. DX. 3 V.   ,i        i        i        i+l

and such that  W /X    is  g-irreducible, for all  z = 0, •••,«- 1  (cf. the Appendix
and [ll, Proposition 4.6]).   Now % acts on each W ./X. according to a fixed

scalar homomorphism, and so by Corollary 9.15 there exist finitely many g-

modules Z  , • • • , Z    such that each W ./X.    is equivalent to one of the Z ..i P „  !      * i
For each ; = 1, • • • , p, choose ß. e K such that m([Z.], ß .) > 0, and let m. =

7?z([v], ß.), so that m . < oo by hypothesis.   Then there can only be at most 772.

indices   i between 0 and 72 - 1 such that W ./X. ^ Z.. Thus n cannot be larger

than »Zj + • •• + m     a contradiction,  and  so  (1) implies  (5).

(4) Theorem 9.16 appears to establish, for groups with finite center, a conjecture of
I. M. Gel fand (see 2(c), footnote 5).
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Now it is standard that (5) implies (4) and that (4) implies (3).   The fact that

(3) implies (1) follows easily from [6(b), p. 195, Theorem l].   Finally, (2) trivially
implies (1), and (5) implies (2) in view of Theorem 5.4; we may choose  C to be the

number of irreducible subquotients associated with a composition series of V.

Q.E.D.
Remark 9.17.   Corollary 9.15 and part of Theorem 9.16 are obtained in [3(c),

Lemme 1 and Lemme 2] for the special case in which G is a matrix group.

10.   The image of the map p Jg   .   In this section, we shall compute the image

of the map  pß\&     (ß £ K)  and obtain related results.    We also  state two con-

jectures.

For all s £ W (see §9), let  s+ denote the affine transformation of   a' given

by s^X - s(X - p) + p for all X £ a .   Let s* denote the algebra automorphism of

U  (identified with the algebra of polynomial functions on   a ) given by  (s *x)(A) =

x(s~1X) for all  x £ Q, X £ a'.   This gives an action   W -^ W* = ,s*|s £ If! of  If
as automorphisms of u.   We define dw    to be the set of W-invariants in u under

this action.
We recall from §3 the definitions of the symbols  Yß and pß p, and we recall

from §4 the map X: 5(g) —> g.(5)   We denote by 5(p)     the set of K-invariants in

5(p) under the natural action of  K  on 5(p).

Theorem 10.1.   Let ß £ K and let Y be a nonempty W-stable subset of Yß   .

Then the image of the map pß r: g    —» (f, and in particular, the map pß- pß j.   :

g    —» U, is precisely Qw .    Moreover, the restriction of pß r  to A(5(p)   )  is a

bijection with &w  .    In particular, pß j.(g   ) = pß AX(S(\))   ))  is a ring.

Proof.   For all s £ W, x £ g     and X £ a', we have

PÄr,xW= L ^y)PÄr,xW= £ ^Pß.sy.s^
y eT y er

(by Theorem 9.8(2))

(since Y is W-stable)

so that

Hence  ^r:gK-   ff*'

- Z d(y)p^y¡sJx)
y eT

= Pß,r,s\{x)'

s*Pß rW ~ Pß r^-

P) The reader should note that the symbol  X   is used in two different ways in this
section.
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Using the notation of Lemma 4.7, we note that p„ r is a map essentially of

the form  PT; specifically, if we take  V = C  and   T: K —► C  to be any linear map

on K defined by

T=   Hd(y)ttßy°nßy
y el"

on K     (see §3), then   P j.: g —> 5(a)  is a linear map which agrees with the map

Pß.r §    — if on  g   .   Since

T(l) = £ d(y)m(ß, y) 4 0,
y ¿T

we have by Lemma 4.7 that pß p | A(5(p)   ) is injective.

To show that  pßr(A(5(p)   )) = Qw   ,  we let  y £ Qw     and prove by induction

on d - deg y  that there exists  x e 5(p)     such that pß r(A(x)) = y.   The assertion

is clearly true if d = 0.   Assume that d > 0.   We identify if with 5(a) via the

isomorphism A.
Let  5(a)     denote the set of W-invariants in  5(a) under the action induced

by the natural action of  W on   a.   Let g: 5(p) —> 5(a) denote the projection map

with respect to the decomposition 5(p) = 5(a) © <}5(p) (see §4 for the definition

of  q).   Then by the theorem of C. Chevalley (see [7(a), p. 430, Theorem 6.10]), g:
5(p)   —>  5(a)     is an isomorphism.   Moreover, deg z - deg g(z) fot all z £ 5(p),
where  deg  denotes the ordinary degree function on 5(g).

Let A   : 5(a) —» 5(a) be the algebra automorphism determined by the condi-

tion A  (zz) - u + p(u) for all u £ a.   Then for all v £ 5(a), the highest degree

terms of v and A  (v) coincide.

Now A  (y) £ S(a)w, so that by Chevalley's theorem, there exists z £ 5(.p)

such that g(z) = A Ay).   In the notation of Lemma 4.7, with  T as above, we have

fT(X(z)) = cg(z), where  c  is a nonzero constant (specifically, c = T(l)).   Hence

by Lemma 4.7, we have that

deg (pAr(A(z)) - cg(z)) < deg X(z) = deg z

(since z £ S(p))

= deg g(z) = deg A   (y) = d.

Moreover, y = A~  (g(z)) has the same <¿th degree term as g(z).   Thus

aeg(pßT(X(z))~ cy) < d,

and
pßT(X(z))-cy eâw*,

by the first part of the theorem.   Hence by the inductive assumption, there exists

£ 5(p)     such that pßJ(X(w))   = pßJ(X(z)) - cy.   Choosing  x = c'Hz- w), weu
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have that x £ 5(p)     and that pßr(X(x)) = y, completing the  induction.     Q.E.D.

Remark 10.2.   Choosing ß   to be the trivial class in Theorem 10.1, we have

Harish-Chandra's theorem (see [6(g), p. 260, Theorem 1 and p. 262, Lemma 19] and

[7(a) , p. 431, Lemma 6.14]) that the image of the classical map p A g     (see

w  , and that  pß: A(5(p)   ) —* (îw    is a linear isomor-

phism.   See also Remark 9.12.
Conjecture 10.3.   For every  ß £ K, we conjecture that the image

Pß(§K)ca®(KM/KMn $ß)

is   W-invariant, where   W acts on   X   /X    n 9" via the quotient of the natural

action of   W  on   X   , and where   W acts on  (l via   W*.   This would define a natural

action of  Won  gK/gK H §iß.

Conjecture 10.4.   For all ß £ K, y , yx £ M and  X , Xx £ A such that m(ß, y)
> 0 and   m(ß, yx) > 0, we conjecture that  pß     x |g    =Pßy,   X, l§     only if there

exists  s e W such that  yx = sy and  Aj = s^A, and that the image  pß    (g   ) C U

is precisely the subset of  ö left fixed by   W*, where   W* = \s*\ s £W and  s

fixes   y! (cf. [12, §3.6] and Remarks 3-5 and 9.13).   This would give information

on all the possible equivalences among composition quotients of the g-modules

V   '  .   Note that Harish-Chandra's converse of Theorem 9.6 above (see [6(e)]

and   [15, Theorem 3.1]) does not appear sufficient to prove even the first asser-

tion of this conjecture.

11.   Appendix:   Equivalence of composition series for certain  modules.   In

this Appendix, we establish a general module-theoretic result (Theorem 11.1),

which together with [ 6^c), p. 36, Corollary 2] or, alternatively, the results of

[ll]  (see Remark 11.2) is used to prove Theorem 9.3 above.

Let  SB be a ring (with 1), and   V a (left) SB-module.   A composition series

of   V is a finite sequence of   B-submodules

V = Vr,DV,   3 ... D V   =00 1 n

such that  V ./V.  ,   is an irreducible .B-module for all  f = 0, •••,« — 1 .   IfI       z + l

W = Wn DW, J ... DW    =0U 1 m

is a composition series for a   B-module  W, then the two composition series are

equivalent if  m = 72 and the factor modules   V./V.  .   (0 < i < n - 1) are equiva -

lent to the factor modules   W ./W^.   .   (0 < i < m - 1 ), up to order.   By the Jordan-

Holder theorem, any two composition series of a .B-module are equivalent.   More-

over, if a J>module   V has a composition series, then any strictly descending

chain

X, }X, D ... DX„1 2 p
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of íB-submodules of  V can be extended to a composition series.

Now let (3 be a subring of  $, and regard iB-modules as (f-modules by restriction.

Let r be a set of equivalence classes of irreducible (f-modules.   For every (f-

module  V and y e Y, let  V     denote the y-primary submodule of  V.   Suppose that

for each y e Y, there is a subring Ay  of 5> with the following ptoperties:

(1) For every iB-module   V, V     is stable under Ay.

(2) For every irreducible iB-module   V such that  V    4 0,   V     is irreducible

under Ay.

(3) If V and  W are irreducible inequivalent iB-modules such that  V    4 0,

then  V     and  W     are inequivalent A^-modules.

Then we have the following result, which is proved below:

Theorem 11.1.   Let  V    be a %-module which has a composition series.   Then

for all y e Y, the Ay-module  V     has a composition series.   Suppose that  V    isy
y.a %-module, that  V' = 2      ~ V'    (i = 1, 2), and that for every y e Y, the A

modules  V     and V     have equivalent composition series.   Then  V    has a compo-
...,1,2

sition series, and V    and V    have equivalent composition series.

Remark 11.2.   In the notation and with the assumptions of [ll, §4] (for all

a e (f), Theorem 11.1 holds for Y = Q and Ay = Ay 'y for all y e Q, in view of
[ll, Propositions 3-3 and 4.5, and Theorem 4.9].   In the notation and with the

assumptions of [ll, §5] (for all a e (2), Theorem 11.1 holds for Y = Q. and A7 =
(3®    for all y e U, in view of [ll, Theorem 5.5].   In particular, Theorem 11.1

holds for $ = g, Q = K, T = K and Ay = KgK  for all y e K.   (The fact that as-
sumptions (1), (2) and (3) hold in this case also follows from [6(c), p. 36, Corol-
lary 2].)

To prove Theorem 11.1, we establish the following lemmas:

Lemma 11.3.   Let  V be a %-module which has a composition series.   Then

for all y e Y, the Ay-module  V     has a composition series.

Proof.   Let

V =VnDV, 3 ■■■ DV   =00 1 n

be a composition series of  V.   Then by assumption (2), the A^-module  (V ./V .

is either zero or irreducible (0 < z < n - 1).   But the A •''-module  (V.)   4(V    A
—    — i y      i+l y

naturally   injects   into   (V/V^jy.    Hence   if    (V )y 4 (V¿ + 1)y , then

(V¿)y/(yi + \)y  ls ^"irreducible, and so the distinct members of the chain

Vy = (VQ)yj(Vl)y^...J(Vn)7 = Q
form a composition series of the A ̂ -module  V   .    Q.E.D.

Lemma 11.4.   Let  V be a %-module such that  V = 2      r V   .   Let  y eY, and

y
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suppose that the  A7-module  V     is irreducible.    Then there exist %-submodules

X and  Y of V such that XCY,   VyCY,   X O V    = 0, and Y/X  is ^-irreducible.

Proof.   Let   Y be the SB-submodule of  V generated by  V    , and let  X be the
sum of the J}-submodules of  Y which intersect  V     in 0.   Then X n Vy = 0, since

every U-submodule of  V, and in particular, every SB-submodule of  V, is the direct

sum of its intersections with the primary U-submodules of V.   It is clear that  Y/X

is SB-irreducible.    Q.E.D.
Remark 11.5. The construction of the irreducible SB-module Y/X in Lemma

11.4 generalizes the construction of the irreducible representations 7?. in [12,

p. 397].

Lemma 11.6. Let V be a %-module such that V = 2 r V . Let y £ Y,
and suppose that V / 0 and that V is not A7-irreducible. Then there is a

%-submodule  W of V such that 0 ¿ W n V    À V   .

Proof.   Define  X  and   Y  exactly  as in the proof of Lemma 11.4, so that in

particular,  X n V    = 0.   Now  (Y/X)     and   V     ate equivalent as  A^-modules, so

that (Y/X)     is not A^-irreducible.   Hence  Y/X is not SB-irreducible, by assump-

tion (2).   Thus there is a SB-submodule   W of  V  such that  X C W C Y and such that

0/WOVy/Vy.    Q.E.D.
Remark 11.7.   In the situation of [l 1, §4] (see Remark 11.2), Lemma 11.6

follows immediately from the existence of extensions [11, Proposition 4.6],

Lemma 11.8.   Let  V be a %-module such that  V = 2     r V   .   Let y £ Y, and
suppose that the A7-module  V     has a composition series.    Let

V = Xn DY, DX, DY, DX. D... DY   DX   DY    .=00 112 2 n n n+l

be a chain of 9>-submodules of V.    Choose  i (0 < z < 72)  such that

x,.nvr/Y¡+1nvy

Then there exists a chain of %-submodules

X   = X nDY , DX., DY.., DX.^D...DY.      DX.      DY .        . = Y.  ,i t0 ¿1 il íl z2 im im . i,m .+1 z+1

(772. > 1) such that  Y.JX.. is ^-irreducible and (Y^/X^)    ¿ 0 for all j = 1, • •. , m.,

and such that

xij n y y = yi¡j+l n vy

for ail j = 0, ■ ■ ■ , m ..

Proof.   If (X. O V   )/(Y. + 1 n Vy)  is not A7-irreducible, then applying Lemma

11.6 to the SB-module  X./Y.  p we get a SB-submodule W  of V such that  Y. + 1 C

W C X .  and such that
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Yl+Í nvy4w nvy4xznvy.

Since the  A ^-module   V      has a composition series, we can repeat this argument

to obtain a finite chain of  J3-submodules between  X. and   V.   .   whose  y-primary

if-submodules form a strictly decreasing chain whose successive quotients are

A ■''-irreducible.   Applying Lemma 11.4 to the successive quotients of  J>modules,

we get the desired chain.     Q.E.D.
Proof of Theorem 11.1.   The first assertion is proved in Lemma 11.3.

Let  Q .,-••, Q     be the irreducible ..»-modules which are the composition

quotients of  V  , repeated according to multiplicity.   Choose   y.,•■■, y    eY

such that for all  i = 1, • • • , n, there exists  j = I, ■ ■ ■ , s  such that  (Q .)_,. 4 0.i  ' i
7 ... 2We first apply Lemma 11.8 to  V = V   , y = y., and the trivial chain  V   =

X    3y. =0.   The result is a chain of ,13-modules

i/2 = xn.x..3yn.Dx.,3..oy.     3Xn    dv.      , = y, = oo        oo       oi       oi "mn n       o>mn+1       i

suchthat   Y-./X   . is   S-irreducible, each  (YQ/XQ.)      4 0, and each

Now we apply Lemma 11.8 to V = V ,y=y2, and the above chain. We continue

successively to apply Lemma 11.8 to y. and the chain resulting from y._, until

we reach  y .   The final result is a chain of £ -modules

V2= Un D W. D U, D W. 3 (7, 3... D W, D ¡7   Dlf       =0U 1 1 2 2 Z/Z+l

such that  W./Í7.  (1 < i: < z)  is irreducible and  (W ./(/.)      ^0  for some  / = 1,

• •• , s; moreover, for each j = I, ■ • ■ , s and   z = 0, • • • , Z, we have that   (7. n

V      = W.   , n V     , and that the distinct members of the chain

V2yr(U0)y^(U1)y^...D(U)y! = 0
y i 2

form a composition series of the  A   '-module   V     .
y i '

By assumption (2), the nonzero  A      -modules of the form  (Q .)       (1 < i < n)
y. l yi

ate all irreducible, and the nonzero A      -modules of the form  (W./fJ.)      (1 <
x ... 7, , j   '       '       l       ~

i < t) ate all irreducible.   Since the  A      -modules   V       and   V       have equivalent
y       l l

composition series, the two sets of irreducible A    l -modules are the same up

to equivalence and order.   Hence by assumption (3), the corresponding .Jj-modules

Q. ate equivalent to the corresponding  .«-modules   W./U ..   Continuing in this

way for  y2, ■ ■ . , y , and taking into account the equivalences established by

the previous  y.'s, the choice of the   y.'s   implies that  n = t and that the Jj-

modules  Q.  (l   <i< n) are equivalent to the  8-moduIes   W./U . (1 < i < n),  up

to order.
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It remains to show that  U . = W.   .   for all  z = 0, • • • , n.   But if this fails toi        i + i
hold, then for some  y e Y and some  i = 0, • • • , 72, we have  (U .)    / (W .   .)    .   But

this contradicts the fact that the  A7-modules V     and  V     have equivalent com-

position series, since the nonzero A7-modules of the form (Q .)     are equivalent

to the nonzero A7-modules of the form (W./[) .)    , up to order.    Q.E.D.

Remark 11.9.   The above proof of Theorem 11.1 shows that the last assertion

of Theorem 11.1 remains valid if in place  of the hypothesis that  V     and   V     have

equivalent composition series as  A ^-modules for all  y £ Y, we assume this only

for yx, • ■ ■ ,ys (defined in the proof of Theorem 11.1), and for all the other  y £ Y

we assume that   Vy and   Vy are equivalent as   a-modules, and are finite sums of

irreducible  (l-modules.   In this case, A7 need not exist for y / yx, • • ■ , y .

Corollary 1 1.10 to Theorem 11.1    (cf. Remark 9.4 and [ 15, Theorem 2.1 and
Corollary 2.1]).   Let  V1  and V2  be %-modules such that  V* = 2      r V'y (i' = 1 , 2),
and suppose that  V    is %-irreducible.   Assume either that

(i)   for every y £ Y, the A7-modules   V     and  Vy  have equivalent composition

series  {i.e., that they are equivalent), or that

(ii)   for some yn £ Y, the A      -modules  V       and V       are nonzero and equiva-
1 2       ° ° /3lent, and for every other y  £ Y,   V     and V     are equivalent as  il-modules and

are finite sums of irreducible (I-modules.   (In this case, A     need not exist for

Y¿y0A
Then  V     is  %-irreducible and is equivalent to  V .

Proof.   The corollary follows immediately from Theorem 11.1 and Remark 1 1.9.

Alternatively, the corollary follows directly and easily from Lemma 11.4 and as-

sumptions (1), (2) and ( 3 ).    Q.E.D.
Remark 11.11.   If  in the statement of Theorem 11.1, we assume in addition

2that   V    has a composition series, then the last assertion of the theorem is a

simple consequence of assumptions (1), (2) and (3).
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